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ABSTRACT

This thesis presents an snalysis of the behavior of
continuous prestressed concrete structures. From thils
analysis the governing equations for various types of
geometry for prestressing cables are derived. The calcu-
lation of fixed-end moments due to the prestressing force
using the equations derived i1s quite cumbersome, however,
In order to simplify the calculations, design charts
are developed. A cable with revsrse curvature 1s analyzed
using the design charts. It is shown that the fixed-end
moments calculated by neglecting the effect of rsverse
curvature differ significantly from the fixed-end moments
calculated by considering this effect. Hence the effect
of reverse curvature should be considered for greater

accuracy in design.
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TABLE OF SYMBOLS

Avceaw Cross sectlional area of the member.
Deme—- Width of beam.
bl,bz-Coefficients of distance from beam support to

inflection points.

Y Total sag of tendons.

o Depth of beam.

Bewew- Modulus of elasticity for concrete.

L Prestressing force.

R Unit stress in concrete.

Hewew= Horizontal component of prestressing force.
h-----Eccentricity of prestressing tendon.
I-cew- Moment of inertia of section.

I ----Moment of inertia of varlable sections.
Kaweea Friction coefficient of length effect.
Keo=e- Moment coefficient. |

Lewe=- Span length.

j S length of tendon.

Moceem- Bending moment.

Newcaw Normal component of prestressing force.

Re~--=Radius of curvature.
Rb----Reaction at support B,
Se--«=Arc length.
WeeewaUniform load.

wy,wo=-Downward and upward uniform loads due to prestressing

tendon.



XK=mm=— Horizontal ordinate of prestressing tendon.

Jomm—— Vertical ordinate of prestressing tendon.
S\ Jp—— Deflection of tendon,
L S, Change in angle of tendon.

A e Coefficient of friction.
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I. INTRODUCTION

Continuous structures are found as certain types of
trusses, arches, rigid frames, fixed-end beams, propped
cantilevers, as well as continuous beams and slabs which
are qulte common in building construction. Since continu-
ous beams are stiffer than simple beams a smaller section
can be used to carry a given load thus reducing the dead
weight of the structure and attaining all the resulting
economies, Recently, many ingenlous methods of construc-
ion such as waffle slabs and the prestressed flat plates
have evolved to take advantage of continulty.

As a rule in continuous structures, the negative
moments at the polnts where the slab is continuous over
the support are the maXximum moments in the structure.

This has led to many forms of section design or tendon
placement. In cross-section design the members may have
their depth lncreased by arching or by the use of haunches
or. a member of uniform depth may be widened from the point
of inflection to the support. Two or more prestressing
tendons may be acting at the same elevation over the

support or additional short tendons may be added to increase
both flexural and shear resistance.

From the standpoint of serviceability, prestressed
concrete étructures are more sultable for longer spans
than conventionally reinforced structures. They normally

do not crack under working loads, and whatever cracks
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develop under overloads will close as soon as the load is
removed unless the overload is excessive. Under dead
loads, deflections and moments are reduced by the cambering
effect of prestressing. Among the many advantages, the
moet important 1s the control of slab or beam moments. It
is possible to control very precisely the magnitude of the
bending moments by controlling the prestress force and

the geometry of the tendon. The calculation of fixed-end
moments due to the prestressing force of practical cable
profiles is quite cumbersome. An attempt has been made

in this investigation to simplify this procedure.

This work contains three mailn parts. In the first
part, the concepts related to the behavior of continuous
prestressed concrete structures are reviewed and appliled;
in the second part, the equations for fixed-end moments
are derived; in the third part, design charts are

developed.
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II. REVIEW Of LITERATURE

Although prestressed concrete was not practical in
general applications as late as 1933, the basic principle
of prestressed concrete was conceived almost as early as
that of reinforced concrete. P. H. Jackson (1), an engineer
of San francisco, California, was the first to advance an
accurate conception of prestressing. Around 138836, he
obtained patents for tightening steel tie rods in
artificial stones and concrete arches which served as
floor slabs.

In 1888, C. E. W. Doehring (1) of Germany suggested
prestretching steel reinforcement in a concrete slab in
order to promote simultaneous rupture of these two materials
of distinctly different extensibilitiss. These applications
were based on the conception that concrete, though strong
in compression, was quite weak in tension, and vrestressing
the steel against the concrete would put the concrete
under compressive stress which could be utilized to
counterbalance any tensile stress produced by dead or live
loads. J. Mandl (2) of Germany made a theoretical treat-
ment of design of prestressed concrete in 1896, only two
years after Kdmond Coignet and iWapoleon de Tedesco (2)
developed the presently accepted theory of reinforced
concrete in France. The theory of prestressed concrete

(2)

was further developed by M. Xoenen of Germany in

1907. F. Dischinger (2), in 1928, first used prestressing
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in ma jor bridge construction---a deep-girder type in which
prestressing wires were placed inside the girder but

were not bonded to the concrete. About that time,
prestressed concrete began to acquire importance, though
it did not actually come to the fore until about 1945.

Most of the previously published methods of analysis
for continuous prestressed structures having draped
cables are based on the fundamental concepts which are
described in the following péragraphs.

It is obvious that there are no bending moments in
a cable that hangs between two supports (Figure 1).

Also, there 1s no shear as occurs in a beam, and the

loads are transferred directly to the supports. The
tensile force in the cable 1s a function of the span,

the load, and the profile., From simple statics, it can
be seen that the tensile force, F, times the deflection

of the cable, 6 , 1s equal to E%E, where L 1s the span and
w 1s the welght of the cable in pounds per foot.

Next consider a uvniform load hung from a cable at
some distance below it (Figure 2). The uniform load could
be a deep concrete slab. There is no bending in the slab
since it is uniformly supported. if the uniform load 1is
made large enough, the cable will remain essentlally in a

parabolic curve, even though a moving live load may be

superimposed.
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The uplift force of the cable equals the supported
uniform load and the gravity loads are transferred to the

cable supoorts.

la A sl
~
]
F w F
Fig. 1. Parabolic Draped Cable.
- L .

e - N

F F

l
I/ 7777777777777l (]

Fig. 2. Uniform Load Hung From A Cable.

Figure 3 shows a cable hung with small deflectlons
from several supports, namely, the éolumns of a building.
If the cable were enclosed in concrete, but not bonded, it
would be possible to put a tensile force in the cable
without changing radicaily the position of the cable, thus

giving the cable an uplift force. If the cable tension 1is
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Fig. 3. Ideal Profile of Cable.

F“%WM‘*F

Fig. 4. Actual Profilerf Cable.
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ad jJusted so that the uplift force of the tendon is equal
to the downward load of the structure, the concrete would
have no bending stresses, and therefore no vertical
deflection. Accordingly, the stress in the concrete would
be F/A, where A 1s the cross-sectional area of the

member, if the cables are anchored to the concrete by end
plates. If the cables were anchored on each end to suvports
external to the bulilding, there would be no stress in the
concrete. The concrete has no deflection under this
condition of leading and the reactions of the downward
loads would be transferred directly into the reactions

or the columns.

From a practical point of view, 1t can be seen that it
1s impossible to place the continuous tendons in the
configuration in Figure 3. They must be placed in smooth
continuous curves. Ftigure 4 shows a tendon as 1t is
actually placed in practice. These curves are continuous
parabolas exerting upward forces where concave upward,
and downward forces where concave downward.,

An attempt has been made in this thesis to apply the
applicable theories to the actual profile of tendons and
to derive the corresponding equations for fixed-end
moments. From these equations design charts were developed

for rapid design and the effect of reversal of curvature

is determined.
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ITI. BEHAVIOR OF CONTINUOUS
PRESTRESSED CONCRETE STRUCTURES

In this section important concents, such as cable
geometry, the idealized cable structure, the line of
thrust conceét and loss of prestress due to friction as
related to the behavior of continuous prestresssed concrete
structures, will be analyzed.

A). Cable geometry. It is obvious that there is no

bending in a cable as it hangs between two supports.

Figure 5-a shows a uniformly loaded cable with a para-

bolic profile. The tensile force in the cable is a functlon
of the span, the vertical load, and the profile of the
cable. The relation among them can be calculated as
follows:

Let F = the tensile force in the cable

the uniform vertical load on the cable

w
L = span
The coordinates of the cable at any point are x and y.
Also, the weight of the cable is considered negligible

compared to the applied load.



(a) | (v)

Fig. 5. Parabolic Cable Profile

Considering the force acting on the cable at x, which
makes an angle @ with the horizontal, and resolving the
forces horizontally and vertically, Figure 5-b, the

following equations are derived:

O : PSin@ - wx =0

2_Fy

- _Wx
Siné&

2P, =0 :FCos@ -H=0

H
Cos &

P =

where Iy and Fx mean vertical and horizontal component

respectively.
Hence WX = H
’ sin@  Tos@
wx Sin QZ
=
H Cos @ tan a = dx

18
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Differentiating with respect to dx,

2
w=H Q_g__
dx
Integrating w, with the origin »nlaced at the center of
the span of total length L, then

- 2
vy X _x" +Cix+ C,

2H

With the boundary conditions -3Y_ = 0 and y = 0 at x = O,
ax

it is seen that C1 = 0 and Co = 0. Also with y = h at

x = %, where h is the sag, the value of H i1s obtained as

H = wL2/8h,

Where @ 1is very small, H = F Cox @ =— F; therefore,

2
P o= WL . e —————— (1)
8h

The assumption that the horizontal componeﬁt is
equal to the tensile force in the wires usually results
in an error of less than 0.3 percent for the conditions
encountered in prestressed concrete construction.

B)., Ideallized cables. An idealized cable supported

by a concrete beam or slab 1s one In which the cable 1is
placed as shown in Figure 3. It is impossible to place
continuoﬁs tendons in this ménner since they must be placed
in smooth contlinuous curves. Smooth curves are necessary

to reduce the friction in the stressing operation. Figure
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4 shows a tendon as it 1s actually placed in the field.

It can be seen that there are downward forces in the area
over the support similar to the upward forces shown in
Pipgure 3. The computations for an 1dealized cable will be
illustrated by the following example.

A flat plate structure 1s sketched in Figure 6. It
has a column spacing of 25 feet, a cantilever of 5 feet
and a slab thickness of 10 inches. Although this example
i1s concerned with a column strip of a slab, the design

me thod pfesented applies to continuous beams as well as

to slabé.

/
//o
Ot 2¢’ 28’ Pt 247 8
o
A + -+ + + + ~
N
0y
N
B + + + + + o
N
128
+ +
c—+ + + o
/ 2 3 4 S

Fig. 6. A Flat Plate Structure.
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4.49 k-f¢
4.49 k-ft
8.1% k-f¢

N N N

>s. 15 K- f¢ «E

897Kk-F

2.4/ K—féé
1223 K-{£<
2.4 x-ff<

1223 K-f¢t

Fig. 9. MNoment Curves for Uniform Dead and Live loads

of 193 psf.

In this example, the following loads are assumed:
a partition load of 10 psf, a ceiling load of 8 psf, a
10 inch concrete slab at 125 psf,‘and a live load of 50
psf. Let it be desired to design the slab to be level
under dead load.

Using the moment distribution procedure, the moments
were found for a one foot wide strip of the slab along
the column line and spanning the long direction. Figure
7 shows the resulting moment diagram for a unit uniform
load, and Figures 8 and 9 show the moment diagram result-
ing from the uniform dead load of 143 psf. and the uniform
dead and live lo;é of 193 psf.
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In Figure 10, a cable location was plotted with
ordinates of the cable in direct proportion to the desd
load moment curve. The maximum eccentrieity, h = 0,30
ft., was placed at the point of maximum moment, The tendon
a8 shown in Figure 10 is referred to as a concordant
cable which is coincident with the line of thrust, It
i3 also possible to plot a nonconcordant cable and deter-
mine the effects of the secondary moments caused by the
eccentricity of the tendon with the line of thrust.
Generally, it is not necessary to know the secondary
moments, singe only the total moments produced by the

cable are required,

Al v
>
}

0,220’
g
::>J

q‘l/l; i

0.7 WENN
BEWERZ A bt 27 o] |

Fig, 10, A Concordant Cable Location for the Column Strip.

Tho following analysis showns that no secondary moments
exist in this instance, The moment curve due to the pre-
stressing force is drawn in Figure 11 in terms of F, the pre-

stressing force, From Eq, 1 the upward force w in kip per foot



of span is equal to 8?8/L2, where § is equal to 0.3707
feet (see Figure 11). Hence, the uniform upward load w
1s 0.00476F which is in direct proportion to the uniform
downward 1oad.} If this uniform load is placed on the
‘structure and the fixed-end moments are calculated and
balanced, the moments shown in Figure 12 result. For no
deflection due to dead load, the moments due to pre-
streésing should equal dead load moments, and this can be
accomplished with the proper choice of . Thus, no
secondary moments are induced into the slab by the con=-
cordant tendon force. If any position other than a
concordant position were used, secondafy effects would

be evident in the balanced moments.

0.30F 0\30F

0.220F
0.0593 ﬁ\ /\ 0.0 533

0.0 P8 0.]096F
o141 E o/ 9IF

Fig. 11. Moment Curve Due to-Prestrgssing Force.
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W=o0.00476 F

trtt et bttt bttt ot ttttod

Moments

| ]

00593 F %30/ F 0.220F o.30lF 0.0593F

Filg. 12, DBalanced Moments Due to Upward Load w = 0.00476F.

The dead load moments due to downward loads are set
equal to the moments due to upward loads and the prestress
force is calculated directly. Hence, 0.30F = (63.36)
{0.143) where 0.143 1s dead load in kip{/ft. Therefore,

F = 30.2 kips. Since the downward loads equal the upward
loads, there 1s no bending, and the stress in the slab

is F/A. In Figure 13, the moment diagram of the dead

load has been superimposed on the moment diagram of the
tendon load. It can bé seen that the moments are equal and
opposite in sign. Thcrefore, the bending stresses are

zero and the only existing stress 1is the F/A stress.

In Figure 14, the moment diagram due to the dead
load plus the live load has been superimposed on the moment
diagram due to the tendon load. The moment due to the
dead load plus the live load equals the moment of the
unit load times 0.193 kips per foot. The algebraic sum
of the bending moments along the slab gives the residual

moment that must be resisted by the concrete. The tensile
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stresses which would result in the concrete due to the
residual bendihg moments are generally overcome by the
axial compression, F/A, which results from self-anchoring
the cable. In this example, referring to Figure 14, the
residual moment at the first interior coiumn is

12o23 - 9.06 = 3017 k-fto

Hence, T

« F MY _30.2)(1000) 4(3.17)(1000)(12)(5)
AT I 120 1000

c
= 252+ 190 psil, where compression is considered to
be positive.
Therefore, for the top fiber f, = 62 psi, and for the
bottom fiber f, = 442 psi.

Moment due to tendon load

Momént due to dead.

Moments shown are in the units of kip-ft.

Fig. 13. Superimposed Moment Diagrams for Tendon and Dead

Loéds.



Moment due to tendon load

/:’ 906
s

N .
Moment due to dead and live load
Moments shown are in the units of kip-ft.

Fig. 14. Dead Load and Live Load Moment Diagram

Superimposed on Tendon Load Moment Diagram.

C). Line of.thrust concept. In the analysis of a

- prestressed structure without externéi'loads, the prestress
force F may be thought of as a compressive thrust, pro-
ducing only uniform direct compressive stress over the
cross sectlon when the thrust_coincides with the center
of»gravity of the concrete section, but producing both
direct compressive stresses and bending stresses when it
is eccentric with respect to the center of gravity of the
concrete section. Thus the profile of the prestressing
element represents the line of thrusgt of & simply-supported
prestressed structures. If the center of gravity of the
concrete section 1s considered as the base line, the
profile becomes the moment diagram to the scale of 1/F,

or it may be regarded as a true moment diagram for a fofce

F equal to unity. Since in practically all cases
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eccentricities are small in comparison to span length,
no distinction needs to be made between F and its
horizontal component as these are nearly equal.

In continuous structures, when prestressing tendons
are placed eccentrically with respect to the centroidal
axis of the cross section, additional moments due to
continuity are created. If the profile of the prestress-
ing steel has been determined or assumed, the entire beam
may first be regarded as if it had no supports. The
moment dlagram produced by the eccentricity of prestress
is Fe, where F 1is the prestress force and e is the
distance from the centroid of the section to the
prestressing tendon. Since F 1is considered to be constant
throughout the member, the moment diagram is given by the
eccentricity curve plotted to some suitable scale. If
the member should possess a curved axis, it is only
necessary to plot the moment diagram by measuring the
eccentricity from the curved center of the gravity line of
the concrete section instead of from a straight base line.
From this moment diagram, the corresponding shear diagram
can be plotted. The equivalent vertical load on the
beam necessary to produce the moment and shear diagram
can then be computed. With this load acting on the
continuous member as it is actually supported, and includ-
ing any singular moments such as might occur at the ends

of the beam due to the eccentricity of center of gravity
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of steel area at the end, the resulting moments can be
computed and plotted. Dividing the ordinates of the
resulting moment diagram by the force F produces a diagram
which deviates linearly from the profile of the center of
gravity of the prestressing steel area, and this diagram
has the same shape as the center of gravity line of the
steel area. This dlagram gives the actual thrust profile
representing the total effect of prestressing for the
continuous structure. For horizontal members, when the
thrust line is above the upper kern limit of the concrete
section, the eccentricity produces tension in bottom
fibers; when it is below the lower kern limit of the
concrete section, it produces tension in the top flber

of the member.

In considering the effects of external loads, the
moments due to the external loads are evaluated by the
usual methods, such as moment distribution. The moment
diagram for the external load effect is drawn and the
ordinates are divided by the force F. The result is the
thrust prbfile due to external loads, and when ordinates
are added algebraically to those for the prestress effect,
the line of thrust for the combined load 1s obtained.

A continuous prestressed concrete beam will be analyzed
to illustrate the procedure described above.

A continuous prestressed concrete beam with bonded

tendons 1s. shown in Figure 15. Assume & prestressing
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Fig. 15. Computation of Equivalent Loading |

"Diagram Due to Prestress.
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force of 200k and a uniform external load w = 0.5 kips
per foot on all spans.

The moment diagram for the entire continuous beam
produced by the sccentricity of prestress i1s shown in
Figure 15-b. When the center of gravity line of the
steel area is above the center of gravity line of the
concrete section, the esccentricity produces a positive
moment; when it is below the center of gravity line of
the concrete ssction, 1t produces a negative moment.
From rfigure 1E-b, the corresponding shear diagram is
computed and shown in Figure 15-c.

In Figure 15-d, the loads necessary to give the
shear and the moment of Figure 15-b and Figure 15-c are
computed. This is the equivalent loading produced by
the steel on the concrete. The final moments at the
supports due to prestressing are found from moment
distribution and are given in Figure 16. Values of N/F
at the supports are evaluated, and by a linear trans-
formation, the line of thrust due to prestressing is
plotted in Figure 17.

The moment diagram due to external loading is found
from moment distribution and is plotted in Figure 13,
Values obtained by dividing the moments due to extsrnal
loads by the prestressing force are the ordinates of the

line of thrust which are plotted in #igure 19. Vhen the
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two thrust lines shown in Figures 17 and 19 are added

algebraically, the final location of the thrust profile
for all effects 1s obtained (Figure 20).

S5k 16.8% 352K 36.2% 16, 8% $LF
r wz 096 K/ff J}
*oK’?\ s h 3 b . 40k—§t
=25’ ‘ 257 1, S0’ 25’ 25’ )
40 - 17129 K- ft 191,29 k-f¢ 4o K-ft

Fig. 16. Final End moments for Loading Shown in Fig. 15-d.

C oagstft o984 ft
0.2 ¢ o072 f¢ 27721t 04721t

Fig. 17. Line of Thrust for Loading Shown in Fig. 15-d.

93.7¢ k-ft - +93.7% -t
g . .
: e ©FE l
' W\T\\ . } J | | _
-t ' - ¢
F128.2" 7 —135.72"

Fig. 18. Moment Diagram for External Loading Shown in
’ Fig.‘lS-a.
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28’

Fig. 19. Line of Thrust for External Loading Shown in

Fig. 15-a,
0.33(# o o.33] ﬁ'
6.2§¢ 02031t \'{ o.203ft 02 t
| 0614 ‘

Fig. 20. Final Line of Thrust for the Beam Shown in Fig. 15,.

D). Loss of prestress due to friction. One of the

important problems in the design of continuous prestressed
concrete structures is the friction between the prestress-
ing tendon and the concrete. 1In post-stressing thé tendon
1s tensioned after the concrete has hardened and while
Jacking the tendon there 1s some friction created. 1In
order to make the moments due to'the'prestreSSing force
opposite to those caused by the.actingnldéds;“feversed
curves are used. Thelﬁésic theory of frictional loss of
a cable around a curve,(Fig. 2l1-a) 1s discussed below.

The diagram shows the frictional force along an

infinitesimal length of tendon, dx, with a radius of
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curvature R and angle d&® The normal component dN is
given by:
dN

d& qd & d&*
F-§-+F'-§—+ dF 3=, or dN = Fde®
where the higher order term dFd8 is neglected.

W il Wi

dé

(¢) | (&)
Fig. 21. Frictional Loss of a Curved Cable.
The amount of frictional loss dF on the length dx is given

by aN timeé a coefficient o_f friction i, thus,
ar

«dN = «Fd @

d—F-u ~ A

F
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Integrating both sides of this equation,

(oo 0 )5 -(ue);
lnfy - 1nfp = M (0 - &)

1nf2 =44 or £2 = e"‘aa

Equation (2) can be applied to compute the frictional
loss due to wobble or length effect by replacing «4& with
KL, where K is a coefficient of wobble or length effect.
The combined effedt of curvature and length is found by

adding the individual effects.

nF2 = - u4 -xAl

F1
Fo = Fqy e -(ua + KLY e (3)
2
But e_('a&"- KI) =1 - U+ kL) + (U8 + K‘() _MS

| 21 31

d e e o e e e

1r (LA + xf) << 1 o- (U8 + X)) = 1-(ULQ + xX).
Fo ZF] (1o MO ~K ) -mmmmmmmem e (4)

Therefore, ‘as a ruls of thumb, if Ud + K[ S 0.3 then
equation (4) can be used; if4if+ K4 > 0.3 then equation (3)
must be used. The values for A and K depend on the type of
steel used and the surface properties of the contact
materials.

Por practically all prestressed concrete structures,

the depth is small compared with the length, so the



56

projected length of tendon measured along the axis of the
member can be used when computing frictional losses.
Similarly, the angular change & 1s given by the transverse
deviation of the tendon divided by its projected length.
(Both referred to the axis of the member.)

There are several different methods of overcoming
the frictional loss in tendons. These methods will be
discussed in the following paragraphs.

One method of overcoming the frictional loss 1is
overtensioning the tendons. This method can be used when
frictional loss is below 20 or 30 per cent of the prestressing
force. The amount of overtension usually provided 1s equal
to the maximum frictional loss.

Another method 1s to reduce the length of prestress-
ing units. If the length of the prestressing units are
large, as in Figure 22, losses in the prestressing force
due to friction will be large. The frictional losses
may be reduced by using shorter lengths of dlscontinuous
steel with intermedlate anchorages, as in Figure 23,
instead of continuous steel with end anchorages only.
Intermediate anchorages are generally subject to high
stress concentrations and adequate reinforcementAand
additional prestressing 1s always necessary to prevent
cracking. #figure 24 shows another arrangement in which the
length of prestressing units may also be reduced by

prestressing one span at a time. The beams are constructed
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Fig. 22. Three-Span Prismatic Continuous Beam.

%/
- L. b -— ——————Y
,— .
~ - , ~ P ~ -
--'.--“ \Q---"’ \\‘--¢“’ ]

Fig. 25. Continuous Prestressed Concrete Beam

with Intermediate Anchorages at the Top.

Temporary

anchorage Coupler ° Jack |
L—_vtf—wé*{j < -~ ’Z%%_g_ ~

Pig. 24, Continuous Pgestreésed Concrete Beam

Constructed in Parts from Left to Righﬁ.
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individually from left to right. After the beam crossing
one span is fully prestressed, the portion of the beam
crossing the adjacent span 1is built, and its unstressed
tendon is connected to the stressed tendon of the previous
portion by‘a coupler. A jack is then apvlied tb the right
end for tensioning.

Reducing the curvature of the tendon is another
method of overcoming friction loss. It is possible to
eliminate the curvature entirely by using stralght tendons
and haunching the beam, as shown in Figure 25. The center
of gravity line of the section becomes a curve, thus the
desired eccentricities are obtained throughout the
structure. However, it is difficult to control the
eccentricity throughout the length of the structure in
the construction, and from a préctiéal point of view it .
seéms to be satisfactory to use curved beams and slightly
curved tendons at the same time as shown 1in Flgure 286.
This would permit a considerable reduction of the curva-
ture of the profile of steel and a&oid high frictional
loss.

Reducing the coefficient of friction also reduces
friction loss. The coefficient of friction varies
greatly. It not only depends on the condition of the
tendons at the time of prestressing and the material
surrounding the prestressing tendons, but also depends

a great deal on the care exercised in construction, By
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Fig. 25. Continuous Prestressed Concrete Beam with Variable

Depth and Straight Prestressing Tendon.

-— o "-—---‘ —
-‘___M\'._:T‘\//‘ T =

'ig. 26. Continuous Prestressed Concrete Beam with Variable

Depth and Reduced Curvature of Prestressing Tendon.



the proper choice of materials and care in construction,
it is possible to reduce the coefficient of friction to
a very small quantity.

The last method considered is that of jacking from
both ends. When the spans are long or when the angles of
bending in tendons are large, jacking from both ends

can be used to reduce frictional losses.

40
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IV. DERIVATION OF EQUATIONS FOR CABLE GEONETRY

In the deslign of continuous prestrsssed concrete
structures the most critical problem is the practical
aspect of placing the tendons and the calculation of
the fixed-end moments due to prestressing. Various cases
of practical tendon profiles will be discussed in this
section. The equations of the preceding chapter can be
used to calculate the friction loss for all of the cable
arrangements discussed below. It is assumed that the
members are elastic and that deflections of the structure
do not alter 1ts dimensions for purposes of analysis.

In order to determine the upward pressure exerted
on a stressed tendon which has a proflile concave down-
ward, a small section ds of the curved surface as shown

in Figure 27 is analyzed.

A summation of forces in the vertical direction ylelds

dp = 2FSin 4&
2
Since the angle d & 1is small,
dp = 2FSin Slzﬁ. = oF 9_22. = Fd&

The uniform upward pressure L2 resulting from the tendon

force 1is
-dp - Fd& _F (1) .p (1
" %3 T g ds -(——R-—L’
de

where R is the radius of curvature.
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Therefore F =

Fig. 27. Normal rorces Caused by Tendon in Contact

with a Curved Surface.

A). Simple beam with end connections for post-

tensioned tendons. For a very flat curve, points on a

circle and on a parabola lie almost along the same'cﬁrve.
Figure 28 shows one-half of a beam ﬁith the end connections
of the post-tensioned tendons at mid-depth and having a
centsr line eccentricity of h. For this simple beam the
post-stressed tendons are placed along the circular arc

as shown. An expression can\be derived for the radius

of curvature in terms of the span length L and the center

eccentricity h by use of the Pythagorian theorem, 1l.e.,



RZ = (- 4 (= - n)2

from which )
R=ﬁ+g_L2+4h2
sn 2 8h
2
Substituting R = LS £ 4h% (5)
sh
L2 4 an®
Po=a_t 2R .. cememeccca———— cmmmeaa(8)
8h P
\'g
¢
g fé - | }
v“q----- ——————— - h
---q—{—,F
s . [}
- % -

fig. 28. Simple Beam with

End Connections for Post-Tensioned Tendons.,

43



B). Continuous beam with constant section and

stralght tendons. The continuous beam in Figure 29-a

is of constant section with straight post-tensioned

tendons. The structure may be analyzed as follows:
Consider support B to be removed and determine the

displacement at B caused by prestress. The deflection

(Figure 29=~b) 1is

Fh(2¢)%
Sb " T oo
85T

Then a reactlion Ry is added as shown in Figure 29-c.

This displacement may be expressed as

'y = Bul2< )°
48ET

The condition of no displacement at B 1s used to obtailn

an expression for R,. That 1is,

- }
CSb-o{b
or Fh(2l.)2 - Rn(2 )5
8ET 43ET
from which
Rp = OB e e (7)
L

From statlcs,

44



3Fh_ (1) . pn = _FD

and My, = R.ILL - Fh =
b a 2L, 2

The bending moment diagram due to the prestressing florce,

F, is shown in Pigure 29-d.

45
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Fh

‘ —— — ————
- --—-—-----—--—-— -3
A .A_B
L - yA
(a)
(| o= ==~ T -
(b))
3Fh
Re="7"
~~~~~~~ *~~6;,’~” —
(e)
5 2‘
(d)
Fig. 29. Continuous Prestressed Concrete Beam with

Constant Section and Straight Tendons.
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C). Continuous beam with parabolic eccentricity

and straight tendons., The continuous beam in Figure 30-a

has straight prestressing tendons with the eccentricities
of the end connections equal to zero. The cross section
of the beam is constant but 1ts axis is in the form of
two parabolas. The midspan eccentricity 1s indicated as
h.

Support B is removed and the bending moment diagram
resulting from the post-tensioning moment is vlotted as
shown in Figure 30-b. The deflection at B for the simple

span A-C may be derived as follows:

1 =1 r(2/3) (Fh)4 3(2L )] - (2/3) (Fh) , £
58B " 5 [Ef ~— * =3 ] EI *3
= (2/3) (Fh)4 (3L = = (2/3) (Fnh)¢ 1.
ET ('4" T ) EI -7
then ¢p = ('é;) (E/S)E;FhJ 2 (upwarad)

Now a reaction Ry is added, causing the bending
moment diagram shown in Figure 30-c. Using the bending

moment dlagram, the deflection at B 1s

sBei Lol en @y - [E (L]
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3
= RplL” _ RDL5(£)= 2 (RbLS)
481 4m1 '3 '3 (FET

(downward)

The reaction Ry may be determined from the condition of

éB = 58/ » 1.6.,

» 3
L, _(2/3) (FR)L _ 2 REL‘
from which
- 2Fh
Ry = & cmrrccrcrmec e e - (3)
b L
since wp = igh (Equation 1) then Ry = Egé__

2
Now M = % (.ﬂg&.) (L) = _Egé__

where M, is the moment at B due to tne prestressing force.
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(a) Beam!Elevation

(b) Bending Moments Due to Fe Only

//////\\\\\\

(c) Bending Moments Due to Rb Only

I"ig. 30. Continuous Prestressed Concrete Beam

with Variable Eccentricity and Straight Tendons.
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D). Variable section, continuous, prestressed concrete

beam with straight prestressing elements, A two-span

continuous beam is shown in Figure 3l-a. The end
connections are at mid-depth and each midspan eccentricity
is h. Consider the case where the upper side 1is straight,
the lower side 1s curved parabolically, and the post-
tensioning tendon is straight.

In Figure 31-b, if A; 1s the area of the M/EI,dlagram
resulting from post-tensioning and if span A-B is assumed
to be simple and disconnected from B-C, the change in
slope at B is

L
o{’ . AL/2) — M MxdX
B L 2 2EIx

-]

where

b 2 2419 .
4 X¢ = 4L A X + L°4)Y in span A-B
Ix = ;5—3—— ( é; é? ’
b and d mean the width and depth of the beam respectively.

M, = etk wpX® | _wp(LX-X?)
X T2 2 o

7
Substituting Mx into olp

y v4
J\B =/WP(LX-X2) dX

4EIx
For a moment, Mp, applied at B, if ay 1s the area of the
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M/EI diagram for My equal unity, and X is the distance
from A to the centroid of this area as shown in Figure

51l-c, the change in slope at B due to My is

) - ZXNpajy - _MB Fa
A B T2 (Ray)

Ix Elx

L
where Xa; ‘}(Xdal =‘/fx(_3§£) =///‘X(L§ZEl—9§)
o o

£ x2ax

Now Xal =
o AEI,

Substituting Xay into ozg yields

X2ax
ol —-ﬁ———/(mx

The condition of no change in slope at B may be expressed
as v
/
6(5 =‘0(5

Therefore,

£ £ o
Mg (Keax [ wp(IX-x?)ax
L2 EI, 4EIyx
-4 (4

which yields y,

/wngX-Xz)dX
Mg = o Elx =~ weeecercsmcocccsrcse—ecoaa (9)

£ x2ax
L2EI,

o

where Mg 1s the moment at B due to the prestress force.
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L A £ £
2 2 2 2
i » ~ _$_ A ’ ///’ \\ '@‘ ’.’
; \\ ‘// \\ 7
‘: \\\ I's \\.
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i EIx M
g (b) Bending Moment
i .
| MI_ ,/ \\\
;a"”\{ . Aév MBG‘\\Q
EIx

X

(c) Bending Moment

M Applied at B

Fig. 31. Continuous Prestressed Concrete Beam

with Variable Section and Straight Prestressing Tendons.
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E). Constant section, continuous, prestressed concrete

beam with curved tendons. It was pointed out previously

that from a practical point of view, it is impossible

to place the tendons in the configuration shown in
Figure 3. Figure 4 shows the shapes of tendon curves

in practice. It should be noted that tendons are placed
in smooth curves. These curves are usually continuous
parabolas which exert upward forces where concave upward,
and downward forces where concave downward,

Figure 32 shows a tendon with a reversal of curvature
in the span. Since the curve i1s contlinuous, the slopes
at the point of intersection of the two curves must be
equal. If the point of reversal 1s a distance bjL from
the support, then it is seen from the properties of a
parabola that the distance dy = dj and dp = dg. Since

triangles PRV and TRS are similar as are triangles VRW

and VSTU,
244 . 2do an 2dy . 24 .
b,L boL biL L/2

Therefore, dj = 2dby, do = 2dbo.

From the above relation, the forces exerted by the tendon

on the concrete may be derived as follows:

2 2
Fd., = w1 (2bL) (downward) and Fdy = w2 (2boL)
1 ) 8

(upward) .
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Therefore,

R 2Fd, 2Fd,
W = mr- and Wa = TEI-*T—

Substituting d, and 4, into w, and w, yields

2F(2d4bs) _ 4Fd

M = b?L? - —g“ﬁ (dovmward) ————e e (10)
— _21?‘(__2_@_}23_)_ — _4Fd (upward) ——ce e e (11)
2= PEE T T R

8

For the special case in which b,= 0.5, LA allP

which is the same equation that was derived for a simpnle
hung cable (Equation 1).

Ucing the above eguations, the tendon force, F,
can be converted into equivalent uniformly distributed
loads on the structure which makecs it possible to comnute

the fiyxecd-end moments.
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Fig. 32. A Prestressing Tendon with
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Fig. 33. Loading Diagram due to Prostress Fig. 32.




V. DESIGN CHARTS FOR #IXED=END MOMENT

The calculation of fixed-end moments due to the
prestressing force using the formulas derived in the
preceding secﬁion 1s quite cumbersome. In order to simplify
the calculations, design charts for fixed-end moments
will be developed in this section.

The’parabolic tendon in Figure 32 is symmetrical
about the center line of the span and has a total drape
"an. In’thié case, the fixed-end moments can be determined
by loading the span with the upward and the downward
loads w; and wg as shown in Figure 33.

By separating the loading condition of Figure 33
into two parts as shown in Figure 34-a and Figure 34-D,
and assuming EI is uniform, the fixed-end moment equations
in terms of F, d and by may be derived as follows:

For the loading condition shown in Flgure 34-a,

= _Fd
Miap = o1 » where M, ,n is the moment due to the

load w.

for the loading condition shown in Figure 34-D,

- Fd _ 2 1 1 1-2b
Mopp = 3 (1 +# 2by - 2b17) (El 4‘“’"5')( 1)

2-b1
where Mo,p is the moment due to the loads wi plus wo.

The equation for moment equilibrium at A is

MaB = MgAB = Mypp
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Thereforse
_ Fd

Hap 23 (L 420y - 2m Py 1)y 5y, Fd

| b1 Zeby 5oy

=1 oW, _ 2y(1l 1 1
where k [3 (1 + "bl »2b1 )(\51- -+ %-:EI)(I-Zbl)- B—b—l-]

It is seen that the fixed-end moment coefficient,
k, depends only on bj. Chart I shows values of the fixed-
end moment ccefficient, k, for a range of values of by. |
This chart is only valid for beams which are symmetrical
about their center line. Figure 35 illustrates a tendon
profile for an interior span. If by = 0.20, the fixed-
end moment 1s computed as follows: |
From Chart I 1t is seen that k = 0.533; therefore,

M = k(Fd) =(0.533) (0.5)F = (0.2664)F = 0.2664F

4 Fd
Wi =g 73

) /
4 3
/ ! ] i 4 A
} g
/]

L
<

FPig. 34, (a)
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Fig. 34, Separating Loading Condition of Figure 33,

» bl — bal — Lot e ﬁ;z
B </ L/ 2 o
Fig. 35. A Tendon Profile for an Interior Span,

Since all tendons are not placed symmetrically, an
unsymmetrical profile of tendons needs to be discussed.
In Figure 36-a, the tendon consists of four portions of

parabolic curves. For this span the prestressing produces
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four uniform loads of different magnitudes as shown in
Figure 36-b. The fixed-end moments can be calculated
as follows:

The first step 1s to separate the loads into two
parts as shown in Figure 36-c and Figure 36-d. Agaln
divide the loads of Figure 36-c, into two parts as shown
in figure 36-e and Figure 36-f. The following are the
fixed-end moments,

_ b12(6-8b1 ¢ 3b31%) o
Mzpp = o (wy + wo)L!

2 1
= 2126 _ 3p, 43b.2)(L ) Fa
3 |
b1°(4 - 3bq)
or Mzpa = 2 (wy + wz)L2
3
2! 1 1
E — (4 - 3by1)( Fa
11 2 .11 (4Fa1)
MaaB " 153 2" T 1o THbp
: _ 5 2 _ 5 4Faq
Mga = g5 “el = Tg5 (F=py)

DA
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" Fig., %6. Loading Condition for Chart II.
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The two cases are combined as follows to find the fixed-end

moment for the loading condition shown in Figure 36-c:

Miap = MgaB - Mzpp @nd Mypy = Mgpp - Mapa,

that is:
iias = [ =2 (=2 - 222 (6eaby 4 3012)( L 4 1) Fay
1AB "lTez ‘Fb; 3 b1 &by
- leal--- ------------------------------ (15)

¥ia * | 1oz ‘g5

In the same manner the fixed end moments are determined
for the loading condition shown in PFPigure 36-4.

These moments are:

3 1 1
MoaB ’{ > (A - bg (4-5b2)(g§ ¢ T—g—)J Fag
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2
Mopy = [ & 2 ) - b27 (6-8b, - 3bs2) (X 1
<BA 192 (%_bg) g~ (6-8by - 3bg )(55 + %:EE)J-FQQ

® Ky P —om e o (16)
where:
11 (4 _ b2 2y¢ 1 1
! (192(T:SI =5 (6-801 - 30y )(bl + g-bl)]

192 %-by 3 by 4-
- S 4 bov 1 1
k2 {192 135 (4 - 3ba)(g ¢ E-bz)]
' = [11 . . bo® (6 - 8by - 3be”) (L 4 L )J

The resulting fixed-end moments for the cable orofils
shown in Figure 36-a are found by combining equations

(13) and (15) and equations (14) and (16), 1i.e.,

Myp = (ky 28] # kofg) Femmmommmoo oo (17)

and MBA (kl' ay + k2'32) Fomrec s e e e e e m (18)

According to equations (17) and (18), Design Chart

II 1s developed. The fixed-end moments can be computed by
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using this chart, which gives values for fixed-end moment
coefficients. To illustrate the use of the design
charts, assume b1 = 0.15, bg = 0.20, a7 = 4 in, ag = 6
in.and F = 250 k. Then the fixed-end moments at A and

B are computed as follows:

From Chart II it is seen that ky; = 0.307, ko = 0.259,

k'y = 0.27f, k', = 0.262. '

Therefore,

Mpp® (kyay + Kgag)F

4 -
= [t0.507) (£ 4 (0.259) (2] (250)

= §7.75 k-ft.
Mga® (ky'ay + ko' 8p)F

- (4 6
= (0.2 (%) 4 (0.262)(5) | (250)

= 54.25 k-ft.

In this analysis it was assumed that the cable was
in a profile which was a series of parabolas., Thils method
could be used without too much loss of accuracy if the

profile 1s a series of circular segments.
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CHART I.

Moment Coefficients for a Symmetrical Cable Profile.
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Moment Goefficients for an Unsymmetrical Cable Profile.
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VI. THE EFFECT OF REVERSE CURVATURE

The design charts developed in Chapter V will bve
used in the analysis of a cable with reverse curvature
as shown in Figure 37. In order to compare results,
the cable has the same span and maximum eccentricity as
the 1dealized cable analyzed previously in Section IiI.
The points of reverse curvature were chosen at 0.10L

from the center line of the supports.

¢ Support ) Suppart d support

| ' #
oaof‘t o.ill ft 2,220
Prad ; — / I /_F\

o20| v i

0,194 ’ ®,/ol] 0. /el ajot | e.foL 1

4 Span ‘ ' ¢ %P““
> 5‘ S;.

Fig. 37. Exanmple of The Effect of Reverse Tendon

Curvature of the Tendons,

The fixed-end moment coefficients are found in
Chart II. Then the fixed-end moments are calculated as

follows using Equations 17 and 18.
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[(0.5548)(0.0595+o.201)+(o.2446)(0.201+o.305)F

=
t

0.215F
MSgL - [(0.2446) (0.0593+0.,201)+4(0.3548) (0.201'}0.5027 F

0.241F
[(0.3548) (0.3040.111)4(0.2446) (o.111+o.2zo)} F

0.227F

Mg, = [’(0.2446)(o.so+o.111)+(o.5548)(o.111+o.220{]F

= 0.218F
where the subscripts R and L refer to locations immediately
to the right or left of the indicated support. The

balanced fixed-end moments are shown in Figure 38.
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/ 2 3
s fe 24 Fé 24 fé 2¢ ft
o1 Yol % %/
F.E.M —00$7E\t0.2)SE  =024IF|+0.227F  —p.2ifF|40.218F
[ — D O =0 454F t0.00 7 Flta.¢0TF olo
[ —cCo. Yo.004F —O0.°78F| O +0.004H—0.004F
2—D 0 —0.004;:' t0.039F +0.039F olo
2= Co +0, 020 —0,002F _© +0.020H-0.920F
3— D 0 |-0020F +0.00 [ TFltooo/F b |0
3 — Co. toeolF —0.0j0F 0 +0.00|F=0.00] F
4 —D 0_[o00lF _ +0wfoflraocosF olo
= m0osyF[to.089F  —0.219FI+0279F  —0J93Fl+0./93F

Fig. 38. Balanced Fixed-end Moments for Fig. 37.

In simple structures, the moment due to the prestress-

ing 1s always Fe, and the physical position of the tendon

is always colncident with the line of thrust.

continuous structure this is not necessarily true.

In a

The

line of thrust can be moved up or down depending on the

effect of continuity. It 1is seen that the moment at the



second support 1is 0.279F. Since thilis moment equals
Fe'!' where e' is the distance of the line of thrust from
the centroild of the cross-section, then 0.279F = Fe!',
Thus, e' = 0,279 foot, whereas the actual nhysical
location of the tendon is 0.300 foot. The location of
the line of thrust at any position in the span can be
found by dividing the moment by the prestressing force.
At the second support, the secondary moment is (0.300F-
0.279F) = 0.021F, since the secondary moments are defined
»as the difference between the resulting moment, Fe', and
the primary moment, Fe.(l)
In Figure 11, 1t was assumed that there was no
point of reversal, but in Flgure 33 the reversal of
curvature was considered. The two cases are cowpared in
Figure 39. The differences are quite large especlally if
by is large. The differences become larger since the
differences are proportional to by. Usually the value
of by 1s between 0.10 and 0.150.
By this comparlson, it can be seen that the effect

of reversal of curvature must be considered in order to

obtain a more economical design.
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Support 1 2 )
Moment with reverse rvatur
(Plgare 38y o0 0.059F 0.279F 0.193F
Moment without reverse curvature -
Difference 0 0.021F 0.027F
% BError 0 7.5% 14%

Fig. 39. The Effect of Reverse Curvature.
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VII. CONCLUSIONS

The results of this investigation have led to

several conclusions, which follow:

l. The principal advantage of continuocus prestressed
concrete structures over conventionally reinforced
structures is that the amount of the dead Yoad moments
can be eliminated or controlled very precisely by varying
the prestressing force. dence 1t is possible to use a
smaller depth for a continuous structure without

decreasing its stiffness.

2. In simple or statically determinate structures,
the physical position of the tendon is always coincident
with the line of thrust when there is no dead load or live
load on the beam. In a continuous structure this 1is not
necessarily true, since the line of thrust can be moved

up or down depending on the effect of continuity.

3. In order to make the moments due tc the prestress-
ing force opposite to those caused by the acting loads,
the prestressing force must act below the centroid of
the cross-section in the center of sach span, while over
the supports 1t must act above the centroid. In order to
satisfy this condition, the profile of the center of
gravity of steel has to have a varyling curvature as it

passes from & region of positive moment to a support.
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The effect of reversal of curvature is quite large
(14 to 20 percent) and must be considered in order to

obtain a more economical design.

4. The charts developed in this thesis greatly
simplify the calculation of fixed-snd moments due to

prestressing force, and a rapid design can be made.

5. The effect of the reveréal of curvature varies
directly with bl (8ee Figure 36-a). If by increases,
the effect of the reversal of curvature becomes larger.
Similarly, if b, decreases the effect of the reversal
of curvature becomes smsller. If by 1s less than 0.05,
the cable under consideration may be treated as an

idealized cable with very little loss of accuracy.
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