Library and
Learning Resources

A study of influence line analysis of stresses in a cantilever steel highway bridge

Lawrence King Snyder

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Civil Engineering Commons
Department:

Recommended Citation

Snyder, Lawrence King, "A study of influence line analysis of stresses in a cantilever steel highway bridge" (1932). Masters Theses. 4770.
https://scholarsmine.mst.edu/masters_theses/4770

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A STUDY OF INFLUENCE LINE ANALYSIS OF STRESSES IN A CANTILEVER STEEL HIGHWAY BRIDGE

BY

LAWRENCE KING SNYDER

A

THESIS
submitted to the faculty of the

SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI
in partial fulfillment of the work required for the

Degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING
Roll, MO.
1932 .

Approved by

TABLE OF CONTENTS

Page
Preface I
List of Illustrations III
Introduction 1
Aim of the Study 3
Influence Lines
For the Anchor Arm and Suspended Span 17
The Semi Graphical Method
For the Anchor Arm and Suspended Span 29
The Graphical Method
For the Cantilever Arm 33
The Semi-Graphic Method-- For Cantilever Arm 35
Conclusion 38
Plates 41
Calculations 42
Bibliography 95
Index 97

As its name implies, this thesis introduces to the reader the basic conceptions and principles of the use of influence line analysis of the structural theory relating to calculation of stresses in a steel cantilever bridge truss.

It is the common practice in all text books dealing with structural theory to confine their discussions on stress analysis to the purely time honored analytical methods, with the mere mention of the possibilities of graphic or semi-graphic methods of influence line analysis of structures beyond simple trusses. During the study of my course in advanced structures, the possibilities of the influence line method of stress analysis for the more complicated structures, such as the cantilever types, became apparent and since there was little or no information to be hed in this field it was decided to make an exhaustive study of influence line analysis of stresses in a typical cantilever truss bridge as my thesis work.

In practically all design offices the current practice in designing advanced structures is to use analytical methods of stress analysis, but this has always proven laborious, difficult, and oonductive of
errors, resulting in the necessity of extreme care With all calculations and frequent checking. The reason that very little advance or change in methods of design have occurred in past years is probably due to the fact that designers of the old school are rather hesitant to adopt new and unproven methods and the natural inertia against changing their accustomed practices. But in recent years it has been felt the graphic or semi-graphic methods are faster and less liable to error than the analytical methods. Therefore, if the above methods can be found to give results Within the required limits of accuracy, they have everything in their favor.

The influence line method of stress analysis simplifies many problems of design, and especially reduces the space, and time required for a complete treatment of bridge trusses and concentrated load systems. Therefore, an attempt has been made in this thesis to prove the practicability of the influence line method of stress analysis in the design of advanced bridge structures.

Influence Lines for Simple Beams
Figure l-----------------------------5
Figure 2---------------------------7
Figure 3---------------------------7a
Figure 4--------------------------10
Stresses in Anchor Arm by Graphic Method

Stresses in Anchor Arm by
Semi Graphic Method

Stresses in Cantilever Arm by
Graphical Method

Stresses in Cantilever Arm by
Semi-Graphic Method

Plates Following Page 41
Plate 1 Stresses in Anchor Arm Graphic Method Top and Bottom Chords

Plate 2 Stresses in Anchor Arm Graphic Method Diagonals

Plate 2A Stresses in Anchor Arm Graphic Method Posts

Plate 3 Stresses in Anchor Arm Semi Graphical Method Top and Bottom Chords Posts and Diagonals
Plate 4 Stresses in Cantilever Arm Graphic Method Top and Bottom Chords
Plate 5 Stresses in Cantilever Arm Graphic Method Posts and Diagonals
Plate 6 Stresses in Cantilever Arm Semi Graphic Method Top and Bottom Chords Posts and Diagonals
Plate 7 Stresses in Suspended Span Graphic Method
Plate 8 Stresses in $u s p e n d e d$ Span Semi Graphic Method

A STUDY OF INFLUENCE LINE ANALYSIS OF THE STRESSES

 IN A CANTILEVER STEEL HIGHWAY BRIDGEThis thesis consists of a detailed study, together with the necessary calculations, of the various stresses in a cantilever steel highway bridge by the use of influence lines.

The following data for the truss used in this study is typical for the present day trend in cantilever highway bridge construotion.

Date:
Inclined Chord Pratt-type Truss:
Anchor Arm:
10 panels at $25^{\circ} 0^{\prime \prime}=250^{\circ} 0^{\prime \prime}$
Height at hip $=30^{\circ} 0^{\prime \prime}$
Height at peak $=50^{\circ} 0^{\prime \prime}$
Cantilever Arm:
5 panels at $25^{\circ} 0^{\prime \prime}=125^{\circ} 0^{\prime \prime}$
Height at peak $=50^{\circ} 0^{\prime \prime}$
Height at end of suspended span $=30^{\circ} 0^{\prime \prime}$

Suspended Span:
8 panels at $25^{\circ} 0^{\prime \prime}=200^{\circ} 0^{n}$
Height at hip $=30^{\prime \prime} 0^{\prime \prime}$
Height at peak $=37^{\prime \prime} 6^{\prime \prime}$

The loading used in the study is the standard recommended practice of the Missouri State Highway Department and is as follows: A uniform load of 510 pounds per foot of truss, with concentrated loads of 15000 pounds for moment and 7500 pounds for shear. The usual signs for indicating the type of stress were used, that is, the plus means tension and the minus means compression. Only live load strusses have been calculated. Three methods have been used in determining these stresses: first, the method of determining the ordinate of the influence lines by purely graphical methods; second, the method of determining the ordinates by the semi-graphical method, and third, the check method of simple moments.

The aim of this study is to compare the methods from the standpoint of accuracy of results, amount of labor required, and the practicability of using these methods in the actual designing of this type of structure. Any point of special difficulty in the calculations of the stresses in any specific member will be discussed. The final conclusion will be the writer's recommendation as to what method, or combination of methods, can be best used for a cantilever bridge.

In the study of large and complicated trusses, curves called influence lines are drawn to show the variations of various functions such as shear, moment, or deflection at given section; or the stress in a given bar, due to the passage of a single unit load across the span. Such curves are important in the study of the effect of concentrated loads, and also in the development of certain theorems of structural action. They were first used by Professor Winkler of Berlin Germany in 1867.

An influence line may be defined as a curve any ordinate of which gives the value of the function
(shear, moment, bar stress, etc) for which the curve is drawn when a load of unity is at the ordinate. It is constructed by plotting directly under the point where the unit load is placed, an ordinate the height of which represents to some scale the value of the particular function being studied when the load is in that position. Contrast carefully shear and moment curves with influence lines for shear and moment. A shear or moment curve records graphically the value of the function at all sections of a bear under a fixed loading; an influence line for shear or moment records graphically the value of the function at a single section for a load at all sections.

The following examples illustrate the construction of a few simple influence lines. If the definftion of an influence line given above and the constructions below are clearly understood, there should be no diffieulty in extending these methods to the constraction of any influence line for any statically determinate structure.

In Fig. 1 is shown a simple beam and the influence line for its left reaction. Keeping in mind that this influence line should show the variation in the left reaction as a unit load moves across the span, the student should reason as follows. When the load is at B the reaction at A is zero and the ordinate to the influence line at B is zero. As the load moves from B towards the reaction at \mathbb{A} increases, and as this reaction is

$$
R_{\mathbf{A}}=\frac{X}{I}
$$

when the unit load is at any point, C, X feet to the left of B, it must be increasing at a uniform rate and the influence line must be a straight line as shown, the ordinate at A being 1, since that will be the reaction at A when the load is at that point.

In drawing influence lines, positive values of the function being considered are generally plotted above the reference line. Reactions which act upward are considered as positive, and the signs for shear and moment are as previously defined.

In Fig. 2 is shown a simple structure and the influence line for the reaction at D as anit load moves from A to B.

When the unit load is at A the reaction at D is $3 / 10$, and since it acts downward the ordinate to the influence line at A must be $-3 / 10$ as shown. As the load moves to the right the reaction at D decreases numerically, evidently at a uniform rate, and when it is directiy over the support at C the reaction at D is zero. As the unit losd moves to the right towerd B the reaction at D increases at
a uniform rate until the load reaches B. When the unit load is at B the reaction at D is $1 \frac{1}{2}$ and the influence line must be as shown.

In Fig. 3 is shown a simple beam with the influence lines for shear and for bending moment af C. In studying the influence line for shear at C, as the unit load moves from B towards A, pass a section at C and consider the part of the beam on the left of the section. As long as the unit load is between B and C the only force acting on the part of the beam to the left is the reaction at A, and evidently between B and C the influence

$$
-7-
$$

line for shear at C must be the same as the influence line for reaction at A. After the load passes C it is more convenient to consider the part of the beam on the right of the section at C since the only force acting on this part is the reaction at B. The shear at C varies as the reaction at B when the unit load is between C and A, and this variation is as shown. Although the reaction at B acts upward the shear at C is negative in accordance with the definition previously given, and is so shown in the figure.

In drawing the influence line for bending moment at C the same method of attack is used. When the unit load is between B and C the bending moment at C is the left reaction multiplied by the distance from this reaction to C. This is the product of a reaction which is ohanging at a uniform rate and a constant distance, and the bending moment, therefore, is changing at a uniform rate. When the unit load is between A and C the bending moment at C is the right reaction multiplied by the distence from B to C, and obviously changes at a uniform rate as shown in the figure.

In Fig. 4(a) is shown diagrammatically a bridge girder loaded through a floor system. In a drawing influence lines for such girders it is usual to deal with a unit reaction from the floor system; that is, the load applied to the floor system is assumed to be of such magnitude and so loacted that when it is over a floorbeam the reaction of that floorbeam on the girder will be one unit.

The influence line for bending moment at panel point 3, shown in Fig. 4(c), needs no explanation; the method of attack is the same as that used in drawing the influence line for bending moment, in Fig. 3(c). The influence line for shear shown in Fig. 4(b), however, differs from that shown in Fig. $3(b)$ in that the former is an influence line for shear at any section within a panel whereas the latter is an influence line for shear at a specific section. Since the load can be applied to the girder in Fig. 4(a) only at the panel points, the shear between panel points must be constant, and an influence line for shear at
at any section within a panel is an influence line for shear at all section in that panel. In studying the influence line for shear in panel 2-3, which is shown in Fig. 4(b), the same method may be used as before except that it is only when the unit load is between 3 and B or between 2 and A that the reaction is the only force acting on the part of the structure being considered. The portion of the influence line drawn for the unit load between the

points just mentioned is of course similar to that drawn for shear at C in Fig. 3, but when the unit load is between points 2 and 3 , an additional force acts on the part of the beam under consideration.

For example, pass the section l-l shown in Fig. 4(a) and consider the part on the left of this section. As long as the unit load is between 3 and B the reaction at A is the only force acting on the part of the structure under consideration, and the construction of this portion of the influence line for shear in the panel is very simple. As soon as the unit load passes point 3 moving towards A there begins to be a downard force at point 2 on the part of the beam on the left of the section.

This downard force at point 2 increases uniformiy as the unit load moves from 3 to 2 , and at the same time the reaction at A is increasing at a uniform rate. Since the shear in panel 2-3 is the reaction at A minus the downward force, or floorbeam reaction, at point 2 , it is evident that it also is changing at a uniform rate and the influence line for shear in the panel may be completed by conneoting the ordinates at points 2 and 3 by a stralght line as shown. If this statement does not seem clear it is easy to write an equation for this
portion of the influence line in terms of x, the length of $\operatorname{span} \mathrm{I}$, and the panel length p.

It may seem that unnecessarily detailed attention has been given to the construction of these very simple influence lines. The writer believes, however, that much of the confusion regarding influence lines often existing in the student's mind is the result of attempting to remember the shape of the simple forms first encourtered in studying the subject instead of carefully building them up, step by step, from the fundamental definition.

Attention should be called to the units of measure for the ordinates of influence lines. In the influence line shown in Fig.I, the ordinate at A is given as 1 , which means that the reaction at A will be $1 \mathrm{lb} \cdot \mathrm{per} \mathrm{lb}$. of load at a. Similarly at a section $E, 8$ ft. to the left of B in Fig. 3 the ordinate at A is given as 1 , which means that the reaction at A will be 1 lb. per lb. of load at A.

Similarly at a section $E, 8$ ft. to the left of B in Fig. 3, the ordinate to the influence line for shear at C is $4 / 10 \mathrm{lb}$. per lb.; i.e., for each pound of load placed at E there will be a shear at C of $4 / 10 \mathrm{lb}$. The influence line for bending moment at C has at E an ordinate of $2.4 \mathrm{ft}-.1 \mathrm{~b}$. per lb., or there will be a bending moment at C of $2.4 \mathrm{ft} .-\mathrm{lb}$ for each pound of load placed at E. Evidently the unit load instead of being l lib. may be l kip, 1 ton, 1 kilogram, or one unit of weight in any system we wish to use, without affecting in any way the construction of the influence line.

Since an influence line is constructed to show the effect of a unit load, it is clear that we may determine from it the effect of a load of any magnitude in any position by multiplying the ordinate at the load by the magnitude of the load. Thus in Fig. 3 at point E the ordinate to the influence line for shear at C is $4 / 10 \mathrm{Ib}$. per Ib . of load at E, the ordinate to the influence line for bending moment at C is $2.4 \mathrm{ft}-$.lb . per lb. of load at E. Consequently, if a load of $10,000 \mathrm{lb}$. is
placed at E, we have due to this load:

> Shear at $C=4 / 10 \mathrm{lb}$. per lb. $\times 10,000 \mathrm{lb}=$ 4000 lb .

Bending moment at $C=2.4 \mathrm{ft} .-\mathrm{lb}$ per lb . $\mathrm{x} 10,000 \mathrm{lb}$ $=24,000$ ft. -1 b .

Also it should be clear that if we place a uniformly distributed load of W lb. per ft. anywhere on the beam, the effect of this load on any function may be found from the influence line for that function. Considering a short length $d x$, the load on it is wdx, and if the ordinate to the influence line at the point where $d x$ is taken is y, the effect of this load is wydx and the total effect is
$w \int y d x=w x$ area under influence line between limits of distributed load.

For example, if a uniformly distributed load of 4000 lb. per ft. is placed on the beam in Fig. 3 extanding from E to C, we have:
$x 6$ ft. $x 4000$ lb. per ft. $=13,200$ lb.

Bending moment at $C=\left(4.2\right.$ ft. $-1 b . p e r l b . \nmid 2.4 \mathrm{ft}_{\circ}-$

The cantilever type of bridge trusses have long been used where long spans were necessary and especially where the use of falsework during erection would be exceedingly costly or even virtually impossible. The present trend in bridge construction has been away from the types formerly used; the sub-divided K-type trusses and the designer today is leaning more and more to the use of the curved, or inclined cord, Pratt type trusses, and the flat cord Warren type. In any cantilever truss where the erection of the cantilever arm and suspended span is done with a traveler, the calculation of erection stresses is a large part of the entire stress analysis. For the Pratt and Warren type trusses the influence lines for any member can be easily and quickly drawn. Then, when the weight of the traveler, and also any load that might be applied incidental to erection, is known, the erection stresses can be quickIy calculated. In case stresses in the anchor arm become too large during erection, a false bent may be placed and the truss cantilevered on out. Many highway bridges of any considerable length, are
calculated for an equivalent loading consisting on a uniform Iive load and a special roving concentrated load. This type of loading is especially adapted to the use of influence lines, due to the fact that the stress in any member is found by multiplying the area. under the influence line for this member by the uniform load in pounds per linear foot of truss. The calculations become slightly longer for a large member of concentrated loads but these are also very simple once the position for maximum stress has been determined, and this position of loads must be determined no matter what method is used.

Influence lines are not widely used at present in the calculation of stresses in small bridges, due largely to the mistaken idea as to their complexity. Once the fundamental idea as to the meaning of influence lines is clearly grasped by anyone who can calculate moment or shear in a beam or member can build any influence line step by step by calculating the controlling ordinates. Also many men, serving in executive capacities in design offices, are not in sympathy with any method of graphios for oaloulating stresses. This is due to their own unfamiliarity

Abstract

with the study of graphic calculations. Any stress Within two per cent of the actual stress is suffioient for design, purposes due to the factor of safety used in all steel design. Any draftsman can easily come within these limits.

Two general statements may be made concerning the purely graphical method before going into detail of the actual construction of the various influence lines by this method. First, the influence lines by this method are larger and occupy considerable space on the sheet, thus necessitating the drawing of the stress itself several times as they cannot conveniently be kept on one sheet. Second, since they are larger, any error in drafting will likely be multiplied several times.

A cantilever truss is a structure made determinate by the introduction of a hinge. The effect of the hinge is to reduce the bending moment at that point to zero. In trusses the chord members connecting this point are made with a sliding joint and consequently can carry no stress. The supports divide the truss into several parts. In Fig $5 A B$ is the anchor arm

$B C$ is the cantilever arm and $C D$ is the suspended span. The suspended span is calculated merely as a simple truss. Any load to the right of D has no effect on any member to the left of D. The influence line for the reaction at A is the line A^{\top}, R, $B^{\prime}, C^{\prime}, D^{\prime}$, drawn for a unit load. It is easily seen that as a load moves to the left from D the reaction at will be negetive until the load reaches B, becoming maximum when the load is at C. As the load moves from B to A, the anchor arm acts as a simple span. Therefore, any load to the right of B oguses tension in the top chord of the anchor arm and compression in the lower chord and vice versa for loads to the left of B. The influence lines for any member of the anchor arm can be divided from this influence line for the reaction at A. Let us consider the influence line for the top chord $U_{4} U_{5}$. Extend the chord $U_{4} U_{5}$ until it intersects the line of R_{A} produced at a point 0 . Draw a ine from 0 to L_{4}. Then from h, directly below L_{4}, draw a line parallel to the chord $U_{3} U_{4}$ until it is intersected by a line from m drawn parallel to the line $0-\mathrm{L}_{4}$. Then nh becomes the controlling ordinate for the influence line and is plotted
directly below the point m, and the line showing the effect of a moving unit load on $U_{4} U_{5}$ is drawn. Then since the stress in the lower chord varies as that in the top chord, a line parallel to $L_{3} I_{4}$ drawn from n to $h m$ is the ordinate for the influence line for the lower chord $\mathrm{I}_{3} \mathrm{I}_{4}$. When these ordinates are found a line drawn from these points thru the reaction line B cuts the line under the end of suspended span at C and gives the necessary point to complete the lines. By scaling the ordinate at any point the effect of any load at any point on these members may be determined. If the top chord has a constant slope, as in the structure used in this thesis, the point 0 will be constant for all members of both upper and lower chords. However, in cass of a curved upper chord, the procedure is exactly the same. Each upper chord is extended to locate the point 0 and the same lines drawn as in the example given here. The influence lines for all members of the upper and lower chords are shown on Sheet I. They have been drawn on a common base line so they can be placed on one sheet and easily seen. It will be noted that a special construction was necessary to draw the influ-
ence line for the lower chord $L_{9} L_{10}$; due to the fact that no ordinate could be obtained from the influence line for the reaction at A. By inspection of the truss at this point is is clearly seen that this member cannot receive any tension from live load since the load is transfered by the floor system to the truss only at a panel points, panel concentration at I_{9} is entirely taken by the diagonal $\mathrm{U}_{10 \mathrm{~L}_{9}}$ and the post $\mathrm{U}_{\mathrm{g}} \mathrm{L}_{9}$ Considering the anchor arm as a simple span the line for reaction at B is drawn, marked $A^{\prime \prime \prime}, B^{\prime \prime}, M$. Then, using the above method the ordinate ll-12 is found and plotted below the point Lg. A line drawn from that point thru $B^{\prime \prime}$ gives the influence line for the compression in the member. The portion of this line to the left of $\mathrm{B}^{\prime \prime}$ is shown as a broken line and it is not used. From an inspection of these lines it is clearly evident why accurate drafting is very essential. For example, any small variations in the ordinate 9 (t. for the lower chord $L_{8} I_{g}$ is multiplied several times when it reaches the line under the point $\mathrm{cm}^{\prime \prime}$.

As the diagonals and posts cannot be handled in the usual manner in the anchor arm let us consider Sheet VII, the stresses in the suspended span. This span is handled exactly as any ordinary simple span. $A^{\prime} B^{\prime D}$ is the influence line for the reaction at A. By extending the top chord to the point 0 and drawing the line $0 L_{3}$ the ordinates for the top chord $U_{2} U_{3}$ and $L_{3} I_{4}$, namely, $o_{2} g_{2}$ and $o_{2} r_{2}$ may be found and the lines drawn for these members. Then by drawing from 0_{2} parallel to the diagonal $U_{1} L_{2}$, the ordinate $o_{2} k_{2}$ is found. This is one of the controlling ordinates for the influence line for $U_{2} L_{3}$. As a load at I_{3} produces positive shear in the diagonal and a load at L_{2} produces negative shear in the diagonal it is evident that at some point in the panel the shear must pass thru zero. Knowing one ordinate if this point of zero shear can be found the influence line for the member can be constructed. One method is by drawing the influence line for the reactions at B, just as was done for the reaction at A. The same method of obtaining the ordinate is used for obtaining the ordinate $\mathrm{O}_{2} \mathrm{~K}_{2}$. This when plotted below the panel point L_{2} fixes the final ordinate for the drawing of the line for the diagonal. However, an easier method
is the one followed on this sheet. Draw a line from point 0 to B. Where this line cuts the diagonal is the point of maximum shear in the panel. When this point is projected downard and a line drawn from the ordinate $O_{2} k_{2}$ thru this point until it intersects the line below I_{2} then all the controlling points for the diagonal have been found. The method for drawing the influence lines for the posts is the same. Draw a vertical line from O_{2} to the point ma and one ordinate for the post $U_{2} \mathrm{~L}_{2}$ is found. As this post gets its meximum compression when $L_{2} L_{3}$ gets its maximum tension the same point of negative shear holds and so the line is drawn. It will be noted that on this sheet the ordinates for the diagonals are found from the reaction that is "behind" the diagonal, that is, from the reaction nearest to the upper end of the member. Now to return to the stresses in the anchor arm, Sheet II. The ordinate for the diagonals and posts could not be satisfactorily drawn from the influence line for the reaction at A, so considering the anchor arm as a simple span these points
were found from the reaction at B, which is marked PEF. It will be noted on this sheet that unity is taken as four inches, whereas on other sheets it was taken as two inches. This was necessary due to to the difficulty of separating the various lines. If each line is drawn on a separate base line it would require a great deal of space. The same applies to the influence line for the posts m Sheet II A. Sheets II and IIA clearly show the difficulty of the graphical method for calculating the stresses in diagonals and verticals. When calculating the stress in chord members, where there is no point of zero stress, the area under the influence line times the uniform load gives the stress in the member. However, since the truss receives its load from the floor system only at panel points, the ordinate of the influence line at each panel point must be known for posts and diagonals. Also where the influence line crosses the base line the distance from the panel point in question is multiplied by the unfform load if it is equal to, but does not exceed a half panel length. If less than half a pancilength, the actual scaled distance is used.

On an influence line for any member in a simple span the concentrated load is placed where the ordinates is greatest to obtain the maximum stress. This does not hold true for the tension in diagonals in the anchor arm of a cantilever. The concentrated load is placed on the end of the cantilever arm until the distance to the lower end of the diagonal from B is equal to or less than the length of the cantilever arm. This fact is proved by moments.

For example in calculating the tension stress in $\mathrm{U}_{5} \mathrm{~L}_{4}$ Sheet 2, full panel loads would be applied due to uniform load, from L_{0} out to panel L_{4}, since the point of zero stress is 14.76^{\prime} from L_{4}, this being above 12.5 or a full half panel length. A uniform load would also be applied from B^{\prime} to D^{\prime}. Now by inspecting the ordinates of the line for this member, that on the right of B^{\prime} is 0.44 while the maximum on the left of B^{\prime} is 0.63 . It would seem that the concentrated load would be placed on the left at the 0.63 ordinate but since this point is farther from B^{\prime} than the end of the cantilever arm is from B^{\prime} the concentrated load must be placed
at the 0.44 ordinate under the end of the cantilever arm. The reason is this: For every diagonal and post a unfform load is placed on the span from B to D to produce tension in the member. This load causes a negative reaction at A, that is acting downward. For the first four diagonals not enough load can be placed on the anchor arm to seriously counteract the loads placed between B and D. In calculating the stress in diagonal $\mathrm{U}_{5} \mathrm{I}_{4}$ a section, would be passed thru the panel cutting members $\mathrm{U}_{4} \mathrm{U}_{5}, \mathrm{I}_{4} \mathrm{I}_{5}$ and $\mathrm{J}_{5} \mathrm{I}_{4}$ itself. To find the stress in $\mathrm{U}_{5} \mathrm{~L}_{4}$ the position of the structure to the left is considered a free body with only one force, the reaction at A. Then by taking moments at the point of intersection of $U_{4} U_{5}$ and $L_{4} L_{5}$ (a point somewhere out side the truss) the stress in diagonal $\mathrm{U}_{5} \mathrm{I}_{4}$ is found. The greater the reaction at A is, the greater is the stress in the diagonal. In other words, the reaction at A must be a maximam for a maximum stress to be produced in the diagonal and so long as the position of the load is farther to the left of B than the end of the
the cantilever arm is from B, a maximum reaction at A will not be produced. The method of placing the influence lines for all the diagonals or all the posts on a common base line is difficult and unsatisfactory. The influence line for each member could be drawn on a separate base line but this would require a large amount of space and would involve drawing the truss itself several times.

In drawing the influence line for the post $U_{1} L_{1}$ the influence line for the reactions at A must be used. On sheet IIA this is marked PGE. Then from a point on the influence line PGE directly below the post $I_{1} U_{1}$ a line is drawn parallel to the top chord. When this line is intersected by a line drawn from a point on PE parallel to the line $0 L_{1}$ the ordinate for this post would be fixed and the influence line for the stress may be drawn.

The semi-graphic method of caloulating the stresses in the anchor is much simpler than the graphic method, once the fundamental idea of the method is clearly understood. The influence lines for this method may well be called "reduced" influence lines since a coefficient is used to determine the true stress in a member. The influence line for any member can easily be derived from the influence line for the reaction at A (Fig. 6), considering the part between A an B is identioal with the influence line for that member if the anchor arm is assumed a simple span. The part of the influence line between B and D is for all members of the anchor arm, a triangle with the height $12 / l_{1}$ below C, that is identioal with the influence line for the reaction at A. The influence coefficient for any member is equal to the stress produced in that member by an upward force unity applied at A, the truss being assumed fixed at B. In Fig. $6 A^{\top} K B^{\prime} C^{\prime} D^{\prime} A^{\prime}$ is the influence line for the reaction at A, where A A is unity. By drawing a line from A^{\prime} to the intersection of a vertical from its center of moments
and the line $B^{\prime} K$ the influence line is drawn for the bottom chord $L_{4} L_{5}$. By passing a section thru panel 4-5 with a load unity acting upward at A, and taking moments about σ_{5}, the stress in $I_{4} I_{5}$ is equal to a / h which is the influence coefficient for this member. This is also the influence line for the top chord $U_{5} \mathbb{U}_{6}$, the influence coefficient for whic h is a / r. The construction of the influence line for the diagonal $I_{4} U_{5}$ can be clearly seen in the figure. It could be drawn by finding its center of moments I or by its influence ordinate h_{2} / h_{1} If the top chord should not be of constant slope the ordinate would change each time the slope of the chord changed. However, this would cause no difficulty. The influence Ine for the post $U_{4} L_{4}$ is also shown in the Figure. The influence coefficients can be easily and quickly found by the use of a Maxwell diagram, starting resolution of forces at A and ending at B.

Sheet III shows the influence lines for all members of the anchor arm. The small number of lines and the small amount of space required affords a striking contrast with the same lines by the graphic method. This type of construction is particularly adapted to this type of truss or any truss having a stralght or fairly
straight top chord. The same influence line serves for two members, each having a different influence coefficient, however. These com efficients were found by a Maxwell diagram, shown m on the sheet. Some of the coefficients obtained in this way were checked by the other method and were entirely satisfactory. The same method of loading for maximum stresses in the posts and diagonals was used as was discussed under the graphic method preceeding this. The distances of the points of zero stress from the panel points were calculated by similar triangles after the ordinates were drawn as a check on the distances as scaled.

The stresses in all members of the cantilever arm are independent of the reactions and are influenced only by loads on the suspended span and on the cantilever arm itself.

In Fig. 7 the influence lines are shown for various members of the cantilever arm. The reaction at B is the line $B^{\prime \prime} B^{\prime \prime} D^{\prime}$ and from this all the ordinates may be derived. As a unit load moves from D to B the reaction at B increases until it becomes unity at C and is the same across the cantilever arm. All top chord members will be in tension and all bottom chord members in compression In constructing the influence Iine for top chord $U_{11} U_{12}$ a line is drawn from e, a point under the center of moments for this member, parallel to the top chord. Then from point n a line is drawn parallel to the diagonal $\mathrm{U}_{11} \mathrm{I}_{12}$ until it intersects the line from point e. This gives the point d. Then $d e$ is the controlling ordinate for the influence line for this member. Any load to the left of $\mathrm{L}_{1} 2$ will have no effect on the member $U_{11} L_{12}$. For the bottom chord $\mathrm{I}_{11} \mathrm{I}_{12}$ the distance ge is the ordinate. g is the point where the line $d n e u t s$
the base of the reaction line. In drawing the lines for these members since a load to the left of certain point has no effect on the member the reaction B is really being moved to the right for each successive member and then that panel becomes the end panel in the truss, etc. To draw the influence line for the bottom chord $I_{11} L_{12}$, the usuel procedure would be to draw a line horizontally from d until it intersected the line me instead of using the ordinate ge. However, when a load is applied at L_{15}, the bottom chord carries the same compression with the top chord sloped that it would if the top and bottom chords are parallel. The same is true of the posts and diagonals. The ordiante gs is equal to unity and is notcorrect if used as this. It must be plotted back one panel to the left and Where it intercepts the ordinate for the next post fixes the true ordinate for that post. Where a line drawn from a point a unit distance below the base line to D, intersects gs gives the true length of the ordinate for the diagonal $\mathrm{U}_{10} \mathrm{I}_{10}$.

The diagonal $\mathrm{U}_{15} \mathrm{I}_{14}$ carries only compression stress and when a line drawn from 0 parallel to the top chord intersects a line drawn from p parallel to $\mathrm{U}_{15} \mathrm{I}_{14}$, the ordinate is fixed. The post $\mathrm{U}_{14} \mathrm{~L}_{14}$ does not carry any live load stress. The complete influence lines in the cantilever arm are on Sheets IV and V.

The graphic method is fairly satisfactory for short cantilever arms. The question of space required comes up again, due to the large ordinates to the influence lines. The lines are all much more simple than those for the anchor arm due to the fact that there can be no reversal of stress in the members.

Fig. 8 shows the influence lines for members of the cantilever arm by the semi-graphical method. The truss is assumed fixed at B and load unity placed at H. This method of drawing the influence lines is simple, rapid and accurate. Sheet VI shows these lines, with the caluulations for stresses and the mexwell diagrams for the influence coefficients.

Sheets VII and VIII show the influence lines for the simple span. Sheet VII has previously been discassed. Sheet VIII, the semi graphic solution, again clearly illustrates the superiority of this method over the purely graphical method. The lines more condensed and can be drawn in much less time. The calaulations of stresses in various members is easier and more simple than the graphic method. In drawing the influence line for the post $\mathrm{U}_{4} \mathrm{~L}_{4}$ by the graphic method it is necessary to assume that this post is not the center of the truss and that the diagonal shown with a broken line is in place. Then proceed exactly as for the other posts.

In Conclusion:

The results of this study show oonclusively that the semi-graphical method of calculating stresses in a cantilever truss to be faster and more reliable than purely graphical method and is faster and equally as reliable as the analytical method of moments.

The graphical method requires an excessive amount of drawing space, this amount increasing as the span length increases. There is also a large chance for serious inaccuracies when calculating the stresses in the anchor arm due to loads in the centilever arm and the suspended span. The influence lines for the posts and diagonals are extremely dificult to draw accurately, and can hardly be placed on a common base line, due to the fact that the ordinates of the lines under each panel point must be known. The change in these ordinates for different members is so small that accurate scaling of their lengths is almost impossible. The influence line for all members can not be drawn from the same reaction influence line. This method is better for
the stresses in the cantilever arm than it is for the anchor arm, as these members do not have a reversal of stress. This method is more applicable to the posts and diagonals in the cantilever arm for the same reason. For simple spans, such as the suspended span in this case, the graphical method is better suited particularly to the top and bottom chords. The diagonals and posts carry the same difficulties as stated above.

The semi graphic method is an ideal method for a cantilever bridge for several reasons. It is especially well adapted to the calculation of the stresses in the anchor arm where the members have a reversal of stress, since the portion of the influence line for any member of the anchor arm is under the oantilever arm and suspended span is a triangle of constant height the variation in stresses being taken care of by the coefficient. This method is fast and acourate. It requires only a small amount of drawing space. Once the principle is understood it is simple matter of drawing straight lines, yet for all its simplicity it shows very plainly the position of
the loeds for a maximum stress and enables this stress to be easily and quickly calculated. There are no critical points to project down from the truss and every ordinate on every line can be easily checked. The calculations by this method can be made with all the accuracy desired as the slope of every line is known. This method is rapid, even when coefficients are calculated and even more rapid when the Maxwell diagram is used. This diagram can be drawn with sufficient accuracy for all design stresses. The stresses in top and bottom chord members are especially easy to find by this method. Anyone who can select the center of moments for these members can draw the influence lines. Stresses in diagonals and posts are also easily found. It would be difficult to imagine or to find a faster more accurate method for checking stresses In any framed structure than this. It is excellent for rating existing structures for different loadings, since the same line may be used for any load. Simple
spans are rapidly and accurately worked by this metiod.

The graphical method can be used successfully for the stresses in the members of the cantilever arm of a cantilever truss. It is also fairly well suited to simple spans. The chief difficulty in any span is the question of stresses in posts and diagonals. The semigraphical method is good for any type of span. It is especially good for the cantilever type of bridge.

GENERAL PLAN

CALCULATIONS.

CALCULATIONS

CALCULATION OF STRESSES BY MOMENTS

$$
\begin{gathered}
\sum M_{B}=15.0 \times 126+125 \times 0.51 \times 100+125 \times 0.51 \times 62.5-250 R_{A} \\
R_{A}=48.94
\end{gathered}
$$

STRESSES IN ANCHOR ARM
Top Chord Members-----Tension

$$
\begin{aligned}
& U_{1} U_{2} \\
& r=(312.5+25) 0.0886=29.90 \\
& S=\frac{25 \times 28.94}{29.90}=40.91
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U}_{2} \mathrm{U}_{3} \\
& \mathbf{r}=(312.5+50) 0.0886=32.12 \\
& \mathrm{~S}=\frac{50 \times 48.94}{32.10}=76.23
\end{aligned}
$$

$$
\begin{aligned}
&{ }_{30} U_{4} \\
& r=(312.5+75) 0.0886=34.33 \\
& S=\frac{75 \times 48.94}{34.33}=106.92
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U}_{4} \mathrm{U}_{5} \\
& r=(312.5 \neq 100) 0.0886=36.55 \\
& S=\frac{100 \times 48.94}{36.55}=133.90 \\
& \mathrm{U}_{5} \mathrm{U}_{6} \\
& r=(312.5+125) 0.0886=38.76 \\
& S=\frac{125 \times 48.94}{38.76}=157.83 \\
& U_{6} U_{7} \\
& r=(312.5 \neq 150) 0.0886=40.98 \\
& S=\frac{150 \times 48.94}{40.98}=179.14 \\
& \mathrm{U}_{7} \mathrm{U}_{8} \\
& r=(312.5+175) 0.0886=43.19 \\
& S=\frac{175 \times 48.94}{43.19}=198.30 \\
& \mathrm{U}_{8} \mathrm{U}_{9} \\
& r=(312.5 \not f 200) 0.0886=45.41 \\
& S=\frac{200 \times 48.94}{45.41}=215.55 \\
& \mathrm{U}_{9} \mathrm{U}_{10} \\
& r=(312.5+225) 0.0886=47.62 \\
& S=\frac{225 \times 48.94}{47.62}=231.24
\end{aligned}
$$

Bottom Chord Members----Compression
Increase in length of posts per panel = 2.22'

$$
\begin{array}{ll}
L_{0} L_{1} & S=\frac{25 \times 48.94}{30}=40.78 \\
L_{1} I_{2} & S=\frac{50 \times 48.94}{32.22}=75.95 \\
L_{2} I_{3} & S=\frac{75 \times 48.94}{34.44}=106.58 \\
L_{3} I_{4} & S=\frac{100 \times 48.94}{36.66}=133.50 \\
L_{4} I_{5} & S=\frac{125 \times 48.94}{38.88}=157.34 \\
L_{5} I_{6} & S=\frac{150 \times 48.94}{41.10}=178.61 \\
L_{6} I_{7} & S=\frac{175 \times 48.94}{43.52}=197.70 \\
L_{7} I_{8} & S=\frac{200 \times 48.94}{45.54}=214.93 \\
I_{8} I_{9} & S=\frac{225 \times 48.94}{47.76}=230.56 \\
L_{9} I_{10} & S=\frac{250 \times 48.94}{50}=244.70
\end{array}
$$

Top Chord Members-a--Compression (Cont.)

```
\(\mathrm{U}_{1} \mathrm{U}_{2}\)
            \(r=29.90\)
            \(S=\frac{25 \times 77.25-25 \times 0.51 \times 12.5}{29.90}=59.26\)
```

$\mathrm{U}_{2} \mathrm{U}_{3}$
$r=32.12$
$S=\frac{50 \times 75.75-50 \times 0.51 \times 25}{32.12}=98.07$
$U_{3} U_{4}$
$r=34.33$
$S=\frac{75 \times 74.25-75 \times 0.51 \times 37.5}{34.33}=120.43$
$\mathrm{U}_{4} \mathrm{U}_{5}$
$r=36.55$
$S=\frac{100 \times 72.75-100 \times 0.51 \times 50=129.27}{36.55}$
$U_{5} U_{6}$
$r=38.76$
$S=\frac{125 \times 71.25-125 \times 0.51 \times 62.5}{38.76}=126.98$
$U_{6} U_{7}$
$r=40.98$
$S=\frac{150 \times 69.75-150 \times 0.51 \times 75}{40.98}=115.30$

$$
\begin{aligned}
& U_{7} U_{8} \\
& r=43.19 \\
& S=\frac{175 \times 68.25-175 \times 0.51 \times 87.5}{43.19}=95.72 \\
& U_{8} U_{9} \\
& r=45.41 \\
& S=\frac{200 \times 66.75-200 \times 0.51 \times 100}{45.41}=69.37 \\
& U_{9} U_{10} \\
& r=47.62 \\
& S=\frac{225 \times 65.25-225 \times 0.51 \times 112.5}{47.62}=37.21
\end{aligned}
$$

Bottom Chord Members---- Tension

$$
L_{0}^{L_{1}} \quad s=\frac{77.25 \times 25-25 \times 0.51 \times 12.5}{30}=59.06
$$

$$
L_{1} L_{2}
$$

$$
S=\frac{75.75 \times 50-50 \times 0.51 \times 25}{32.22}=97.76
$$

$$
\mathrm{L}_{2} \mathrm{I}_{3}
$$

$$
S=\frac{74.25 \times 75-75 \times 0.51 \times 37.5}{34.44}=120.04
$$

$$
\mathrm{I}_{3} \mathrm{~L}_{4}
$$

$$
S=\frac{72.75 \times 100-100 \times 0.51 \times 50}{36.66}=128.89
$$

$$
\begin{aligned}
& L_{4} I_{5} \\
& S=\frac{71.25 \times 125-125 \times 0.51 \times 62.5}{38.88}=126.60
\end{aligned}
$$

$$
\begin{aligned}
& L_{5} L_{6} \\
& S=\frac{69.75 \times 150-150 \times 9.51 \times 75}{41.10}=114.96
\end{aligned}
$$

$$
\mathrm{I}_{6} \mathrm{I}_{7}
$$

$$
S=\frac{68.25 \times 175-175 \times 0.51 \times 87.5}{43.32}=95.44
$$

$$
I_{7} I_{8}
$$

$$
S=\frac{66.75 \times 200-200 \times 0.51 \times 100}{45.54}=69.17
$$

$$
L_{g} L_{g}
$$

$$
s=\frac{65.25 \times 225-225 \times 0.51 \times 112.5}{47.76}=37.10
$$

$$
\begin{aligned}
& L_{9} L_{10} \\
& \quad S=\frac{65.25 \times 250-250 \times 0.51 \times 125-15.0 \times 25}{50}=0.00
\end{aligned}
$$

DIAGONALS-me--- ANCHOR ARM

$\mathrm{I}_{1} \mathrm{U}_{2}$	32.22	$=$	1.2888	52011:	0.7900	337.5	266.62
$\mathrm{L}_{2} \mathrm{U}_{3}$	34.44	$=$	1.3776	54001:	0.8092	362.5	293.33
$\mathrm{L}_{3} \mathrm{U}_{4}$	36.66	=	1.4664	$55^{\circ} 42$	0.8261	387.5	320.11
$\mathrm{I}_{4} \mathrm{U}_{5}$	38.88	$=$	1.5552	$57^{\circ} 16$	0.8412	412.5	346.99
$\mathrm{L}_{5} \mathrm{U}_{6}$	41.10	$=$	1.6440	$58^{\circ} 41$	0.8543	437.5	373.76
$\mathrm{L}_{6} \mathrm{U}_{7}$	43.32	=	1.7328	$60^{\circ} 01$	0.8662	462.5	400.62
$\mathrm{L}_{7} \mathrm{U}_{8}$	45.54	$=$	1.8216	$61^{\circ} 14^{\prime}$	0.8766	487.5	427.34
$\mathrm{L}_{8} \mathrm{U}_{9}$	47.76	$=$	1.9104	$62^{\circ} 2{ }^{\prime}$	0.8859	512.5	454.02
$\mathrm{L}_{9} \mathrm{U}_{10}$	50.00	=	2.0000	63026;	0.8944	537.5	480.74

DIAGONALS ---------COMPRESSION

$$
\begin{aligned}
& \mathrm{I}_{1} \mathrm{U}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& S=\frac{312.5 \times 51.90}{266.62}=60.83 \\
& \mathrm{~L}_{2} \mathrm{~J}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& S=\frac{40.95 \times 312.5}{293.33}=43.62 \\
& \mathrm{I}_{3} \mathrm{U}_{4} \\
& R_{A}=\frac{12.75(25+50+75+100+125+150)+150 \times 7.5}{250}=31.27 \\
& S=\frac{312.5 \times 31.27}{320.11}=30.52 \\
& \mathrm{I}_{4} \mathrm{U}_{5}
\end{aligned}
$$

$$
\begin{aligned}
& S=\frac{22.30 \times 312.5}{346.99}=20.08 \\
& L_{5} \mathrm{U}_{6} \\
& \mathrm{R}_{\mathrm{A}}=\frac{12.75(25 \not-50 \not 175) \notin 100.0(12.50 \notin 7.69) 0.51 \not 1100 \times 7.5}{250}=14.77 \\
& S=\frac{312.5 \times 14.77}{373.76}=12.34
\end{aligned}
$$

```
\(\mathrm{L}_{6} \mathrm{U}_{7}\)
\(R_{A}=\frac{12.75(25+50)+75(12.50+5.43) 0.51+7.5 \times 75}{250}=8.82\)
    \(S=\frac{312.5 x 8.82}{400.62}=6.87\)
\(\mathrm{I}_{7} \mathrm{~J}_{8}\)
\(R_{\text {A }}=\frac{12.75 \times 25 \notin 50(12.50 \notin 3.42) 0.51 \notin 50 \times 7.5}{250}=4.40\)
\(S=\frac{312.5 \times 4.40}{127.45}=3.21\)
    427.34
\(\mathrm{L}_{8} \mathrm{U}_{9}\)
\(R_{A}=\frac{25(12.50 \neq 1.62) 0.51+7.5 \times 25}{250}=1.47\)
    \(S=\frac{312.5 \times 1.47}{454.02}=1.01\)
\(\mathrm{L}_{9} \mathrm{U}_{10}\)
    \(S=0.00\)
```

```
L1 U2
R}A=\frac{58.5\times125/125\times0.51\times62.5-(12.50&4.60)0.51\times225}{250}=37.3
    S = 37.33x'312.54337.5x(12.5044.60)0.51 =54.80
        266.62
L
RA}=\frac{58.5x125/125x0.51x62.5-(8.5x12.5)0.51x200-12.75x225}{250}
    = 25.14
S = 25.14\times312.5f12.75x337.5f(12.5f8.5)0.51\times341.25
L[3O4
RA}=\frac{51.0 [125&125x0.51\times62.5-12.75(225&200))}{250
        -175(12.50&11.85)0.51+7.5x125}=14.8
        S=312.5x14.81f12.75(337.5+362.5)+387.5(12.5+11.85)0.51 =
        320.11
                        = 5%.37
I
RA}=\frac{51\times125&125x0.51\times62.5f7.5x125-12.75(225f/200&175&150}{250}=6.9
S=\frac{6.94\times312.5&12.75(337.5&362.5& 387.5&412.5 }{346.99}=61.37
```


DIAGONALS --------TENSION

$$
\begin{aligned}
& \mathrm{L}_{5} \mathrm{U}_{6} \\
& R_{A}=\frac{51.0 \times 125+125 \times 0.51 \times 62.5-12.75(225+200+175+150+125)}{250} \\
& \frac{-7.5 \times 125}{250}=-6.84 \\
& S=\frac{-6.94 \times 312.5 \not-12.75(337.5 \nmid 362.5 \nmid 387.5 \nmid 412.5 \nmid 437.5) t}{373.76} \\
& \frac{67.5 \times 437.5}{373.76}=69.07 \\
& L_{6} \mathrm{U}_{7} \\
& R_{A}=\frac{51.0 \times 125 \not-125 \times 0.51 \times 62.5-12.75(225 t}{250} \\
& \frac{\not(200 \nless 175+150 \not-125+100)-7.5 \times 100}{250}=-11.69 \\
& S=\frac{-11.69 \times 312.5 \not-12.75(337.5 \nmid 362.5 \nmid 387.5 \nmid 412.5 \nmid 437.5 t}{400.62} \\
& \frac{\not 462.5) \not(7.5 \times 462.5}{400.62}=75.92 \\
& \mathrm{~L}_{7} \mathrm{U}_{8} \\
& R_{A}=\frac{81 \times 125 f 125 \times 0.51 \times 62.5-12.75(225 \nmid 200 f 175 f 150 f}{250} \\
& \frac{-125+100 \not(75)-7.5 \times 75}{250}=-14.36 \\
& S=\frac{-14.36 \times 312.5 t 12.75(337.5 \nmid 362.5 \nmid 387.5 \nmid 412.5 t}{427.34} \\
& \frac{-\$ 437.5 \not 462.5 \not / 487.5 \not / 7.5 \times 487.5}{427.34}=84.20
\end{aligned}
$$

```
I
RA}=\frac{125\times51&125x0.51\times62.5-12.75(225f200&1754/}{250
    &-150&125&100&75&50)-7.5x50
    S=\frac{-16.16x312.5f12.75(337.5t362.5t387.5t}{454.02}
        f412.5f437.5t462.5f487.5f512.51ft7.5x512.5=92.82
Ig}\mp@subsup{|}{10}{
RA}=\frac{51\times125f125\times0.51\times62.5-12.75(225f200&&175f150t}{250
        &-125+100+75+50+25)-7.5x25}=-16.6
        S= -16.68\times312.5t12.751337.5t362.5t387.5t412.5t
        480.14
        &437.5f462.5t487.5f512.5f(537.5)f7.5x537.5}=101.9
        480.74
```

ANCHOR ARM---------COMPRESSION

$$
\begin{aligned}
& \text { POSTS } \\
& \mathrm{I}_{1} \mathrm{U}_{1} \\
& R_{A}=\frac{58.5 \times 125+125 \times 0.51 \times 62.5}{250}=45.42 \\
& S=\frac{312.5 \times 45.42}{337.5}=42.05 \\
& \mathrm{~L}_{2} \mathrm{H}_{2} \\
& R_{A}=\frac{58.5 \times 125 \not-125 \times 0.51 \times 62.5-225(125 \not 44.60) 0.51}{250}=37.57 \\
& S=\frac{312.5 \times 37.57+0.51(12.5 \not 44.6) \times 337.5}{362.5}=40.51 \\
& \mathrm{~L}_{3} \mathrm{U}_{3} \\
& R_{A}=\frac{58.5 \times 125 \not-125 \times 0.51 \times 62.5-12.75 \times 225-(12.50 \not-8.50) 0.51 x}{250} \\
& \frac{x 200}{250}=25.38 \\
& S=\frac{312.5 \times 25.38 \not \subset 12.75 \times 337.5 \nmid 362.5(12.5 \neq 8.50) 0.51}{287.5}=41.59 \\
& 287.5 \\
& \mathrm{I}_{4} \mathrm{US}_{4} \\
& R_{A}=\frac{58.5 \times 125 \not f 125 \times 0.51 \times 62.5-12.75(225 \nmid 200)-0.51}{250} \\
& \frac{(12.5 f 1185) 175}{250}=15.05 \\
& S=\frac{312.5 \times 15.05 \not+12.75(337.5+362.5)+0.51(12.5+11.85) 387.5}{412.5}=
\end{aligned}
$$

```
I
RA}=\frac{58.5\times12.5&125\times0.51\times62.5-12.75(225+200&175&150}{250}
                                    7.17
S=\frac{312.5x7.17+12.75(337.5+362.5+387.5+412.5)}{437.5}=48.83
L
RA}=\frac{58.5\times125f125x0.51\times62.5-12.75(225f200&175t}{250
    (-150&125)
S= 312.5x0.8f12.75(337.5f(362.5f(387.5f412.5f437.5)}=53.9
L/7 (%
RA}=\frac{51.0\times125/125\times0.51\times62.5-12.75(225ft200&175t}{250
    (-150,125f(100)-7.5\times100
S = -11.28\times312.5t12.75(337.5& 362.5& 387.5&412.5t
        &437.5+462.5) f7.5\times462.5}=62.6
I-8
RA}=\frac{51.0\times125&125x0.51\times62.5-12.75(225t200&175t}{250
        \ 150f125f100f75)-7.5\times75
S=\frac{-14.36x312.5&12.75(337.5&-362.5f+387.5f412.5t}{512.5}
        &437.5+462.5%487.5)+7.5\times487.5
```

$\mathrm{L}_{9} \mathrm{H}_{9}$

$$
\mathrm{L}_{10} \mathrm{U}_{10}
$$

$$
R_{A}=\frac{125 \times 51.0 \not-125 \times 0.51 \times 62.5-12.75(225 f 200 \notin 175 f 150 t}{250}
$$

$$
\frac{+125+100+75+50+25) \& 7.5 \pm 25}{250}=-16.68
$$

$$
S=\frac{-16.68 \times 31.25 \not-12.75(337.5 \not-362.5 \not-287.5 \not 412.5 f 437.5 \nmid}{562.5}
$$

$$
\frac{\not 462.5 \not+487.5 \nmid 512.5 \not-537.5) \nleftarrow 7.5 \times 537.5}{562.5}=87.14
$$

POSTS------TENSION
$\mathrm{L}_{1} \mathrm{U}_{1}$

$$
\frac{225 \times 7.5}{250}=64.12
$$

$S=\frac{-312.5 x 64.12 t}{337.5}=59.37$

$$
\begin{aligned}
& R_{A}=\frac{51.0 \times 125 f 0.51 \times 125 \times 62.5-12.75(225 \nmid 200 \not f 175 \not f 150 t}{250} \\
& \frac{(125 \not-100 \not+75 \not / 50)-7.5 \times 50}{250}=-16.16 \\
& S=\frac{-16.16 \times 312.5 \not \subset 12.75(337.5 \not+362.5+387.5 \not 412.5 \nmid 437.5 t}{537.5} \\
& \frac{\not(462.5 \nmid 487.5 f 512.5) \not f^{7.5 \times 512.5}}{537.5}=78.40
\end{aligned}
$$

```
\(\mathrm{L}_{2} \mathrm{U}_{2}\)
\(R_{A}=\frac{12.75(25 \not f 50+75+100+125 \not-150 \not-175+200)+7.5 \not+200}{250}=51.80\)
\(S=\frac{-51 \cdot 9 \times 312.5}{362.5}=44.74\)
\(\mathrm{I}_{3} \mathrm{O}_{3}\)
```



```
    \(S=\frac{312.5 \times 40.95}{387.5}=33.02\)
\(\mathrm{I}_{4} \mathrm{U}_{4}\)
```



```
\(S=\frac{312.5 \times 31.27}{412}=23.69\)
        412.5
\(\mathrm{L}_{5} \mathrm{U}_{5}\)
\(R_{A}=\frac{12.75(25 \not-50 \not-75 \nmid 100)-125(12.5 \times 10.24) 0.51 \not \subset 7.5 \times 125}{250}=\)
                                    15.92
\(S=312.5 \times 22.29=15.92\)
            437.5
\(\mathrm{I}_{6} \mathrm{U}_{6}\)
\(R_{A}=\frac{12.75(25+50475)+0.5(12.50+7.69) 100 \not-100 \times 7.5}{250}=14.76\)
\(S=312.5 \times 14.76=9.97\)
\(L_{7} \mathrm{U}_{7}\)
\(R_{A}=\frac{12.75(25 \nmid 50) \notin 0.51(12.50 \not 45.43) 75 \nmid 7.5 \equiv 75}{250}=8.81\)
\(S=\frac{312.5 x 8.81}{487.5}=5.647\)
```

$\mathrm{I}_{8}{ }_{8}$

```
\(R_{A}=\frac{12.75(25)+0.51(12.50+3.42) 50 \notin 7.5 \times 50}{250}=4.39\)
\(S=\frac{312.5 \times 4.39}{512.5}=2.67\)
512.5
```

$\mathrm{L}_{9} \mathrm{U}_{9}$
$R_{\text {it }}=\frac{7.5 \times 25 \neq 0.51(12.5 \times 1.62) 25}{250}=1.47$
$S=\frac{312.5 \times 1.47}{537.5}=0.854$
$\mathrm{I}_{10} \mathrm{U}_{10}$
$S=0.00$

END POST

$$
U_{1} L_{0}
$$

COMPRESSION
$\mathrm{R}_{\mathrm{A}}=\frac{250 \times 125 \times 0.51 \not \subset 15.0 \times 225}{250}=77.25$
$S=\frac{77.25 \times 25-25 \times 0.51 \times 12.50}{19.21}=92.23$
TENSION
$R_{A}=\frac{15.0 \times 125 \neq 51.0 \times 125 \not \subset 125 \times 0.51 \times 62.5}{250}=48.94$
$S=\frac{25 \times 48.94}{19.21}=63.69$

STRESSES IN CANTILEVER ARM

TOP CHORD ARMS
Member Angle Sine Diagonal Arm
$\mathrm{U}_{10 \mathrm{O}_{11}} \quad 54^{\circ} \mathrm{OL}: 0.8126 \quad 55.90 \quad 45.42$
$\mathrm{U}_{11} \mathrm{~L}_{12} \quad 52^{\circ} 24$ * $0.7923 \quad 52.37 \quad 41.49$
$\begin{array}{lllll}\mathrm{U}_{12} \mathrm{~L}_{13} & 50^{\circ} 09 \cdot & 0.7677 & 48.87 & 37.52\end{array}$
$\begin{array}{lllll}\mathrm{U}_{13} \mathrm{~L}_{14} & \text { 47035: } 0.7383 \quad 45.49 & 33.58\end{array}$

$$
\begin{aligned}
& \text { Top Chord--~Tension } \\
& \text { Concentration at end of oantilever arm = } \\
& \quad 15.0 \neq 200 / 2 \times 0.51=66.0 \\
& \Pi_{10} U_{11} \\
& S=\frac{66.0 \times 100 \not 0.51 \times 100 \times 50}{45.42}=201.45 \\
& U_{11} U_{12} \\
& S=\frac{66.0 \times 7540.51 \times 75 \times 75 / 2}{41.49}=153.87 \\
& U_{12} U_{13} \\
& S=\frac{66.0 \times 5040.51 \times 50 \times 25}{32.52}=104.94 \\
& U_{13} U_{14} \\
& S=\frac{66.0 \times 25425 \times 0.51 \times 12.5}{33.58}=53.87
\end{aligned}
$$

Bottom Chords----Compression
$\mathrm{L}_{10} \mathrm{~L}_{11}$
$S=\frac{66.0 \times 125 \not \subset 125 \times 0.51 \times 62.5}{50}=244.68$
$\mathrm{I}_{11} \mathrm{~L}_{12}$
$S=\frac{66.0 \times 100+100 \times 0.51 \times 50}{46}=198.91$

$$
\begin{aligned}
& \mathrm{L}_{12} \mathrm{I}_{13} \\
& S=\frac{66.0 \times 75 \not / 75 \times 0.51 \times 75 / 2}{42}=152.00 \\
& \mathrm{I}_{13^{\prime}} \mathrm{I}_{14} \\
& S=\frac{66.0 \times 50 / 50 \times 0.51 \times 25}{38}=103.62
\end{aligned}
$$

DIAGONALS------TENSION

See Figure \qquad

Member	$\begin{array}{r} \text { Divide } \\ \text { by } 25 \end{array}$		Tang.	Angle	Sine	d	Arm
$\mathrm{U}_{10} \mathrm{~L}_{11}$	50	$=$	2.000	$63^{\circ} 26$	0.8944	287.5	257.14
$\mathrm{U}_{11} \mathrm{I}_{12}$	46	$=$	1.840	$61^{\circ} 29$:	0.8787	262.5	230.66
$\mathrm{U}_{12} \mathrm{~L}_{13}$	42	$=$	1.680	$59^{\circ} 14$,	0.8593	237.5	204.08
$\mathrm{U}_{13} \mathrm{I}_{14}$	38	$=$	1.520	$56^{\circ} 40$,	0.8355	212.5	177.54

$\mathrm{U}_{10} \mathrm{~L}_{11}$
$S=\frac{7.5 \times 287.5457 .36 \times 187.5 \neq 12.75(212.51}{257.14}$
$\frac{237+262.5 \not-287}{257.14}=99.79$
$\mathrm{U}_{11} \mathrm{I}_{12}$
$S=\frac{7.5 \times 62.5+57.36 \times 187.5 \nmid 12.75(212.5 \nmid 237.5 \not+262.5)}{230.66}=94.54$
$\mathrm{U}_{12} \mathrm{I}_{13}$
$S=\frac{7.5 \times 237.5 f 57.36 \times 187.5 f 12.75(212.5 f 237.5)}{204.08}=89.54$
$\mathrm{U}_{13} \mathrm{~L}_{14}$
$S=7.5 \times 212.5457 .36 \times 187.5 \not-12.75 \times 212.5=84.81$
177.54

Posts------ Compression

```
U10L10
S=\frac{7.5x287.5f57.36x187.5f12.75(212.5f237.5f262.5f287.5}{312.5}}
                                    82.11
\mp@subsup{U}{11 }{1}
S=\frac{7.5x262.5f57.36x187.5f12.75(212.5f237.5f62.5)}{287.5}=75.85
U12L
S=\frac{7.5x237.5\not/57.36\times187.5&12.75(212.5/237.5)}{262.5}=68.61
U13\mp@subsup{L}{13}{}
    S=\frac{7.5x212.5f57.36x187.5f12.75\times212.5}{237.5}=63.40
Diagonal See Figure
U
Tan = 30 + 25=1.200=50'12'
Sine 500}12: =.765
222.5x.7683 = 163.26
```


Length of D1agonals

$$
300-25=275^{\circ}
$$

| Member:Divided
 by 25 | $=$ Tang. Angle | Sine | Length | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{U}_{1} \mathrm{I}_{2}$ | 30.0 | 1.200 | $50^{\circ} 12: 0.7683$ | 39.05 |
| $\mathrm{U}_{2} \mathrm{~L}_{3}$ | 32.5 | 1.300 | $52^{\circ}{ }^{\circ} 26: 0.7926$ | 41.00 |
| $\mathrm{U}_{3} \mathrm{I}_{4}$ | 35.0 | 1.400 | $54^{\circ} 28: 0.8138$ | 43.00 |

Top Chord-----Arms

Member	Angle	Sine	Diagonal	Arm
$\mathrm{U}_{1} \mathrm{U}_{2}$	53031*	0.8040	39.05	31.40
$\mathrm{U}_{2} \mathrm{U}_{3}$	$55^{\circ} 48^{\prime}$	0.8271	41.00	33.91
$\mathrm{U}_{3} \mathrm{U}_{4}$	$57^{\circ} 51$	0.8467	43.00	36.41
$180^{\circ} 0^{\prime}-\left[\left(90^{\circ} 50^{\circ} 12\right)+84^{\circ} 17\right]$				
$180^{\circ} 0^{\prime}-\left[\left(90^{\circ} 52^{\circ} 26\right)+84^{\circ} 17\right]=55048^{\circ}$				
$180^{\circ} 0^{-}-\left[\left(90^{\circ} 54^{\circ} 28\right)+84^{\circ} 17\right]=57^{\circ} 51$.				

```
Top Chord ------ Compression
\(\mathrm{U}_{1} \mathrm{U}_{2}\)
\(R_{A}=\frac{200 \times 0.51 \times 100 \not 150 \times 15.0}{200}=62.25\)
\(S=\frac{50 \times 62.25-50 \times 0.51 \times 25}{31.40}=78.82\)
\(\mathrm{U}_{2} \mathrm{U}_{3}\)
\(R_{A}=\frac{200 \times 0.51 \times 100 f 125 \times 15.0}{200}=60.375\)
\(S=\frac{75 \times 60.37-75 \times 0.51 \times 37.5}{33.91}=91.22\)
\(\mathrm{U}_{3} \mathrm{U}_{4}\)
\(R_{A}=\frac{200 \times 0.51 \times 100 \not 100 \times 15.0}{200}=58.5\)
    \(S=\frac{100 \times 58.5-100 \times 0.51 \times 50}{36.41}=90.63\)
Bottom Chord
Tension
\(I_{0} L_{2}\)
\(R_{A}=\frac{15.0 \times 175+100 x 0.51 \times 200}{200}=64.12\)
\(S=\frac{25 \times 64.12-12.5 \times 0.51 \times 18.75}{30}=49.44\)
\(\mathrm{L}_{2} \mathrm{~L}_{3}\)
\(R_{A}=\frac{150 \times 15.0,100 \times 0.51 \times 200}{200}=62.25\)
\(S=\frac{50 \times 62.25-50 \times 0.51 \times 25}{32.5}=76.15\)
```

```
\(\mathrm{L}_{3} \mathrm{~L}_{4}\)
\(R_{A}=\frac{125 \times 15.0 \not 100 \times 0.51 \times 200}{800}=60.375\)
    \(S=\frac{60.37 \times 75-75 \times 0.51 \times 37.5}{35.0}=88.38\)
END POSTS See Figure
```

\qquad

```
\(\mathrm{L}_{0} \mathrm{U}_{1}\)
\[
\begin{aligned}
& \operatorname{Tan}= 30 / 25 \\
& \mathrm{r} / 25=\sin 50^{\circ} 12 \\
& \mathrm{r}=0.7683 \times 25=19.21
\end{aligned}
\]
\[
\begin{aligned}
R_{A} & =\frac{175 \times 15.0+175 \times 0.51 \times 100}{200}=57.75 \\
S & =\frac{25 \times 57.75}{19.21}=-75.16
\end{aligned}
\]
DIAGONAI ARMS See Figure
``` \(\qquad\)
```

Member	Divided by 25		Tang.	Angle	Sine	d	Arm
$\mathrm{U}_{1} \mathrm{I}_{2}$	30	$=$	1.200	$50^{\circ} 12$	0.7683	325	$249.7{ }^{1}$
$\mathrm{U}_{2} \mathrm{~L}_{3}$	32.5	$=$	1.300	$52^{\circ} 26$	0.7926	350	277.41'
$\mathrm{U}_{3} \mathrm{~L}_{4}$	35.0	$=$	1.400	$54^{\circ} 28$	0.8138	375	$305.17^{\prime}$

```

\section*{Diagonals-----Compression}
\(\mathrm{U}_{1} \mathrm{~L}_{2}\)
\[
A_{A}=\frac{7.5 \times 17540.51(12.545 .16) 175}{200}=14.44
\]
\[
S=\frac{275 \times 14.44-0.51(12.5 \not-5.16) 300-300 \times 25}{249.7}=3.92
\]
\[
\mathrm{U}_{2} \mathrm{I}_{3}
\]
\[
R_{A}=\frac{7.5 \times 150 \not 0.51(18.5 \nleftarrow 100) 150 \not 112.75 \times 175}{200}=25.38
\]
\[
S=\frac{275 \times 25.38-12.75 \times 300-0.51(12.5 \not-10) 325-7.5 \times 325}{277.41}=10.85
\]
```

$\mathrm{U}_{3} \mathrm{I}_{4}$
$R_{A}=\frac{7.5 \times 125 \not-12.75(175 \nmid 150 \not-125)}{200}=33.37$
$S=\frac{275 \times 33.37-12.75(300+325+350)-7.5 \times 350}{305.17}=19.27$
Posts-------Compression
$\mathrm{U}_{2} \mathrm{~L}_{2}$
$R_{A}=\frac{7.5 \times 125 \notin 12.75(125 \not-100 \not+75 \not+50+25)}{200}=28.59$
$s=\frac{275 \times 28.59}{325}=24.19$
$\mathrm{U}_{3} \mathrm{~L}_{3}$
$R_{A}=\frac{7.5 \times 100 \notin 12.75(25+50 \not \subset 75) \notin 0.51(12.50 \not 10.66) 100}{200}=19.22$
$S=\frac{275 \times 19.22}{350}=15.10$
$\mathrm{U}_{4} \mathrm{I}_{4}$
$R_{A}=\frac{7.5 \times 75 \neq 12.75(25 \not-50)+0.51(12.50 \neq 6.92) 750}{200}=11.31$
$S=\frac{275 \times 11.31}{375}=8.29$
Post-----Tension
$\mathrm{U}_{2} \mathrm{~L}_{2}$
$\mathrm{R}_{\mathrm{A}}=\frac{150 \times 7.5 \not \subset 150(12.5 \nmid 10.0) 0.51 \not \subset 175 \times 12.75}{200}=25.38$
$S=\frac{275 \times 25.38-12.75 \times 300-0.51(12.50 \wedge 10.0) 325-7.5 \times 325}{325}=$
9.26

$$
\begin{aligned}
& \mathrm{U}_{3} \mathrm{~L}_{3} \\
& R_{A}=\frac{7.5 x 125 \not f 12.75(125 \not f 150 \not 175)}{200}=33.37 \\
& S=\frac{275 \times 33.37-12.75(300+325+350)-7.5 \times 350}{350}=16.79 \\
& \mathrm{U}_{4} \mathrm{I}_{4} \\
& R_{A}=\frac{100 \times 7.5 \times 12.75(100 \times 125 \not(150 \neq 175)}{200}=38.81 \\
& S=\frac{275 \times 38.81-12.75(300+325+350+375)-375 \times 7.5}{375}=24.93
\end{aligned}
$$

CALCULATIONS FOR DRAWING NO. 1
Stresses in Top and Bottom Chords of Anchor Arm Graphic Method

Top Chords

$$
\begin{aligned}
& \Pi_{1} U_{2}-A^{1}, b^{\uparrow}, 1, D^{p} \\
& 15.0 \times 0.75 \overline{=} \times 250= \\
& 0.75 / 2 \times 0.51 \times \frac{11.25}{47.81} \\
& 15.0 \times 0.41= \\
& 0.41 / 2 \times 0.51 \times 325= \\
& \\
&
\end{aligned}
$$

$$
U_{2} U_{3}-A^{2}, A^{v}, 2, D^{v}
$$

$$
1.24 x 15.0=18.60
$$

$$
1.24 / 2 \times 0.51 \times 250=-79.05
$$

$$
0.76 \times 15.0=\quad 11.40
$$

$$
0.76 / 2 \times 0.5 \overline{1} \times 325=\frac{62.98}{f^{74.38}}
$$

$$
\begin{aligned}
& U_{3} U_{4}-\cdots A^{\uparrow}, f^{\uparrow}, 3, D^{\prime} \\
& 1.52 \times 15.0= \\
& 1.52 / 2 \times 0.51 \times 250=97.95 \\
&=127.54
\end{aligned}
$$

$$
1.09 \times 15.0=\quad 16.35
$$

$$
1.09 / 2 \times 0.51 \times 325=\frac{90.33}{f 106.68}
$$

$$
\begin{aligned}
& L_{0} U_{1}-A_{1.18} A^{\prime}, W_{15}, B^{\prime}, 10, D^{\prime} \\
& 1.18 \times 15.0=17.70 \\
& 1.18 / 2 \times 0.5 \overline{1} \times 250=\frac{75.22}{-92.92} \\
& 0.65 \times 15.0=\quad 9.75 \\
& 0.65 / 2 \times 0.51 \times 325=\frac{53.87}{f 63.62}
\end{aligned}
$$

$$
\begin{aligned}
& U_{8} U_{9}--A^{i}-, S^{r}, 8, D \\
& 15.0 \times 0.88= \\
& 0.88 / 2 \times 0.51 \times 250=\begin{array}{l}
13.20 \\
-56.10 \\
-69.30
\end{array}
\end{aligned}
$$

$$
15.0 \times 2.20=33.00
$$

$$
2.20 / 2 \times 0.51 \times 325=\frac{182.32}{f 215.32}
$$

$$
\begin{aligned}
& \begin{array}{l}
U_{8} U_{10---A}, u^{\prime}, 9, D^{\prime} \\
15.0 \times 0.47
\end{array} \\
& 0.47 / 2 \times 0.51 \times 250=\frac{29.96}{-37.01} \\
& 15.0 \times 2.39=35.85 \\
& 2.39 / 2 \times 0.51 \times 325=198.07 \\
& +233.92
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
U_{7} U_{8}-M-A^{\dagger}, p^{4}, 7, D^{4} \\
15.0 \times \mathrm{X} 1.23
\end{array}=\quad 18.45 \\
& 1.23 / 2 \times 0.51 \times 250=\frac{78.41}{-96.86} \\
& 15.0 \times 2.04=\quad 30.60 \\
& 2.04 / 2 \times 0.51 \times 325=\frac{169.06}{f 199.66}
\end{aligned}
$$

$$
\begin{aligned}
& 1.48 / 2 \times 0.51 \times 250=\frac{94.35}{-116.55} \\
& 15.0 \times 1.84=\quad 27.60 \\
& 1.84 / 2 \times 0.51 \times 325=\frac{152.49}{f 180.09}
\end{aligned}
$$

$$
\begin{aligned}
& 1.62 / 2 \times 0.51 \times 250=\frac{103.27}{-127.57} \\
& 15.0 \times 1.61=\quad 24.15 \\
& \begin{aligned}
1.61 / 2 \times 0.51 \times 325 & =133.43 \\
& =f 157.58
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 15.0 \times 1.36=\quad 20.40 \\
& 1.36 / 2 \times 0.51 \times 325=\frac{112.71}{f 133.11}
\end{aligned}
$$

Bottom Chords

$$
\begin{aligned}
& \begin{array}{l}
L_{0} I_{1}--A^{n \prime}, I^{\prime}, 1, D^{\prime \prime} \\
15.0 \times 0.74 \\
0.74 / 2 \times 0.51
\end{array} \\
& 0.74 / 2 \times 0.51 \times 250=\begin{array}{l}
11.10 \\
47.17 \\
458.27
\end{array} \\
& 15.0 \times 0.41=\quad 6.15 \\
& 0.41 / 2 \times 0.51 \times 325=\frac{33.98}{-40.13}
\end{aligned}
$$

$$
\begin{aligned}
& 15.0 \times 1.52=22.95 \\
& 1.53 / 2 \times 0.51 \times 250=\frac{97.54}{-120.49} \\
& 1.09 \times 15.0=16.35 \\
& 1.09 / 2 \times 0.51 \times 325=\frac{90.33}{-106.68}
\end{aligned}
$$

$$
\begin{aligned}
& 15.0 \times 1.61=24.15 \\
& 1.61 / 2 \times 0.51 \times 325=\frac{133.43}{-157.58}
\end{aligned}
$$

$$
\begin{aligned}
& 15.0 \text { x } 1.23=18.45 \\
& 1.23 / 2 \times 0.51 \times 250=\frac{78.41}{f 96.86} \\
& 15.0 \times 2.04 \quad 30.60 \\
& 2.04 / 2 \times 0.51 \times 325=\frac{169.06}{-199.66} \\
& \operatorname{Lr}_{7} \mathrm{I}^{-}-\mathrm{F}^{-\mathrm{A}^{\prime \prime}, 8^{\prime}, 8, \mathrm{D}^{\prime \prime}} \\
& 15.0 \times 0.88=\quad 13.20 \\
& 0.88 / 2 \times 0.51 \times 250=\frac{56.10}{f 69.30} \\
& 15.0 \times 2.20=\quad 33.00 \\
& 2.20 / 2 \times 0.51 \times 325=\frac{182.32}{-215.32}
\end{aligned}
$$

$$
\begin{aligned}
& 0.46 / 2 \times 0.51 \times 250=\begin{array}{r}
6.90 \\
\frac{29.32}{f 36.22}
\end{array} \\
& 15 \times 2.33=34.95 \\
& 233 / 2 \times 325 \times 0.51=\frac{193.10}{-228.05}
\end{aligned}
$$

## CALCULATIONS FOR DRAWINGS NO. $2 \& 2 A$

Stresses in Diagonals \& Posts
Graphic Method

## Diagonals

$$
\begin{aligned}
& \mathrm{L}_{1} \mathrm{U}_{2}-\overline{7.5} \mathrm{~A}^{\mathrm{A}}, \mathrm{~b}^{\mathrm{t}}, 1,8, \mathrm{D}^{\mathrm{O}} \\
& 7.5 \times 0.94=7.05 \\
& 12.75(0.94 \neq 0.8240 .7040 .59+0.47 \nmid 0.35 \\
& +0.23+0.12)=\frac{53.80}{-60.85} \\
& 0.51(12.5+4.6) 0.20=1.74 \\
& 7.5 \times .59=\quad 4.42 \\
& 325 \times 0.51 \times 59 / 2=\begin{array}{r}
48.90 \\
455.06
\end{array} \\
& L_{2} U_{3}-A_{7.5} \times A^{2}, d^{2}, 7, D^{\prime} \\
& 7.5 \times 0.74=5.55
\end{aligned}
$$

$$
\begin{aligned}
& 7.5 \times 0.52=\quad 3.90 \\
& 325 \times 0.51 \times 0.52 / 2=43.09 \\
& 12.75 \times 0.18=2.28 \\
& 0.51(12.5 \nmid 8.50) 0.37=\begin{array}{r}
3.96 \\
753.24
\end{array}
\end{aligned}
$$

$12.75(0.56 \neq 0.47 \neq 0.37+0.28 \neq 0.19 \neq 0.08)=\begin{array}{r}4.20 \\ -24.99 \\ -29.18\end{array}$
$\begin{array}{lr}7.5 \times 0.46= & 3.45 \\ 325 \times 0.51 \times 0.46 / 2= & 38.12 \\ 12.75(0.17 \neq 0.35)= & 6.63 \\ 0.51(12.5 \neq 11.85) 0.52= & 6.46\end{array}$
$\mathrm{~L}_{4} \mathrm{U}_{5}\left(\mathrm{~A}^{\mathrm{P}}, \mathrm{h}^{\mathrm{n}}, 4,5, \mathrm{D}^{\mathrm{l}}\right)$

$$
\begin{aligned}
& 7.5 \text { x } 0.92=6.90 \\
& 12.75(0.13 \neq 0.26 \neq 0.39 f 0.52 \neq 0.66 f 0.79 f 0.92=46.79 \\
& \text { 725 } \times 0.51 \times 0.37 / 2=
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{ll}
7.5 . x & 0.32 \overline{7} \\
12.75(0.08 \\
0.16
\end{array} \quad 10.24\right)=\begin{array}{l}
2.40 \\
6.12
\end{array} \\
& 0.51(12.50 \neq 7.69) 0.32=\frac{3.29}{-11.81} \\
& 7.5 \times 0.74=0.50 \\
& 325 \times 0.51 \bar{x} 0.41 / 2=\quad 33.98 \\
& 12.75(0.15 \not 40.3040 .4470 .59 \not 40.74)=\frac{28.30}{467.78}
\end{aligned}
$$

$$
\begin{aligned}
& 0.51(12.5+5.43) 0.23=\frac{2.10}{-6.70} \\
& 7.5 \times 0.84=6.30 \\
& 12.75(0.14 \not+0.28+0.42+0.56 \not-0.70 \neq 0.84)= \\
& 37.48 \\
& 325 \times 0.51 \times 0.38 / 2 \\
& 32.32 \\
& +76.10 \\
& L_{7} U_{8}-\frac{1 T}{7,5}, p^{2}, 7,3, D^{1} \\
& 7.5 \times 0.15=1.12 \\
& 12.75 \times 0.075=\quad .96 \\
& 0.51(12.5+3.42) 0.15=\frac{1.22}{-3.30}
\end{aligned}
$$

$$
\begin{aligned}
& I_{9} \mathrm{~J}_{10}-\text { - }^{7} \mathrm{~A}^{2} \text {, } \mathrm{u}^{*}, \mathrm{~B}^{*}, 1, \mathrm{D}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\not(0.69 \not 0.81 \neq 0.9241 .04)-\frac{27.34}{7101.44}
\end{array}
\end{aligned}
$$

## Posts

$$
\begin{aligned}
& 7.5 \times 0.84= \\
& 12.75(0.9 \not 10.19 \not 40.2840 .3740 .47 t \\
& 0.56 \not \subset 0.65 \neq 0.75 \neq 0.841=\frac{53.55}{\neq 59.85} \\
& \begin{array}{lll}
7.5 \times 0.47 \\
325 \times 0.51 \times 0.47 / 2= & \begin{array}{r}
3.52 \\
38.95 \\
-42.47
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 7.5 \times 0.45=3.37 \\
& 325 \times 0.51 \times 0.45 / 2=37.29 \\
& 0.51(12.5+4.6) 0.17=\frac{1.48}{-42.14}
\end{aligned}
$$

$$
\begin{aligned}
& 7.5 \times 0.41=3.07 \\
& 325 \times 0.51 \times 0.41 / 2=33.98 \\
& 12.75 \times 0.15=1.91 \\
& 0.51(12.5+8.5) 0.30=\frac{3.21}{=}
\end{aligned}
$$

$$
\begin{aligned}
& 12.75(0.14+0.28)=5.35 \\
& 0.51(12.5 \nmid 11.85) 0.42=5.21 \\
& 7.5 \times 0.38=\quad 2.85 \\
& 325 \times 0.51 \times 0.38 / 2=\frac{31.49}{} \frac{-34.90}{}
\end{aligned}
$$

$$
\begin{aligned}
& 0.51(125+10.24) 0.38=\quad \frac{4.40}{f 16.81} \\
& 12.75(0.14 \not 40.27 \nmid 0.40 \nless 0.54)=17.21 \\
& 7.5 \times 0.38= \\
& 325 \times 0.51 \times 0.38 / 2=\quad 31.49 \\
& -51.55 \\
& L_{6} U_{6}-A^{\prime}, I^{\prime}, 5,4, D^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lr}
7.5 \times 0.36= & 2.70 \\
0.51 \times 325 \times 0.36 / 2= & 29.83 \\
12.75(0.13 f 0.23 f 0.38 f 0.51 f 0.64) & =24.48 \\
& -57.01
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
7.5 \times 0.72= \\
12.75(0.12 \neq 0.24 \neq 0.36 \not(0.48 \nmid 0.6040 .72) & = \\
325 \times 0.51 \times 0.34 / 2= & 32.13 \\
& -68.18 \\
& -65.71
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& L_{8} U_{8}--A^{2}, p, 7,2, D^{\prime} \\
& 7.5 \times 0.13=\quad 0.97 \\
& 12.75 \times 0.07=0.89 \\
& 0.51(12.50+3.42) 0.13=\frac{1.05}{2.91} \\
& \begin{array}{ll}
7.5 \quad 7.5 \times 0.80= \\
& 12.75(0.11 \neq 0.23 f 0.34 \neq 0.46 \neq 0.57 f 0.69 f 0.80)= \\
325 \times 0.51 \times 0.31 / 2= & 6.00 \\
& \\
&
\end{array}
\end{aligned}
$$

$7.5 \times 0.87$
$12.75(0.11 \neq 0.22 f 0.33+0.43 \not f 0.54$
$+0.65+0.74+0.87)=$
49.85
$325 \times 0.51 \times 28 / 2=$
$\frac{23.20}{79.57}$

$$
\begin{aligned}
& 12.75(0.10+0.21+0.31+0.41 \not f 0.52 \\
& +0.6240 .72+0.83+0.93) \\
& 325 \times 0.51 \times 0.28 / 2= \\
& =59.29 \\
& -\frac{23.20}{89.46}
\end{aligned}
$$

GALCULATIONS FOR DRAWING NO. 3

## Stresses in Anchor Arm <br> Semi-Graphic Method

## Top Chores

$$
\begin{aligned}
& 15 \times 0.50=7.5 \\
& 0.50 / 2 \times 0.51 \times 325=\frac{41.44}{46.94} \times 1.31=464.11 \\
& \begin{array}{c}
U_{1} U_{2}--A^{-A}, b, C *, D ' \\
0.90 \times 15.00=\quad 13.50
\end{array} \\
& 0.90 / 2 \times 0.51 \times 250=57.37 \\
& 70.87 \times 0.83=-58.82 \\
& 48.94 \times 0.83=440.62 \\
& \text { (see } L_{0} U_{1} \text { ) } \\
& \begin{array}{c}
U_{2} U 3---A^{\prime} d, C^{\prime}, D^{\prime} \\
15.0 \times 0.80 \\
0.80 / 2 \quad x .250
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 48.94 \times 1.56=\$ 74.79 \\
& \begin{aligned}
& U_{3} U_{4}--A A^{\prime}, P, C, D \\
& 0.70 \times 15.0= \\
& 0.70 / 2 \times 250 \times 0.51=\frac{10.50}{54.62} \\
& 48.94 \times 2.19=4107.18
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 0.60 / 2 \times 0.5 I \times 250=\frac{38.25}{47.25} \times 274=-129.46 \\
& 48.94 \times 2.74=\not-134.09 \\
& U_{5} U_{6}-A^{4}, 1, C^{r}, D^{\prime} \\
& \begin{array}{l}
0.50 \times 15.0=7.50 \\
0.50 / 2 \times 0.51 \times 250=\frac{7.50}{31.87} \times 3.37 \times-127.16
\end{array} \\
& 48.94 \times 3.23=\$ 158.07
\end{aligned}
$$

$$
\begin{aligned}
& 0.40 / 2 \times 0.51 \times 250=\frac{25.50}{31.50} \times 3.66=-115.29 \\
& 48.94 \times 3.66=179.12
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
15.0 \times 0.20 \times 12.00 \\
0.20 / 2 \times 0.5 \overline{1} \times 250=\frac{12.75}{15.75} \times 4.41=-69.46
\end{array} \\
& 48.94 \times 4.41=215.82 \\
& \begin{array}{l}
U_{9} U_{10}-\ldots-A^{2}, t, C, D^{\prime} \\
15.0 \times 0.10 \\
0.10 / 2 \times 0.5 \overline{\bar{I}} \times 250=\frac{1.50}{7.47} \times 4.73=-37.22
\end{array} \\
& 48.94 \times 4.73=231.486
\end{aligned}
$$

## Bottom Chords

$$
\begin{aligned}
& L_{0} I_{1}=-A^{\prime} b, C^{\prime}, D^{\prime} \\
& 70.87 \text { x } 0.83=\neq 58.82 \\
& 48.94 \times 0.83 \equiv-40.62 \\
& \begin{aligned}
& \mathrm{I}_{1} \mathrm{~L}_{2}---A^{\prime}, \mathrm{d}, \mathrm{C}, \mathrm{D} \\
& 63.0 \times 1,55=497.65 \\
& 48.94 \mathrm{x} 1.55=-75.86
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 48.94 \times 2.18=-106.69
\end{aligned}
$$

$$
\begin{aligned}
& 48.94 \times 2.73=-133.61
\end{aligned}
$$



## Diagonals

$\mathrm{I}_{1} \mathrm{U}_{2}$
$0.51 \times 25=12.75$ panel concentration
$12.75(0.10 \neq 0.2040 .30+0.4040 .5040 .6040 .7040 .80)$
12.75 x $3.60=45.90$
$7.5 \times 0.80=-\frac{6.00}{51.90} \times 1.18=-61.24$
$7.5 \times 0.50=3.75$
$325 \times 0.51 \times 0.50 / 2=41.44$
$0.51(12.50 \not 4.60) 0.18=1.56$
$46.75 \times 1.18=455.16$
$\mathrm{L}_{2} \mathrm{U}_{3}$
$12.75 \times(0.10 \neq 0.20 \not 0.30+0.40$
$7.5 \times 0.70=\begin{aligned} & \text { (0.50申0.60申0.80) }= \\ & \\ & \frac{55.70}{40.25} \times 1.07=-43.81\end{aligned}$
$12.75 \times 0.18=\quad 2.29$
$(8.5 f 12.5) 0.51 \times 0.36=3.85$
$7.5 \times 0.50=3.75$
$0.50 / 2 \times 0.51 \times 325=\frac{41.44}{51.33} \times 1.07=\neq 54.92$
$\mathrm{I}_{3} \mathrm{U}_{4}$
$12.74(0.10 \nless 0.2040 .30 \not 0.40 \not 0.50 \neq 0.60)$
$12.75 \mathrm{x} 2.10=26.77$
$7.5 \times 0.60=\frac{4.50}{31.27} \times 0.97=-30.33$

```
\(325 \times 0.51 \times 0.50 / 2=41.44\)
\(7.5 \times 0.50=\)
\(12.75(0.1 \overline{8} \neq 0.36)=6.88\)
\((12.50 \not 11.85) 0.51 \times 0.54=\frac{6.71}{58.78}\)
\(58.78 \times 0.97=f 57.02\)
```

$\mathrm{I}_{4} \mathrm{U}_{5}$
$12.75(0.10+0.20+0.30+0.40+0.50)$
$12.75 \times 1.50=19.12$
$7.5 \times 0.50=\frac{3.75}{22.87} \times 0.89=-20.35$
$\begin{array}{ll}12.75(0.18 f 0.36 \not f 0.54 \not f 0.72)= & 22.95 \\ 325 \times 0.51 \times 0.50 / 2= & 41.44 \\ 7.5 \times 0.50= & \frac{3.75}{} \\ & \\ & 68.14 \times 0.89=f 60.64\end{array}$
$\mathrm{I}_{5} \mathrm{U}_{6}$

```
\(12.75(0.10+0.20+0.30)=7.65\)
\(0.40(12.50 \not 77.69) 0.51=4.12\)
\(7.5 \times 0.40=\quad 3.00\)
 \(14.77 \times 0.83=-12.26\)
\(7.5 \times 0.90\)
 6.75
\(325 \times 0.51 \times 0.50 / 2=41.44\)
\(12.75(0.18 \neq 0.36 \neq 0.54 \not f 0.72 \neq 0.90)=\frac{34.42}{82.61}\)
 \(82.61 \times 0.83=f 68.56\)
```

$\mathrm{L}_{6} \mathrm{U}_{7}$


```
\(7.5 \times 1.08 \overline{\overline{8}}+0.3640 .5410 .7240 .90 \neq 08)=48.10\)
\(12.75(0.1 \overline{8} \neq 0.36 \neq 0.54 \nmid 0.72 \nleftarrow 0.90 \neq 1.08)=48.19\)
325x0.51x0.50/2 =
 41.44
 \(\frac{41.44}{97.73} \times 0.77=f 75.25\)
```

$\mathrm{L}_{7} \mathrm{U}_{8}$

$7.5 \times 0.20 \overline{ }=$	1.50
$12.75(0.10)=$	1.27
$0.20(12.50+3.42) 0.51=$	1.62   $4.39 \times 0.73=3.20$

$7.5 \times 1.26=\quad 9.45$
$0.51 \times 325 \times 0.50 / 2=\quad 41.44$
$12.75(0.18 \not f 36 \not f 0.54 \not f 0.72 \neq 0.90 \not 11.08 \neq 1.26)=\frac{64.26}{115.15}$
$\begin{array}{r}115.15 \times 0.73 \\ +84.06\end{array}=$

Posts
$\mathrm{L}_{1} \mathrm{UN}_{1}$

| $7.5 \times 0.90=$ | 6.75 |
| :--- | :--- | :---: |
| $12.75(0.10 \neq 0.2040 .30 \neq 0.4040 .50 \neq$ |  |
| $0.60 \neq 0.70 \not 0.80 \neq 0.90)=$ | $\frac{57.37}{64.12 \times 0.93}=459.63$ |
| $0.51 \times 325 \times 0.50 / 2=41.44$ |  |
| $7.5 \times 0.50=$ | $\frac{3.75}{45.19} \times 0.93=-42.03$ |

$$
\mathrm{I}_{2} \mathrm{U}_{2} \times 0.80=\quad 6.00
$$

$$
12.7510 .140 .240 .340 .440 .5
$$

$$
40.640 .7 \neq 0.8)=\frac{45.90}{5100}
$$

$$
51.90 \times 0.86=444.63
$$

$$
7.5 \times 0.5=3.75
$$

$$
325+0.51 \times 0.50 / 2=41.44
$$

$$
(12.50+4.60) 0.51 \times 0.18=\frac{1.57}{46.76} \times 0.86=40.21
$$

$$
\begin{aligned}
& \mathrm{I}_{8} \mathrm{U}_{9} \\
& 0.10 \times 7.5=0.75 \\
& 0.10(12.50 \not 1.62) 0.51=\frac{0.72}{1.47} \times 0.68=0.999 \\
& 1.44 \times 7.5=10.80 \\
& 12.75(0.18+0.36+0.54+0.7240 .90 \\
& \text { +1.08 } 1.26 \not 1.44)= \\
& 325 \times 0.51 \times 0.50 / 2= \\
& \text { 8. } 62 \\
& 41.44 \\
& 134.86 \times 0.68=\$ 91.70 \\
& \mathrm{I}_{9} \mathrm{~J}_{10} \\
& \begin{array}{l}
1.62 x^{7} .5= \\
12.75(0.18 \neq 0.36 \neq 0.54 \neq 0.72 \neq 0.90
\end{array} \\
& \nmid 1.08 \not \subset 1.26 \not+1.44 \not 41.62),=103.27 \\
& 325 \times 0.51 \times 0.50 / 2=\frac{41.44}{156.86} \times 0.64=4100.39 \\
& 12.15
\end{aligned}
$$

```
\(\mathrm{L}_{3} \mathrm{D}_{3}\)
\(7.5 \times 0.70=\)
\(12.75(0.10 \neq 0.20 \neq 0.30 \neq 0.40 \neq 0.50\)
\(40.60 \neq 0.70)=\)
```



```
\(12.75 \times 0.18=\quad 2.29\)
\((12.50 \neq 8.50) 0.51 \times 0.36=\frac{3.86}{51.34} \times 0.80=-41.07\)
\(\mathrm{L}_{4} \mathrm{U}_{4}\)
\(\begin{aligned} & 7.5 \times 0.60 \\ & 12.75(0.10 \neq 0.20 f 0.30 \neq 0.40 f 0.50 f 0.60)\end{aligned}=\frac{4.50}{26.77} \begin{aligned} & f 31.27 \times 0.76=f 23.76\end{aligned}\)
\(7.5 \times 0.50=\)
\(0.51 \times 325 \times 0.50 / 2=\begin{array}{r}3.75 \\ 12.75(0.1840 .36)= \\ 0.51(1250 \not 411.85) 0.54=\frac{6.88}{6.70} \\ 58.77\end{array} 0.76=-44.68\)
\(\mathrm{I}_{5} \mathrm{U}_{5}\)
```



```
\(0.51(12.50 \not 12.24) 0.50=\quad=5.80\)
 \(22.30 \times 0.71=+15.83\)
\(7.5 \times 0.50=3.75\)
\(0.51 \times 325 \times 0.50 / 2=\quad 41.44\)
\(12.75(0.18 \neq 0.36 \neq 0.54 \neq 0.72)=\frac{22.95}{68.14} \times 0.71=-48.38\)
\(\mathrm{I}_{6} \mathrm{U}_{6}\)
\(7.5 \times 0.40=3.00\)
\(12.75(0.10 \neq 0.20 \not 0.30)=7.65\)
\((12.50+7.69) 0.40=4.12\)
 \(\frac{4.12}{14.17} \times 0.67=19.88\)
\(7.5 \times 0.50=3.75\)
\(325 \times 0.51 \times 0.50 / 2=\quad 41.44\)
\(12.75(0.18 \neq 0.36 \not+0.54 \neq 0.72 \neq 0.92)=\frac{34.42}{79.61}\)
 77.6Ix0.67= -53.34
```

$L_{7} U_{7}$

$7.5 \times 0.30$	2.25
12.75(0.10 0.20$)=$	3.82
$0.51(12.50 \not 55.43) 0.30=$	2.74
	$8.81 \times 0.63=45.55$

$\begin{aligned} & 7.5 \times 1.08 \\ & 12.75(0.18 f 0.36 f 0.54 f 0.72 f 0.90 \neq 1.08)= 8.10 \\ & 48.19 \\ & \frac{41.44}{97.73 x 0.63=-61.57}\end{aligned}$
$\mathrm{I}_{8} \mathrm{U}_{8}$
$12.75 \times 0.10=$
$\begin{aligned} & 1.51(12.5 \neq 3.42) 0.20= \\ & 7.5 \times 0.20=\end{aligned} \quad \begin{aligned} & 1.27 \\ & \\ & \frac{1.52}{4.39} \times 0.60=f 2.63\end{aligned} \quad l$
$12.75(0.18 \not f 0.36 f 0.54 f 0.72 f 0.90 f 1.08 \neq 1.26)=64.26$
$7.5 \times 1.26 \times 0.50 / 2=$
$325 \times 0.51 \times 0.50$
41.44
$115.15 \times 0.60=$
-69.09
$\mathrm{I}_{9} \mathrm{U}_{9}$
$\begin{aligned} & 7.5 \times 0.10= \\ & 0.51(12.5 \neq 1.62) 0.10=\frac{00.75}{0.72} \\ & 1.47\end{aligned} 0.57=+0.837$

$7.5 \times 1.44=$	10.80
$325 \times 0.51 \times 0.50 / 2=$	41.44
12.75 (0.18f0.36f0.5470.7240.90	
f1.08 $61.26+1.44=$	$\frac{82.62}{134.86} \times 0.57=-76$

$\mathrm{I}_{10} \mathrm{U}_{10}$
$7.5 \times 1.62=\quad 12.15$
325 x 0.51 x $0.50 / 2=1241.44$
$12.75(0.18+0.36+0.5470 .7240 .90$
$\neq 1.08 \not 1.26 \neq 1.84 \neq 1.62)=103.27$
$=\frac{156.86}{156.80 .55}=-86.27$

## SUMMATION AND COMPARISON OF STRESSES

## STRESSES IN ANCHOR ARM

Top Ghords		Method		
Member	Stress	Graphic	SemiGraphio	Moments
$\mathrm{L}_{0} \mathrm{U}_{1}$	t	63.62	64.11	63.69
	-	92.14	92.84	92.26
$\mathrm{U}_{1} \mathrm{U}_{2}$	$t$	40.13	40.62	40.91
		59.06	58.82	59.26
$\mathrm{U}_{2} \mathrm{U}_{3}$	t	74.38	74.79	76.23
		97.65	98. 28	98.07
$\mathrm{U}_{3} \mathrm{U}_{4}$	t	106.68	107.18	106.92
	-	120.49	120.71	120.43
$\mathrm{U}_{4} \mathrm{U}_{5}$	$f$	133.11	134.09	133.90
		129.15	129.46	129.27
$\mathrm{U}_{5} \mathrm{U}_{6}$	$\not$	157.58	158.07	157.83
	-	127.57	127.16	126.98
$\mathrm{U}_{6} \mathrm{U}_{7}$	$t$	180.09		179.14
	+	116.55	115.29	115.30
$\mathrm{U}_{7} \mathrm{U}_{8}$	f	199.66	198.21	198.30
	,	96.86	95.66	95.72
$\mathrm{U}_{8} \mathrm{U}_{9}$	f	215.32	215.82	215.55
	-	69.30	69.46	69.37
$\mathrm{U}_{9} \mathrm{U}_{10}$	t	233.92	231.49	231.24
	-	37.01	37.22	37.21

Bottom Chords

Member	Stress	Graphic	SemiGraphic	Moments
$L_{0} L_{1}$	$t$	58.27	58.82	59.06
		40.13	40.62	40.78
$\mathrm{I}_{1} \mathrm{I}_{2}$	t	97.65	97.65	97.76
	-	74.38	75.86	75.95
$\mathrm{I}_{2} \mathrm{I}_{3}$	$t$	120.49	120.16	120.04
		106.68	106.69	106.58
$\mathrm{L}_{3} \mathrm{~L}_{4}$	t	128.36	128.99	128.89
		133.11	133.61	133.50
$\mathrm{L}_{4} \mathrm{~L}_{5}$	t	126.79	126.38	126.60
	F	157.58	157.10	157.34
$\mathrm{L}_{5} \mathrm{~L}_{6}$	$t$	115.76	114.66	114.96
		180.09	178.14	178.61
$\mathrm{L}_{6} \mathrm{~L}_{7}$	$t$	96.86	95.19	95.44
	f	199.66	197.23	197.70
$\mathrm{I}_{7} \mathrm{I}_{8}$	t	69.30	69.98	69.17
		215.32	214.32	214.93
$\mathrm{L}_{8} \mathrm{I}_{9}$	$\not \dagger$	36.22	36.98	37.10
		228.05	230.02	230.56
$\mathrm{L}_{9} \mathrm{I}_{10}$	f	000.00	000.00	000.00
	-	243.71	244.26	244.70

STRESSES IN ANCHOR ARM CONTINUED

Diagonals

Member	Stress	Graphic	SemiGraphic	Moments
$\mathrm{L}_{1} \mathrm{U}_{2}$	$\pm$	$\begin{aligned} & 55.06 \\ & 60.85 \end{aligned}$	$\begin{aligned} & 55.16 \\ & 61.24 \end{aligned}$	$\begin{aligned} & 54.80 \\ & 60.83 \end{aligned}$
$\mathrm{L}_{2} \mathrm{U}_{3}$	$t$	$\begin{aligned} & 53.24 \\ & 43.29 \end{aligned}$	$\begin{aligned} & 54.92 \\ & 43.81 \end{aligned}$	$\begin{aligned} & 53.91 \\ & 43.61 \end{aligned}$
$\mathrm{L}_{3} \mathrm{U}_{4}$	$t$	$\begin{aligned} & 54.66 \\ & 29.19 \end{aligned}$	$\begin{aligned} & 57.02 \\ & 30.33 \end{aligned}$	$\begin{aligned} & 57.37 \\ & 30.52 \end{aligned}$
$\mathrm{L}_{4} \mathrm{U}_{5}$	$t$	$\begin{aligned} & 59.90 \\ & 20.07 \end{aligned}$	$\begin{aligned} & 60.64 \\ & 20.35 \end{aligned}$	$\begin{aligned} & 61.37 \\ & 20.08 \end{aligned}$
$\mathrm{L}_{5} \mathrm{U}_{6}$	$t$	$\begin{aligned} & 67.78 \\ & 11.81 \end{aligned}$	$\begin{aligned} & 68.56 \\ & 12.26 \end{aligned}$	$\begin{aligned} & 69.07 \\ & 12.34 \end{aligned}$
$\mathrm{L}_{6} \mathrm{U}_{7}$	t	$\begin{array}{r} 76.10 \\ 6.70 \end{array}$	$\begin{array}{r} 75.25 \\ 6.78 \end{array}$	$\begin{array}{r} 75.92 \\ 6.87 \end{array}$
$\mathrm{I}_{7} \mathrm{U}_{8}$	$\pm$	$\begin{array}{r} 84.35 \\ 3.30 \end{array}$	$\begin{array}{r} 84.06 \\ 3.20 \end{array}$	$\begin{array}{r} 84.20 \\ 3.21 \end{array}$
$\mathrm{I}_{8} \mathrm{U}_{9}$	$t$	$\begin{array}{r} 91.50 \\ 1.02 \end{array}$	$\begin{array}{r} 91.70 \\ 0.99 \end{array}$	$\begin{array}{r} 92.82 \\ 1.01 \end{array}$
$\mathrm{I}_{9} \mathrm{U}_{10}$	$t$	$\begin{array}{r} 101.44 \\ 00.00 \end{array}$	$\begin{array}{r} 100.39 \\ 00.00 \end{array}$	$\begin{array}{r} 101.97 \\ 00.00 \end{array}$


Member	Stress	Graphic	$\begin{aligned} & \text { Semi } \\ & \text { Graphic } \end{aligned}$	Moments
$\mathrm{L}_{1} \mathrm{U}_{1}$	$f$	59.85	59.63	59.37
		42.47	42.03	42.05
$\mathrm{L}_{2} \mathrm{U}_{2}$	t	46.83	44.63	44.74
		42.14	40.21	40.51
$\mathrm{I}_{3} \mathrm{U}_{3}$	f	34.96	32.76	33.02
	F	42.17	41.07	41.59
$\mathrm{L}_{4} \mathrm{U}_{4}$	f	24.43	23.76	23.69
	F	44.90	44.66	44.70
$\mathrm{L}_{5} \mathrm{U}_{5}$	t	16.81	15.83	15.92
	-	51.55	48.38	48.83
$\mathrm{L}_{6} \mathrm{U}_{6}$	$t$	10.33	9.89	9.97
	f	57.01	53.34	53.95
$\mathrm{L}_{7} \mathrm{U}_{7}$	$\dagger$	5.88	5.55	5.64
	$\underline{-}$	65.71	61.57	62.65
$\mathrm{I}_{8} \mathrm{U}_{8}$	t	2.91	2.63	2.67
	$f$	72.49	69.09	70.21
$\mathrm{L}_{9} \mathrm{U}_{9}$	$t$	0.96	0.84	0.85
	$\underline{-}$	79.57	76.87	78.40
$\mathrm{I}_{10} \mathrm{U}_{10}$	$f$	0.00	0.00	0.00
	-	89.46	86.27	87.14

## STRESSES IN CANTILEVER ARM

## Method

Member	Stress	Graphi	semi-   Graphic	Moments
$\mathrm{U}_{10} \mathrm{U}_{11}$	t	201.30	201.30	201. 45
$\mathrm{U}_{11} \mathrm{U}_{12}$	$t$	154.08	154.06	153.87
$\mathrm{U}_{12} \mathrm{U}_{13}$	$\dagger$	104.74	104.74	104.94
$\mathrm{U}_{13} \mathrm{U}_{15}$	$t$	54.28	54.27	53.87
$\mathrm{L}_{10} \mathrm{~L}_{11}$	-	244.69	244.67	244.68
$\mathrm{L}_{11} \mathrm{~L}_{12}$	-	198. 55	198.55	198.91
$\mathrm{L}_{12} \mathrm{~L}_{13}$	-	151.52	151.51	152.00
$\mathrm{I}_{13} \mathrm{I}_{14}$	-	103.95	103.95	103.62
$\mathrm{U}_{10} \mathrm{I}_{10}$	-	83.07	82.00	82.11
$\mathrm{U}_{11} \mathrm{~L}_{11}$	-	77.21	75.52	75.85
$\mathrm{U}_{1} \mathrm{2I}_{12}$	-	70.76	70.04	69.61
$\mathrm{U}_{13} \mathrm{~L}_{13}$	-	64.11	63.39	63.40
$\mathrm{U}_{14} \mathrm{~L}_{14}$	-	00.00	000.00	00.00
$\mathrm{U}_{10} \mathrm{~L}_{11}$	$\nleftarrow$	100.83	99.77	99.79
$\mathrm{U}_{11} \mathrm{~L}_{12}$	$t$	95.82	94.10	94.54
$\mathrm{U}_{12} \mathrm{I}_{13}$	t	91.13	89.50	89.54
$\mathrm{U}_{13} \mathrm{I}_{14}$	$t$	85.68	84.25	84.81
$\mathrm{U}_{15} \mathrm{I}_{14}$	$t$	74.25	74.60	74.50

STRESSES IN SUSPENDED SPAN
Method

Member	Stress	Graphic	SemiGraphic	Moments
$\mathrm{I}_{0} \mathrm{U}_{1}$	-	75.90	75.50	75.16
$\mathrm{U}_{1} \mathrm{U}_{2}$	-	77.22	78.10	78.82
$\mathrm{U}_{2} \mathrm{U}_{3}$	-	89.10	90.43	91.22
$\mathrm{U}_{3} \mathrm{U}_{4}$	-	89.10	90.42	90.63
$\mathrm{I}_{0} \mathrm{I}_{1}$	t	48.18	48.21	49.44
$\mathrm{I}_{1} \mathrm{I}_{2}$	$t$	48.18	48.21	49.44
$\mathrm{L}_{2} \mathrm{I}_{3}$	$t$	76.56	76.23	76.15
$\mathrm{L}_{3} \mathrm{~L}_{4}$	$t$	88.44	87.98	88. 38
$\mathrm{U}_{2} \mathrm{~L}_{2}$	$t$	$\begin{array}{r} 9.27 \\ 23.26 \end{array}$	$\begin{array}{r} 9.25 \\ 23.64 \end{array}$	$\begin{array}{r} 9.26 \\ 24.19 \end{array}$
U3L3	t	16.04 14.16	16.99 14.98	$\begin{aligned} & 16.79 \\ & 15.10 \end{aligned}$
$\mathrm{U}_{4} \mathrm{~L}_{4}$	¢	$\begin{array}{r} 23.29 \\ 8.43 \end{array}$	$\begin{array}{r} 24.95 \\ 8.16 \end{array}$	$\begin{array}{r} 24.93 \\ 8.29 \end{array}$
$\mathrm{U}_{1} \mathrm{~L}_{2}$	$t$	43.78 3.62	$\begin{array}{r} 42.92 \\ 3.99 \end{array}$	$\begin{array}{r} 43.05 \\ 3.92 \end{array}$
$\mathrm{U}_{2} \mathrm{~L}_{3}$	$\pm$	$\begin{aligned} & 28.24 \\ & 10.10 \end{aligned}$	$\begin{aligned} & 28.30 \\ & 11.04 \end{aligned}$	$\begin{aligned} & 28.34 \\ & 10.85 \end{aligned}$
$\mathrm{U}_{3} \mathrm{~L}_{4}$	$t$	17.08 19.01	17.10 19.38	17.31 19.27

## BIBLIOGRAPHY

1. Design of Steel Bridges

F。C. King--MCGraw-Hill---1915
2. Structural Theory

Sutherland \& Bowman---John Wiley \& Sons--1930
3. Steel Mill Buildings

Milo S. Ketchum---MaGraw Hill---1921
4. Structural Engineering
J. E. Kirkham---McGraw Hill---1914
5. Theory of Simple Structures

Shedd and Vawter---John Wiley \& Sons---1931
6. Stress in Framed Structures Hool \& Kinney---McGraw Hill---1923
7. Movable and Long Spen Steel Bridges Hool \& Kinney---McGraw Hill---1923
8. Bridge Engineering, Volume I
J. A. I. Waddell

John Wiley \& Sons---1916
9. Bridge Engineering, Volume II
J. A. L. Waddell

John Wiley \& Sons---1916
10. Modern Framed Structures Johnson-Bryan \& Purneaure, Part II John Wiley \& Sons---1917
11. Roofs and Bridges, Part IV Meriman \& Jacoby John Wiley \& Sons----1905
12. The Design of Highway Briages Milo S. Ketchum

MoGraw Hill---1920
13. Highway Briages J. E. Kirkham

McGrav Hill---1932
14. Statically Indeterminate Stresses Parcel \& Maney

John Wiley \& Sons---1926
Page
Anchor
Graphic Method ..... 17
Top Chords ..... 19
Lower Chords ..... 20
Diagonals ..... 23
Posts ..... 23
Semi Graphic Method ..... 29
Top Chords ..... 30
Lower Chords ..... 30
Posts ..... 30
Diagonals ..... 30
Cantilever Arm
Graphic Method ..... 33
Top Chords ..... 33
Lower Chords ..... 34
Diagonals ..... 35
Posts ..... 36
Semi Graphic Method ..... 36
Calculations by Moments
Anchor Arm
Top Chord Tension ..... 42
Bottom Chord Compression ..... 44
Top Chord Compression ..... 45
Bottom Chord Tension ..... 47
Diagonals ..... 49
Posts ..... 55
Cantilever Arm
Top Chords ..... 61
Bottom Chords ..... 62
Diegonals ..... 64
Posts ..... 65
Suspended Span
Top Ehords ..... 66
Bottom Chords ..... 67
Diagonals ..... 69
Posts ..... 70
Caloulations for Drawings
Drawing No. 1 Graphic Method
Top and Bottom Chords in Anchor Arm----- ..... 72
Drawings No 2 \& 2A Graphic Methoa
Diagonals and Posts in Anchor Arm- ..... 76
Drawing No 3 Semi Graphic Method
Anchor Arm
Top Chords ..... 81
Bottom Chords ..... 82
Diagonals ..... $-84$
Posts ..... $-86$
Conclusions
Graphical Method ..... 38
Semi-Graphical ..... 39
Data on Truss ..... I
Influence Lines
Simple beam- ..... 5
Cantilever beam ..... 6
Shear and Bending Moment ..... 7
Bridge Girder ..... 9
Ordinates ..... 12
Calculations of stresses ..... 13
Use on Cantilever bridges ..... 14
Use in practice ..... 16
Loading ..... 2
Preface ..... I
Summation and Comparison of Stresses
Anchor Arm ..... $-88$
Cantilever Arm ..... 92
Suspended Span ..... 93
Bibliography ..... $-94$

