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INTRODUCTION

The problem to be investigated in this thesis is that
of perilodic heat flow in a seml-infinite solld. Perilodic
flow means that heat flow 1s a continuous function of time
and repeats itself at regular intervals. A semi-infinite
s0lid i1s one which 1s bounded by one and only one plane,

Thie subject has receilved considerable attention in
the field of soll temperatures, both at the surface of the
earth and at various depths. The surface of the earth 1s
subjected to temperature changes which are nearly perlodic.
These temperature changes take place both daily and annually.
A knowledge of these fluctuations is helpful in deciding such
thingse as the depth at which water mains will be out of dan-
ger of freezing,

Its importance is not limited to problems on the earth's
soil, The subject has also recelved attention in the flelds
of heat flow in cylinder walls. It i1s of interest in the
field of temperature stresses where these stresses are set
up by expansions and contractions of the material subjected
to cyclic temperatures.

Because the analytical treatment becomes very involved
in the more complex problems, these problems are usually at-

tacked from the physical measurement standpoint,



This particular subject was chosen by the author be-
cause thus far all analytical treatment has been on the basis
of heat flow taking place by conduction alone, It is the ob-
Ject of thls paper to investigate the feasibility of consid-
ering the effect of both convection and conduction on the flow

of heat.



REVIEW OF LITERATURE

An examlnatlon of the literature avallable on this sub-
Ject reveals that it 1s possible to classify the work already
done into two distinct groups. The first group is an‘ana-
lytical approach where the variables are determined by mathe-
matlics. The other group is the result of experimentation.
Evidence and data aere collected and developed untll they are
of value in some particular application of periodic heat flow.

On the analytical side, the equations for simple cases

of periodic heat flow were derived first by H. 8. Caralaw.(l)

(1) H. 8. Carslaw, Introductlion to the Mathematical Theory
of the Conduction of Heat in 8o0lids, 2nd Ed., N. Y.,
Dover Publications, Am. Ed., 1945, pp. 47-50.

These equations have been re-derived in a somewhat simpler

manner by L. R. Ingersoll.(z)

(2) L. R. Ingersoll, O. J. Zobel, and A. C. Ingersoll, Heat
Conduction With Engineering and Geological Applications,
1st Ed., N. Y., McGraw-Hi1ll, 1948, pp. 45-47.

There are other publications by these same men deriving
these same equations, but there is no significant change from
the references glven.

Most of the availlable literature on the practical ap-

plication are found in the form of pepere. However, some



information in a condensed form may be found in a book by

L. R. Ingersoll, 0. J. Zobel, and A. C. Ingersoll.(B)

(3) L. R. Ingersoll, O. J. Zobel, and A. C. Ingersoll, Heat
Conduction With Engineering and Geological Applications,
lst Ed., N. Y., MeGraw-Hill, 1948, pp. 47-57.

Information on the annual temperature wave 1s avallable in

literature by Fitton and Brooks,(u)Tamura,(5)and Birge,

Juday, and March.(é)

(4) E. M. Fitton and C. F. Brooks, Monthly Weather Review,
Vol. 59, 1931, pp. 6-16.

(5) 8. T.6Tamura, Monthly Weather Review, Vol. 33, 1905,
p. 296.

(6) E. A. Birge, C. Juday, and H. W. March, Trans., Wisconsin
Acad. Sci., Vol. 23, 1927, pp. 187-231.

The subject of perlodic heat flow in cylinder walls has re-

celved attention by Callendar and Nicolson.(7)

(7) H. L. Callendar and J. T. Nicolson, Proc. Inst. Civil
Engrs. (London), Vol. 131, 1895, p. 147.

Bome reference material 1s avallable on the subject of



thermal stresses. Most of thils material comes from

(8)(9)

Timoshenko.

(8) 8. Timoshenko, Theory of Elasticity, N, Y., McGraw-Hill,
1934, p. 203.

(9) 8. Timoshenko and G. H. MacCullough, Elements of Strength
of Materials, 2nd Ed., N. Y., D. Van Nostrand, 1940, p.
20.

In 211 the literature avallable from these sources,
there was none that considered the flow of heat as taklng

place by the combined effects of conduction and convectlon.
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DISCUSSION

Perlodic heat flow occupies a unique position betwesn
steady and unsteady state heat flow. This is because all
the heat that 1s transferred into the solid during the
hot portion of the cycle 18 transferred out during the
colder part with constant regularity.

This paper is interested in the spplication of a cyclic
temperature function to the surface of a seml-infinite solid.
In this particular case the conduction of heat will be in
one direction, normal to the surface of the solid. Since
the heat flow will take place 1n only one direction, the
formulas will be derived with this in mind,

S8ince any study of perlodic heat flow within a sub-
stance 1s primarily a study of conduction, 1t will be found
to follow Fourier's law as set forth in his conduction equation,

This law expressed mathematlcally is

J9Q - _kadL
JO Ix - (1)

where dQ 1s the amount of heat flowing in differentlal time
de, A is the area of the section across which Q 1s flowing,
~-dt/dx is the temperature gradlent or the rate of change of
tempersture, t, with respect to the length of path x, and
k i1s the proportionality factor known as the thermal con-

ductivity of the material. The area, A, of the sectlon 1s



1
taken normel to the direction of the heat flow.( 0)

(Lo) W. H. McAdams, Heat Transmission, 2nd Ed., N. Y.,
McGraw-H11l, 1942, pp. 6-7.

In order to arrive at a more general equatlon for heat
flow by conduction, it 1s necessary to use the following
analytical reasoning. A small rectangular solld whose faces
are parallel to the coordinate planes x, y, and z is assumed.
The lengths of the respective sldes of this differential cube

will then be dx, 4y, and dz.

Y
il dy
Zmi— " )
Ve
ogx —X
Fig. 1.

Since heat flowing in one direction 1s the maln lnterest
of this paper, the temperature at any glven plane parallel to
the surface upon which the cyclic temperature 1s belng applied
18 assumed to be uniform at any time 6. Specifically,heat
conduction may take place in the x direction which 1s normal

to the plane bounding the semi-infinite solid, In this case,



by the former reasoning, we can choose any plane parallel to
one formed by the y-z axes as being one of uniform temperature
at any time 8. Choosing such a plane half way through the
exlsting cube, the temperature of this plane may be called
.

Now A1f heat 1s flowing in the positive x direction, as
indicated by the arrow, the tenperature on the left dy-dz
face will necessarlly be more than that on the right dy-dz
face. The tenperatures of these faces may be wrltten

£l. = Z‘m - (_aa_x_t_')%z (2)

and

tl'-': tm + g_xt):dz_l‘. (3)

Thus the actual temperature difference between the right
and left face of this cube will be the difference between

thelr respective temperatures.

bomtan e (1t
At g~ —(%‘::?)d"
(4)

With the ald of the Fourler conduction equation, the heat

flowing into the left hand face may be written
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da) _ It
/de Lu—kAcTX- 1= 'ta. s
Since A= dydz

dQ - P’ —ot)\dx
[de)‘_ -k dyde 2 [im (3)4=). ”
The heat flowing out of the right hand side is

dR) . _kAIE
(de)e" kA 90X Since T= ta

A= d‘_{dz ’
o+
d@y _ _k dyde f,;[tm *{ﬁ)%!]' (6)

ae/r

The net amount of heat stored in the cube, in differential
time do, will then be the difference between the amount of

heat flowing in and that flowing out.

d
(d_g ) = ~kdydz g [tm—(.g;)%zq + kdydz 2 [tm 4{%)%1]

(dgg): A‘ d'xdydz g:tz
x (7)
It 1s known that the amount of heat, Q, that i1s stored in a
80114 body 1s dependent upon the density of the material € ,
the volume of the material V, i1ts specific heat O, and the
exlsting temperature difference acrosse the bodyst. o

represents the time increment during which the heat is stored.



Written mathematically

. Q _ ecvV at
7o T

or

do
(55]= ecv ot - pc dxdyda ot

o6

11

Hence we have two expressions for the same quentity, namely

the amount of heat stored by this differential cube.

Equating these,

PC dadydz 9t - k o xdyde 9%t .
96 I x%

%!
il
3
QO
.
N

ot _ o '

e

Thils 1s the general conductlon equation which must be

fulfilled no matter what the boundary conditions may be.
The boundary condition in thls paper will be taken as the
cyclic teuperature function which 1s being applied to the

surface of the solid. The cycllc temperature function in

this case will be taken as a slmple, trigonometrlc one whose

equation 1s

t= 4o Sin we.

(10)
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at the surface where x equals zero. In this equation to
represents the amplitude of the temperature wave, t repre-
sents the temperature at any time 6, and w 1s the frequency
of the cyclic function.

It should be made clear at this point that this par-
tlcular boundary condition is chosen for reasons of sim-
plicity, and that actuslly there are any number of cyclic

(11)

functions that might have been chosen. The particular

(11) H. 8. Carslaw and J. C. Jaeger, Conduction of Heat in
Solids, (London) Oxford at the Clarendon Press, 1947,
Pp. 267-269.

functlion chosen lends i1tself well to the work of this paper.
Bome of the other functions might well be studied at some
future date. In any case the reasoning would follow the
game general procedure,

Since equation (9) is linear and homogeneous with con-
stant coefficlents, an equation of the following form may be

chogen to be a solution for 1t:

ae + bx

where t 1s the instantaneous temperature at time 8, 8, a,

and b are constants; and x is the depth measured normal to

the surface.
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Now the first and second partials of t with respect to

X can be found by simple differentiation.

Qf _Eseao-o-b-x
X

(12)
3% _ b;Seao +bx
Ixz (13)

Also the first partial of temperature with respect to time

can be found by the same means.
de (14)

Now substituting equations (13) and (14) in their respective

places in equation (9)

6
ase = o b 5e? "

and i (15)
Q= b,

ae+ by

By thls procedure one of the constants in the exponent can
be found in terms of the other. Obtalning the exponent in

equations (11) in terms of the constant a,

b= 17T

= se?® P& x

(16)
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Now since a 1s a constant, we can replace 1t with a
new constant *i7 , where 1 1s equal to the square root of
minus one. This substitution will help in choosing the
particular solution that will fit our boundary condition.
By using Euhlers transformations we can obtain the equation

in terms of trigonometric forms, Making the substitution
= 247,
tire 2 BT VL x

i:: Se
(17)

The following are lidentitles as far as i1, the square

root of minus one, is concerned,

= ()

(18)
Y = (=4
72.,) (19)

With the incorporation of the identities in equatlons (18)
and (19), equation (17) will now be

rire ¢ 11/&2'(/”.'}
t-5e 4

/= Sgﬂ'ra][en);?(,;i)l

tive > x )T (1=£)
oR Se < e

£ - S[eix)g'][e 24 (re 2 x@-]

(20)
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From this point there are many particular solutions
for thils equation. It should be remembered that in using
the Euhler transformations for an equation of this type, a
portion of the answer comes out real and another portion is
imaginary. 8ince the temperature which 1s beilng solved for
18 real, the imaginary part of the equatlon will be dropped
as havling no value in these problems. In any case, 1t 1s
imperative that when the sign of 1, the square root of minus
one, or 1lts roots is chosen to be a certain value 1n any
given portion of the solution, it must be maintalned all the
way through the solution.  2) With this in mind, the one

(12) L. R. Ingersoll, 0. J. Zobel, and A. C. Ingersoll, Heat
Conduction With Engineering and Geologlcal Applications,
lst Ed., N, Y. MeGraw-H11l, 1948, p. 47.

particular solution that fits the boundary conditlons and is

of value in glving results can be written

X

t= Se & sm (re-xE)_ (21)

Substituting the boundary condlitlons,

(2]

-X
t= fto e Esm (we- 72 (22)

Now that the general solution has been found and the
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particular solution which fits the boundary conditions
chosen, thls equation may be applied to practical problems.

Although nmuch work has been done on investigating the
penetration of periodic temperature waves into the earth
1tself, very little work has been done in fields other than
this. The review of literature on periodlc heat flow showed
that very little 1s avallable in flelds outside that of the
soll temperatures. There are many other fields in which this
type of temperature distribution is present and could be
studled. In almost all these flelds the transfer of heat
that takes place 1s not by conductlon alone, but by a com-
bination of conductlon and convection. In some cases where
the operating temperatures are high, the effect of rasdiation
cannot be neglected. In these cases the transfer of heat is
due to a combination of all three, conduction, convection,
and radiation. It 1s the purpose of this paper to show that
1t 1s feaslible to project the present knowledge far enough
to be able to conslder heat transfer taking place by the
combined effects of conductlon and convectlion,

In order to understand the methods used in this peper
for extendling the known equations to take care of the ad-
dltional effect of convection, 1t will be necessary to look

et the equatiéns governing the flow of heat by convectlon

and conduction,
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ﬁlaMaL""”é‘Qiﬂf
ax (23)

?,awut = hAaAt
(24)

The term h in the convection equation is called the film
coefficient., Although 1t is not proper to think of con-
vectlon taking place in a film, 1t is very convenlent to
think of all the heat that is transferred by convection as
having to pass through this film. Much work has been done
in studying this film coeffliclient, Ite use 1s universally
accepted ag far as the solutlion of problems in convectlon
18 concerned,although there are some objectidns to 1t on
the grounde that 1t does not explain the physical means by
which the heat is carried away by convection. However, 1t
will be used here with 1ts usual meaning.

On looking at the equations, (23) and (24), one will
note that they are quite simllar. Dimensionally the two
equations are alike., The convectlon equation used the idea
that all the heat must be transferred through a film whose
reslstance is h., There 1s no assigned thickness to this
film and the value of h 1s dimenslonally glven as Btu
nr-1 £t=2 F~1. In other words, 1t tells the amount of heat
that will pass through one square foot of the fllm 1f there

is a temperature difference across the film of one degree

Fahrenheit.
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In the case of the conduction equation the value of k
dimensionally is Btu hr-l f£t-1 F-l, Thig unit k when divided
by the depth of the materlal x gives the dimensional units
Btu hr-1 £t-2 F~1, Thus the dimensional value of the thermal
conductivity divided by the length of path x 1s the same as
that for the film coefficient h. If the formulas are re-
written to group these two quantities which are dimensionally
equal, the following would result:

- (&
2“”"_ {41) A At (25)

Therefore, for the same quantity of heat passing through
the convectlon fllm as passes through the medla, 1t can be
seen that for a glven square foot of surface having a film
coefficient h, a certaln temperature difference would be
necessary. Thils same drop 1ln temperature could be effected
by a glven thickness of some conducting material whose con-
ductivity was k., Thus for a cross sectlonal area of one
square foot there wlll be a given thickness of material
which for purposes of température drop would be equivalent

to the film coefficlent. Thise can be shown by a clearing of
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the conduction and convection equations of their equalities

%) -
(27)
It 1s through the use of thils equivelent thickness of material
that this paper wlll try to conslder the effects of both con-
duction and convection on perlodic heat flow.

As an example to clarify this point it might be well
to take a practical example. A seml-infinlte solld made of
aluminum having a film coefficlent of 130 Btu hr-1l ft-2 p-1
at the surface 1s assumed. Conductivity of aluminum cen be

taken as 130 Btu nr-t re-1 F-l.(lB) A sketch of this par-

(13) L. 8. Marks, Mechanical Engineers Handbook, 4th Ed.,
N. Y., McGraw-H1ll, 1941, p. 392.

tlcular set up would look something llke this:

7 ey
7

Fig. 2
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In order to replace the film coefficient with a certaln
thickness of the aluminum of which the seml-infinite solid
1s composed, the film coefficlent and the thermal conductivity

must be placed in equation (27). The result:

—ax = k&

—axX = 130 - /ff aABovE SURFACE
730

Thus 1t would take a one foot thickness of aluminum to be
equal in resistance to the original film coefficient. A
new picture of the semi-infinite solid may now be drawn
which will result in the same propertlies as far ae heat flow
and temperature drop is concerned. Its new appearance would

look something like this:

1A AL k=/8 EQ0. ENT h=/30
j SR AR (RLECL T K e

7 / L i L L
000070777

Fig. 3.

E§§4\\\\\\\\\\\\\\\\\\\\\\\\\Yl
N

The cyclic temperature is applied to the top of the
upper slab in Filg. 3 just as 1t was previously applied %o
the film in Fig. 2. The actual surface of the solld 1s now

one foot below the surface to which the cyclic temperature



is being applied, Thus having an equivalent system for solid
and f1lm, the effect of this one-foot, upper layer of aluminum
shown in Fig, 3 can be studied, Its effect on the temperature
disgtribution will be the same as that of the film; therefore,
the heat flow taking place by the combined effects of con-
duction and convection can he equated to an equivalent system
where only conduction is occurring,

Thus far in the paper 1t 1s assumed that the initial
temperature function is bheing applied directly to the sur-
face of the solid, If there 1s convection present, this be-
comes impossible, In the case where convection i3 present
the convection film will come between the temperature function
and the actual surface of the solid, The temperature function
at the surface wlll still be cyclic in nature, but 1t will no
longer be the same as that of the original funection,

Now that it is possible to equate the convection film
to a certain depth of the materlal, it 1s also possible to
find the actual temperature function at the surface of the
material, In thils case the original function is applied to
the surface of the medium representing the film, while the
actual surface 1s at gome depth below thlsg virtual surface,

If the temperature functlon is known, it will now be pos-
sible to find the amplitude of the disturbance at the real
surface, This is because the formula for simple conduction

is now able to take care of both convection and conduction,
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It would now be proper to look at some of the practical
aspects of the problem. One of these would be the actual
effect of the value of h on the temperature amplitude at
the surface of the meterial. It can be seen that as the
fllm coefficient h increases, 1t has a smaller resistance
to heat flow, or that as h increases, the same amount of
heat will flow through the film with a smaller temperature
difference. In terms of the equivalent system, as h increases,
the thickness of materlal that is equivalent to i1t decreases.
In the case of a decreasing h the inverse of the above state-
ments would hold true.

It should be mentioned at this point that 1%t 1s wise
to construct the equivalent film coefflicient of the same
material composing the rest of the solid. If fhis is done,
1t will simplify the problem in that the varlous properties
of the solid will be the same as those of the equivalent film,
In this case only one set of materisl constants are needed.

Possibly the best way to look at these practical aspects
would be to draw a series of curves deplcting the deslred
variables to be studled. There are qulte a number of pos-
glble curves that can be drawn for this type of heat flow.
Each type of curve would have its own particular value. In
this paper the temperature amplitude for each cycle will be
plotted against the depth at which 1t occurs. This means

that the part of the equation which 1s trigonometrlc in form
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wlll take on the value of unity. It is only reasonsble to
assume that the temperature amplitude will decrease as the
depth increases. This 1s one of the ideas used in plcking
the possible particular solution that would give us valuable
results. Again in the matter of frequencles 1t is reason-
able to assume that the higher the frequency, the less will
be the temperature fluctuation at some depth x. In other
words, the material will act as a damper for the temperature
osclllations,

After the curves are plotted, there 1s an interesting
fact to be noticed as to the effect of the convection on
the actual temperature amplitude at the surface. No matter
what the frequency, any given value of h will be eQuivalent
to only one depth of material. Now 1f the curves are plotted
with depth as absclssa, and temperature amplitude as ordl-
nate, then the value of h cen be plotted as a line parallel
to the ordinate going through the proper depth on the absissa.

If equation (22) 1s plotted on semi-log paper it will
turn out a stralght line. This fact 18 of value 1n thet only
two points are needed to locate the line, This enables the
finding of polnts on Carteslan co-ordinates without meking a
long series of calculations. This plot on seml-log paper 1s
not as effective in showing the effect on the heat flow of

convection as is the plot on Cartesian co-ordinates.
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The 1list of h valuesyas chosen for these curves,is
representative of the values that 1t willl usually take on.
Actually it can take on values higher than those plotted,
or lower, but this is the general range in which they will
fall.

In the matter of frequencles, there are an unlimited
number from which to choose. It is not meant that those
in this paper are any more than a representative sample.
It 1s hoped that those chosen are of value in showing the
effect of convectlion to advantage.

The temperature function was chosen to have a low
amplitude so that the effect of radiation on the flow of
heat can be neglected,

Curves are drawn of temperature amplitude versus depth

for copper, aluminum, steel, and soll.
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TABLE T
PENETRATION OF THE CYCLIC TEMPERATURE IN STEEL OF DIFFUSIVITY

0.33 FT2 zm"l

k=21 Btu hr-1 rt-1 p-1
€= 492 1b £t~2
C=0.127 Btu 1b~+ F-1

Applied temperature function: +t=200 sinwo

Temperature amplitude P

X w= 30 w= 60 w= 120 w=180
0.1 102.00 77.00 52.10 38.30
0.2 51.90 29.75 13.60 7.32
0.3 26.50 11.38 3.54 1.41
0.4 13.50 L.36 0.92 0.27
0.5 6.87 1.68 0.24 0.05
0.6 3.51 0.65 0.06 _——
0.7 1.79 0.25 0.02 r—
0.8 0.91 0.10 —— ———
0.9 0.46 0.04 _— _——

1.0 0.24 0.01 —— ——
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TABLE II
PENETRATION OF THE CYCLIC TEMPERATURE IN ALUMINUM OF

DIFFUSIVITY 3.46 PT2 HR-1l

k 130 Btu hr-1 £t-1 p-1
€= 168 1b £t-3
¢ =0.224 Btu 1b-1 p-1

Applied temperature function: + =200 sinwe

Temperature amplitude F

X w= 30 wz 60 w = 120 w =180
0.1 161.00 149,00 132,00 119.00
0.2 131.00 110.00 87.40 70.60
0.3 106.50 82.50 58.50 42,00
0.4 85.50 61.60 38.00 25.00
0.5 70.00 46.00 25.00 14.80
0.6 56.60 34.20 16.60 8.89
0.7 46.00 25,60 11.00 5.25
0.8 37.30 19.00 7.25 3.12
0.9 30.20 14.20 4.76 1.83

1.0 25,00 10.55 3.13 1.11
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TABLE ITIT
PENETRATION OF THE CYCLIC TEMPERATURE IN COPPER OF DIFFUSIVITY

4,25 FT° HR-*

k =220 Btu hr—1 r£t-1 p-1
©=558 1b £t~3
¢ =.092 Btu 1b-1 p-1

Applied temperature function: t=z 200 sinwe

Temperature amplitude F

x w= 30 =60  w=120 w2180
0.1 165.80 153.10 137.50 126.00
0.2 137.30  117.40 L. Lo 79.90
0.3 113.90 90.00 64.80 50.30
0.4 Ok. L5 69.00 L, 50 31.70
0.5 78.10 53.00 - 30.50 20.10
0.6 65.00 40.50 21.00 12,70
0.7 53.80 31.10 14,50 8.00
0.8 Ll 40O 23.80 9.85 5.10
0.9 36.90 18.25 6.80 3.20

1.0 30.60 14,00 4,65 2.00
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TABLE IV
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PEVETRATION OF THE CYCLIC TEINPERATURE IN SOIL OF DIFFUSIVITY

0.055 FT% gr-1

k=1l.4 Btu hr-1 f£t=1 p-1

Q=126 1b £t~3

¢ =0.20 Btu 1b~t p-1

Applied temperature function:

=200 sinwd @

Temperature amplitude F

X w:=30 =z 60 w=120 w= 180
0.05 87.80 61.60 38.50 27.00
0.10 38.50 19.00 7.35 3.64
0.15 16.80 5.90 1.41 0.25
0.20 7.35 1.82 0.27 0.07
0.25 3.22 0.55 0.05 -
0.30 1.40 0.17 _—— ——
0.35 0.59 T —— ———=
0.40 0.27 — —— ——
0.45 0.12 —— ——— ———

0.50

T ———

———
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CONCLUSIONS

From the results obtalned in the investigation of
perlodlec flow by the combined effect of convection and
conductlon, 1t can be seen that the equivalent systenm
as set up in this paper is a simple means of evaluating
the temperature amplitude at the surface of a seml-infinite
solid.

This system as set up to take care of the convection
film can be used in any type of heat transmission where
the heat 1s transferred by means of conduction and con-
vectlon, However, in many cases thls system leads to more
work than would a straight-forward approach to the problemn,
It 1s not recommended that this be used for all types of
flow, because 1t falls to show in any physicel sense the
actual means by which the heat 1s transferred.

It should also be remembered that thls system, asset
up, is dealing with the temperature only since the tempera-
ture drop across the film can be set up as a temperature
drop across an equivalent amount of conducting medla.

From the curves drawn 1t can be seen that the effect
of the conveotion film can be ascertained very easlly in
a graphical sense. Since the curves can be drawn wilthout
regard to the convection initlally, they are not dependent
in shape on this term, Thus 1t 1s quite simple to calcu-
late the effect of convectlon or the effect of a change

in convection 1f the curves for the materlial are known at
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the desired frequency. The equivalent film can be looked
at 1n two separate ways. Convectlon can be thought of as
increasing the effective depth of the solid, or 1t can be
reasoned that the effective real surface so far as tenmpera-
ture fluctuatlons 1s concerned 1s burled within the solld

by the effect of convection.
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SUMIARY

The known analytical knowledge of the periodic flow
of heat can Dhe extended to take into consideratlon the
combined effect of convection and conduction on this type
of flow. The equivalent system as set up in this paper
18 a rather simple device and is quite satisfactory as
far as the temperature dlstribution 1s concerned.

There are many problens left to be studied in this
type of neat flow. In this paper the temperatures have
been held purposely low so that the effect of radiation
could be neglected. At higher temperatures the flow of
heat 1s dependent on raedliation to no small degree. The
author believes that 1t would be possible to solve ana-
lytlcally for the effect of all three types of heat transfer
on periodic flow, There are many other problems that can
be attacked by analytical reasoning, and it is the hope of
the author that at some future date the work of this paper

can be continued and extended.
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