Library and
Learning Resources

A study of swirling air flow in a converging nozzle

Charles William Lineberry

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Mechanical Engineering Commons

Department:

Recommended Citation

Lineberry, Charles William, "A study of swirling air flow in a converging nozzle" (1968). Masters Theses. 6847.
https://scholarsmine.mst.edu/masters_theses/6847

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A STUDY OF SWIRLING AIR FLOW IN A CONVERGING NOZZLE

A
THESIS
submitted to the faculty of THE UNIVERSITY OF MISSOURI AT ROLTA In partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN MECUNNGAS ENGINEERING Rolls, missouri

1958
Approved by $\quad 132050$

ABSTRACT

A study was conducted to determine the behavior of swirling air ilow in a conveiging nozzle. special instrumentation was constructed to obtain radial traverses of the flow at four axial positions. The data collected consisted of velocity, static pressure, and stagnation temperature.

The flow pattern demonstrated the Ranoue-rilsh effect and reversed axigl flow in the core region. As the flow entered the nozzle, it had the chargctoristics of a free vortex. At the exit plone the charscteristics were those of a forced vortex. The convereing nozzle caused an increase in the magnitude of the axial velocity component.

The author wishes to thank the many persons that offered support and advice during the completion of this project.

Special eraditude is expressed to Dr. I.G. Rhea. Had it not been for the time and efrort spent by Dr. Rhea this accomplishment would not have been possible.

Also graditude is expressed to R.D. Smith for help received during the assembly and operation of the apparatus, and Professor A.V. Kilpatrick for offering his mochiring skills to produce a portion of the apparatus.

TABLE OF CONTCITS

page

LIST OF IILUSTRATIONS v
LIST OF TAELES. vi
I. InTiouUCTION. 1
II. REVIEN OF LITGLATURE 3
III. DESCHIPTION OF APPABATUS. 7
A. The Air Supply 7
B. The Vortex Generator and Nozzle 9
C. The Sensing Tubes and Support Hechanism. 13
D. The Fositioning Apparatus 19
IV. EXFEIIRENTAL PROCEDURE 23
V. UISCUSAION OF RESULTS. 27
VI. ERHOR aNalysis 44
Vif. conclusions and recommandations. 45
APPELNDIK. 50
Experimental Data. 52
Calculated Data. 56
Banple Calculations 60
BIBLIOGMAPHY. 75
VITA. 77

LIST OB ILLUSTRATIONS

Figure
page

1. Photograph of Test Installation 8
2. Scrumetic Layout of Air Supply 10
3. Enneral Structure of Vortex Generator and ivozzle 11
4. Details of Sensing Tubes. 14
5. Support liechenism 17
6. Photorraph of Support Nechanism and Sensing lubes 18
7. Positioning Apparatus 21
8. Element of Fluid 27
9. Typical Velocity iistributions 28
10. Total Velocity vs. Radius Ratio. 29
11. Taneential Velocity vs. Radius Ratio. 31
12. Axial velocity vs. Radius Ratio 35
13. Static/Ambient Pressure Ratio vs. Radius Ratio. 37
14. Fhotogiaph of Streemilines at the Windows 39
15. Radial Velocity vs. Radius Ratio. 40
16. Stagnation Temperature vs. Radius Ratio. 43
17. Angular positions 49
18. Nozzle Dimensions 51
19. Geometry of Support Mechanism 62
20. Beam Geometry for Tho Axial Stations 65
21. Beam Geometry for a Single Station 65
22. Geometry of Laser Support 67
Table pase
I. Experinental Data 52
II. Calculeted Data... 56
IIJ. Laser Positions 68

I. IRTHOUUCTION

This thesis presents the results of en experimental study of swirling air flow through a converging nozzle. A similar study was made by Thompson (13) for values of radius ratio between zero and 0.6. The object of this work pas to supplement the data collected by Thompson, and to provide velocity, static pressure, and stagnation temperature data corresponding to values of radius ratio between zero end 1.0 .

A direct analytical approach to this problem involves solvine the three dimensional, viscous, compressible flow equations. A solution of these eouations requires simplifing assumptions which can only be suostantiated from a thorough understanding of the flow pattern itself. To obtain this understanding it is only logical to resort to experiment.

Vontex flow of a gas produces effects not experienced in other flow patterns. The circular motion generates centrifugal forces in the fluid, and causes large velocity gradients which cause frictional effects to becone an important factor. A particular characteristic of vortex flow is the Ranque-Hilsh effect. This effect is the separation of the gas strean into a core of low stagnation temperature and an annular region of high stagnation temperature. It is generally agreed that the

Eanauc-itilsh effect is caused by internal friction in the fluid, but complete agrecment as to the mechanism of the temperature separation does not exist. Another characteristic is reversed axial flow in the core region. This is due to the low static pressure in the core.

SWirline flow in a nozzle has possible applications in the field of rocket propulsion. By utilizing the Ranque-Hilsh effect the stagnation temperature of the propellent could be raised. Another possible application is in thrust regulation. Inducing a component of swirl In the mass possing throush a nozzle would decrease the axi=l velocity component, thus reducing the thrust. An cuen mone sophisticated application, is to employ the centrifveni forces developed by the circular rotion to remove the neavy uranium ions from the propellant of a nuclear rocket.

To date, the studies of vortex air flow have been confired to tubes. The results of these investigations are of some use in predictine the behavior of this type of flow in a nozzle, but would not be directly apolicable in the design of such a nozzle.

II. REVIEN OF LITERATURE

The temperature separation in a easeous vortex was first roported in 1931. G. Banque, a fronch metallurgist, noticed the effect in connection with cyclone separators. He constructed and patented a device to duplicate the effect, hoping it could be employed as a refrigerator. Further investigation, however, indicated that the vortex motion was too inefficient as a refrigeration process, and this caused a loss of enthusiam. Interest was not renered until 1946, when R. Hilsh published a paper relating his experience with the device.

Fillsh (6) constructed two vortex tubes of aifferent radius and determined some of the variables affecting the performance. He found that inlet gas conditions, external pressure, and flow rate, all affect the degree of stagnation temperature separetion within the tube. After examining the thermodynamic efficiency of the device he concluded that it was too low for practical use.

In a more recent study, J.E. Lay (8) conducted an experimental and analytical investication to provide a better understanding of vortex flow in general. Pressure, velocity, and temperature traverses were taken at different axial positions along the tube. He
compared this to a simple analyticel model and found that as the flow progressed along the axis of the tube the influence of friction was to change the flow from a free to a forced vortex.

Sevino and Ragsdele (11) studied a vortex generated within a right circular cyinder by means of guide vanes. Their experimental measurements indicated that the Ranoue-Hilsh effect can be obtained without passing the flow through a lone axial tube.

Keyes (7) measured properties in a vortex to determine the nature of the flow and the affect of important variables on the velocity profiles. Fe concluded that the most important paraneters were the mass flow rate and the diameter of the tube.

Reynolds (10) presents data collected on a vortex tube with a blockage at the exit. The blockege eliminated the reversed flow common to all other experimental work. He found that the temperature separation occurs without reversed axial flow in the core.

Thompson (13) measured velocity and temperature distributions in the same flow system used in this investigation. He presents values of data for radius ratios from zero to 0.6 at three axial positions.
with the exception of Thompson's work (13), all experimental data have been collected by inserting relatively large probes into the flow. Since this creates disturbances that cannot be completely eliminated, all data must be somewhat suspect. All investigators have experienced the Ranoue-Hilsh effect. Based on these previously published results, it may be concluded that the temperature scparation is an inherent feature of the flow pattern.

The analytical work done in the vortex flow field is limited in aoplication to the assumptions necessery to obtain solutions.

Donaldson and Sullivan (5) present solutions to the Navier-Stokes equations for different classes of vortex fiow. Their solutions indicate that regions of reversed axial flow are possible.

Diessler and Perlmutter (4) analyzed the total temperature separation in vortex flow. They concluded that the stacnation temperature separation is due to the shear work done on the fluid as it traverses its spiral path.

Nager (9) arrived at solutions for swirling flow
through a nozzle by assuming the flow frictionless. He indicates thst the swirl would induce a void region along the axis of the nozzle which would restrict the area of the nozzle throat and offer some means of thrust regulation.

All previously discussed work concerned vortex flow of a compressible fluid. In 1956 Binnie and Hooking (3) conducted experiments with vortex water flow throush a nozzle. Their findings did not produce any new conclusions pertinent to this report.

III. DESCRILTION Of apparatus

The measurement of velocity and stagnation temperature in a gas stream requires the insertion of instrumentation into the stream. This obstruction causes distrubances which, if not minimized, can be detrimental to the results of such measurements. For this reason, the main consideration in the design of the following apparatus was to minimize this induced error.

The apparatus is classified and discussed in four nain eroups: A) the air supply, B) the vortex generator and nozzle, C) the sensing tubes and support rechanism, and D) the positioning apparatus. Figure 1 is a photograph of the test installation.
A) The Air Supply

To obtain appreciable velocities inside the nozzle, a large air supply was required. It was provided by two compressors operating in perallel. The compressors were an Ingersoll-Rand model $50-\mathrm{B}$ and a Gardener-Denver model RS125A.

The discharge from the compressors was fed into a Worthington receiving tank, and from there, passed into the primary supply line of the vortex generator. An orfice type flow meter was placed in this line to measure the flow rate. The upstream pressure at the

FIGURE 1. Photograph of Test Installation whathenamantund
orifice was measured by a U.S. pressure gage and the pressure difference across the orifice was indicated by a Meriam manometer model A-844 filled with inercury. The static temperature of the air in the primary stream was measured by an iron-constantan thermocouple placed in the primary supply line. A schematic layout of the air supply is shown in Figure 2.

B) The Vortex Generator and Nozzle

Figure 3 shows the general structure and internal characteristics of the vortex generator and nozzle. Two concentric sections of pipe formed the chambers of the vortex generator. The sizes were 20-in. O.D. and 14-in. O.D. Air entered the annular chamber formed by the pipes from the secondary supply lines. It was injected with a direction tangent to the inside surface of this chamber. Once in this region the air had an initial circular motion. From the outer chamber the air was forced through sixteen equally spaced guide vanes that were cut through the surface of the smaller pipe. In passing through the guide vanes a strong swirl was induced and a vortex resulted in the central region of the generator. From this point the swirling flow progressed through the converging nozzle which was mounted on the front of the vortex generator.

FIGURE 2. Schematic Layout of Air Supply

FIGURE 3. Generol Structure of Vortex Generotor \& Nozzle

The nozzle was conical in shape with inlet and exit diameters of 11 15/16-in. and 3 15/16-in. respectively. The total length from inlet to exit was $201 / 16-1 n$. Located at three positions along the axis of the nozzle were measurement stations, which were simply short threaded sections of $21 / 2-i n .0 . D$. steel pipe. These stations were fastened perpendicular to the axis of the nozzle, and served as support for the instrumentation. The spacing of the stations and all general sizes of the nozzle are given in the appendix, Figure 18. Two ironconstantan thernocouples were atteched to the outside surface of the nozzle to indicate the heat loss to the atinosphere.

This portion of the apparatus was available from a previous investigation. It was constructed by S.A. Thompson for use in his research. For further information on the vortex generator and nozzle, refer to reference 13.

One rodification made in the nozzle was the addition of three plexiglass windows. These were located at the three measurement stations to allow for visual positioning of the sensing tubes. Also, a fourth station was constructed at the exit plane to allow for the
collection of data at this position.
C) The Sensing Tubes and Support Hechanism

A pitot tube and a stagnation temperature probe constituted the sensing probes. The pitot tube served to neasure total and static pressure, and the stagnation probe was equipped with a copper-constanten thermocouple to indicate stagnation temperature. Details of both probes are shown in Figure 4.

The pitot tube was constructed of hypodermic needis. A small needle was placed inside a larger ore to form the desired pressure chambers. Sizes of the pressure taps are shown in the figure. All lengths and sizes were within ASNE requirements.

One unique characteristic of the pitot tube was the head to which it was fastened. The head was constructed of a small brass cylinder, and all parts threaded together. Liquid steel was used to seal the threads upon final assembly. Threaded joints were employed because of problems that developed in hot soldering the required seams. Besides forming the pressure chambers, the head contained hose connections for transmitifing the pressures to a manometer. This manometer was a Meriam model l0BAl0, filled with water.

FIGURE 4. Details of Sensing Tubes

After the pitot tube was assembled it was bent through a right angle. This was done in order that readings close to the wall could be obtained. It also eliminated disturbances near the reasuring tip by placing the tip well below the support system.

The stagnation probe was fabricated from a section of small brass tubing. Two holes were drilled perpendiculer to the axis of the tube to allow the stagnated air to leak off slowly, after coming nearly to rest around the thermocouple junction. Number 25 gauge copper-constantan thermocouple wire formed the measuring junction. A Honeyvell model 2745 potentiometer, indicated the roltage at the junction. The length diraensions and shape of the stagnation probe were the same as those of the pitot tube.

Since the function of the pitot tube was to measure both the ragnitude and direction of the velocity, it needed complete flexibility of position and direction. This was accomplished by developing a semirigid support mechanism.

The basis of support was a 2.5-in. diameter sphere. A system of brackets was constructed to mount the sphere at any desired measurement station with enough freedom
to be partially rotated. A sectioned view of the mounting is shown in Figure 5, and a photograph of the actual system is shown in Figure 6. Two 1/4-in. O.D. aluminum tubes were mounted through the center of the sphere and passed down into the nozzle. These could be locked at any desired length by means of a set screw. In addition to serving as the basic support for the sensing probes, the aluminum tubes provided a means of transmitting the pressure lines and thermocouple wires, necessary for the operation of the sensing probes, out of the nozzle.

A small bracket that contained a mechanism for rotating the sensing tubes vertically was fastened to the botton of the aluminum tubes. This mechanism contained a short section of 3/32-in. diameter shaft. The shaft had a small spur gear on one end, and threads on the other. The threaded end screwed into the head of the sensing tube to support it. A lock nut on the shaft prevented the sensing tube from working loose. By driving the spur gear with a matching worm gear the shaft could be rotated. This in turn rotated the sensing tube in a plane parallel to the support tubes. The worm gear was mounted on a 1/16-in. diameter steel rod that possed up through the sphere to allow the system to be operated from outside the nozzle. A pointer

FIGURE 6. Photograph of Support Mechanism and Sensing Tubes
fastened to the sheft, and a scale calibrated in degrees were mounted at the top of the support tubes. This system allowed the inclination of the sensing tube with respect to the support tubes to be read directly.

The sphere was mounted in a cup of equal radius thet fit inside the measurement stetion. A bracket with a horizontal scale callbrated in degrees threaded on the outside of the station. The sphere itself was sroduated horizontally in one dearec intervals. It also had one vertical line inscribed on its surface. The graduations allowed the angular positions of the support tubes to be read directly. These angular positions were needod to determine the direction of the flow at the tip of tre pitot tube.
D) The Positioning Apparatus

To acquire related data at each axial stetion, it wes necessary to make a radial traverse of the flow. This recuired readings at different radius ratics along a line of constant total radius. The flexibility of the instrumentation enabled any point to be obtained, but pesented problems in maintaining the tip of the pitot tube at a Gesired point, while rotating it to sense the raximum flow direction. To overcome tinis difficulty, a visual positionine systen was aployed in which the
tip of the pitot tube could be observed uhlle its direction was beins adjusted.

As mentioned previously, a plexiglass window was installed in the nozzle surface at each of the measurement stations. Circumferential lines $1 / 16-1 n$. wide nexe painted on the inside surface of the nozzle, at each station, to indicate a plane perpendicular to the axis of the nozzle. This line allowed the operator to visually maintain the tip of the pitot tube in a plane of constant axisl position. To locate the desired radial position, a Spectra-fhysics laser model 130-C vas mounted outside the exit of the nozzle. Its beam nos directed into the nozzle, and its mountine enabled the beam to be shown through any desired radius ratio by tipping the laser through a predetermined angle. The system is shown in Fisure 7. The laser support was constructed of plyrood and consisted of a platform that oivoted about a line perpendicular to the beam. The system rotated by raising or lowering the rear of the suppoit platform.

By visuelly maintaining the tip of the pitot tube In the beam and between the lines designating the desired axiel plane, the operator could keep the pitot tube's tip at a desired point and sense for the direction

FIGURE 7. Positioning Apparatus
of the flow. The posjifoning systed allowed the dita points to be loceted whthin $\pm 1 / 16$ in.

IV EXFERIEEAL FBCODJURE

The General Electric notor-generator set was started to provide power for the prine mover of the Ingersoll-Fand compressor and the cooling water purp. After the water pump was primed and started, all air valves were opened and the compressors were started. Valve no. 3, Figure ?, was then adjusted until the maximum flow rate was indicated at the orifice. The systen was then allowed to run until it reached steady flo: conditions.

Steady-state was indicated by the thermocouples that were attached to the outside surface of the nozzle. Assuming the convection coefficent of the nozzle surface did not change, steady-state was taken as the condition when the surface temperature reached a constant value.

The pitot tube was threaded and locked on the support mechanism, and all scales were adjusted to give their zero radings. Beginning at station one, the instrumentation was mounted and the radial traverses were begun. Readines were started at the wall, so that the initial position of the lascr beam was parallel to the Inside surface of the nozzle. With the tip of the pitot tube at the desired point, the system was rotated and tipped until a maximurn velocity was indicated. The
sphere was then locked in position and the data were recorded. The velues recorded were, (1) the magnitude of the velocity, (2) the horizontal rotation of the support tubes, (3) the vertical inclination of the support tubes, and (4) the inclination of the pitot tube with respect to the support tubes. After the velocity and position were recorded, the total pressure side of the manometer was opened to the atmosphere. This procedure gave the value of local static pressure by comparing it with atmospheric. The pressure difference was then recorded and the system was set for the next data point.

Successive data points were obtained by changing the angle of the laser and repeating the previous procedure. The readings were started at the wall and progressed to the center of the nozzle. Velocity traverses were taken at three internal stations and at the exit plane of the nozzle. Only five data points could be ootained at the exit plane, because the lower end or the support tube caught on the lip of the nozzle exit and made the center points inaccessible.

The velocitics were initally obtained, and then checked in a second run. It should be noted here that durine the second run of the third and fourth stations,
and durine the collection of the stagnation teaperatures, the orfice ranometer was out of service. The upstrean pressure inas the sanc as in the first run, but the diffcrental across the orifice was not avallable. Thercfore, it mas necessary to assume that the flow rate in the second run was the same as in the first. This assumption seens valid since the internal velocities measured in the two different runs corresponded.

Once all desired velocitics were measured, the pitot tube was replaced by the stacnation tomperature probe. By returning to the rccorded positions the corresponding stacnation temperatures were obtained. When reading the values of starnation temperature, the laser was disconnected in order that any neating by the light would be elimineted.

After all data were collocted, some flow visualization was performed. Due to the low pressure in the receivins tank, the Gardener-Denver conpressor was losing oil through its separator. The oil was carried into the nozzle and presented a nuisance during the collection of data, but it did provide flow visualization at the vindows. The circular flow causod the heavy ofl to be imnediately thrown onto the insile surface of the nozzle. It formed the streanlines at the wall which
showed up quite well on the plexisless mindows. Finely ground chalk n injected into the vortex genomator to allow these streamines to be photomraphed.

v. orecussion of Resulis

The experimental data are prosented in Figures 10-16. The variables are plotted versus the dimensionless redius for ease of comprison.

Ficure 10, presents the total velocity distriButions at the four axial positions. A comparison of the total volocity distributions to their respective tancential volocity distributions, Figure 11, shows that the two are sinilar in both shape and macnitude. This comarison indicates that the teneential velocity is the competing component, and in this case was the Reterning factor in the behavior of the flow.

The seneral trend of the tangential velocity was to incrase from the wall to a maximu value, and deccease from there to the core. To explain this trend, consider a simple elenent of frictionless fluid moving ath a circular motion, Figure 8.

FIGURE 8. Element of Fluid

The Encular momentum ay be written as $\Sigma T=\left(A_{i}\right) \frac{\left(r V_{0}\right)}{d t}$.
Bince friction is noglected $\mathrm{K}=0$.
Thererore, $0=(d m) \frac{d\left(r T_{\theta}\right)}{d t}$ or $d\left(r V_{\theta}\right)=0$
Integrating this expression yields, $r V_{\theta}=$ corsetant or $V_{\theta}=\frac{C}{r}$.

This expression indicates that the tangential Volocity of a frictionless fluid is a hyperbolic function of radius. A velocity distribution as srown in Figure oa, would result from this type of motion. It would approach zero at large raitus, and rould be infinate at the ceiter. The experimental distiputions incirate cind increase of this type from the rall, but deviate when the point of maxirum velocity is reached.

Next consider a fluid moving in a circular path With friction dominating the flow. The friction causes the fluid to move with a rotation similar to a rigid body i.e. (with a constant angular velocity). This yicids a toncential velocity with $V_{\theta}=\omega r$.

a. frictionless

b. frictional

c. combination

TOTAL VELOCITY

FIGURE 10. Total Velocity vs. Radius Ratio

FIGURE :O. (cont'd)

TANGENTIAL VELOCITY

FIGURE 11. Tangential Velocity vs. Radius Ratio

Station No. 3

FIGURE 11. (cont'd)

A distribution of this type is shown in Figure 9 b . Comparing the frictional motion to the experimental tangential velocity distributions, it can be seen that the experimental results indicate a motion sinilar to this in the center region.

This analysis would indicate that the actual tengential velocity distributions are a combination of the two preceding types, Figure $9 c$, or that friction is the dominating factor in the center of the vortex and is nesligible in the outer resion.

The axial chage in the tancential velocity indicates that as the flow progresses through the nozzle, friction becomes more dominant. that is, upon entry a small resion in the center is moving with theel type flow, but as the axial position increases, a larger portion of the fluld is moving in this manner. At the exit plane the tangential velocity is practically lincar with radius and the maximun velocity occurs near the wall.

A tangential distribution of this nature also complies with angular monentum requirements. As the fluid enters the vortex generator, it is siven a specific angular momentum. The torque on the fluid due to
friction will tend to dissipate this momentum. Upon entry, the frictional torque has not affected the flow considerably, so the mass near the center of the vortex must move with a greater velocity to conserve its angular nomentum. As the fluid moves through the vortex, the viscous forces tend to distribute the momentum of the high velocity resion to the siower moving outer region. This will cause an increase in the velocity of the fluid in the outer region, and will cause the tangential velocity distributions to change accordingly.

Examination of the axial velocity distributions, Figure 12, reveals a region or reversed axial flow in the core of the vortex. This is induced by the low static pressures in the conter, Figure 13. The low static pressures correspond to the high velocities. Near the entrance of the nozzle, the maximun velocity occurred near the center. As the fluld moves toward the exit, the velocities increase due to the area change and the static pressures decrease accordingly.

The axial distributions at the third and fourth stations indicate an outward flow at the very center of the nozzle. Since the data points at the center of the exit plane were not available, this characteristic can be substantiated by considering the total mass flowing

AXIAL VELOCITY

 $\begin{array}{lllllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$ Radius Ratio ($\frac{r}{R}$)

FIGURE 12. Axial Velocity vs. Radius Ratio

FIGURE 12. (cont'd)

STATIC - AMBIENT PRESSURE

FIGURE 13. Static-Ambient Pressure Ratio vs. Rodius Ratio
through the systern. The mess leaving the system throuch the anmular recion near the wall at the exit plane, can be calculated by integrating the axial velocity distribution over the region indicating outward flow. This procedure is show in the appendix. The value of mass flow rate obtalned was $0.247 \mathrm{lb}_{\mathrm{n}} / \mathrm{sec}$. The mass flow rate into the system from the air suply was $0.28 ? 1 \mathrm{~b}_{\mathrm{in}} / \mathrm{sec}$. Since the system was operating at steady state conditions, the excess mass must be leaving the systern through the center of the exit plane. This means thet the axial velocity at the center of the exit plane has an outward direction.

Figure 14, is a photograph of the streamlines at the windows of the nozzle. As can be seen, the flow angle increases with increasing axial position. Previous flow visualization in a plexiglass tube of constant radius (8), did not reveal any appreciable chances in the flow angle. These results indicate thet there was an increase in the axial velocity component due to the convergence of the nozzle.

Radial velocity tended to increase from the center of the vortex to a naximum value, and then docrease Fron there to the wall, Figure 15. Except at the wall the radial velocities are anay from the center line.

FIGURE 14. Photograph of Streamlines at the Windows

RADIAL VELOCITY

FIGURE 15. (cont'd)
the nozzle. The values at the wall are inward in that the flow is moving in a path parallel to the wall of the converging nozzlc.

As the flow progressed through the nozzle, the main effect on radial velocity was to decrease its magnitude. This misht be attributed to decreasing centrifugal forces due to decreasing total radius.

The stagnation terperature distributions, shom in Figure 16, indicate that the Ranque-Hilsh effect existed. At station one, the stagnation temperature Was nearly constant. The remainins stations indicate a separation of approximately eight degrees Rankin The orerall loss in stagnation temperature can be attributed to heat transfer from the nozzle surface to the atmosphere.

STAGNATION TEMPERATURE

FIGURE 16. Stagnation Temperature vs. Radius Ratio
VI. baña amaysis

Error in the experimental data can be attributed to tho main factors. First of all, some flow disturbance due to the instrumentation must be acknonledred. The large nozzle and salil probe served to minimize this disturbance, but since the probe and support tubes were in the flow, the error could not be conpletely eliminated. Secondly the oil from the Gariener-Denver compressor would tend to alter the properties of the fluid passing throush the nozzle.

An attenot was rade to calibrate the sensing probes. The probes were checked inside a siall subsonic wind tunnel. The maximum velocity in the tunnel was fifty feet per second. At the low air specds the probes demonstrated recovery factors of unity. Since this mind tunnel wes the only means of calibration available, the recovery factors of the sensing probes were assumed equal to unity at all air speeds.

```
VII. CONCUUDIONS AND RECOMNGDNTIONS
```

The conclusions fathered from the experimental study may be stated as follows:
1.) The tangential or swirl component of velocity *as the largest component.
2.) The tangential velocity distribution changed from that of a frictionless or potential vortex at the entrance to that of a rotational vortex at the exit.
3.) A region of low static pressure and reversed axial flow existed in the core of the vortex.
4.) The discharge of mass was manly from an annular region near the wall of the nozzle, with possibly some discharge in the very center of the exit plane.
5.) The radial velocity component had a magnitude which was too large to neglect.
6.) A converging nozzle tended to increase the magnitude of the axial velocity component with respect to the total velocity.
7.) The Banque-Hilsh effect was verifed.

The following is a list of recommendations for Further work of this nature.
1.) :ore axial stations should be constructed to allow for the collection of data at more
axial positions.
2.) When a larger air supply is availavie, a study of variable flow rate should be made.
3.) The lareer air supply will allow choking of the flow and a supersonic flow enalysis.
4.) A divereort section should be adaed to the convereting nozzle.
5.) A thorough enalytioal study of the flow patiern would be or value.

NOMENCLATURE

Variables

$$
\begin{aligned}
& P_{a}=\text { atmospheric pressure psia } \\
& P_{0}=\text { local stagnation pressure psia } \\
& P_{S}=\text { local static pressure psia } \\
& P_{u p}=\text { upstream pressure at orifice psia } \\
& \Delta P=\text { differential across orifice psia } \\
& \rho=1 \text { opal density of air } 1 \mathrm{~b} / \mathrm{ft}^{3} \\
& \bar{T}_{a}=\text { atmospheric temperature } o_{F} \\
& T_{a}=a t m o s p h e r i c \text { temperature } o_{R} \\
& T_{0}=\text { local stagnation temperature } O_{i} \\
& T_{S}=\text { local static temperature } o_{R} \\
& \overline{\mathrm{~V}}=\text { total velocity ft/sec } \\
& V_{a}=\text { axial velocity component ft/sec } \\
& V_{r}=\text { radial velocity component } f t / s e c \\
& V_{0}=\text { tangential velocity component ft/seo } \\
& Z=a x i a l \text { distance from nozzle entrance in. } \\
& \Delta H_{a}=\text { atmospheric pressure in. of } H G \\
& \Delta H=\text { manometer reading } P_{o}-P_{S} \text { in. of } H_{2} O \\
& \Delta h=\text { manometer reading } P_{a}-P_{S} \text { in. of } H_{2} O \\
& \mathrm{~B}=\text { total radius in. } \\
& r=\text { radius in. } \\
& \operatorname{Re}=\frac{V D P}{\mu}=\text { Reynolds Number }
\end{aligned}
$$

Constants

$$
\begin{aligned}
& A_{0}=\text { office area }=\left(D_{0}^{2} /(4)(144)\right) \mathrm{ft}^{2} \\
& c_{p}=\text { constant pressure specific cert }=.24 \text { ETa/ }{ }^{\circ} \\
& D_{0}=\text { diameter of office }=1.50 \text { in. } \\
& D_{p}=\text { inside diameter of primary line }=2.068 \text { iris. } \\
& \text { a }=100 \text { acceleration of brevity }=32.2 \mathrm{ft} / \mathrm{sec}^{2} \\
& x_{c}=\text { srevitional constant }=32.2 \quad \mathrm{it} / \mathrm{sec}^{2} \\
& \mathrm{R}=\text { gas constant for } \mathrm{a} 1 \mathrm{r}=53.31 \mathrm{~b}_{\mathrm{f}}-\mathrm{ft} / 1 \mathrm{~b}_{\mathrm{m}}{ }^{\circ} \mathrm{R} \\
& J=\text { proportionality factor }=778 \text { ft-Ib } / \text { /BTU } \\
& k=\text { ratio of specific kent for sir }=1.4 \\
& \rho_{w}=\text { standard density of water }=62.4 I b_{\mathrm{n}} / \mathrm{ft}^{3} \\
& \mu=\text { viscosity of sir }=1.35 \times 10^{-5} \mathrm{~J} \mathrm{~b}_{\mathrm{b}} / \mathrm{sec}-\mathrm{ft}
\end{aligned}
$$

Angular positions of the support tubes

```
Refer to Figure 17.
```

 \(\lambda\) = horizontal rotation of positioning
 sphere - degrees
 $\beta=$ vertical inclination of the support
tubes - degrees
$\sigma=$ rotation of sensing tube with respect to
the support tubes - degrees

FIGURE 17. Angular Positions

APEENDIX

FIGURE 18. Nozzle Dimensions

TABLE I
EXPERTMEMTAL DATA
Station No. I
$Z=14.875 \mathrm{in}$.

Ambient Pressuro $=29.12$ in. FG
Ambient Temperature $=74^{\circ} \mathrm{F}$
Receiving Tank Prossuro $=3.5 \mathrm{psig}$
Inlet Air Temperature $=3.391 \mathrm{mv}$

Mozzle Surface Temporatures
T center $=3.155 \mathrm{mv}$
T oxit $=3.046 \mathrm{mv}$
Orfice Data $\Delta P=3.01$ in. HG

$$
P_{\text {up }}=5.0 \mathrm{psiE}
$$

$\ell($ in. $)$	r / R	Sensirg tube positions			Volocity (in. of $\mathrm{H}_{2} \mathrm{O}$)	$\begin{aligned} & \left(P_{\varepsilon}-P_{G}\right) \\ & \left(i n \cdot o f H_{2} O\right) \end{aligned}$	$\left.\begin{array}{c} \mathrm{m}, \\ (\text { niv } \end{array}\right)$
		λ	B	σ			
5.35	1.0	71°	7.0°	-2.50	1. 50	-0.50	2.765
5.05	0.8	63°	7.00	25.00	2.25	-3.55	2.772
4.72	0.8	$74{ }^{\circ}$	9.50	21.00	2.53	-8.25	2.775
4.40	0.7	86°	8.00	$18.0{ }^{\circ}$	2.85	-7.62	2.780
4.06	0.6	105°	10.00	$18.0{ }^{\circ}$	3.40	-5.90	2.781
3.75	0.5	1110	$12.0{ }^{\circ}$	21.0°	4.31	-5.35	2.772
3.38	0.4	1040	$12.0{ }^{\circ}$	$16.0{ }^{\circ}$	4.78	-4.25	2.1773
3.67	0.3	96°	10.00	23.00	5.05	1.45	2.775
2.74	0.2	56°	$10.0{ }^{\circ}$	13.00	4.81	E. 35	2.762
2.43	0.1	92°	$14.0{ }^{\circ}$	$15.0{ }^{\circ}$	2.62	5.86	2.724

TABTE I (continued)

Expermegral Lapa

Station No. 2

$z=9.9375 \mathrm{in}$.

Ambient Pressure $=29.12$ in. HG
Ambient Temporature $=74^{\circ} \mathrm{F}$
Receiving Frak Pressure $=3.5$ psig
Inlat Air Tamperature $=3.391$

Nozzle Suriace Temperatures

$$
\begin{aligned}
\mathrm{T} \text { conter } & =3.155 \mathrm{mv} \\
\mathrm{~T} \text { oxit } & =3.046 \mathrm{mv}
\end{aligned}
$$

Orfice Data $\triangle P=3.01$ in. EG

$$
P_{\text {up }}=5.0 \text { psiE }
$$

ℓ (in.)	r / R	Sensing tirbe positions			Velocity (in. of $\mathrm{H}_{2} \mathrm{O}$)	$\begin{aligned} & \left(\bar{E}_{2}-P_{S}\right) \\ & \left(i_{0} \text { of } H_{2} O\right) \end{aligned}$	$\underset{(\mathrm{mv})}{\mathrm{T}_{\mathrm{O}}}$
		λ	β	∇			
5.35	1.0	730	5.0°	-3.0°	1.96	-5.17	2.904
5.05	0.0	$74{ }^{\circ}$	7.00	$14.0{ }^{\circ}$	2.35	-7.75	2.862
4.71	0.8	74°	$\bigcirc .00$	$17.0{ }^{\circ}$	3.00	-7.32	2.775
4.40	0.7	84°	10.0°	$22.0{ }^{\circ}$	3.40	-6.52	2.772
4.06	0.6	98°	$10.0{ }^{\circ}$	20.0°	3.85	-4.87	2.756
3.75	0.5	210°	11.00	$28.0{ }^{\circ}$	4.40	-2.08	2.762
3.32	0.4	102°	11.0°	28.0°	4.85	-2.05	2.765
3.07	0.3	104°	13.0°	26.0°	4.90	0.0	2.760
2.74	0.2	930	11.0°	27.00	4.20	2.60	2.730
2.43	0.1	91°	11.0°	24.0°	3.10	5.56	2.719

TABLE I (contimed)

EXPQREETMAT, DATA

Station Nio. 3
$Z=4.9375$

Ambient Pressure $=27.70$ in. EG
Ambient Temperature $=71^{\circ} \mathrm{F}$
Receiving Tank Pressure $=3.0$ psig
Inlet Air Temperature $=3.27 \mathrm{Imv}$

Nozzle Surface Tomperatures

$$
T \text { center }=3.041 \mathrm{mv}
$$

T exit $=2.912 \mathrm{mv}$

$$
P_{u p}=5.17 \mathrm{psig}
$$

$\ell(i n$.	r / R	Sensing tibe positions			Velocity (in. of $\mathrm{Fi}_{2} \mathrm{C}$)	$\begin{aligned} & \left(P_{2}-P_{S}\right) \\ & \left(\ln \text { of } I_{2} O\right) \end{aligned}$	$\begin{gathered} \mathrm{T}_{0} \\ (\text { rav } \end{gathered}$
		λ	β	σ			
5.35	1.0	56°	21.00	7.00	3.42	-6.35	2.503
5.05	0.9	750	$10.0{ }^{\circ}$	$11.0{ }^{\circ}$	4.75	-6. 30	$2.50 n$
4.71	0.8	91°	$13.0{ }^{\circ}$	27.00	5.50	-4.75	2.495
4.40	0.7	930	14.0°	20.50	5.82	-2.65	2.491
4.06	0.6	91°	15.0°	21.50	6.05	-1.35	2.430
3.75	0.5	93°	$15.5{ }^{\circ}$	$18.0{ }^{\circ}$	6.20	1.05	2.464
3.38	0.1	92°	$13.0{ }^{\circ}$	$17.0{ }^{\circ}$	5.75	2.63	2.448
3.07	0.3	88°	14.00	$13.0{ }^{\circ}$	4.47	4.15	2.405
2.74	0.2	85°	15.00°	20.50	2.60	7.05	2.372
2.43	0.1	84°	15.0°	22.0°	2.02	8.55	2.335

TABIE I (continued)

EXPERIMETTAL DATA

Station No. 4

$$
Z=0.0
$$

Amoient Pressure $=23.70$ in. HG
Arabiant Temperature $=71^{\circ} \mathrm{F}$
Raceiving Tank Pressure $=3.0$ psig
Inlet Air Temperature $=3.270 \mathrm{mv}$

Nozzle Surface Pemperatures
T center $=3.040 \mathrm{mv}$
T exit $=2.912 \mathrm{mv}$
Orife Data $\triangle P=3.05$ in. HG

$$
p_{u p}=5.17 \text { psig }
$$

$\ell(i n$.	r / R	Sensing tube positions			Velocity (in. of H2O)	$\begin{aligned} & \left(p_{a}-P_{S}\right) \\ & \left(\operatorname{In}_{0} \text { of } H_{2} O\right) \end{aligned}$	$\begin{gathered} T_{0} \\ (\ln v) \end{gathered}$
		λ	A	σ			
5.35	1.0	43°	2.0°	-1.00	12.29	-0.95	2.425
5.05	0.9	52°	2.0°	-2.00	S. 65	2.40	2.300
4.71	0.3	72°	$3.0{ }^{\circ}$	14.00	5.14	2.62	2.276
4.40	0.7	87°	3.0°	16.00	3.20	3.17	2.250
4.06	0.6	100°	5.0°	$22.0{ }^{\circ}$	2.45	3.85	2.255
3.75	0.5	93°	6.00	22.50	0.85	4.67	2.234
3.38	0.4	--	--	--	--	--	--
3.07	0.3	--	--	--	--	--	--
2.74	0.2	--	--	--	--	--	--
2,43	0.1	--	--	--	--	--	--

TABLE II

GATCTILAED DATA

Station No. $1-Z / I_{1}=0.495$

Ambient Pressure $=14.29 \mathrm{pesz}$
Ambient Temperature $=534.0^{\circ} \mathrm{R}$
Receivine Tank Pressure $=17.59$ psia
Inlet Air Temperature $=609.3^{\circ} \mathrm{R}$
Noss Flowrate $=0.2827 \mathrm{Ib} / \mathrm{sec}$

Nozzle Surface Temporatures

$$
\begin{aligned}
\mathrm{T} \text { center } & =601.3^{\circ} \mathrm{R} \\
\mathrm{~T} \text { exit } & =597.3^{\circ} \mathrm{R}
\end{aligned}
$$

Orfico Data $\Delta P=1.478$ psia

$$
P_{u p}=19.29 \text { psia }
$$

Volumetric Flowrate $=198.3 \mathrm{ft}^{3} / \mathrm{min}$

r / R	$\mathrm{P}_{\mathrm{s}} / \mathrm{P}_{\mathrm{a}}$	$\binom{\mathrm{T}_{\mathrm{O}}^{\mathrm{O}}}{(\mathrm{O}}$	$\begin{gathered} \mathrm{m}_{2}^{2} \\ \left(\mathrm{O}_{\mathrm{R}}\right) \end{gathered}$	$1 \mathrm{l} / \mathrm{ft} 3$	Angles		Velocitios (ft. per soc.)			
					ψ	ϕ	V	V_{θ}	V_{r}	$V_{i a}$
1.0	1.08.4	612.86	611.21	. 0616	71°	-0°	88.20	32.26	-74.55	28.35
0.9	1.022	612.10	611.21	. 0645	68°	8.00	108.12	90.29	1.5.04	40.06
0.8	1.021	612.20	611.10	. 0644	740	$10.5{ }^{\circ}$	115.76	109.35	21.07	37.41
0.7	1.019	612.38	611.09	. 0643	86°	11.0°	124.09	121.49	23.70	3.42
0.6	1.017	612.41	610.94	. 0642	105°	3.00	133.04	127.23	13.49	-34.11
0.5	1.015	612.10	609.12	. 0043	1110	9.00	149.97	138.25	23.32	-52.99
0.4	1.011	612.31	610.24	. 0639	104°	$4.0{ }^{\circ}$	158.43	153.21	10.93	-38.07
0.3	0.906	612.20	609.84	. 0630	96°	3.0°	163.71	162.56	8.51	-17.15
0.2	0.892	611.76	609.68	. 0627	96°	$3.0{ }^{\circ}$	156.84	155.75	8.10	-16.45
0.1	0.985	610.21	609.94	. 0633	92°	$1.0{ }^{\circ}$	118.74	118.50	2.80	-4.15

Th3IE II (continued)

CATCUTATEDETA

Station \%o. $2-2 / I=0.485$

Ambient Pressure $=14.29$ psia
Ambient Temperature $=534.0^{\circ} \mathrm{R}$
Receiving Panic Pressure $=17.59 \mathrm{psia}$
Inlet Air Temperature $=609.3^{\circ} \mathrm{R}$

Nozzle Surface Temperatures

$$
\begin{aligned}
\mathrm{T} \text { center } & =601.3^{\circ} \mathrm{R} \\
\mathrm{~T} \text { exit } & =597.3^{\circ} \mathrm{R}
\end{aligned}
$$

Orifice Data $\triangle P=1.478$ psis

$$
P_{u p}=19.29 \mathrm{psiz}
$$

Volumetric F'lowrate $=299.3 \mathrm{ft}^{3} / \mathrm{min}$

TABLE II (continuod)

CALCULAMTD TATA

Station No. $3-\mathrm{Z} / \mathrm{L} \quad 0.239$

Ambient Pressure $=14.09$ psi2
Ambient Tomperatiare $=531.0^{\circ} \mathrm{R}$
Receiving Tank Pressure $=77.09 \mathrm{psir}$
Inlet Air Temperature $=507.6^{\circ} \mathrm{K}$
Mass Flowrete $=0.2370 \mathrm{Ib}_{\mathrm{m}} / \mathrm{sec}$

Nozzle Surface Temporatures

$$
\begin{aligned}
\mathrm{T} \text { center } & =591.6^{\circ} \mathrm{H} \\
\mathrm{~T} \text { exit } & =586.6^{\circ} \mathrm{R}
\end{aligned}
$$

Orfice Data $\Delta P=1.497$ psia

$$
P_{u p}=10.26 \text { nsis }
$$

Volumetric Flowrate $=202.2 \mathrm{ft}^{3} / \mathrm{min}$

r / R	$\mathrm{P}_{3} / \mathrm{P}_{4}$	$\left(\begin{array}{l} \mathrm{S}_{1}^{\circ} \\ 0 \\ \mathrm{O} \end{array}\right)$	$\left(\begin{array}{c} \stackrel{m}{\mathrm{O}_{\mathrm{o}}^{\mathrm{R}}} \mathrm{R} \end{array}\right)$	$1 b / f^{\prime} t^{3}$	Anclos		Velocitios (ft. ner sec.)			
					ψ	\varnothing	V	V_{θ}	V_{r}	V_{2}
1.0	1.015	601.83	600.26	. 0644	55°	$-4.0{ }^{0}$	133.42	110.27	-2.29	74.36
0.9	1.015	601.54	559.50	. 0045	${ }^{7} 4^{\circ}$	2.0°	134.16	128.80	4.09	36.80
0.0	1.014	601.04	598.66	. 0543	91°	2.0°	160.17	168.33	5.90	-2.96
0.7	1.007	601.03	598.45	. 0640	93°	3.50	176.07	175.36	10.75	-0.19
0.6	1.004	600.03	588.29	. 0633	91°	4.50	178.33	177.61	12.30	-3. 21
0.5	0.897	509.87	597.12	. 0635	930	$2.5{ }^{\circ}$	130.83	170.94	3.16	-25.13
0.4	0.904	599.21	500.70	. 0633	92°	2.0°	274.85	174.00	6.00	-6.08
0.3	0.987	597.47	505.50	. 0632	38°	2.0°	253.95	153.63	5.37	5.37
0.2	0.381	506.08	534.95	. 0027	250	3.50	117.89	117.13	7.19	7.19
0.1	0.978	594.47	593.58	. 0627	84°	5.0°	103.92	103.22	9.05	10.32

TABIE II (continued)

CATGUEADED DATA

Station No. $4-Z / L=0.0$

Ambient Pressure $=24.09$ psia
Ambient Tempereture $=531.0^{\circ} \mathrm{F}$
Receiving Pank Pressure $=17.09 \mathrm{psia}$
Inlet Air Temperature $=597.6^{\circ} \mathrm{R}$

Nozzlo Surfece Temperatures

$$
\begin{aligned}
\mathrm{T} \text { contor } & =59.26^{\circ} \mathrm{R} \\
\mathrm{~T} \text { exit } & =596 \cdot 6^{\circ} \mathrm{R}
\end{aligned}
$$

Orfice Data $\triangle P=1.407 \mathrm{psia}$

$$
P_{u p}=19.26 \mathrm{psia}
$$

Nass Flowrate $=0.28701 \mathrm{~b}_{\mathrm{m}} / \mathrm{sec}$
Volumetric Plowrato $=201.2 \mathrm{ft}^{3} / \mathrm{mino}$

r / n	$\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{5}$	$\left(\begin{array}{c} T_{S} \\ O_{R} \\ R \end{array}\right)$	$\binom{\mathrm{T}_{0}}{\mathrm{R}^{2}}$	$2 b / f t^{3}$	Anglos		Velocitio3 (ft. por soc.)			
					ψ	\varnothing	V	V_{*}	Vr	V_{2}
2.0	1.002	527.97	592.63	. 0643	43°	-9.00	251.99	182.00	-39.31	169.60
0.9	0.004	596.11	532.32	. 0540	52°	-10.0°	213.07	165.38	-36.86	129.07
0.8	0.093	591.78	589.54	. 0541	720	5.00	164.01	152.07	14.27	50.48
0.7	0.902	590.69	589.28	. 0640	87°	7.0°	129.23	128.06	15.77	6.67
0.6	0.390	590.07	589.48	. 0340	1000	11.00	87.19	84.32	16.56	-14.39
0.5	0.988	530.02	520.65	. 0537	980	$10.5{ }^{\circ}$	67.08	65.31	12.21	-3.43
0.4	--	--	--		--	--	--	--	--	-
0.3	--	--	--	--	--	--	--	--	--	--
0.2	--	--	--	--	--	--	--	--	--	--
0.1	--	--	--	--	--	--	--	--	--	--

SAMPLE CALCULATIONS

Sample calculations are performed for station one, at $r / R=0.6$. In all calculations, air is assumed to be a perfect gas.
(1.) Calculations for atmospheric conditions.

$$
\begin{aligned}
& P_{a}=\left(\Delta \mathrm{F}_{\mathrm{a}}\right)(0.491 \text { peia/in. of } \mathrm{FG}) \\
& \mathrm{T}_{\mathrm{a}}=\bar{T}_{\mathrm{a}}+460^{\circ} \mathrm{B}
\end{aligned}
$$

Sample: $P_{a}=(29.12)(0.491)=14.297 \mathrm{psia}$

$$
T_{a}=74+460=534^{\circ} \mathrm{R}
$$

(2.) Calculations for static pressure.

Since: $p_{a}-P_{s}=\frac{(\Delta h)\left(P_{W}\right)}{(12)(144)}$
Therefore: $\quad P_{s}=P_{a}-\frac{(\Delta h)(P W)}{(12)(144)}$
Sample: $P_{S}=14.297-\frac{(-6.90)(62.4)}{(12)(1+4)}=14.564 \mathrm{psia}$
(3.) Calculations for static temperature:
[1] $c_{p} T_{0}=c_{p} T_{s}+\frac{v^{2}}{2 g c J}$ (energy equation)
[2] $\quad V=\sqrt{\frac{2 g_{c}}{\rho}\left(P_{0}-P_{S}\right)(144)}$
mbstituting ed. 2 into er. 1 yields,
$[3] \quad c_{p} T_{0}=c_{p} T_{S}+\frac{\frac{2 x}{e} c\left(P_{0}-P_{S}\right)(144)}{2 g_{c} J}$
and for an leal gas,
[4] $\rho=\frac{P_{S}(144)}{R_{S}}$
substituting eq. 4 into eq. 3 yields,
[5] $\quad c_{p} T_{0}=c_{p} T_{S}+\frac{2 \mu c\left(P_{0}-P_{c}\right)(144)}{J\left[P_{S}(144) 7 T T\right]\left(2 g_{c}\right)}$
solving eq. 5 for $T_{s} y i e l d s$,

$$
[6] \quad T_{S}=\frac{T_{0}}{1.0+\left[\frac{R}{C_{p^{J}}} \frac{\left(P_{Q}-P_{S}\right)}{\left(P_{S}\right)}\right]}
$$

Sample:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{S}}=\frac{612.41}{\left[\begin{array}{l}
1.0+\frac{(53.3)}{(.24)(778)} \\
\frac{3.40}{(12)}(62.4)(1 / 144) \\
14.546
\end{array}\right]} \\
& \mathrm{T}_{\mathrm{S}}=610.940 \mathrm{R}
\end{aligned}
$$

(4.) Calculation of densities.
assuming ail to be an ideal gas,
[4] $\rho=\frac{\operatorname{Ps}(144)}{\mathrm{RT}_{S}}$
Sample:

$$
P=\frac{(14.546)(144)}{(53.3)(610.94)}=0.064310 / \mathrm{st}^{3}
$$

(5.) Calculation of total velocities.

$$
[2] \bar{V}=\sqrt{\frac{2 g_{0}}{Q}\left(P_{0}-P_{s}\right)(144)}
$$

Sample: $\overline{\mathrm{V}}=\sqrt{\frac{(2)(32.2)(3.40)(62.4)}{(0.06434)}}=133.04 \mathrm{ft} / \mathrm{sec}$
(6.) Calculations for resolving the total velocities into components, Figure (19).

The direction of the velocity vector at a data point can be obtained from the angles λ, β, and V. The geometry of the system is related as follows:

FIGURE 19. Geometry of Support Mechanism

$$
\begin{array}{ll}
V=\cos ^{-1} \frac{A}{Y} & \cos \sigma=\frac{A}{Y} \\
\gamma=\cos ^{-1} \frac{A}{X} & \cos \gamma=\frac{A}{Y} \\
\delta=\cos ^{-1} \frac{Y}{X} & \cos \delta=\frac{Y}{\bar{X}} \\
\text { And } \frac{A}{X}=\frac{A}{Y} \frac{Y}{X} &
\end{array}
$$

Therefore: $\cos \gamma=(\cos \gamma)(\cos s)$
and since $\delta=\operatorname{Tan}^{-1} \frac{d}{D}, \delta$ can be obtained.
The worst possible condition (i.e. the lareest δ)
Would occur at station three in the center of the nozzle. At this position,
$D=4.56 \mathrm{in}$.
$\mathrm{d}=0.75 \mathrm{in}$.
so, $\tan \delta=\frac{0.75}{4.56}=0.164$
and, $\delta=9.5^{\circ}$
Then for this position $\cos \gamma=\cos \sigma(.987)$.
The above analysis indicates that the assumption $\sigma=\gamma$ does not introduce apprecible error. Jith this assumption the spherical coordinates of the velocity are as follows:

$$
\begin{aligned}
& \psi=\lambda \\
& \phi=\langle\nabla \cdots B\rangle
\end{aligned}
$$

With these coorinates, the velocity components can be calculated.

$$
\begin{aligned}
& V_{r}=\bar{V} \sin \phi \\
& V_{\mathrm{a}}=\bar{V} \cos \phi \cos \psi \\
& V_{0}=\bar{V} \cos \phi \sin \psi
\end{aligned}
$$

Sample:

$$
\begin{aligned}
& \psi=105^{\circ} \\
& \phi=\left(18^{\circ}-10^{\circ}\right)=8^{\circ} \\
& \mathrm{V}_{\mathrm{r}}=(133.04)\left(\sin 8^{\circ}\right)=18.49 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{a}}=(133.04)\left(\cos 8^{\circ}\right)\left(\cos 105^{\circ}\right)=-34.11 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~V}_{\theta}=(133.04)\left(\cos 8^{\circ}\right)\left(\sin 105^{\circ}\right)=127.23 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

(7.) Calculations for laser positions.

To shine the laser beam through a desired point inside the nozzle, it was necessary to pivot the beam through a specific angle, corresponding to the desired point. The points of interest at each station were located at radius ratios of .1, .2, .3, .4, le. Since the bean was pivoted about a point corresponding to the apex of the nozzle, the beam position for a particular radius ratio at station one, was also the position for that same radius ratio at station two, or any other axial station. This can be shown, by considering two different stations alone the nozzle axis, Figure 20.

FIGURE 20. Beam Geometry for Two Axial Stations

FIGURE 21. Beam Geometry for a Single Station
$\tan \theta_{t}=\frac{\mathrm{R}_{1}}{\mathrm{~A}_{1}}=\frac{\mathrm{R}_{2}}{\mathrm{~A}_{2}} ; \quad \mathrm{A}_{2}=\mathrm{A}_{1} \quad \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$\tan \theta_{1}=\frac{r_{1}}{A_{1}}=\frac{r_{2}}{A_{2}}$
$r_{1}=m R_{1} \quad$ where m and n are fractions less
$r_{2}=n R_{2} \quad$ than 1.0
$\tan \theta_{1}=\frac{m R_{1}}{A_{1}}=\frac{n R_{2}}{A_{2}}$
substituting for A_{2};

this yields $m=n$, so the angle θ_{1} is the same
for corresponding radius ratios at different
stations.
The values of Θ_{i} were calculated as shown below, for values of radius ratio from .1 to 1.0 . These values are tabulated in table 3. (Figure 21) $\tan \theta_{i}=0.1(i) \mathrm{R} / \mathrm{A}$

For the ten desired radius ratios the subscript 1 takes on values of 1 through 10, in increments of 1. They were calculated using the dimensions of station one.

Simple: $r=(.1) i(R)$

$$
\begin{aligned}
\tan \theta 6 & =\frac{0.1(6)(4.95)}{25 \cdot 31}=0.1173 \\
\theta 6 & =\tan ^{-1} 0.1173=6.7^{\circ}
\end{aligned}
$$

The ten positions of the laser were laid off using the related distance $l_{i} \cdot l_{i}$ corresponds to the distance of a point on the laser support from a reference surface. This distance is calculated by conoidering the geometry of the laser table, Figure (22). The values of ℓ are listed in table 3 .

FIGURE 22. Geometry of Laser Support

$$
\begin{aligned}
& \epsilon=180-\left(90-\theta_{i} / 2\right)-a=\left(90-a+\theta_{i} / 2\right) \\
& D^{\prime}=20 \sin \theta_{i} / 2 \\
& \Delta l=D^{\prime} \sin (\epsilon)=2 \operatorname{cosin} \theta / 2(\sin \epsilon) \\
& l_{i}=X_{0}+\Delta l
\end{aligned}
$$

Sample:

$$
\begin{aligned}
a & =\operatorname{Tan}^{-1} 3.5 / 16.7=0.2095 \\
a & =11.80 \\
\epsilon & =90-a+\theta_{6} / 2 \\
\epsilon & =90-11.8-3.35=74.85^{\circ} \\
c & =\sqrt{(3.5)^{2}+(16.7)^{2}}=17.06 \mathrm{in} . \\
\Delta l & =2(17.06) \sin (6.7 / 2) \sin (74.85) \\
\Delta l & =34.12(0.058)(0.965)=1.956 \mathrm{in} . \\
l_{i} & =2.10+1.956=4.056 \mathrm{in} .
\end{aligned}
$$

TABLE III
LASER POSITIONS

1	1	2	3	4	5	6	7	8	9	10
$1 / a$.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
$\theta 10$	1.1	2.2	3.4	4.5	5.58	6.7	7.8	8.9	10.0	11.0
$1 n$.	2.43	2.74	3.07	3.38	3.75	4.06	4.40	4.71	5.05	5.35

(8.) Calculations for flowrate.

The coefficient of discharge of the orifice was calculated using a relationship given by the ASHE.

$$
c_{a}=K\left(1.0-B^{4}\right)^{\frac{1}{2}}
$$

where, $C_{d}=$ coefficient or $\quad \hat{d}$ charge

$$
\begin{aligned}
& B=D_{0} / D_{p} \\
& K=K_{0}(1.0+B E / R e)
\end{aligned}
$$

with,
$E=D_{0}\left(830-5000 B+9000 B^{2}-4200 B^{3}+530 / D_{p}^{3}\right.$
$K e=0.5993+0.007 / D_{\mathrm{p}}^{2}+\left(0.364+0.076 / D_{p^{\frac{3}{3}}}\right) \mathrm{B}^{4}$
$+\left(65 / D_{p}^{2}+3.0\right)(B-0.7)^{5 / 2}$
$K_{0}=K_{e}\left(10^{6}\right)\left(D_{0}\right) /\left(10^{6} D_{0}+15 E\right)$
From the definition of the discharge coefficient $W_{a}=c_{d} W_{t}$. Where W_{a} is the actual mass flowrate and W_{t} is the theoretical flowrate.

As shown by Benedict (2), the theoretical flowrate can be obtained from the following relationship.
$W_{t}=P_{2} A_{2} V_{2}$
$W_{t}=A_{2}\left[\frac{(2 k / k-1)\left(1-\left(P_{2} / P_{1}\right) \frac{k-1}{k}\right) P_{1} \varepsilon P_{1}\left(P_{2} / P_{1}\right) \frac{2}{k}}{\left(1-\left(P_{2} / P_{1}\right) \frac{2}{k} B^{4}\right)}\right]$
where the subscript 1 refers to the upstream conditions, and the subscript 2 refers to the domstream conditions.
This equation yields the theoretical flowrate, but
the solution for the actual flounce requires an literanion process because both the coefficient of alschorge and the actual flowrate are functions of Reynolds number. A copy of the computer program used to complete the iteration process is show below. The computer language is Fortran IV.

Computer Nomenclature: $P D=D_{P}, O D=D_{O}$, Re $=$ initial Re

$$
\begin{aligned}
& Q=k, \quad C=\mu, \quad R=R \\
& G=Z_{c}, P I E=\pi, P 1=P_{u p} \\
& D P=P, T A=T_{a}, P A=P_{a}
\end{aligned}
$$

READ (I, lOO) PD, DD,RE,Q,C,R
READ (1, 1OO)G, PIE, PI,DP,TA,PA
$P 1=P 1+P A$
$B=O D / P D$
$P 2=P 1-D P$
P1=P1 $\because 144.0$
P2=P2\%144.0
$R O 1=(P I /(R * T A))$
$A=(2.0 \geqslant Q(1 Q-1.0))$
$A B=(Q-1.0) / Q$
$A C=(2.0 / Q)$
$A D=(P I E=O D \% 2.0) /(4.0 \% 144.0)$
$W T 1=A O *(A *(1-0-(P 2 / P 1) * M B) \div P 1 \div G: R O 1 *(P 2 / P 1) * * A C) \% \% .5$
$W T 2=(1.0-(P 2 / P 1) \div A C \div B=4.0) \approx \% .5$
$W T=W T 1 / W T 2$
$E=(830 . C-5000.0 \div B+9000.0 \div B \div 2.0-4200.0 \div B \div 3.0+530.0 /(P D * 5)) \div 00$
$0 N=0.5993+0.0071 P D+(0.364+0.0761 \mathrm{PD} \% .5) \div \mathrm{B} \div 4.0$
$Q M=(65.0 / P 0 \div * 2.0+3.0) *((B-0.7) \approx 2.5)$
$Q E=Q N+Q M$
$Q O=(Q E=10.0 \div 5.0) \div O D) /(10.0 * * 6.0) \% O D+15.0 \div E)$
WRITE $(3,300) R O 1, B, P I, P 2$, AD
(3, 300)QN,QM,QD,E,WT
DD $20 \quad I=1,100$
$G_{L}=40 \%(1 \cdot 0+3 \div E / R E)$
$C D=Q L: 1.0-B \geqslant 4.0) \div \div .5$
$W A=W T * C D$

IF (AESiREC-RE)- 25$) 2,2,1$
$1 R E=R E+(R E C-R E ; 1 / 2.0$
20 CONTINUE 200) WR,CD,REC,RE
STOP

$$
\begin{aligned}
& \text { Smpie: } \\
& B=1.50 / 2.063=0.725 \\
& \mathrm{~T}_{1}=149.3+460=609.3^{\circ} \mathrm{R} \\
& P_{1}=5.00+14.29=19.29 \mathrm{psia} \\
& P_{2}=P_{1}-P=15.29-1.478=13.512 \mathrm{psia} \\
& P_{1}=P_{1}(144) / R T_{1}=(15.29)(144) /(53.3)(609.3) \\
& Q_{1}=0.06779 \\
& A_{2}=(3.14)(1.50) /(4)(144)=0.01227 \mathrm{ft}^{2} \\
& P_{2} / P_{1}=(13.812) /(15.29)=0.903 \\
& x_{t}=.01227\left[\frac{(2)(1-0.003(.286)(19.29)(32.2)}{1-0.903(.15)}\right. \\
& \left.\frac{(.06779)(.903)^{(.15)}}{(1.500)^{4}}\right]^{\frac{1}{2}} \\
& V_{t}=0.46 \mathrm{Ibm}_{\mathrm{m}} / \mathrm{sec} \\
& E=1.50\left(830-5000(0.725)+9000(0.725)^{2}-4200(0.725)^{3}\right. \\
& \left.+530 /(2.058)^{\frac{1}{2}}\right)=1057.0 \\
& K_{e}=0.5993+0.007 / 2.068+\left(0.364+0.076 /(2.068)^{\frac{1}{2}}\right)(0.725)^{4} \\
& +\left(65 /(2.068)^{2}+3\right)(0.725-0.7)^{5 / 2}=0.720 \\
& K_{0}=0.720\left(10^{6}\right)(1.50) /\left(10^{6} \times 1.50+15 \times 1.507 \times 10^{3}\right)=0.713
\end{aligned}
$$

After evaluating these constants, the iteration process is carried out as follows:

1. Assumfing an initial value of $\mathrm{RE}=2.0 \times 10^{5}$, the corresponding value of K is calculated.

$$
\begin{aligned}
& K=0.713\left(1+0.725\left(.057 \times 10^{3}\right) / 2.0 \times 10^{5}\right)= \\
& \quad 0.716 \\
& \text { and } \\
& C_{d}=0.716\left(1-(0.725)^{4}\right)^{\frac{1}{2}}=0.609 \\
& \text { so, } W_{a}=0.609(0.46)=0.28011 \mathrm{~b}_{\mathrm{m}} / \mathrm{sec}
\end{aligned}
$$

2. The ieynolds Number corresponding to the actual flowrate is,

$$
R e_{c}=\frac{4\left(N_{a}\right)\left(\varepsilon_{c}\right)}{\left(D_{p}\right) \mu(g)}=\frac{(4)(.2801)(32.2)(12)}{(2.068)(3.14)\left(1.35 \times 10^{-5}\right) 32.2}
$$

$$
\mathrm{Fe} \mathrm{e}_{\mathrm{c}}=1.5336 \times 105
$$

3. Since this value does not correspond to the assuned value, the iteration rust continue. To continue the process, change the value of the initially assumed Reynolds Kumber as follows; $R E=R E+\frac{1}{2}\left(R_{C}-R E\right)$. Changing the value in this manner will reduce or increase it depending on vinich is necessary to bring the assumed value and the salculated value togetber. Therefore; $R E=2.0 \times 10^{5}+\frac{1}{2}\left(1.5336 \times 10^{5}-2.0 \times 10^{5}\right)$ $R E=2.0 \times 10^{5}-.2332 \times 10^{5}=1.7008 \times 10^{5}$
4. Repeat steps on through three, using the corrected value of Reynolds Number for the inital value.

This procedure is repeated until the Reynolas number converges to a single value. The computer prosram exployed to solve this problem itcrated until the two values of Reynolds number differed by 0.25 or less.

The Volumetric flowrate is calculated using the relationship $Q=W_{a}(1 / \rho)(g / 8 c)(60 \mathrm{sec} . / \mathrm{min}$.$) .$
$\rho=\operatorname{Pup}(144) / \mathrm{BT}=19.29(144) /(53.3)(609.3)$
$\ell=0.085531 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{3}$
Sample:

$$
\begin{aligned}
& \mathrm{Q}=(0.2827)(1 / 0.08553)(32.2 / 32.2)(60) \\
& Q=198.3 \mathrm{f} \pm 3 / \mathrm{min}
\end{aligned}
$$

(10.) Intersration of the Axial Velocity Distribution at the exit plane.

The velocity distribution is practically linear In the region of interest.

The defining equation is $V=\frac{V_{\text {nax }}}{(R-.7 R)}(r-.7 R)$.
Continuity equation, mass flowrate $=\int_{A} \ell V d A$

For an annular region $d A=2 \pi r a r$.
The density is assumed constant and equal
to $0.06401 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft} \mathrm{t}^{3}$.
Therefore:

$$
\begin{aligned}
& \dot{m}=\int_{\cdot 7 R}^{R} \frac{V_{\max }}{(R-.7 R)}(r-.7 R) 2 \pi r \mathrm{dr} \\
& V_{\max }=169.8 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{R}=(1.95 / 12)=0.1625 \mathrm{ft}
\end{aligned}
$$

Integrating the above expression yields,

$$
\dot{m}=\frac{(0.0640)(169.8) \pi(2)}{.3 \mathrm{R}}\left[\frac{r^{3}}{3}-\frac{.7 \mathrm{nr}^{2}}{2}\right]_{.7 \mathrm{R}}
$$

$$
\dot{\mathrm{m}}=0.247 I \mathrm{~b}_{\mathrm{n}} / \sec
$$

1. Ambrosius, E. E. and Fellows, R. D., Hecrenical Encinsoring Laboratory Practice. The ionsla Press Company, dew York, N. Y., 195?, pp. 206-220.
2. Bencdict, R. P., "Fluid Flow jeasurement," ElectroTechnology, January, 1961,pp. 55-68.
3. Einnie, A. M., Hooking, G. A. and Kamel, Y. Y. M., "The flow of Suirling water Throuch a ConvergentDivergent Nozzle, ' Tournal of Fluid Eechanics, Vol. 3. No. 3, December, 1957, Fp. 261-274.
4. Deissler, R. G. and Perlmutter, M., "Analysis of the Flow and Energy Separation in a Turbulent Vortex," Intemational Journal of Heat and Viss Transfer, Vol. 1-2, 1960-1961, pp. 173-191.
5. Donaldson, C. du P. and Sullivan, R. D., "Bchavior of Solutions of the Nevier-stokes Equations for a Complete Class of Three-Dimensional Viscous Vontices;" Froceedines of the Heat Transfer and Fluid mochanics Institute, Stanford Univorsity, Califoxnia, June, 1960, pp. 16-30.
6. Filsch, R., "The Use of the Expension of Gases Ir a Centrifugal Field as a Cooling Process," The Review of Scientific Instruments, Bol. 18, No. 2 , February, 1947, pp. 108-113.
?. Keyes, J. J., "An Experimental Study of Gas Dynamics in High Velocity Vortex Flow," Proceedings of the Heat Transfer and Fluid Fechanics Institute, Stanford University, California, Junc, 1960. pp. 31-46.
7. Lay, J. E., "An Experimental and Analytical Study of Vortex-Flow Temperaiure Separation by Superposition of Spiral and Axial Flows, Parts 1 and 2," Journal of Fieat Transfer, Transactions ASiEE, Series C, Vol. 81, Aricust, 1959; Pert 1: pp. 202-212; pant 2: pp. 213-222.
8. Weser, A., "Approximate Solution of Isentropic Suirling Flow Through a ivczzle," Ais Journal, Vol. 31, No. 8, Ausust, 1961 , pp. 1140-1148.
9. Feynolds, A. J., MA Note on Vortcx-Tube Flows," Journal of Fluid Nechanics, 1962, pp. 18-20
10. Savino, J. K. and Ragsdale, R. G., "Some Tenperature and Pressure Keasurements in Confined Vortex Fields," Journal of Heat Transfer, Trensactions ASine, Series C, Vol. 83, No. 1, February, 196., pp. 33-38.
11. Shapiro, A. J., The Dunamics and Thermodunamics of Coporessible Fluid 10 . The ronald Press Company, New York, N. Y., Vol. 1, 1953, and Vol. 2, 1954; Vol. 1: pp. 265-297; Vol. 2: pp. 774-783.
12. Thompson, S. A., (1966), "ineasuremert of the Velocity and Temperature Profiles of Air Swirling Through a Conical Shaped Nozzle." Thesis, University of hissouri at kolla, 1966, 41 pp., (rith 16 figures, 2 tables.)

NIT/

The author was born in Narceine, Missouri, on July 11, 1944. His parents are Thomas S. and Cecilia A. Lireberry, both natives of north Missouri.

He received a primary education at st. Bonaventure parochial school and a secondary education at the Harceline city high school.

Upon completion of high school in Nay 1962, he entered the University of Missouri School of Mines and Metallurgy et pola, Missouri, the following September. On January 30,1065 , he was married to the former Miss Jane L. Hayes, also of Harceline, Hitsscurt.

In August, 1966, he received a Bachelor of science degree in lieohanical Engineering from the University, and was granted a Graduate Assistantship in the Department of Engineering Technology. The following September he enrolled in the Graduate bohol of the Mechanical Engineering Department.

$$
19 \div 90
$$

