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I. ABSTRACT

This investigation is the study of a method for the experimental
measurement of thermal strains, Using four electric strain gages (two
of one type and two of another) the method will yield the normal and
shear strains as well as the temperature change in any biaxial streas
field. The gage types must be chosen for the range of temperature in
which it is desired to measure the thermal stresses,

The method described eliminates the need for extra resistors,
themocouples, unrestrained dummy gages at the same temperature as the
active gages, special alloy gages for each type of metal and special dual
element gages as are required by the various temperature compensating
techniques.

An analytical solution to the test problem has been obtained for
conparison with fair agreement cofisidering the assumptions that are

necessary for the solution,
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LIST OF SYMBOLS

E g — strain in the x direction (in./in.)

€ = strain in the y direction (in./in.)

¥y shear strain in the xy plane (in.fin.)
€ 1, — strain in the x direction due to load (in./in,)
eyL -~ gtrain in the y direction due to load (in./in,)

e —— ghear strain in the xy plane due to load (in./in.)

xyL
€ ypp —— Strain in the x direction due to thermal restraint (in./4in.)
€y strain in the y direction due to thermal restraint (in./in.)

X xyTR shear strain in the xy plane due to themmal restraint (in./in.)
§ x — deformation in the x direction (in./in.)

3 g - deformation in the y direction (in./in.)

€5 strain in the 8 direction (in./in.)

€ 6~ strain in the 8 direction due to strain in the x direction
(in./in.)

592 - gtrain in the 8 direction due to strain in the y direction
(in./in,)

€ 8y strain in the O direction due to shear strain in the xy plane
(in./in.)

—<z - coefficient of thermal expansion (in./in./°F)

o<g - coefficient of themmal expansion of the gage filament (in./in./°F)

=+p -~ coefficient of thermal expansion of the aluminum plate
(in./in./°F)

Sy e ocefficient of thermal expansion of the steel plate (in./in./°P)



T -— temperature (°F)

O T ~— temperature change or temperature above the condition of zero
thermal stress (°F)

‘1‘0 — initial temperature at which zero themrmal strese exists (°F)

Tl ~— final temperature at which thermal stress exists (°F)

G, ~— gage reading (microinches/inch) (n =1, 2, 8, 4)

K'I' - thermal coefficient of resistivity of the gage filament
(ohms/ohm/ °F)

GPn - gage factor or strain sensitivity of the gage filament
(ohms/ohm/in./in.) (n =1, 2, 8, 4)

R ==~ gage resistance (ohms)

A R —~- change in gage resistance (ohms)

L = gage length (in.)

A L ——- change in gage length (in.)

D -— gage diameter (in.) |

u - Poisson’s ratio (in./in./in./in.)

\u, == Poisson’s ratio for aluminum (in./in./in./in.)

A
U Poisson’s ratio for steel (in./in.f/in./in.)
Py = axial force in the aluminum plaete (lb.)

Ps — axial force in the steel plate (1lb.)

F ~— axial force (lb.)

M =~ bending moment (in.lb.)

HA ~—- bending moment in the aluminum plate (in.lb.)
HS —- bending moment in the steel plate (in.lb.)

h =— plate thickness (in.)

hA-" thickness of the aluminum plate (in.)

hy == thickness of the steel plate (in.)



W —- geparation between the plates (in.)

r -— radius of curvature (in.)

X e radius of curvature of the aluminum plate (in.)

L, radius of curvature of the steel plate (in,)

E —— modulus of elasticity (psi.)

Ej —- modulus of elasticity of the aluminum plate (psi.)

Es - modulus of elasticity of the steel plate (psi.)

A —— change in fiber length due to bending (in.)

dB8 == small angle formed by the intersection of lines extending from
the plate ends to the radius of curvature (radians)

2L, — plate length (in.)

1 -~ moment of inertia about a base (in.%)

I, — mement of inertia about a base of the alumimum plate (in.%)

15 - moment of inertia about a base of the steel plate (in.4)

B -—- plate depth (in.)

Sy = stress in the x direction (psi.)

Sy == stress in the aluninun plate (psi.)

3., === gtress in the steel plate (psi.)

3
A - gross sectional area of the plates (in.z)

Aj == cross sectional area of the aluminum plate (in.2)

AB -w= cross sectional area of the stesl plate (in.z)



IT. INTRODUCTION

Jince their development in the late 1930’s by E. E. Simmons at the
California Institute of Technology and A. C. Ruge at the Massachusetts
Institute of Technology electric strain gages have become a very impor-
tant part of virtually every experimental stress analysis. Their effeo-
tive use in thermal stress work, however, has developed in a slower manner,
The problem of measuring thermal stresses is one that must be considered
in any design study involving transfer of heat because stresses induced
by temperature change are often the controlling factors. Analytiocal solu-
tions to most thermal stress problens are very difficult, therefore an
effective experimental approach is necessary to complete a thorough analy-
sis of most problems., It is the purpose of this study to show how a
rectangular array of four electric strain gages can be used to measure
thermal stresses,

Arranging the gages ir a rectangular rosette with gages of one type
at 0° and 90° and gages of another type at 45° and 135° will give four
readings that will permit a set of four independent equations to be writ-
ten., these equations can be solved for the four unknown quantities

= < ey, ny and AT,
Using Mohr’s circle for the strains will yield the principal strains
in the most general case and from direct relationships the principal
stresses may be determined,

This investigation is a result of the authors interest in analy-

tical as well as experimental stress and strain analysis.
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III., REVIEW OF LITERATURE

The analytical approach to the solution of thermal stress problems
has been oconsidered extensively by Boley and Weiner (1) and also by
Timoshenko and Goodier (2) with the conclusion that problems with any-
thing other than a simple configuration are too difficult to be
solved analytically. This fact makes an effective experimental approach
of great importance,

The measurement of thermal stresses has been attempted with varying
amounts of success and almost exclusively the methods used involve some
type of temperature compensating technique. As far as the author has
been able to determmine, the method of measuring thermal stresses which
is described in this thesis has not been previously used,

Several temperature compensating techniques exist for electric
strain gages by which it is possible to measure themmal stresses
approximately. The use of scme of these methods is described in papers
by Brewer and Ingham (3), Meriam, Steidel, Brown and Lyman (4) and
Thomson and Vergamini (5). The methods and related problems are described
in books by Murray and Stein (6) and Perry and Lissner (7); also in papers
by Hines and Weymouth (8), Gray, Crossman and Rubin (8) and DeMichele (10).
The paper by Hines and Weymouth has an excellent description of five meth~
ods of teuperature compensation,

Temperature compensation can be accomplished in soveral ways, one
of these is by maintaining the dummy gage in an unrestrained condition
and at the same temperature as the active gage. This probably is the

most accurate of all types of compensation.
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One type of temperature compensating strain gage is made up of two
resistance elements connected in series. One of these elements is the
main grid and usually has a negative temperature coefficient of resis-
tance when mounted on a particular material. Temperature compensation
is achieved by connecting a short length of an alloy having a high pos-
itive temperature coefficient of resistance in series with the strain
sensitive main grid, This short strain insensitive length of alloy along
with a balast resistor replaces the dummy gage,

Another type of campensation utilizes a gage having a high, but
accurately known, temperature coefficient of resistance, Mounted physi-
cally close to the active gage and oonnected in series with the lead
wires to the dummy arm of the strain gage circuit is a small variable
resistor having a temperature coefficient of resistance much higher than
the active gage. The compensating resistor is adjusted so as to balance
out the change in resistance of the active gage due to temperature, by
causing an equal and opposite change in the dummy amm,

A widely used temperature compensating strain gage is the single
element type which is made of an alloy which does not produce a strain
signal for unrestrained thermal expansion. The measurement of thermal
stresses with this type of temperature compensated strain gage may best
be visualized utilizing the principle of superposition. A compensated
strain gage attached to an unrestrained bar (of the particular material
for which the gage is compensating) heated over the temperature range of
the gage will not produce a strain signal. Maintaining the temperature
and compressing the bar back to its original sise will produce a strain
signal equal to the mechanical strain of compression. This strain may
then be used to determine the thermal stresses.
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A thermocouple can also be used for temperature compensation., The
change in bridge unbalance caused by an uncompensated strain gage is a
function of the gage temperature and for a fixed bridge excitation volt-
age, the output wvoltage of the bridge can be expressed in terms of milli-
volts per degree change in temperature. A change in the excitation volt-
age will produce a proportional change in the slope of the millivolt per
degree output curve, With DC bridge excitation voltage the change in
bridge output versus temperature has the same units and character as a
thermocouple output. Thus, a thermocouple oan be used to produce an
equal and opposite voltage for cancellation purposes.

In 1935 Osgood (ll) derived the relationships for determining prin-
cipal stresses from strains on four intersecting gage lines 45° apart.
This constitutes a rectangular rosette with four observations as is used
in this paper to determine thermal stresses.

Murray and Stein (12), Perry and Lissner (13) and Hetenyi (14) also
describe techniques for using four gage strain rosettes. The rectangular
rosette with four cbservations and the tee delta rosette are described
with derivations showing how the four cbservations in each case can be
used to determine principal stresses even though one reading is redun-
dant if conventional stress - strain relationships are used. The authors
oconsider the fourth gage reading useful only as a check and they do not
refer to the use of four gage rosettes for the determination of thermal

stresses as described in this paper.
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IV. DISCU3SICN

The problem of measuring thermal strains with electric strain gages
requires a knowledge of the basic fundamentals that make it possible to
design and use the gages for neasuring strains due to any type of applied
force,

The principal of electric strain gages is that a small wire (usually
001 inches in diameter) fastened securely with some type of adhesive to
almost any material will (when forces are applied) deform in exactly the
same manner as the material with some change in the cross sectional area
and length of the wire and therefore with a resultant change in its resis-
tance to the flow of electricity. This change in resistance is propor-
tional to the elongation of the wire which in turn is equal to the strain
in the material to which the gage is attached. Any change in temper-
ature will also affect the resistance of the gage wire and will appear
as strain on a measuring instrument.

The gage wire resistance is a function of length, diameter and temp-
erature,

R« £(L, D, T) (1)

‘Ising the chain rule of differentiation, this expression can be written

as
dxaéidx,+§§dn+9—§dr. (2)
QL QD T

The term (D R/DD)dD can be shown to be negligible when compared to

(SR/dL)dL. The definition of Poisson’s ratio is

)
dL/L
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where

d =2
LudL

and since D is usually .001 in. the center term of equation (2) is of
this order of magnitude smaller than the first term and can be neglected
for all practical purposes. Considering the isothermal case dI' = O,

expression (2) becomes
R = %‘% dL. (3)

Dividing both sides by RL and rearranging terms gives

dR/R DRL
dL‘Ln."S‘ﬁ'ﬁ- (4)

The right side of equation (4) has been called the gage factor, (GF),
Making this substitution the relation betwsen resistance and strain be-

comes

ﬁ-
£ = cF % (5)

The gage factor is determined by previous calibration by the manufacturer,
This calibration can be accomplished by measuring the strain optically
and by measuring the resistance and change in resistance with a wheat-
stone bridoge. Work done by Campbell (15) on several types of strain
gages showed that the gage factor did not vary with temperature more than

four percent over the range ~73 °C to 93 °C,
DEVELOPMENT OF THE METHOD

Consider a rectangular coordinate system superimposed on the mater-
ial on which it is desired to measure the thermal strains. The strain
in the x diregtion, the strain in the y direotion and the shear strain
can have two components, one due to load, and the other due to restrained
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thermal expansion,
€yx=€u + Sgr

€a€ +e

y yL yIR (6)

= ¥ +
ny xyL nyTR

Total deformation in the x and y direction consists of the strains in
the respective directions plus a component of free thermal expansion
which is equal to the coefficient of thermal expansion multiplied by the

temperature change,

S = € +at AT
X X

(7)
§ =€ +AT
y y
An expression for the strain in a general direction 8 can be developed
using the gecmetry of figure 1. Strain in a general direction can be
considered as consisting of three parts, that due to strain in the x
direction, that due to strain in the y direction and that part due to

gshear strain.

e-& + & + & 8
8 8l 82 83 (8)

Considering figure l1-A the strain in the 8 direction due to strain in the
x direction can be detertiined as follows:

g = g’ = & +a \ T
X X

e - oc’ - oo e’’’
el oc¢ oc

ca’! = aa’ .ﬁ.u (€, +¢AT) oc cos B

(Ll
r %
ee” * oos 8
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c¢fof’ = (Ex'rel-& T) oc cos? 8

(9)
- 2
Eel (€x+-¢ A T) cos“ @
Similarly figure 1-B will give the strain in the 8 direction due to
strain in the y direction,
€ = ot A 2
82 (Ey + T) sin“ 8 (10)

The contribution by the shear strain to the strain in the 8 direction can

be determined from figure 1-C,.

€ o9 =00z clc?
83 oc oc

cfc?? = gc? cos 68 = bb! cos B

bb?! = tan‘(xy?l? 'ny

e’’’ = X oy 08 8 (11)
€ = Xxx cos 8
83 oc
1

B

OC ® gin 8

E
a3 = ny sin 8 cos ©

Replacing expressions (9), (10) and (11) in (8) and simplifying gives

€ + € - &
QS-J—E—-—-x-bé-E-z—-—-xmzaé-I-?xainzG* o< AT, (12)

From equation (5), with the effect of temperature included, the strain

gage reading is

Kp AT
Gmgg o =€g + B, (13)

where Kp is the thermal coefficient of resistivity of the gage filament,
Substituting expression (12) in (13) gives the simplified general

expression

& € &, - € ~ K
Gy = {-—-5-;4——1 + —E—— 005 28, + —3F sin ze,;\+[x+ %lla'r. (14)



18

It is noteworthy that the o< of equations (13) and (14) is actually the
difference between the << of the material to be tested nde:Af of the
gage filament, however, it is not necessary to separate the cocefficients

of thermal expansion as they can be included in the constant temm
K

which is determined by calibration. Now considering the four equations
that result from equation (14) when n= 1, 2, 3, 4 and using readings
from gages arranged at 0°, 45°, 90° and 135° let

b e éEx ; G:x

and (16)

Dr u[ = + g%:-].

Two different gage factors are enough to make the equations independent.

Equation (14) then becomes

G, = P +Q + DAT, (17)
92-p+§§ﬂ+0'&'r, (18)
Gg = P-Q+DaT (19)

and

G =P~ ZE 4 pram, (20)
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x' é y' Yﬂ

and AT. Adding and subtracting expressions (17) and (19) gives

These equations may now be solved for the four unknowns, &

Gy + Gy = 2P + 2 DAT (21)

G, - Gy = 2Q. (22)
Substituting for Q gives

€, - éy = G, - Gy, (23)
Adding and subtracting expressions (18) and (20) gives

Gy + G4 = 2P + 2 D'AOT (24)
and

Gy ~Gy = ny (25)
Multiplying equation (24) by D/D’ and subtracting equation (21) eliminates
the temperature change.

(63 + 64) B, - (6) +G3) = 2P(By - 1)
Substituting for P yields

(Gz + G&) %, - (Gl + Ga)
€ 4+ € m .
x* Ty (D-1) (26)
Dl

Adding and subtracting expressions (23) and (26) yields

e -G, (g +64) B, - (6 +Gy) -
x 2 22 - 1)
il
and
- (Gy +6,) B - (6, +Gp)
e_i"—-{fl* 2 4 3 . (28)
y 2(R - 1y
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From equation (21),

2D *

AT (29)

Readings from the four gages may be used to solve for the unknowns

exl eyt \’

xy and AT from equations (25), (27), (28) and (29).

EXPERIMENTAL VERIFICATION OF THE METHOD

Experimental verification of the method has been attempted by
measuring the thermal strains in the bimetallic configuration of figures
3 and 4 for comparison with an analytical solution, The elastically re~
atrained condition of the test problem subjected the method to conditions
which it will encounter in actual practice, however, the strains produced
by temperature change were lower than those which usually cause concern
and more acourate results could be expected when measuring strains of
greater magnitude.

The elastiocally restrained test actually began after a preliminary
but important unrestrained thermal expansion calibration test to deter-
mine the constants of expressions (15) and (16). When these constants
ware determined the plates of figure 2 were pinned back to back as in
figures 3 and 4 for the elastically restrained thermal expansion tests,

Heat for the tests was supplied by a Fisher Scientific Company oven
with thermostatic control within X .5 °F, Temperature measurements,
necessary only for calibration, were made with thermocouples monitored by
a Leeds and Northrup semi-precision potentiometer. Gage readings were
taken with a Baldwin-Lima-ifamilton type L strain indicator. The assembled

apparatus is shown in figure 5.
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Figure 2
UNRESTRAINED THERMAL EXPANSION CALIBRATION TEST

Ficure 3

ELASTICALLY RESTRAINED THERMAL EXPANSION TEST



Test Specimen Data;

Effective Length - 8 in,
Thiokness - 1/2 in.
Width - 3 in.

Separation - 1/16 in.

Gage Orientation;

Type A~5 at 0° and 90°
Type C-5 at 45° and 135°

Figure L
TEST SPECIMENS AND GAGE ORIEBNTATION

BLASTICALLY RESTRAINED THERMAL EXPANSION TEST

L - 5/8 in, dia, Steel Pins

(44
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TEST APPARATUS ARRANGEMENT



In order to obtain strains from the four gage readings, using equa-
tions (17), (18), (19) and (20), it is necessary to know accurately the
constant term of expressions (15) and (16). This term can be obtained
from an unrestrained thermal expansion calibration test for the partic-
ular material being tested. This is possible because all load strains

L=

éfy, and X __ in expression (14) are zero during unrestrained

x* xy
thermal expansion, The general equation (14) is then reduced to

G, = K AT (30)
which can be solved for the constant K;. This constant is different for
every combination of gage and test material, however, the term KTnIGn is
a property of the gage only and can be determined if the coefficient of
thermal expansion is accurately known for the material on which the cal-
ibration test was made, Knowing the quantity KTann would make it poss-
ible to use the same type of gage (without calibration) on any material
for which the coefficient of thermal expansion is known as the sum of
these two quantities is the constant temm K.

It is desirable that extreme care be taken during the calibration
test as the calculated strains are very sensitive to the magnitude of Kj.
For each temperature increment in this investigation 12 to 24 hours were
allowed for all parts of the test specimens to come to an equilibrium
condition.

For the purpose of this work, calibration was first accomplished
using figure 6 and table I and then refined to greater acouracy by trial
and error adjustment until the calculated temperatures from the first
elastic restraint test compared most favorably with thermocowple temp-
eratures which were originally taken for comparisen only. The refined

constante, when multiplied by a particular temperature change, according
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Figure 6
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Table I
STRAIN VARIATION WITH TEMPERATURE
FROM

UNRESTRAINED EXPANSION CALIBRATION TEST

Aluminum
train Strain train Strain
Temp. °F 10™°in./in.  107%in./in.. 10™°in./in.  10~5in./in.
A-5 @ 0°° C-5 @ 45° A-5 @ 90° C-5 @ 135°
87 0 0 0 0
117 -2 2292, wl 2261
142 -29 4077 <12 4082
173 ~102 6462 -87 6362
212 -295 9014 -266 8928
Steel
Strain Strain Strain Strain
Temp. °F 10-6in,/in.  10=8in.fin.  107B4n.fin.,  10~%in./in.
A<5 @ 0° C-5 @ 45° A-5 @ 90° C-5 @ 135°
87 0 0 0 0
117 -200 2110 -205 2112
142 ~398 3743 -417 3732
173 -688 5935 ~742 5891
212 -1052 8423 -1112 8326

All strain values have been corrected by the ratio of an accurately known
strain to the measured strain which was equal to 1.108 for the type A-§
gages and .583 for the type C-5 gages. Perry and Lissnexr (18) describe

the procgedure.
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to expression (30), give gage readings that are very near the original
readings which were taken from the calibration curves of figure 6, The
difference is one that could result from reading the curves, therefore,
a refining procedure such as is described above is advisable for greatest
accuracy, The adjusted constants were verified by the second elastic
restraint test, The values obtained for K; and KrnIGn in this investiga-
tion are as follows:
Aluminsm
Type A~5, K} = =.800 x 10™% in./in./°F
Type C~5, K;
Steel (31)

78,360 x 107% in./in./°F

Type A=5, K} = =7,725 x 1076 in./in./°F
Type C~5, K; = 66.940 x 10™® in./in./°F
Using average values from Marks’ Mechanical Engineers’ Handbook (16) of
¢y = 18 x 107 in./in./°F and og = 6.5 x 10°® in./in./°F, Ky /6, may
be determined.
Al uminum
Type A-5, Ky /GF) = 13,800 x 107 in./in./°F
Type C-5, Kpp/GF, = 60,360 x 107 in./in./°F
Steel (32)
Type 4=5, Ky JGF, = -14.225 x 107° in./in./°F
Type C-5, Kq,/GF, = 60.440 x 106 in./in./°F
The small differences in the two 1;1.1[(-‘.!‘1 and quzlGI-'z factors are due to
the fact thato<p and =<g were not accurately known. These factors how-
ever, compare favorably and emphasize the fact that they are independent
of the material to which the gage is attached. Calibration on materials
for which the exmct coefficient of thermal expansion is known would
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determine the Kp,/GF, factors more accurately.

Figures 7 and 8 as well as tables II and III show the strain variation
with temperature for the elastically restrained thermal expansion tests,
The stress in the x direction is calculated below at T = 200 °F for each
plate, in both tests, for comparison with analytical values., Using equa-
tion (14), the strain curves of figures 7 and 8 and the calibration con-
stants (31), a set of four simultaneous equations with four unknowns may
be written for each plate.

The material constants used are average values which were taken from
Marks’ Mechanical Engineers’ Handbook (17). They are as follows:

Eq = 10 x 1075 psi,

Eg = 30 x 10~6 psi,

ug = .332

Uy = .287
Aluminum plate - Test 1

0= € - .800x 100 AT

X

8680 x 10~° -[f—é—%—i"- + 35?]* 73.38 x 10°° A T

(33)
-110 x 10™° = €, - +800 x 108 AT

é +
8580 x 1070 = [-—’5-—2~—§-1 ” 1'-;51] + 78,36 x 1070 AT

Solving equations (33) simultaneously gives
€ = 98.7 x 1076 in./in.,
€, = -16.4 x 106 4in./in. (34)
ﬁT - 117.1 .P-

Stress in the x direction can be determined by
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Table II
STRAIN VARIATION WITH TEMPERATURE
FROM

ELASTICALLY RESTRAINED EXPANSION TEST 1

Aluminum
Strain _gtrain Strain Strain
Temp, °F 10~64n,/1n. 107 in./in, 10~6in./in. 10~84n,/in.
A-5 @ 0° C-5 @ 45° A-5 @ 90° C-5 @ 135°
838 0 0 0 0
114 19 2290 -9 2297
139 26 4008 =21 3979
170 1C 6242 =51 6181
209 -27 a021 -111 8918
Steel
Strain Strain Strain Strain
Temp, °F  10~6in./in.  10~8in./in.  10~6ip./in. 10~84n,/in.
A-5 @ 0° C=-5 @ 45° A=-5 @ §0° C-5 @ 135°*
83 0 0 0 0
114 -235 20986 -196 2103
138 -435 3621 -377 3621
170 =725 5633 -652 5627

209 ~1096 8133 -1001 8120
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Table III
STRAIN VARIATION WITH TEMPERATURE
FROM
ELASTICALLY RESTRAINED EXPANSION TEST 2

Aluminum
Strain Strain Strain Strain
Temp. °F  10~5in./in.  10~6in./in.  10~6in./in.  10~6in./in.
4=5 Q 0° C-5 @ 45° A-5 @ 90° C-5 @ 135°
85 0 0 0 0
127 5 3307 -24 3283
160 4 5537 -46 5480
198 -35 8380 ~100 8289
210 ~483 9166 ~124 9066
Steel
Strain Strain Strain Strain
Temp. °F  10~8in.fin.  10-6in./in.  10~8in./in.  10~Bin./in.
A-5 @ 0° Cc-5 @ 45° A-5 @ 90° C-5 @ 135°
85 0 0 0 0
127 -343 3009 ~298 3012
160 ~632 5003 ~573 5001
198 -1002 7569 -914 7561

210 -1103 8278 ~1017 8270
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By = 7oy (€, + g, (35)

Substituting the material constants and the values of equations (34) and

solving gives

5., = 0 06 93.7 + ., = : 6
e Ls 332(-16.4) | x 10~

or
Sy = 992 psi.

Experimental Sx = 992 psi.

Aralytical S_ = 616 psi.

Experimental AT = 117,1 °F

Measured (thermocouple) AT = 117 °F

Steel platel - Pest 1

-1010 x 107% = € - 7.725 x 106 a T

+
7730 x 1070 = | X = €y . Y§Y1+ 66.94 x 1076 AT

(36)
-890 x 10°% = €, - 7.725 x 1076 AT

+
7730 x 1075 = [fi—z.fl - Iéﬂ] + 66.94 x 1076 AT

Solving equations (36) simultanecusly gives
€ = =l11.6 x 10=6 in,./in.,

€, 8.4 x 10~® in./in. (37)

AT = 116,3 °F.

Jubstituting these values and the material constants into equation (35)
gives

s = %ﬁ; [«-111.6 + .237(3.4)] x 1078

or

Sy =-3571 psi.
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Experimental sx = 3571 psi,
Analytical Sx = ~3479 psi.
Experimental A T = 116,383 °F
Measured (thermocouple)AT = 117 °F

Aluninum plate -~ Test 2
-30 x 1070 = €, - .800x 1078 AT

+ e
8500 x 10~ .[f_z_.é___x + I..?C] + 77.36 x 1076 A T

(38)
~110 x 1070 =€ - .800 x 1078 AT

8410 x 10-6 -[E..’.‘..;_EX— .\:..Jéﬂf.]-l- 77.36 x 1078 A T

Solving equations (38) sémultaneously gives

€ . =62 x 10~% in,/in,,

€, = -17.6 x 107 {n./in, (39)
and

AT = 115 °F
Substituting these values and the material constants into equation (35)

gives

s, = %[52 + .332(~17.6) | x 106

or
S, = 631 pai.

Experimental Sx = 631 psi,

Analytical Sx = 606 psi.

Experimental AT = 115 °F

Measured (thermocouple) A T = 115 °F

Steel plate - Test 2
-1000 x 10~6 -E - 7725 x 106 AT
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-
7640 x 10~° -[i.&.?f.z +T_§ﬂ]+ 66.94 x 10~6 AT

(40)
-910 x 1070 = éy - 7,725 x 1076 AT
7640 x 107° = [_e._i‘.f_.;__.e_x - :"_éxx]-r 66.94 x 10~% AT

Solving equations (40) simultaneously gives
€ = -110.9 x 107 in,/in,,
€, = -20,9 x 107° in./in,
and
OT = 115,1 °F,
Substituting these values and the material constants into equation (35)

gives

5, =30 x20% [110,9 + ,287(~20.9)] x 108
x 1—1.33752[ ] x

or
S, = -3822 psi.
Experimental S; = -3822 psi,
Analytical S, = -3573 psi.
Experimental A T = 115,1 °F
Measured (thermocouple) AT = 115 °F
3tress in the x direction was also caloulated for each of the experimen-
tal points of tables II and III, The results of the calculations did not
always compare as favorably with the analytical results as those calcula-
ted from the curves of figures 7 and 8, This is reasonable as average
curve values are almost always of greater value in experimental work than
the individual measurements,
An analytical solution for obtaining the stress in the x direction
due to elastically restrained thermal expansion was obtained in the
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following manner. The symmetry of the plates permits a complete solution

to be obtained by considering figure 9 below,

A
A
A
7
4 a N Tn
; umi num 1 ] | ' ,hA
- o

Steel w ) h
f 1 | ! 8
]
A
A Lo
/
A

Pigure 9

Initially the plates are straight and of the same length and after they
have been subjected to an increase in temperature they will be curved

downward because >4 is greater than c-‘-s. Considering a section of fig-

ure 9,

s Py .
‘—e Steel " Pg

the direct forces are equal.
FA Ry F
and the direct stresses are

sm-ﬁ
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and (42)
Sw = %.
The bending moment equation may be written
hn + ha
My Mg = p(.i’*_.z._h.?. + W) (43)

and since the reciprocal:of the radius of curvature is approximately

d2y/dx® which in turn is equal to M/EI, the moments may be written

Mg = Ealﬂ
A
and (44)
}% == EIS
g
vhere
rg = rg *+ (hy + hg)/2 + w, (45)

The substitutiem for equations (44) may be verified as follows:

Figure 10
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Strain is equal to the change in length divided by the original length
in figure 10,
A

€-_

2 (48)

46 = tan~! 8 o 4

hj2  nj2°

Replacing A in equation (46) gives

rd0 = sz, (47)
€=i (48)

S _ Mh

1 % i3
r- [T+ idyldxizlﬁz'“%x%'

Now substituting equations (44), (45) and (47) in (43) and simplifying
yields

Eala | Esls
22 Jde” 3L Jd6 - (hy + hg)/2 - w

= F(ny + ng)/2 + w]. (50)

Also consider the unit strain in the lower fiber of the alumimm com-
pared te that in the upper fiber of the steel. Three components are
present in each case, the unit strain due to temperature, the unit strain
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due to direct stress and the unit strain due to bending stress,

=< ,(T1-Tg) - T—E- % =< (T1~Tg) + -l%s-g Lp (s51)

The last termm of equation (51) is the difference in the strains in the

two fibers due to the separation w, That term was detemined as followe:

2Ly
g
de
¢
w
e
Figure 11

From figure 11
de = tan d8 = &
w

and A beoomes wdelzl.p when expressed &as unit strain,

Solving equation (51) for dé and simplifying gives

o) Bt -5k )
de = T/3,(ty + hg + ¥ ' (82)
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where B is the width of the plates. Substituting d8 in equation (50)
yields an expression with F as the only unknown. The equation cannot be
solved algebraically and a trial and error solution is necessary. Equa-
tions (50) and (52) can be solved directly for F, if the approximation
that r; ® rg is made. The approximation is good for large values of

Iy and rge Solving for F gives
P om 2(=*s -;al(:;-—gn)
Eﬂi-hs#zw)(hﬁ-l-hséw 2

S
EgIa + Eglg B|hgEy = hgiy

and knowing the numerical value of F makes it possible to solve for dé

(53)

in expression (52) and also for the stresses in the following equations.

- =f
AT,
and (54)
wl &)
oot .'-:?ga
where
- Epl
" 2Lp7d3
and
Mg = -k (55)

2L Jd8 - (hg + hg)/2 - W
Equations (52), (53) and (54) have been programmed in Act III language
for the Royal McBee LGP-30 Digital Computer located in the Missouri
School of Mines and Metallurgy Computer Center and the results are

tabulated in table IV and represented graphically in figure 12,



Table IV

THERMAL STRESS VARIATION WITH TEMPERATURE

CALCULATED ANALYTICALLY

Temperature Stress Stress
Change (psi.) (psi.)
(°F) Aluminum Steel
0 0 0
10 52.7 -310,7
20 105.4 ~621.3
30 158.0 ~932.0
40 210.7 ~1242,7
50 263.4 -1553,.4
60 316.1 -1864,0
70 368,7 -2174.7
80 421,4 ~2485.4
90 474.1 =-2796,0
100 526.8 -3106.7
110 579.4 -3417.4
120 632.1 -3528,.1
130 684.8 ~4038,7
140 73745 -4349,4
150 790.2 ~4660,1
160 842.8 -4970,.7
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V. CONCLUSIONS

The experimental results of this investigation show that the method
of measuring thermal strains which is described is a feasible method,
The method offers advantages over every type of temperature compensating
technique as described in the abstract, After more complete studies are
macde, a single type of four gage rosette may be used to measure thermal
strains on any type of material for which the coefficient of thermal ex~
pansion is known.

Purther investigation could yield acocurate calibration gage con~
stants K.I.nIGPn for several types of gages which may be used in different
temperature ranges, The use of different sets of gages as the tempera-
ture range increases or decreases is necessary in any thermal strain
investigation, This is true because the gage factor romains essentially
constant only in the range for which the gage is designed and also be-
cause some gage construction is unsatisfactory for elevated eor oryogenic
temperature measurements, In Campbell’s study (19) the maximum deviation
from a constant gage factor occurred at the ends of the temperature
range for which the gages were designed.

Extended studies might also include a consideration of the effect
of gage transverse sensitivity and also the effect of differences in
Poisson’s ratio. The errors which these characteristics contribute are
usually small but they way account for part of the deviation between ex-
perimental and analytical solutions.

Strain amalyzing equipment for which the mero drift, over a period

of time in the instrument, may be corrected is desirable,



44

The analytical sclution of the test problem for this investigation
contains several assuuptions that may also contribute small errors.

Most methods which are now being used to measure thermal strains
contain even more possibilities for error, This fact and the fact that
good results were obtained in this investigation make it reasonable to
conclude that the method of measuring thermal strains which is described

herein may prove very useful in the future.
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