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ABSTRACT

Some global optimization problems are converted to mixed-integer linear prob-

lems (MILP) using piecewise-linear approximations in this thesis so that they can be

solved using commerical MILP solvers, such as CPLEX. Special attention is given to

approximating two-term log-sum functions, which appears frequently in generalized

geometric programming problems. Numerical results indicate the proposed approach

is sound and efficient.
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1. INTRODUCTION

A global optimization problem may consist of a nonlinear objective function

subject to linear and/or nonlinear constraints. Methods have been proposed to tackle

this difficult class of optimization problems. In this thesis, piecewise linearization is

considered. This approach is intuitive and many researches have been done in early

literature, including approximation formulations and approximation errors. Gener-

ally, the more linear segments used to approximate a non-linear function, the more

accurate results can be expected. However, an approximation with more linear seg-

ments will also require more variables and constraints, which increases the computa-

tional complexity as well. For example, approximating a small segment of a smooth

nonlinear function to an acceptable error may easily incur hundreds of linear seg-

ments of approximation. This was forbidden before recent progress in computational

power, which was surmised as the key reason why this approach only received lim-

ited applications. In recent years, the progress in computational power and storage

capability of personal computers has finally enabled us to revisit this traditional ap-

proach. Commercial mixed integer linear program (MILP) solvers, such as CPLEX,

are powerful. They are now employed to solve large-scale MILPs in various real ap-

plications worldwide on daily basis. Such real applications include, to name a few,

airline crew scheduling, rail/fleet scheduling, revenue managment, and financial in-

vestments. MILP, in general, is NP-hard. Converting an optimization problem, which

may not be NP-hard, to an NP-hard formulation may seem a reverse process. In this

thesis, the computational complexity issue is set aside. The emphasis here is merely

to make use available tools to obtain optimal solutions effectively and efficiently.

Section 2 provides a summary of literature on piecewise linear approximations

and the approximation error. Section 3 covers general formulations and approxi-

mation error. Special attention will be given to approximating two-term log-sum
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functions, which appears frequently in generalized geometric progamming problems.

Section 4 presents numerical results, including some test functions of global optimiza-

tion problems and a floor planning problem. Section 5 concludes this thesis.
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2. LITERATURE REVIEW

This section lists important findings in literature on the conversion of nonlin-

ear problems to mixed integer linear problems using piecewise linear approximation.

Geoffrion (1977) has emphasized the importance of approximating the objective func-

tions in mathematical programming. The author successfully showed that the max-

imum overshoot (undershoot) of equal values gives the approximation that is best

in the sense of the natural criterion. The paper shows that the natural criterion is

equivalent to the Chebyshev approximation criterion. Magnitude of the errors im-

posed by piecewise linear approximations on nonlinear functions has been established

in Thakur (1978). The error, i.e., the difference between the approximated function

and its piecewise linear approximating function was analyzed. The author further

explained how to obtain the lower and upper bounds on the optimal objective value.

Thakur (1980) discussed about the lower and upper bounds on the optimal and dual

optimal solutions and how they could be used to solve the nonlinear, convex separable

programs.

Güder (1994) presented how to determine the minimum number of linear seg-

ments required to approximate the nonlinear problems. Thakur (1984) provided

analysis of the bounds introduced by the given approximation, which was then used

to solve highly nonlinear convex separable programs. Thakur (1986) determines the

objective function error bound by solving a series of piecewise-linear problems.
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3. PIECEWISE LINEAR APPROXIMATION

3.1. GENERAL FORMULATIONS

Some global optimization problems involve nonlinear objective functions and

constraints which can be solved by breaking the function into predetermined number

of segments. This is the piecewise linear approximation of the objective function or

constraints. A function f(·) is divided using k linear segments as shown in Figure

3.1. These linear segments have slope mi and value xi, where i = 1, . . . , k. Each

segment is of length x̄i(= xi − xi−1). Now this function will be approximated using

these segments and the function will be expressed as

f(x) ≈ f(0) +

k∑

i=1

mixi (1)

with

x =
k∑

i=1

xi (2)

However, the above formulation is still not sufficient. For example if one would

like to approximate f(x) at x = 12, and x̄i = 5, i = 1, · · · , 7. The correct answer

would be {xi} = {5, 5, 2, 0, 0, 0, 0}. However, {xi} = {0, 0, 3, 5, 0, 4, 0} could also be

a solution to the above formulation. Therefore, additional constraints are needed to

resolve this issue. The purpose is to make sure that the values of xi are assigned

sequentially and a subsequent segement is called upon only when its precedent seg-

ments have all been completely filled. There are, at least, two formulations that can

serve this purpose.

3.1.1. Method 1. Let binary variable ui (∈ {0, 1}) indicate whether the

i-th segment will be chosen. That is, ui = 1 iff xi > 0. This method imposes the

following constraints:
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x̄iui+1 ≤ xi ≤ x̄iui, i = 1, . . . , k − 1 (3)

xk ≤ x̄kuk (4)

In this method, the number of variables used is 2k and number of constraints

used is 2k − 1. Equations (3) and (4) imply that if ui+1 = 1, xi = x̄i. That is, if

the (i + 1)-th segment is used, all its precedent segment, the i-th segment, has to be

completely filled.

3.1.2. Method 2. Let binary variable vi (∈ {0, 1}) decide whether the

(i + 1)-th segment will be chosen. That is, vi = 1 iff xi+1 > 0. Method 2 imposes the

following constraints:

Figure 3.1. Piecewise-linear formulation
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x̄ivi ≤ xi ≤ x̄ivi−1, i = 1, . . . , k − 1 (5)

0 ≤ x1 ≤ x̄1 (6)

Number of variables used is 2k − 1 and number of constraints used 2k − 1.

Equations (5) and (6) imply that if vi = 1, xi = x̄i. The interpretation is same as in

Method 1.

Method 1 and Method 2 have same number of constraints but Method 1 has

one variable more than that of Method 2. Although Method 2 uses less variables,

Method 1 will be used in the remainder of this thesis because it is more intuitive

and easier to understand (by associating (ui, xi) with the i-th segment, instead of

(ui−1, xi)).

3.2. APPROXIMATION ERROR

Approximating nonlinear functions with piecewise linear functions results in

approximation errors. If one requires to reduce the approximation error, the size

of the approximating interval must be reduced, which increases the total number of

linear segments required for approximating the function. Consider a function to be

approximated as a convex function and represent it by f(x). As shown in Figure 3.2,

the tangent to the curve at x = x∗ (parallel to the segment that is approximating

this function) has slope m = f(b)−f(a)
b−a

. If [a, b] is the specified interval on x-axis, the

error ǫ at x = x∗ is then given by

ǫ = m(x∗ − a) + f(a) − f(x∗) (7)
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If (b−a) approaches to zero, ǫ will also approach to zero. Small approximation

errors will have smaller length of the segment joining (a, f(a)) and (b, f(b)). Thus,

decreasing the error value while approximating the functions will result in increasing

the number of segments required to approximate the functions.

Figure 3.2. Approximation of a convex function

If the function is not convex, the segment may intersect the function at more

than one point and hence will have more than one “subintervals”, on which the

function is either convex or concave (as shown in Figure 3.3).

In Figure 3.3, the segment intersects f(x) at (a, f(a)), (c, f(c)), (d, f(d)) and

(b, f(b)), then the tangent lines that are parallel to this approximating line segment

(connecting (a, f(a)) and (b, f(b))) will meet the function at three points x∗

1, x∗

2 and x∗

3.

The slope of these tangent lines will be definedby the slope of the line segments joining

(a, f(a)) and (c, f(c)), (c, f(c)) and (d, f(d)), and (d, f(d)) and (b, f(b)), respectively.

Correspondingly, there will be three errors ǫ1, ǫ2 and ǫ3 over three subintervals, [a, c],

[c, d] and [d, b], respectively. The approximation error will be the minimum of ǫ1, ǫ2
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and ǫ3. Therefore, if the function to be approximated is not convex, the approximation

error will be more difficult to estimate. However, making x̄i sufficiently small can solve

the above problem but how small it should be is not trivial.

3.3. APPROXIMATING 2-TERM LOG-SUM FUNCTIONS

In generalized geometric programming, nonlinear objective functions and con-

straints may be “linearized” by taking logarithm of the objective function and each

of the constraints. This idea can be illustrated with one simple example:

(P ) min xy

s.t. x ≤ y ≤ w

x + y ≥ z

(P ) has a nonlinear objective function that involves a product. A common

approach in geometric programming is to take logarithm of the objective and con-

straints. Let X = log x, Y = log y, W = log w and Z = log z. Problem (P ) becomes

Figure 3.3. Approximation of non-convex function
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(P ′) as shown below:

(P ′) min X + Y

s.t. X ≤ Y ≤ W

log(x + y) ≥ Z (8)

It can be seen that (P ′) has one constraint (8) that cannot be linearlized. The

left-handside of (8) is called a (two-term) log-sum function. With the formulation in

(P ′), no advantage has been gained by taking the logarithm unless (8) can also be

“linearlized”. The following material is partially taken from Tseng et al. (2007), a

working paper that I co-author. I appreciate the other coauthors, Dr. Tseng and Dr.

Tsu-Shuan Chang, who agree me to adopt it in my thesis.

Consider 2-term log-sum functions log(A + B), where A and B are the two

positive variables inside the log function. If A is taken out of the brackets, then

log(A + B) = log(A(1 + B/A)) = log A + log(1 + B/A) (9)

It is of the form log(1 + x), where x = B/A and x > 0. log(1 + x) is plotted against

log x and the curve obtained is f(log x) and then log(1+x) = f(log x). The approach

is to approximate f(log x) as a piecewise linear formulation of log x.

The Approach. The approach is using the whole f(·) curve. Starting from

origin, the piecewise linear approximation can be done either in the positive or nega-

tive direction. f(log x) can be approximated using piecewise linear formulation using

either of the segments, [log b, log a] or [log d, log c] (as shown in Figure 3.4). This

approximation will have different approximating errors in each direction and will be

given by
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ǫ = m(log x∗ − log b) + f(log b) − f(log x∗) (10)

and

ǫ′ = m′(log x∗

1 − log c) + f(log c) − f(log x∗

1) (11)

Since starting point is [0, log 2] and f(log x) is approximated using n segments

in either positive or negative direction, these segments have value xj (≥ 0) and

yj (≥ 0) in the negative and positive direction. The binary decision variables for

deciding on which segment to select are uj (∈ {0, 1}) and vj (∈ {0, 1}), respectively.

The length of each segment in either direction is given by x̄j and ȳj, respectively.

Then the log-sum function can be written as

log(A + B) ≈ log A + log 2 +

n∑

j=1

[m′

jyj − mjxj ] (12)

Constraints required to support the log-sum functions are

log(B/A) = −
∑n

j=1 xj +
∑n

j=1 yj (13)

x̄juj+1 ≤ xj ≤ x̄juj, j = 1, . . . , n (14)

ȳjvj+1 ≤ yj ≤ ȳjvj, j = 1, . . . , n (15)

u1 + v1 = 1 (16)

At j = n, un+1 = 0 and vn+1 = 0.
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Consider the function log(1 + x) = f(log x) to be approximated using n seg-

ments in either positive log x-direction or negative log x-direction.

Proposition. Refer to Figure 3.4, if the segments are chosen in such a way that

log a = − log d, log b = − log c, x̄j = log a − log b and ȳj = log c − log d, then x̄j = ȳj.

The slopes of the segment are m and m′ and errors as ǫ and ǫ′. For the function

log(1 + x) = f(log x) as described above,

1. m′ = (1 − m)

2. ǫ′ = ǫ

Proof.

1. Slope of the segment chosen in negative direction,

m =
log(a + 1) − log(b + 1)

log a − log b

Figure 3.4. Piecewise-linear formulation of f(log x) in (−∞,∞)
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and, Slope of the segment chosen in positive direction,

m′ =
log(c + 1) − log(d + 1)

log c − log d

Substituting c = (1/b), d = (1/a) and (log c − log d) = (log a − log b) in the

equation involving m′,

m′ =
log((1/b) + 1) − log((1/a) + 1)

log a − log b

⇒ m′ =
log(b + 1) − log(a + 1)

log a − log b
+ 1

⇒ m′ = (1 − m)

2. Substituting m′ = (1 − m), x∗

1 = (1/x∗), c = (1/b) and d = (1/a) in (11),

ǫ′ = (1 − m)(− log x∗ + log b) + log(1 + b) − log b − log(1 + x∗) + log x∗

⇒ ǫ′ = (m − 1)(log x∗ − log b) + f(log b) − f(log x∗) + (log x∗ − log b)

⇒ ǫ′ = ǫ
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4. NUMERICAL RESULTS

Case Studies presented in this section utilize OPL 4.0 / CPLEX 9.0 for global

search and then Matlab 7.0 for local search.

4.1. GLOBAL OPTIMIZATION

Four functions will be tested here. All of them are taken from Törn et al.

(1989). The first three test functions are one-dimensional; the fourth one is two-

dimensional.

4.1.1. Function 1. The first function to be minimized is

f1(x) = sin x + sin(
10x

3
) + ln x − 0.84x, 2.7 ≤ x ≤ 7.5

Figure 4.1. Illustration of the test function f1(x) and its approximation function with
6 segments
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This function is formulated as piecewise linear and the number of segments

(n) are increased by decreasing the size of interval. The plot of this function is shown

in Figure 4.1. Constraints from Section 3.1.1 are used. Starting value is taken at

x = 2.7 and the slopes of each segment is evaluated. The piecewise linear formulation

is

min f1(2.7) +
∑n

j=1 mjxj

s.t. x̄juj+1 ≤ xj ≤ x̄juj, j = 1, . . . , n

xj ≥ 0

uj = {0, 1}.

At j = n, un+1 = 0. The above problem was solved for interval size of 0.4,

0.2, 0.1 and 0.048 resulting in the number of segments, n = 12, 24, 48 and 100. The

results are shown in Table 4.1.

Table 4.1. Piecewise-linear formulation results for the test function f1(x)

Number of Segments Solution Time Minimum Point Minimum Value
12 1.74 sec 5.10 -4.5419
24 1.96 sec 5.30 -4.5422
48 2.07 sec 5.20 -4.6013
100 2.73 sec 5.196 -4.6012

4.1.2. Function 2. Second function to be minimized is

f2(x) = sin x + sin(
2x

3
), 3.1 ≤ x ≤ 20.4
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Figure 4.2. Illustration of the test function f2(x) and its approximation function with
6 segments

This function is formulated as piecewise linear and the number of segments

(n) are increased by decreasing the size of interval. The plot of this function is shown

in Figure 4.2. Constraints from Section 3.1.1 are used. Starting value is taken at

x = 3.1 and the slopes of each segment is evaluated. The piecewise linear formulation

is

min f2(3.1) +
∑n

j=1 mjxj

s.t. x̄juj+1 ≤ xj ≤ x̄juj, j = 1, . . . , n

xj ≥ 0

uj = {0, 1}.
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At j = n, un+1 = 0. The above problem was solved for interval size of 0.692,

0.346, 0.173 and 0.0865 resulting in the number of segments, n = 25, 50, 100 and 200.

The results are shown in Table 4.2.

Table 4.2. Piecewise-linear formulation results for the test function f2(x)

Number of Segments Solution Time Minimum Point Minimum Value
25 2.51 sec 16.94 -1.8992
50 2.73 sec 16.94 -1.8992
100 2.89 sec 17.113 -1.9022
200 3.60 sec 17.0265 -1.9058

4.1.3. Function 3. Third function to be minimized is

f3(x) = −

5∑

i=1

sin((i + 1)x + i), −10 ≤ x ≤ 10

This function is formulated as piecewise linear and the number of segments (n) are

increased by decreasing the size of interval. The plot of this function is shown in

Figure 4.3. This figure also shows the effect of less number of linear segments on

missing the various global minimums. It can be seen that this function plot has three

global minimum points. Constraints from Section 3.1.1 are used. Starting value is

taken at x = −10. The piecewise linear formulation is

min f3(−10) +
∑n

j=1 mjxj

s.t. x̄juj+1 ≤ xj ≤ x̄juj, j = 1, . . . , n

xj ≥ 0

uj = {0, 1}.
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At j = n, un+1 = 0. The above problem was solved for interval size of 0.8,

0.4, 0.2, 0.05 and 0.02 resulting in the number of segments, n = 25, 50, 100, 400 and

1000. The results shown in Table 4.3 indicate that increasing the number of segments

changes the global minimum point. The results show the three global minimum point

as the number of segments are changed from 100 to 400 and finally to 1000.

Figure 4.3. Illustration of the test function f3(x) and its approximation function with
17 segments

Table 4.3. Piecewise-linear formulation results for the test function f3(x)

Number of Segments Solution Time Minimum Point Minimum Value
25 2.18 sec -0.4 -3.3263
50 2.40 sec -0.4 -3.3263
100 3.06 sec -0.4 -3.3263
400 6.49 sec 5.85 -3.3724
1000 11.70 sec -6.72 -3.3729
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4.1.4. Function 4. Fourth function to be minimized is

f4(x) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2, −5 ≤ xi ≤ 5, i = 1, 2

This function is called Six-hump camel-back function. Its detail can be found in

Branin (1972). It is a two-dimensional problem. The nonlinear form is

min t

s.t. 4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 ≤ t, −5 ≤ xi ≤ 5, i = 1, 2

The above problem can be formulated in two ways: one for first and third

quadrant (0 ≤ x1, x2 ≤ 5 and −5 ≤ x1, x2 ≤ 0) and another for second and fourth

quadrant (0 ≤ x1 ≤ 5,−5 ≤ x2 ≤ 0 and 0 ≤ x2 ≤ 5,−5 ≤ x1 ≤ 0). For each formu-

lation logarithm is taken so that the problem becomes “linearized”. The problem is

then solved using OPL 4.0 / CPLEX 9.0 and then the local search using Matlab 7.0.

It was found that the global minimum point lies in the second and fourth quadrant

even if the problem is taken in first or third quadrant. So, the MILP form of this

problem is written for second and fourth quadrant (where Y2 = ln(y2) and y2 = −x2)

as shown below:

min P

s.t. P4 − P5 ≤ 0

−P4 + P1 +
∑n

j=1((1 − mj)y4j − mjx4j) = − ln 2

−P5 + P2 +
∑n

j=1((1 − mj)y5j − mjx5j) = − ln 2
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−P1 + 2 ∗ X1 +
∑n

j=1((1 − mj)y1j − mjx1j) = − ln 8

−P2 + P +
∑n

j=1((1 − mj)y2j − mjx2j) = − ln 2

−P3 + 2 ∗ Y2 +
∑n

j=1((1 − mj)y3j − mjx3j) = − ln 8

4 ∗ Y2 − P1 +
∑n

j=1(x4j − y4j) = − ln 4

P3 − P2 +
∑n

j=1(x5j − y5j) = 0

6 ∗ X1 − 4 ∗ X1 +
∑n

j=1(x1j − y1j) = ln 12

X1 + Y2 − P +
∑n

j=1(x2j − y2j) = 0

4 ∗ X1 − 2 ∗ Y 2 +
∑n

j=1(x3j − y3j) = − ln(2.1/4)

x̄jui(j+1) ≤ xij ≤ x̄juij, i = 1, . . . , 5, j = 1, . . . , n

x̄jvi(j+1) ≤ yij ≤ x̄jvij , i = 1, . . . , 5, j = 1, . . . , n

ui1 + vi1 = 1, i = 1, . . . , 5

Global optimum solution for the above formulation is shown in Table 4.4. It

can be seen that two global minimum points are obtained with one global minimum

solution. So, the log-sum formulation also works for more than one dimension global

optimization problems.

4.2. FLOOR PLANNING PROBLEMS

The two problems discussed in this section belong to a class of Floor Planning

Problems defined in Moh et al. (1996). Two cases will be tested, one contains four

cells on the (circuit) floor, the other contains nine cells.

4.2.1. Four-Cell Floor Planning. Four cells on the circuit floor are

to be designed (or layouted). Each cell has a box with width w and height z. The

length of the rectangular cells is x2 and y3. The layout is depicted in Figure 4.4.

So, objective is to minimize the rectangular area of the entire layout. The nonlinear

problem formulation is
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Table 4.4. Piecewise-linear formulation results for the test function f4(x)

Cases Minimum Minimum Point OPL Matlab Solution
Point (OPL) (Matlab) Solution Solution Time (OPL)

10−3 error (0.3010,−0.2671) (0.0899,−0.7127) −1.1 10−5 -1.0316 3.07 sec
10−4 error (0.1656,−0.1464) (0.0899,−0.7127) −1.1 10−6 -1.0316 13.42 sec
10−5 error (−0.0100, 0.0882) (−0.0899, 0.7127) 4.82 10−7 -1.0316 219.46 sec

min x2y3

s.t. x1 ≤ x2

y1 ≤ y2 ≤ y3

wizi ≥ ai, i = 1, 2, 3, 4

ri ≤
zi

wi

≤ Ri, i = 1, 2, 3, 4

x1 ≥ w1, y1 ≥ z1

x1 ≥ w3, y2 ≥ z2

x2 − x1 ≥ w2, y3 − y1 ≥ z3

x2 − x1 ≥ w4, y3 − y2 ≥ z4

x1, x2 ≥ 0, y1, y2, y3 ≥ 0, wi, zi ≥ 0, i = 1, 2, 3, 4

The above formulation has nonlinear objective fuction and few nonlinear con-

straints. It was converted into a linear problem by taking natural logarithm of the

whole problem. After taking the logarithm, four log-sum functions (P = ln(x1 + w2),

Q = ln(y1 + z3), R = ln(x1 + w4), and S = ln(y2 + z4)) were created, which can

be further converted to linear constraints using the procedure described in Section

3.3. The resultant MILP was solved using OPL 4.0 / CPLEX 9.0 for global search,
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followed by a final local search to arrive at the global optimum solution using Matlab

7.0. Using the approach described in Section 3.3 and Proposition 1 and 2, the MILP

formulation is as follows:

min X2 + Y3

s.t. X1 ≤ X2

Y1 ≤ Y2 ≤ Y3

Wi + Zi ≥ Ai, i = 1, 2, 3, 4

ari ≤ Zi − Wi ≤ ARi, i = 1, 2, 3, 4

X1 ≥ W1, Y1 ≥ Z1

X1 ≥ W3, Y2 ≥ Z2

Figure 4.4. Illustration of the four-cell floor planning problem
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X2 − P ≥ 0, Y3 − Q ≥ 0

X2 − R ≥ 0, Y3 − S ≥ 0

−P + X1 +
∑n

j=1((1 − mj)y1j − mjx1j) = − ln 2

−Q + Y1 +
∑n

j=1((1 − mj)y2j − mjx2j) = − ln 2

−R + X1 +
∑n

j=1((1 − mj)y3j − mjx3j) = − ln 2

−S + Y2 +
∑n

j=1((1 − mj)y4j − mjx4j) = − ln 2

W2 − X1 +
∑n

j=1(x1j − y1j) = 0

Z3 − Y1 +
∑n

j=1(x2j − y2j) = 0

W4 − X1 +
∑n

j=1(x3j − y3j) = 0

Z4 − Y2 +
∑n

j=1(x4j − y4j) = 0

x̄jui(j+1) ≤ xij ≤ x̄juij, i = 1, 2, 3, 4, j = 1, . . . , n

x̄jvi(j+1) ≤ yij ≤ x̄jvij , i = 1, 2, 3, 4, j = 1, . . . , n

ui1 + vi1 = 1, i = 1, 2, 3, 4

All X’s, Y ’s, W ’s, Z’s, P , Q, R and S are real numbers as they are the natural

logarithm of the positive values. Test results are summarized in the Table 4.5.

4.2.2. Nine-Cell Floor Planning. The problem is similar to that in the

previous section, but it has more cells to layout. Each cell has a box with width w

and height h. The length of the rectangular cells is x6 and y4. The layout is depicted

in Figure 4.5. The objective is to minimize the rectangular area of the entire layout.

The nonlinear problem formulation is



23

Table 4.5. Solving four-cell problem using Section 3.3

Cases OPL Solution Matlab Solution Solution Time (OPL)
10−3 error 23.348 23.317 3.10 sec
10−4 error 23.322 23.317 3.68 sec
10−5 error 23.317 23.317 6.12 sec

min x6y4

s.t. x1 ≤ x2 ≤ x6

x1 ≤ x3 ≤ x2

x2 ≤ x4 ≤ x6

x3 ≤ x5 ≤ x4

y1 ≤ y3 ≤ y2 ≤ y4

wihi ≥ ai, i = 1, . . . , 9

ri ≤
hi

wi

≤ Ri, i = 1, . . . , 9

x1 ≥ w1, x3 ≥ w4, x3 ≥ w6

y1 ≥ h1, y1 ≥ h2, y1 ≥ h3

x2 − x1 ≥ w2, x6 − x2 ≥ w3

x4 − x3 ≥ w5, x5 − x3 ≥ w7

x4 − x5 ≥ w8, x6 − x4 ≥ w9

y2 − y1 ≥ h4, y3 − y1 ≥ h5

y4 − y2 ≥ h6, y4 − y3 ≥ h7

y4 − y3 ≥ h8, y4 − y1 ≥ h9

xj ≥ 0, yk ≥ 0, wi, zi ≥ 0, i = 1, . . . , 9, j = 1, . . . , 6, k = 1, 2, 3, 4
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The above formulation has nonlinear objective fuction and few nonlinear con-

straints. These can be converted into linear form by taking natural logarithm of the

whole problem. There are 12 constraints that are linear in their original form and

taking natural logarithm will make them nonlinear. These log-sum functions can be

formulated using Section 3. Approach described in Section 3.3 is used on each log-

sum function to generate 12 mixed integer linear formulations. The whole problem

can be solved using OPL 4.0 / CPLEX 9.0 for global search and then Matlab 7.0

for final local search to arrive at the global optimum solution. Using the approach

described in Section 3.3 and Proposition 1 and 2, the MILP of the nonlinear problem

described above is as follows:

min X6 + Y4

s.t. X1 ≤ X2 ≤ X6

X1 ≤ X3 ≤ X2

X2 ≤ X4 ≤ X6

X3 ≤ X5 ≤ X4

Y1 ≤ Y3 ≤ Y2 ≤ Y4

Wi + Hi ≥ Ai, i = 1, . . . , 9

ari ≤ Hi − Wi ≤ ARi, i = 1, . . . , 9

X1 ≥ W1, X3 ≥ W4, X3 ≥ W6

Y1 ≥ H1, Y1 ≥ H2, Y1 ≥ H3

X2 − P1 ≥ 0, X6 − P2 ≥ 0, X4 − P3 ≥ 0

X5 − P4 ≥ 0, X4 − P5 ≥ 0, X6 − P6 ≥ 0

Y2 − P7 ≥ 0, Y3 − P8 ≥ 0, Y4 − P9 ≥ 0
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Y4 − P10 ≥ 0, Y4 − P11 ≥ 0, Y4 − P12 ≥ 0

−P1 + X1 +
∑n

j=1((1 − mj)y1j − mjx1j) = − ln 2

−P2 + X2 +
∑n

j=1((1 − mj)y2j − mjx2j) = − ln 2

−P3 + X3 +
∑n

j=1((1 − mj)y3j − mjx3j) = − ln 2

−P4 + X3 +
∑n

j=1((1 − mj)y4j − mjx4j) = − ln 2

−P5 + X5 +
∑n

j=1((1 − mj)y5j − mjx5j) = − ln 2

−P6 + X4 +
∑n

j=1((1 − mj)y6j − mjx6j) = − ln 2

−P7 + Y1 +
∑n

j=1((1 − mj)y7j − mjx7j) = − ln 2

−P8 + Y1 +
∑n

j=1((1 − mj)y8j − mjx8j) = − ln 2

−P9 + Y2 +
∑n

j=1((1 − mj)y9j − mjx9j) = − ln 2

−P10 + Y3 +
∑n

j=1((1 − mj)y10j − mjx10j) = − ln 2

−P11 + Y3 +
∑n

j=1((1 − mj)y11j − mjx11j) = − ln 2

−P12 + Y1 +
∑n

j=1((1 − mj)y12j − mjx12j) = − ln 2

W2 − X1 +
∑n

j=1(x1j − y1j) = 0

W3 − X2 +
∑n

j=1(x2j − y2j) = 0

W5 − X3 +
∑n

j=1(x3j − y3j) = 0

W7 − X3 +
∑n

j=1(x4j − y4j) = 0

W8 − X5 +
∑n

j=1(x5j − y5j) = 0

W9 − X4 +
∑n

j=1(x6j − y6j) = 0

H4 − Y1 +
∑n

j=1(x7j − y7j) = 0

H5 − Y1 +
∑n

j=1(x8j − y8j) = 0

H6 − Y2 +
∑n

j=1(x9j − y9j) = 0

H7 − Y3 +
∑n

j=1(x10j − y10j) = 0

H8 − Y3 +
∑n

j=1(x11j − y11j) = 0
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H9 − Y1 +
∑n

j=1(x12j − y12j) = 0

x̄jui(j+1) ≤ xij ≤ x̄juij, i = 1, . . . , 9, j = 1, . . . , n

x̄jvi(j+1) ≤ yij ≤ x̄jvij , i = 1, . . . , 9, j = 1, . . . , n

ui1 + vi1 = 1, i = 1, . . . , 9

All X’s, Y ’s, W ’s, Z’s, P ’s are real numbers as they are the natural logarithm

of the positive values. The test results are summarized in the Table 4.6.

Figure 4.5. Illustration of the nine-cell floor planning problem

Table 4.6. Solving nine-cell problem using Section 3.3

Cases OPL Solution Matlab Solution Solution Time (OPL)
10−3 error 55.645 55.543 2.56 sec
10−4 error 55.551 55.543 4.82 sec
10−5 error 55.543 55.543 53.15 sec
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5. CONCLUSION

The methodology described in Section 3 has been used to test problems de-

scribed in Section 4 successfully. The floor planning problem was formulated using

piecewise linear formulation described in Section 3.3. The test results suggest that

although the number of segments increases by increasing the size of the error and

the number of variables and constraints increase as a result, the computational time

to solve the mixed integer linear problem does not increase significantly. The results

also suggest that the optimal objective value does not change much if predetermined

error for linear approximation is decreased from 10−3 to 10−5. Hence, approximation

error of 10−3 is sufficient to decide that how many segments are to be used to linearize

the two-term log-sum functions. Numerical tests suggest a strategy to use less linear

segments to approximate (so it can be solved faster), followed by a local minimization

search to locate the global optimum.
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