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ABSTRACT

Traveling Salesman Problem (TSP) solution techniques are often used for route

planning for automated vehicles. Most TSP solution methods focus on path length

as the fitness reference, however in many cases, traversal time is of more practical

importance. Mutual Attraction Guided Search (MAGS) is a novel solution method

that uses an iterative process to simultaneously optimize both angle of travel through

each target as well as the ordering of the targets in order to optimize path traversal

time. MAGS deterministically locates a locally optimum solution quickly and can

optimize for the acceleration limits of a specific vehicle rather than requiring a con-

stant vehicle speed. Since the basic form of MAGS finds a solution deterministically,

it has no mechanism for escaping local minima, therefore an evolutionary form is also

developed that alternates between local search with MAGS and global search using

evolutionary operators to combine and mutate solutions. This hybridization provides

the necessary balance between local and global search that is required to locate a

globally optimal solution. A fitness based on approximate travel time based on the

maximum velocity achievable at each point on the path is calculated using the cur-

vature of the path and the dynamic constraints of the vehicle. The performance of

both the basic and evolutionary forms of MAGS are compared against path length

based Euclidean and curvature constrained TSP methods.



iv

ACKNOWLEDGMENTS

I would like to gratefully thank my advisor, Dr. Wunsch as well my committee

members, Dr. Moss and Dr. Stutts for their advice, support, and encouragement. I

would also like to thank Dr. Tauritz for devoting time to giving feedback and advice

in the development of the evolutionary algorithm hybrid.

Support from the National Science Foundation, the Intelligent Systems Center,

the Chancellor’s Fellowship, and the M. K. Finley Endowment is gratefully acknowl-

edged.

Finally, I would like to express my sincere thanks to my parents, for their guid-

ance, wisdom, encouragement, and example throughout my life that have enabled me

to reach this milestone.



v

TABLE OF CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SECTION

1. INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. RELATED WORK .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. METHODOLOGY.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. THE MAGS ALGORITHM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. TRAJECTORY GENERATION AND FITNESS EVALUATION.. . . . . 14

3.3. E-MAGS HYBRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4. BASELINE COMPARISONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4. EXPERIMENTAL DESIGN .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6. DISCUSSION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

BIBLIOGRAPHY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



vi

LIST OF ILLUSTRATIONS

Figure Page

1.1 Example Dubins Path Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Path Length Dependence on Angle of Travel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Example Paths for Traversal Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Velocity Profile Dependence on Turning Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Path Traversal Time Dependence on Turning Radius . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Conceptual Representation of Nodes in MAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Derivation of Angle and Magnitude of Each Node’s Contribution to the
Vector Field at a Given Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Field Connections Between Two Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Connection Weight Matrix and Diagram with Full Connection. . . . . . . . . . . . . 13

3.5 Connection Weight Matrix and Diagram for Single Loop . . . . . . . . . . . . . . . . . . . 13

3.6 MAGS Process Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Derivation of Exact Path Between Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 E-MAGS flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.9 Connection Weight Matrix and Diagram for Element-wise OR Recombi-
nation with no Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.10 Connection Weight Matrix and Diagram for Element-wise OR Recombi-
nation with Partial Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Performance Comparison on Burma14 for Centripetal Acceleration Fac-
tor of 1, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Performance Comparison on Burma14 for Centripetal Acceleration Fac-
tor of 3, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Performance Comparison on Burma14 for Centripetal Acceleration Fac-
tor of 5, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



vii

5.4 Performance Comparison on Burma14 for Centripetal Acceleration Fac-
tor of 5, Tangential Acceleration Factor of 5, and Maximum Velocity
Factor of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Performance Comparison on Ulysses16 for Centripetal Acceleration Fac-
tor of 1, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Performance Comparison on Ulysses16 for Centripetal Acceleration Fac-
tor of 3, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.7 Performance Comparison on Ulysses16 for Centripetal Acceleration Fac-
tor of 5, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.8 Performance Comparison on Ulysses16 for Centripetal Acceleration Fac-
tor of 1, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.9 Performance Comparison on Ulysses16 for Centripetal Acceleration Fac-
tor of 3, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.10 Performance Comparison on Ulysses16 for Centripetal Acceleration Fac-
tor of 5, Tangential Acceleration Factor of 1, and Maximum Velocity
Factor of 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.11 Example MAGS path for the Burma14 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.12 Example MAGS path for the Ulysses16 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



viii

LIST OF TABLES

Table Page

5.1 Mean Fitness on Burma14 After 30 Generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Fitness Variance on Burma14 After 30 Generations . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Mean Fitness on Ulysses16 After 30 Generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Fitness Variance on Ulysses16 After 30 Generations . . . . . . . . . . . . . . . . . . . . . . . . 26



1. INTRODUCTION

Path and trajectory planning is a challenging task and is the subject of much

research interest, especially as automation has been integrated into all parts of society

including navigation and even vehicle piloting. Automated vehicles are increasingly

being utilized by military and emergency response personnel to reduce risk to human

lives. The practical cost of inefficient path planning and unnecessary exposure to

hazards can be critical in situations where prolonged exposure may give the enemy

time to target and destroy the vehicle. In some cases, the necessary trajectory is

roughly defined by roadways and obstacles, especially for ground vehicles. In other

cases though, particularly in cases of aerial vehicles, the trajectory is much more flex-

ible and is defined largely by target waypoints. Path planning in such cases presents

a challenge that is closely related to the Traveling Salesman Problem (TSP). The tra-

ditional Euclidean TSP has been widely researched as a path planning algorithm and

is known in itself to be NP-hard [8]. Euclidean TSP solution methods can be used for

route planning situations when targets are spaced far enough that the turning radius

of the vehicle is negligible; however, if a cluster of targets are spaced on a similar scale

as the vehicle’s turning radius, the curvature constraints must be considered when

planning the path.

For some vehicles, such as most airplanes and traditional four-wheeled vehicles,

there is a minimum turning radius limit. The constraint may be due to the physical

construction and placement of wheels on a car, or the maximum lift capabilities and

stall speed of an airplane wing. For these types of vehicles, the curvature-constrained

TSP must be solved. The curvature-constrained TSP is somewhat different from tra-

ditional TSP variants in that the actual path taken between nodes must be considered

rather than simply using a table of distances.

Optimizing a curvature-constrained TSP path introduces several difficulties that

are not present in many TSP variants as there are an infinite number of paths between

any two points that can satisfy the basic curvature constraints of an arbitrary vehicle.

A common method of simplifying the solution process is the use of the Dubins vehicle

model - a vehicle that follows a path defined only by straight lines or circular arcs
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of a constant preset radius. This model has been proven to be optimal for a vehicle

traveling at a constant speed. The derivation of a Dubins path is fairly straightforward

since it is made up of circles tangent to the node angles and straight line segments

tangent to those circles [1] as shown in Fig. 1.1. Only a few calculations are required

to determine the shortest path possible with these constraints. However, even with

this simplification, the problem is still more complex than traditional TSP since any

change in the angle of travel through any node changes the optimal path to all other

nodes and the problem is not scale invariant [4]. This is illustrated in Fig. 1.2 for

the trivial case of a two-node problem in which the turning radius is limited to 1

unit and the nodes have a separation of two units. Figure 1.2(b) depicts the optimal

solution. In Fig. 1.2(a), it is shown that even modifying only one node orientation can

significantly affect the path length between nodes. The curvature-constrained TSP

therefore cannot be reduced to a problem on a finite-dimensional graph as can many

other TSP variants [10]. Thus, common combinatorial optimization tools cannot be

Figure 1.1. Example Dubins Path Construction
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Figure 1.2. Path Length Dependence on Angle of Travel

easily applied. The TSP path planning problem becomes even more difficult when

variable-speed vehicles are considered. The Dubins model can still be used to locate

a path, however it is not guaranteed to be optimal and the minimum turning radius

is not necessarily the most optimal radius, requiring an additional level of search in

order to find the optimal radius.

Finally, certain vehicles do not have a minimum turning radius constraint at all.

Helicopters are capable of making zero-radius turns if the speed of the vehicle is first

brought to zero. These vehicles are capable of using Euclidean paths between points,

however this is not necessarily optimal as it requires the vehicle to stop at every

node. A simplistic example using only two nodes at unit separation is demonstrated

in Fig. 1.3. In Fig. 1.4, the maximum velocity possible at each point along the

paths is shown. For this example a tangential acceleration of 1 and a centripetal

acceleration of 3 are used. Note that though the path length is increased for the

paths with larger radius turns, the maximum velocity is also increased. The inverse

of the velocities given in Fig. 1.4 are displayed in Fig. 1.5 with respect to the location

along the path. The total time required to traverse the loop is represented by the area

under each curve – found by taking the integral of the inverse velocity with respect
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Figure 1.3. Example Paths for Traversal Time Comparison

Figure 1.4. Velocity Profile Dependence on Turning Radius
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Figure 1.5. Path Traversal Time Dependence on Turning Radius

to time according to the relationship given in Eq. 1, which can be derived from the

definition of velocity as the time derivative of position.

T =

∫ tend

tbegin

dt =

∫ send

sbegin

1

v
ds (1)

In each graph, the red curve represents a vehicle following a straight line path between

the nodes; The yellow describes a vehicle following a Dubins path with a radius of

one-quarter of the distance between the nodes; Finally, the blue describes a vehicle

following a circular path. The area under each curve is labeled. The relationship

between the curves and the respective traversal time depends on the tangential and

centripetal acceleration limits. In this case the circular path is optimal; however in

other configurations the Euclidean or Dubins path may be optimal. The Euclidean

path can be sufficient and even near-optimal for high tangential acceleration rates;
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however, for lower acceleration rates, the Euclidean path is sub-optimal and so even

if a vehicle is capable of making abrupt changes in direction it may not be desirable

to limit it to Euclidean paths.

In essence, to obtain the optimal path through a set of nodes, a broader defini-

tion of the TSP must be used. Even in cases where a minimum curvature constraint

is not applicable, the vehicle dynamics may play an important part in identifying an

appropriate node ordering and trajectory shaping. In order to address many of these

difficulties simultaneously, a new solution method, Mutual Attraction Guided Search

(MAGS), is proposed which takes into account the dynamic constraints of a specific

vehicle and identifies a continuous variable curvature path that attempts to minimize

the vehicle’s travel time. Since the MAGS solution method is deterministic, it works

well for quickly finding a local minimum, however it becomes trapped by the nearest

minima. Therefore, an evolutionary hybrid is further proposed in order to alleviate

this problem and to facilitate global search. The Evolutionary - MAGS hybrid (E-

MAGS) alternates between local optimization using MAGS and global exploration

using combination and mutation operators.
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2. RELATED WORK

The TSP has been a popular research subject and has been used in route plan-

ning for automated vehicles [4, 10, 6, 5, 7, 2, 11]. The TSP was only designed to

address the ordering of the target nodes and does not consider the actual path nec-

essary to move between points. Due to physical limitations, no vehicle is able to

make radical changes in direction instantaneously. In many cases, particularly aerial

vehicles, the dominating factor that restricts the radius of a turn is the forward mo-

mentum of the vehicle. A constant maximum normal force results in a radius bound

that is proportional to the square of the velocity. In cases when the target waypoints

are widely separated in comparison to the radius limit, the Euclidean TSP can still be

used to plan the basic path, with adjustments to take into account the turning radius.

However, when the waypoint density is comparable to the turning radius, the ordering

of the targets as given by Euclidean TSP becomes sub-optimal [4]. Because of the ex-

ponential velocity relationship, increasing speed requires either handling much larger

forces or using a larger turning radius. For a military surveillance vehicle, speed can

be essential in order to avoid enemy fire; therefore it is not desirable to limit speed

in order to make sharp turns.

Current applicable research is primarily focused on the Dubins TSP variant.

Dubins first described the minimum path distance between points with prescribed

initial and terminal tangent angles [1]. These curves are optimal when a vehicle’s

turning radius has a constant limit, either because the dominating factor is a physical

constraint such as the steering mechanism, or because the dominant factor is the

momentum and the vehicle maintains a constant speed. In order to deal with the

additional complexity of the curvature constraints, current solutions either try to

optimize node ordering and angle of travel separately – sometimes alternating between

the optimization processes – or use an evolutionary process to make small changes

to both node ordering and angle of travel. Often, only the angles are optimized

and the ordering is assumed to be that of the Euclidean TSP solution [6, 7]. The

author has not discovered any published research that uses a solution method which

utilizes a non-stochastic search that optimizes both travel angles and node ordering
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simultaneously. The research using Dubins TSP variants is also sub-optimal in many

cases for vehicles whose minimum turning radius is dependent on a variable speed.

Tighter curves require a reduced speed, therefore Dubins solutions, while producing

the shortest path for a given speed, either require choosing to use larger radii which

increase path length, or require maintaining a slower speed in order to complete

tighter turns after each node. In many practical applications, the traversal time

is a more appropriate fitness metric than path length. The added complexity that

must be faced by removing the Dubins curve assumption has discouraged exploration

into minimum time solutions. In many cases however, a better solution would give

preference to shallow curves when possible without significantly increasing the path

length in order to allow the vehicle to traverse the path more quickly.
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3. METHODOLOGY

3.1. THE MAGS ALGORITHM

The inspiration for MAGS lies in the interaction of bar magnets through at-

tractive and repulsive fields. Each target node is modeled with a vector field similar

to a bar magnet as shown in Fig. 3.1, though very simplistic in comparison to ac-

tual magnetic fields. The orientation of the node represents the angle at which the

vehicle will pass through the node, with the vehicle passing from south to the north

in the magnet illustration. A simplistic version of the solution process can then be

conceptualized as if each node of the TSP was represented by a bar magnet centered

at the node location and free to rotate about its center. If a set of magnets were thus

arranged, they would each attempt to align themselves with the net field produced at

their location by the other nodes. As the nodes rotate, the field adjusts accordingly

until locally optimal magnetic loops are formed. MAGS utilizes a similar interaction

in order to form path loops through the targets based on the vector field. The field

strength produced by each node at a given location varies with respect to the relative

position and the orientation of the node. Figure 3.2 depicts a node at position 1 at

Figure 3.1. Conceptual Representation of Nodes in MAGS
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Figure 3.2. Derivation of Angle and Magnitude of Each Node’s Contribution to the
Vector Field at a Given Location

an angle of α. The field strength — represented by the red arrow at position 2 —

is desired at some arbitrary position. The field strength at the desired location is

calculated based on the properties of a circular arc which connects the node which is

producing the field with the point of interest and which is tangent to the orientation

of the node producing the field. In order to minimize travel time along the path, the

proper balance between minimizing path length and maximizing the average radius

of curvature must be achieved. Therefore the magnitude of the field produced at the

point of interest is based on the arc length C and the radius R. These are labeled in

Fig. 3.2 and calculated using Eqs. 2-3 where the euclidean separation E and relative

orientation θ are given by Eqs. 4-5.

R =

∣∣∣∣ E

2 · sin (α− θ)

∣∣∣∣ (2)

C = 2 ·R · |θ − α| (3)

E =
√

∆x2 + ∆y2 (4)

θ = tan−1
(

∆y

∆x

)
(5)
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The orientation of the field produced at the point of interest is tangent to the

arc and is given by β in Fig. 3.2 and can be calculated using Eq. 6. In this study,

the field strength was given by the relationship in Eq. 7 which is proportional to the

traversal time of a circular arc at the maximum speed possible for that arc.

β = 2 · θ − α (6)

FieldStrength =
R

C2
(7)

Since MAGS essentially only identifies node ordering and angle of travel through

each node, there is flexibility in how the actual path is derived from that information.

Depending on the method chosen, the field strength relationship may be adjusted

to give more influence to shallower curves or shorter path lengths. For each pair of

nodes, there are four field strength relationships that are considered, as shown in

Fig. 3.3. Two matrices were used to store the field strength data, one for ”forward”

data and one for ”reverse” data. The ”forward” fields are the fields generated by a

given node that would be followed to travel to another node, while the ”reverse” fields

are the fields that would be used if traveling to the node generating the field from

another node. The mutual connection between two nodes is then calculated by taking

the average of the two fields that represent travel between the two nodes in a given

direction. For example, to calculated the strength of the mutual connection from

node A to node B, the average of the ’forward’ field from A to B, and the ’reverse’

field from B to A would be used. The distance and angle between nodes (given by

E and θ in Fig. 3.2) are constant for a given problem and can be calculated once at

the beginning of the algorithm. The basic solution process then consists of iteratively

repeating the following steps until convergence:

1. Calculate the magnitude and direction of the net field produced at each node

based on the current orientation of the other nodes.

2. Update the orientation of each node by adjusting it by some percentage of the

difference between the current angle and the angle of the net field based on the

magnitude of the net field.



12

Figure 3.3. Field Connections Between Two Nodes

The amount that each node angle is adjusted to the net field angle is dependent on

two factors. The movement of each node is scaled based on the magnitude of the net

field normalized with respect to the greatest field strength present at any of the nodes

at that instant. A damping factor of 0.7 was also applied so that no node moved more

than 70% of the difference between the current state and the target state. This was

added to help add stability and work towards a stable solution. Several considerations

must be taken into account which add some further complexity to the procedure. In

general, the magnitude of the field produced is directly proportional to the radius of

the arc between two nodes. When the orientation of one node is directly in line with

another node, however, an infinite radius results, therefore some maximum radius

limit must be enforced before calculating the magnitude. A minimum radius limit

may often also be enforced unless the vehicle is capable of a zero-radius turn. In the

case of a minimum radius limit, the field magnitude is simply set to zero, while for

the maximum radius limit, the radius is set to the maximum radius value and the

arc distance is set to the Euclidian distance between the nodes. Additionally, the
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simple form of the algorithm only provides a solution in the form of node angles and

a vector field between nodes. In order to quickly generate a path, it is necessary to

also identify a node ordering. To accomplish this, a weight matrix representing the

connectivity between nodes is used. At the beginning of the algorithm, all connection

weights are set to 100% as illustrated in Fig. 3.4. After every iteration, a relative

ranking of other nodes is generated for each node by scaling the magnitude of the

individual field contributions based on the largest value. The connection between

each pair of nodes is then updated based on the product of their rankings of each

other. A connection adjustment rate can be used to tune the loyalty of the nodes.

These connection weights are applied to the field magnitude contributions from each

node in the next iteration when calculating the net field at each node. For each pair

of nodes, there are also two connectivity weights to account for the direction of travel

between the nodes (represented by the red and blue line segments in Fig. 1.2). Once

the algorithm converges, the ordering of the nodes can be traced by identifying the

highest ranking connection from each node - illustrated in Fig. 3.5.

Finally, in some cases, once the algorithm reaches convergence, multiple loops

or isolated strings may have formed. For simplicity, these were combined by first

identifying isolated strings and joining them into loops. Then, the mutual attraction

of pairs of nodes in each loop (before application of the connection weights) is used

to choose where to split and merge the loops. Once everything has been merged into

Figure 3.4. Connection Weight Matrix and Diagram with Full Connection
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Figure 3.5. Connection Weight Matrix and Diagram for Single Loop

one large loop, MAGS is run for a few more iterations with the connection weights

locked into the final node ordering in order to optimize the angles for that ordering.

The full procedure within each cycle of MAGS is displayed as a flowchart in Fig. 3.6

and including the adjustment steps is then given as follows:

1. Calculate the raw magnitude and direction of the net field produced at each

node based on the current orientation of the other nodes.

2. Adjust raw magnitudes.

Correct for radii out of preset bounds

Multiply by the connection weight matrix to yield adjusted fields.

3. Update the orientation of each node by adjusting it by some percentage of the

difference between the current angle and the angle of the net field based on the

magnitude of the net adjusted fields.

4. For each node, generate normalized rankings of all other nodes

5. Update connection weight matrix

6. Reduce loyalty
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Figure 3.6. MAGS Process Flowchart

3.2. TRAJECTORY GENERATION AND FITNESS EVALUATION

The MAGS algorithm itself performs optimization based on the interaction of

the vector fields generated by each node in order to find travel angles and ordering of

the nodes based on the multi-objective goals of minimizing path distance while using

shallower curves. The paths generated by MAGS will naturally tend towards optimal

travel time, but the exact travel time for each curve is not needed in order to run

the MAGS optimization process. However, in order to use evolutionary operators or

to compare to other methods, an exact fitness of each solution candidate must be

available, therefore an estimation of the actual travel time for each curve is necessary.

There are many possible methods of generating a smooth curve between two points

with initial and final tangents. Dubins curves have often been used and work well for
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constant speed vehicles, but the purpose of this model is to allow more flexibility in

the path rather than requiring a constant turning radius. Some researchers have also

used various spline curves with success. The search for the optimal curve is a com-

plex problem and merits much study in itself. In general, more optimal trajectories

require more computation time to locate and since this study requires many repeated

fitness analyses, a simple model was necessary. It is likely that other curve generation

methods may yield better results at the expense of time and further research may

even yield more efficient curve generation methods.

The derivation of the paths used to determine fitness is illustrated in Fig. 3.7.

Two circular arcs are used as the basis, each tangent to the angle of one node and

passing through the other node. Parametric equations describing each arc are given

in Eq. 8-9 using normalized scaling with parameter t such that a constant speed of

motion along the arc from the first point to the second is given by varying t from

0 to 1 at a constant rate. Note that the parameter t represents a normalized path

parameter that gives the percentage of completion of the path from one node to the

next and does not represent time.

Figure 3.7. Derivation of Exact Path Between Nodes
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xi(t) = Xc,i +Ri · cos((θi,first − θi,second) · t+ θi,first) (8)

yi(t) = Yc,i +Ri · sin((θi,first − θi,second) · t+ θi,first) (9)

The point (Xc,i, Yc,i) is the center of the circle, Ri is the radius of the circle, θi,first

is the start point, and θi,second is the end point. The path used is based on gradually

adjusting from one circle to the other based on the parameter t as given in Eq. 10.

xpath(t) = x1(t) · (1− t) + x2(t) · t (10)

The maximum velocity achievable on a given path segment is given by Eq. 11 where

ρ is the radius of curvature and an is the maximum normal acceleration of which the

vehicle is capable.

Vmax =
√
an · ρ (11)

The radius of curvature, ρ at any point on a parametric curve is based on the first

and second derivatives of the parametric equations as given in Eq. 12.

ρ =
(x′2 + y′2)

3
2

x′y′′ − y′x′′
(12)

From Eq. 8-10 the first and second derivatives of xpath and ypath can be calculated as

given in Eq. 13-16 where Ci, Si and ∆θi are defined as given in Eq. 17-19.

x′path = −S1 ·∆θ1 · (1− t)− S2 ·∆θ2 · t+Xc,2 −Xc,1 + C2 − C1 (13)

x′′path = −S1 ·∆θ21 · (1− t)− 2 · C2 ·∆θ1 − S2 ·∆θ22 · t+ 2 · C2 ·∆θ2 (14)

y′path = C1 ·∆θ1 · (1− t) + C2 ·∆θ2 · t+ Yc,2 − Yc,1 + S2 − S1 (15)

y′′path = −C1 ·∆θ21 · (1− t) + 2 · S1 ·∆θ1 − C2 ·∆θ22 · t− 2 · S2 ·∆θ2 (16)
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∆θi = θi,first − θi,second (17)

Ci = Ri · cos(∆θi · t+ θi,first) (18)

Si = Ri · sin(∆θi · t+ θi,first) (19)

The maximum velocity at each parametric curve point generated can then be identi-

fied. In order to calculate the travel time, it is first necessary to calculate the actual

velocity achievable at each point, taking into consideration the time needed to ac-

celerate and decelerate in order to meet velocity requirements at other points. The

tangential acceleration limit of the vehicle is the limiting factor. Starting with the

absolute maximum velocity profile for the curve, two adjustment passes are run using

Eq. 20 to determine the change in velocity possible at the given acceleration limit.

The initial velocity is given by vi, at represents the tangential acceleration limit of

which the vehicle is capable, and ∆s is the distance moved along the curve.

v =
√
v2i + 2 · at ·∆s (20)

The first adjustment pass works forward along the curve and adjusts any velocities

that cannot be achieved with the set acceleration limit and the velocity at the last

point. The second adjustment pass works in reverse and ensures that the velocity at

each point is not too high to decelerate to the required velocity by the next point.

Once the actual velocity is found for each point on the curve, the total travel time

can be found by integrating the inverse of the velocity with respect to curve position

as given in Eq. 21.

T =

∫ tend

tbegin

dt =

∫ send

sbegin

1

v
ds (21)

The quality of the travel time approximation can be controlled by changing the num-

ber of points used in the discrete parametric approximation. It should be noted that

the nature of the parametric equation will not yield equally spaced points. The gen-

erated points will tend to be more densely spaced near each end of the curve in most

cases. The difference in density depends on how well the orientation angles of the

two nodes are in harmony. When there is a large disparity between the preferred
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curves, the density of the generated points will tend to be more widely varied while

generated points will be more evenly spaced when the orientation angles of each node

are in alignment with the preferred curve from the other node.

3.3. E-MAGS HYBRID

The basic structure of the evolutionary hybrid is shown in Fig. 3.8. In devel-

oping the EA hybridization, the primary focus was in the development and analysis

of appropriate recombination and mutation methods. Any standard parent selection

operators can be used, therefore the analysis of optimal selection operators was not

investigated in this research. A simple k-tournament selection process with replace-

ment was therefore used in the selection of two parents for each new offspring in all

tests. A k-tournament selection is performed by randomly selecting a set number, k,

Figure 3.8. E-MAGS flowchart
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of individuals for each tournament. The fittest individual within the selected group

is chosen to be a parent of a new offspring. Two tournaments are held for each off-

spring in order to generate both parents. Once a new population was created, the

parent generation was discarded. The recombination and mutation methods avail-

able depend on the encoding format used to represent the individual solutions. All

curvature constrained TSP solutions are made up of two elements: travel angles, and

node ordering. The travel angles were encoded as a vector of length n,where n is the

number of nodes, and the node ordering was encoded in the form of the connection

weight matrix as illustrated in Fig. 3.5. For the recombination stage, standard oper-

ators may be used for the angle vectors. A random crossover was utilized with each

angle being selected from either parent with equal probability. Several variations were

tested for the recombination of the weight matrices. The simplest option tested was

to simply ignore the node ordering information and completely reset all connection

weights so that each new individual starts with full connectivity between nodes as

shown in Fig. 3.4. The second option tested was an element-wise OR operation that

combines the connections from both parents. This is illustrated in Fig. 3.9 for par-

ents with loops of 1-4-2-3 (Fig. 3.5) and 1-2-3-4. Finally, an intermediate method was

tested - starting with the element-wise OR operation, and then partially resetting the

remaining weights as shown in Fig. 3.10.

Figure 3.9. Connection Weight Matrix and Diagram for Element-wise OR Recombi-
nation with no Reset
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Figure 3.10. Connection Weight Matrix and Diagram for Element-wise OR Recom-
bination with Partial Reset

Mutation of the angle vectors was performed by resetting each angle to a random

value with a set probability. If and only if the angle of a node was reset, all weight

connections to and from that node were reset as well.

3.4. BASELINE COMPARISONS

In order to obtain a meaningful performance analysis, a baseline comparison

is needed. The simplest comparison used was that of the Euclidean path. Using

the maximum velocity and tangential acceleration limits given, the traversal time

was calculated for the optimal Euclidean path. The vehicle was assumed to be able

to change direction abruptly when at zero velocity. While this path may not be

feasible for all vehicles, it provides a meaningful comparison. Secondly, a Dubins path

comparison was calculated. For simplicity, the node ordering given by the Euclidean

TSP was used and angles were optimized using Particle Swarm Optimization [3]. The

experiment was repeated using a range of radii for the Dubins paths and the best

radius was used for comparison against the results of MAGS and E-MAGS. Even

though Dubins paths were used, a constant velocity was not enforced, but rather the

vehicles were assumed to have the same acceleration and velocity limits as for the

other methods and the velocity profile was generated accordingly.
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4. EXPERIMENTAL DESIGN

Experimental testing was carried out using MATLAB on a standard desktop

computer. All experiments were conducted with ten independent runs for each con-

figuration tested in order to measure statistical significance of the results. The number

of independent runs was limited to ten because of the number of experiments nec-

essary and the computation time required for each experiment. The Burma14 and

Ulysses16 benchmark datasets from the TSPLIB collection [9] were used to test per-

formance. While these are fairly small TSP datasets, the computational complexity

required the use of smaller datasets for initial testing. Additionally, the advantages of

using MAGS are most effective on tight clusters of nodes. For larger datasets, much

of the dataset may be able to use Euclidean ordering to simplify the problem. Ideally,

dense clusters could be identified and solved with MAGS and then integrated into

the overall solution.

In order to allow a meaningful comparison between the two datasets, all velocity

and acceleration limits were scaled based on the average separation between nodes.

Centripetal acceleration limits were tested at 1, 3, and 5 times the average separation.

For the Burma14 dataset the tangential acceleration was tested at both 1 and 5

times the average node separation and the maximum velocity was set to 3 times the

average separation. For the Ulysses16 dataset, a tangential acceleration multiplier of

1 was used and the maximum velocity was tested at both 3 and 5 times the average

separation. As a scale of reference, for a minimum node separation of 100 ft, a

velocity multiplier of 3 and 5 would correspond to a maximum velocity of about 200

mph and 340 mph respectively. Alternatively, a minimum node separation of 1000 ft

would correspond to maximum velocities of around Mach 3 and Mach 5. Acceleration

multipliers of 1, 3, and 5 correspond to 3g, 9g and 15g for an average node spacing

of 100 ft - ranging from human discomfort to loss of consciousness limits.

Preliminary testing of MAGS showed only marginal improvement with more

than 80-100 cycles, so MAGS was run for 100 cycles for each individual in the popu-

lation while generating initial solution candidates from a random start configuration.

When using E-MAGS, new offspring generated through evolution were run for only
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50 cycles within MAGS since the solution should be partially optimized at the be-

ginning of the MAGS cycle. E-MAGS was run for 30 generations. When testing

the basic MAGS algorithm, every new run is started randomly, so generations and

population sizes are unnecessary. In order to gain an effective comparison to the

E-MAGS performance, 30 generations of equal population were also used, however

every individual in each generation was simply initialized with new random starting

angles. However, all generations were run for the full 100 cycles. A population size

of 15 and a tournament size of 4 were selected. The computational complexity of

MAGS placed limits on the practicality of testing larger population sizes.

In each configuration, E-MAGS was tested with mutation rates of 0.0, 0.2 and

0.4 and connection weight reset percentages of 0%, 50%, and 100%. In order to

compare with the performance of MAGS, a comparison run of MAGS was performed

for each acceleration value in which an equal population was used, but all members of

the population were reset with new angles and full connectivity with each generation.

For the Dubins path tests, Particle Selection Optimization (PSO) [3] was used

to optimize the angles of travel through each node. Twenty different radii were tested

in each configuration and the best selected for comparison with the other methods.

The radii used were based on the radius achievable while traveling at the maximum

velocity. Early testing indicated that the optimum radius was typically found to

be less than 1/100th of the maximum radius possible so radii were tested between

0.000025 and 0.01 times the maximum radius. The PSO parameter constants were

each set to 2 and a maximum particle velocity was set to π
2
. One hundred iterations

were run for each configuration.



24

5. RESULTS

Table 5.1 displays the best fitness after 25 generations for each parameter config-

uration. The values displayed represent the average value over 10 runs. The variances

associated with each of these runs are displayed in Table 5.2. Tables 5.3 and 5.4 list

the mean and variance of the fitness on the Ulysses16 dataset. The maximum ve-

locity multiplier was held constant at 3 for the Burma14 runs and the tangential

acceleration multiplier was set at 1 for the Ulysses16 runs.

Table 5.1. Mean Fitness on Burma14 After 30 Generations

Tangential Accel. Multiplier of 1 Tangential Accel. Multiplier of 5

Centripetal Acceleration Multiplier of 1
MAGS: 28.8857 MAGS: 25.9227

Mutation Probability Mutation Probability
Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 29.1500 25.1301 25.5923 0 % 23.9335 21.3982 22.3289
50 % 28.5320 25.2781 25.2443 50 % 25.1053 22.7880 22.6635
100 % 37.3242 33.4735 30.0399 100 % 34.5916 27.8993 25.2695

Centripetal Acceleration Multiplier of 3
MAGS: 13.4406 MAGS: 12.4977

Mutation Probability Mutation Probability
Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 16.0331 13.5239 14.2561 0 % 13.7040 11.7084 12.3198
50 % 14.6232 14.6574 14.9645 50 % 12.5939 12.0799 12.7989
100 % 16.7505 16.0235 15.9809 100 % 14.0503 14.4526 14.0132

Centripetal Acceleration Multiplier of 5
MAGS: 11.2927 MAGS: 9.5115

Mutation Probability Mutation Probability
Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 12.0394 10.5117 10.9950 0 % 10.0357 8.9558 9.1681
50 % 11.3839 10.8159 10.9063 50 % 9.6649 9.2247 9.3245
100 % 11.7416 11.7746 11.3086 100 % 9.8776 9.7395 9.7876
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Table 5.2. Fitness Variance on Burma14 After 30 Generations

Tangential Accel. Multiplier of 1 Tangential Accel. Multiplier of 5

Centripetal Acceleration Multiplier of 1
MAGS: 4.5746 MAGS: 5.2784
Mutation Probability Mutation Probability

Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 6.1391 0.7554 1.9196 0 % 12.0456 0.5549 1.9587
50 % 8.6303 0.4765 1.4311 50 % 4.2942 3.4562 2.0219
100 % 6.3428 0.3279 10.5594 100 % 30.3444 4.4369 8.2680

Centripetal Acceleration Multiplier of 3
MAGS: 0.2501 MAGS: 1.2824
Mutation Probability Mutation Probability

Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 2.5257 0.5856 1.3313 0 % 2.4484 0.2743 0.3765
50 % 1.7357 1.0502 1.2457 50 % 1.5692 0.9578 1.2708
100 % 1.0354 2.3107 2.1181 100 % 1.1489 0.0097 0.2952

Centripetal Acceleration Multiplier of 5
MAGS: 0.5566 MAGS: 0.4943
Mutation Probability Mutation Probability

Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 1.3203 0.1146 0.4771 0 % 0.0939 0.1328 0.2615
50 % 0.2729 0.1761 0.2620 50 % 0.1885 0.3410 0.1967
100 % 0.2725 0.1631 0.5539 100 % 0.0247 0.1937 0.0921

Figures 5.1-5.3 contain a comparison of the performance of each algorithm on

the Burma14 dataset using a tangential acceleration multiplier of 1 and a maximum

velocity multiplier of 3 with centripetal acceleration multipliers of 1, 3, and 5. Only

the best configuration of the Dubins and E-MAGS algorithms are displayed. The

fitness is measured by the traversal time negative so that higher fitness is better.

The green line represents the traversal time for the optimal Euclidean path using the

specified vehicle limitations. Figure 5.4 compares the algorithm performances using a

tangential acceleration scaling factor of 5. Displayed in Figs. 5.5-5.7 are performance

comparisons on the Ulysses16 dataset for different centripetal acceleration scaling
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Table 5.3. Mean Fitness on Ulysses16 After 30 Generations

Max. Velocity Multiplier of 3 Max. Velocity Multiplier of 5

Centripetal Acceleration Multiplier of 1
MAGS: 27.5012 MAGS: 25.0365

Mutation Probability Mutation Probability
Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 26.8026 23.4612 24.4096 0 % 25.5275 23.4662 24.5446
50 % 28.4633 26.9928 27.4654 50 % 27.3522 26.9668 26.6572
100 % 28.3357 28.3153 27.4960 100 % 27.2023 26.5416 27.1071

Centripetal Acceleration Multiplier of 3
MAGS: 14.5308 MAGS: 15.1523

Mutation Probability Mutation Probability
Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 15.0196 13.4629 13.9514 0 % 14.6839 13.3649 13.9839
50 % 16.1360 15.9521 15.2794 50 % 15.6302 15.4272 15.5500
100 % 15.4155 15.8808 15.9385 100 % 16.4865 15.3848 15.3630

Centripetal Acceleration Multiplier of 5
MAGS: 11.9803 MAGS: 11.3451

Mutation Probability Mutation Probability
Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 11.1772 10.3550 10.8541 0 % 11.1412 10.5019 10.9220
50 % 12.4597 12.3823 12.1493 50 % 12.3073 12.2016 11.9507
100 % 12.2336 12.4309 12.3524 100 % 12.6997 12.3193 11.7966

factors while using a tangential acceleration factor of 1 and a maximum velocity factor

of 3. Figures 5.8-5.10 contain performance comparisons for the same centripetal and

tangential accelerations with the maximum velocity factor increased to 5.

An example of a MAGS generated path on the Burma14 dataset is shown

in Fig. 5.11 and a MAGS generated path on the Ulysses16 dataset is displayed in

Fig. 5.12. The blue arrows indicate the direction of travel through each node. The

nodes are located at the base of each arrow.
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Table 5.4. Fitness Variance on Ulysses16 After 30 Generations

Max Velocity Multiplier of 3 Max Velocity Multiplier of 5

Centripetal Acceleration Multiplier of 1
MAGS: 1.5720 MAGS: 1.4451
Mutation Probability Mutation Probability

Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 3.2723 0.2416 0.8284 0 % 1.6768 0.1445 0.3556
50 % 0.8456 2.3746 0.6962 50 % 1.5829 2.9042 1.4792
100 % 0.5410 0.1858 1.2782 100 % 2.3692 1.9648 0.8353

Centripetal Acceleration Multiplier of 3
MAGS: 0.7440 MAGS: 1.0167
Mutation Probability Mutation Probability

Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 0.6559 0.0302 0.0968 0 % 1.1459 0.0365 0.1060
50 % 0.2466 0.1286 0.3907 50 % 0.1643 0.3809 0.1727
100 % 0.7075 0.3981 0.4364 100 % 0.6260 0.3528 0.5373

Centripetal Acceleration Multiplier of 5
MAGS: 0.7937 MAGS: 0.2053
Mutation Probability Mutation Probability

Reset 0.0 0.2 0.4 Reset 0.0 0.2 0.4
0 % 0.7605 0.0224 0.1507 0 % 0.8230 0.0336 0.0320
50 % 0.5492 0.2383 0.1500 50 % 0.2096 0.1307 0.3916
100 % 0.1914 0.2266 0.0675 100 % 0.2295 0.5465 0.3929
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Figure 5.1. Performance Comparison on Burma14 for Centripetal Acceleration Factor
of 1, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 3
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Figure 5.2. Performance Comparison on Burma14 for Centripetal Acceleration Factor
of 3, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 3
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Figure 5.3. Performance Comparison on Burma14 for Centripetal Acceleration Factor
of 5, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 3
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Figure 5.4. Performance Comparison on Burma14 for Centripetal Acceleration Factor
of 5, Tangential Acceleration Factor of 5, and Maximum Velocity Factor of 3
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Figure 5.5. Performance Comparison on Ulysses16 for Centripetal Acceleration Factor
of 1, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 3
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Figure 5.6. Performance Comparison on Ulysses16 for Centripetal Acceleration Factor
of 3, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 3
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Figure 5.7. Performance Comparison on Ulysses16 for Centripetal Acceleration Factor
of 5, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 3
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Figure 5.8. Performance Comparison on Ulysses16 for Centripetal Acceleration Factor
of 1, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 5
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Figure 5.9. Performance Comparison on Ulysses16 for Centripetal Acceleration Factor
of 3, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 5
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Figure 5.10. Performance Comparison on Ulysses16 for Centripetal Acceleration Fac-
tor of 5, Tangential Acceleration Factor of 1, and Maximum Velocity Factor of 5
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Figure 5.11. Example MAGS path for the Burma14 dataset



39

Figure 5.12. Example MAGS path for the Ulysses16 dataset



40

6. DISCUSSION

An examination of the performance of the evolutionary operators tested reveals

that the best performance for all vehicle specifications tested was always obtained

with no reset of the bond connections and a 20% mutation rate. This configuration

typically also had one of the lowest variance in the data as well. It is also noted

that the partial reset often performed well and in some cases using the Burma14

dataset, was better than no reset when mutation rates other than 20% were used. It

is therefore recommended that the bond connection reset should be minimized, but

a small percentage of reset may be beneficial if the mutation rate is not optimized.

The reset percentage had a larger effect on the performance than that of the mutation

rate, revealing that the ordering information encoded within the bonds is necessary for

optimal performance of MAGS. This is likely because when nodes are fully connected,

nodes can be affected by the orientation of nearby nodes even if they are distantly

connected in path ordering. This can lead the nodes to be influenced away from

optimal configurations. The mutation rate was discovered to be of significance, though

its effects were not as large as the bond reset. Performance was observed to decrease

with both too large and too small mutation rates. In all cases except for one, the

best E-MAGS fitness exceeded that of MAGS. Non-optimal E-MAGS configurations

also yielded comparable results to MAGS although in many cases inferior.

In comparing both MAGS and E-MAGS with the Euclidean and Dubins paths,

significant improvements were seen in all cases except for when a tangential accel-

eration scaling of 5 was used. In this case, the Euclidean path became the optimal

choice since the need to slow to a stop at each node was not a significant penalty

in comparison to the path length. In cases such as these, the Euclidean path is the

best choice unless the vehicle has mechanical curvature constraints that limit the

sharpness of the turns.

A visual inspection of the paths yields further insight into the performance. In

both Fig. 5.11 and Fig. 5.12, the ordering of the nodes is dramatically different from

the optimal Euclidean ordering, and allows larger curvature radii to be maintained.

However, the path in Fig. 5.12 does illustrate some of the inherent weaknesses of the
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curve generation method used. The curve connecting the lowest two points contains

an unnecessarily sharp turn. This problem was often encountered in cases where the

angles of the two nodes are greatly misaligned because of the influence of other nodes.

If the algorithm were run long enough, this might correct itself through adjustment

in the node angles, but it would be desirable to have a better trajectory generation

for cases when misalignment between two nodes persists.
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7. CONCLUSIONS

Current published methods for vehicle trajectory planning for TSP problems

typically focus on solving curvature constrained TSP and are primarily limited to

planning for constant speed travel using the Dubins vehicle model. These methods

have been shown to work well for widely spaced targets, and for vehicles that travel

with constant speed. However, when targets are clustered more densely, these paths

can become increasingly sub-optimal for vehicles that have the ability to vary their

speed since these methods focus on minimizing path length rather than traversal time.

MAGS shows great promise in quickly converging on a local optimum solution.

The solution is based on a balance between minimizing path length and curvature

rather than limiting the vehicle to a single speed. The primary drawback to MAGS

is that it locates a solution deterministically based on the initial configuration. This

causes it to be easily trapped by local minima. The evolutionary hybridization pro-

posed in this research significantly improved the performance of the MAGS algorithm

by encouraging exploration. Various evolutionary operators were compared to deter-

mine the effectiveness of each. The recombination of the connection weights was

shown to be much more effective than letting each individual start fresh with the new

angles. The mutation rate was found to have some effect in the number of generations

observed, with low mutation rates being favored in early generations, but with higher

mutation rates leading to long-term improvement.

It was also shown that allowing MAGS to start with full connection weights

causes interference between nearby nodes and draws the solution to inefficient local

minima traps, preventing optimal performance. By using evolutionary operators to

choose preferred node connections for the initialization of MAGS the performance

was improved.

The computation time necessary for each generation currently makes large prob-

lem sizes or large evolutionary populations impractical. The MAGS code is still in

development, however, and has not yet been fully optimized for efficiency. Further

improvements may also be achieved by implementing portions of the code with a GPU

in order to take advantage of the parallel nature of much of the computation required
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for MAGS. Much of the computation necessary for the MAGS algorithm is highly

parallel in nature. Therefore, the computation time necessary could likely be re-

duced significantly by utilizing a GPU to run parallel calculations whenever possible.

The quality of the MAGS results could also possibly be improved by implementing

alternate methods of determining where to merge multiple loops that naturally form.

The most significant difficulty still present in achieving optimal results with

MAGS and E-MAGS and likely the greatest opportunity for improvement lies in

generating optimal curves between nodes for which efficient curvature analysis is

possible. Some error due to performing discrete approximations of the inverse velocity

integral were observed, particularly in cases where the velocity was close to zero.

Additionally, the curve generation method used in this study works well when node

angles are nearly congruent, however in some cases the curve generation method

resulted in sub-optimal path segments when nodes were widely separated or when

node angles were misaligned.

As continuing advancements are made in computation power and efficiency, path

planning methods that focus on traversal time fitness rather than path length will

be necessary and practical. This shift in focus leads to some unique challenges that

are not present in traditional TSP or even many curvature-constrained TSP methods.

MAGS and E-MAGS have shown promise in providing a way to meet these challenges

and offer several opportunities for further improvement and exploration within this

field.
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