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ABSTRACT 

An analys~s of the pr~nclpal theories concerning the 

transient movement of water in artesian aquifers and from 

artesian aquifers into hydrocarbon reservoirs is presented. 

Various analytical methods which can be applied to depict 

the behavior of these two types of aquifer systems are 

compared. 

Most aqu~fer studies to date have been based upon the 

Theis Non-Equ~l~br~um Formula. Th~s equation has been used 

to calculate the coefficients of storage and transmissibility 

for aqu~fers; to evaluate well performance; and to invest~­

gate problems concern~ng recharge, movement, and discharge 

of' aqu~fer w2. ter. Ho,.;ever, one problem which st~ll rema~ns 

is that of accurately predicting the recharge volumes which 

supply the reservo~r drawdown area under the effects of 

pressure decline. 

The present study suggests a possible means of accurately 

determining recharge volumes by the application of the Van 

Everdingen-Hurst Laplacian solution to the radial dlffu-

sivity equation for transient water movement. This solution 

would be based upon the withdrawal rates, cumulative with­

drawals, and aquifer pressure profiles. 
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I. INTRODUCTION 

At the present time, much concern is being shown 

regarding the serious depletion of fresh water in almost 

1 

all parts of the country. Aquifer depletion has already 

become critical in some of the more densely populated 

sections along the east coast. In considering the 

potentialities for growth and industrial expansion in 

these regions, it is of the utmost importance that accurate 

data and techniques are available to provide for the ex­

plicit prediction of the quantities of aquifer water which 

will be available at various times in the future, and the 

rates at which these underground aquifers can be produced 

without seriously reducing the recharge volumes or sustain­

ing pressures. 

One of the main emphases of current hydrologic research 

is the accurate evaluation of the availability of aquifer 

water. The worth of an aquifer as a source of surface water 

supply rests primarily on its ability to transmit and store 

recharge water. Therefore, the Coefficient of Storage (the 

abil~ty of the aquifer to store recharge volumes of water) 

and the Coefficient of Transmissibility {the index reflecting 

the ability of the reservoir to discharge water) form the 

bases for most quantitative aquifer studies. 

In the past most of the research concerning aquifer 

water movement and surface water supply has been undertaken 

by hydrologists, geologists, and civil engineers working 
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either individually or in cooperation with some state or 

federal agency such as the U. s. Geological Survey. In the 

last few years, however, the development of tmderground gas 

storage pools in aquifers, the increased demand for large 

quantities of water for water-flooding projects, and the 

problem of large scale salt water disposal has caused many 

petroleum and natural gas companies to become actively 

engaged in aquifer research. As a result of this new 

interest, considerable work has been undertaken recently 

by petroleum and natural gas engi_neers in the analysis of 

the underground movement of water in contact with hydro­

carbon reservoirs. 

The quantitative research work concerning aquifer 

water movement presented to date by the hydrologist 

generally deals with the amounts of water entering the 

wellbore and the resulting pressure drawdown in the reser-

voir at various producing rates. On the other hand, the 

petroleum industry has primarily concerned itself heretofore 

with the amount and rate of water influx into oi]_ and gas 

reservoirs, and, indirectly, with the transient flow behavior 

in aquifers. 

These two different approaches to the definition of 

aquifer water movement by the hydrologists and by the 

petroleum industry have indicated that perhaps some of the 

techniques and methods developed by both groups could be 

combined into an improved approach to the problem of 

underground water movement. 
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The purpose of this study is threefold: 

1. To review the technology concerning water 

movement in artesian aquifers and from 

artesian aquifers into hydrocarbon reservoirs; 

2. To point out the basic similarities and 

differences between these two approaches 

to aquifer studies; and 

J. To investigate the feasibility of adapting 

the Van Everdingen-Hurst Laplacian solution 

to the diffusivity equation (along with 

digital computing techniques) to predict the 

deliverability of radial municipal water 

supply reservoirs. 
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II. LITERATURE REVIEW 

A. Aquifer Performance 

The flow of aquifer water may occur as a steady-state 

or as an unsteady-state phenomenon. If the former is in 

effect, all water produced from the . aquifer is assumed 

immediately replaced by equal amount ·s flowing in from some 

contiguous source. In unsteady-state flow, however, the 

volume of water produced from the aquifer system is not 

equal to the recharge volume. If recharge is greater than 

production {or through-put), the aquifer will be recharged; 

if outflow is greater than recharge, the aquifer will be 

progressively depleted. 

The movement of aquifer water is principally in a 

lateral direction through permeable strata and where these 

strata lie between relatively impermeable strata, ' the latter 

tend to form more or less effective confining beds. If the 

formations are tilted or deformed, the water may flow through 

the permeable strata for long distances away from the intake 

area. Generally water moves down dip for some distance 

away from the intake area, but at later times it may move 

either up or down dip depending upon the deformation of 

the strata. 

If the loss in head due to flow resistance is less 

than the net descent of the water-bearing formation, then 

the water is under artesian pressure in the sense that it 

will rise in producing wells to some level above the top of 

the formation itself. If the loss in head is less than the 
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descent of the land surface then the artesian pressure may 

be sufficient to cause the wells to overflow at the surface. 

If water above the overlying confining bed of the 

artesian aquifer is under a greater head than the water in 

the confined aquifer itself, there will be some degree o:f 

percolation or leakage into the artesian aquifer unless the 

confining bed is strictly impermeable. In many artesian 

systems, such movement or leakage of water in either direc-

tion through the confining beds is an important :factor in 

the recharge and discharge of the aquifer and in the pre-

diction of the extent of the ''cone of depression" around a 

dischargi.ng well. Han tush and Jacob ( 16 ) are among those 

authors ~1o have recently cons~dered the problem of leaky 

artesian aquifers. 

An aquifer is considered to be o:f infinite areal extent 

when its exterior radius is so large relative to its i.nterior 

radius (represented by a wellbore or the outer boundary of 

a hydrocarbon reservoir) that the water movement in the 

vicinity of this exterior boundary is negligible during the 

time period under consideration (e.g., usually 20 years). 

If the radius of water movement (radius of drainage) reaches 

the exterior boUndary of the aquifer during the above time 

period, then the aquifer is considered to be of finite extent. 

The pressure decline ·within an aquifer is, in almost 

all cases, an unsteady-state phenomenon in that pressures 

within the porous strata at a given point are time-dependent. 
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As the pressure changes on each element of the water bearing 

aquifer, the amount of water leaving each element is not 

the same as the amount entering that element due to the 

compressibility of the water. 

For an artesian aquifer the head of water may decrease 

due to production from various wells, but the aquifer remains 
I 

saturated before, during, and after this decrease in head. 

The confining impermeable beds can be considered as fluid 

in the sense that they have no ability to absorb or dissipate 

changes in forces external to or within the aquifer. Since 

no dewatering or filling of the pore space is involved in 

the case of an artesian aquifer, the water released from or 

taken into storage (by production or recharge) can be 

attributed only to ·the compressibility of the aquifer material 

and of the water. The volume of water (measured at the 

surface) released or stored divided by the product of the 

head change and the area of aquifer surface over which the 

head change (either a decrease or an increase) is effective 

determines the Storage Coefficient (s) of the aquifer (See 

Fig. 7a,Definitions.). Normal values of S for artesian 

aquifers are from 0.00001 to 0.001. 

In elastic artesian aquifers the Coefficient of 

Transmissibility (See Fig~ 7h, Definitions.) is assumed to 

decrease due to the compaction of the aquifer upon release 

of pressure due to water production. In such aquifers, a 

specific amount of water is discharged instantaneously from 

storage as the pressure falls. 



7 

1. Equilibrium Formula 

Prior to 1935, when Theis{l) viewed the problem of aquifer 

water movement as essentially an. unsteady-state relationship, 

it was assumed that equilibrium was atta~ned in the producing 

portion of _the aquifer and that water levels did not fall. 

This equilibrium approach was thus based on the ass~~ption 

that the aquifer system had been pumped long enough so that 

steady-state conditions existed in the reservoir. Theim( 2 ) 

developed his Equilibrium Formula through a modification of 

Dupuit's(J) analysis of Darcy's Law( 4 ). This work provided 

for the determ~nation of a coefficient of transmissibility, 

I, which, in turn, provided the rate of discharge, Q, and 

the drawdowns, s
1 

and s
2

, for two observation wells located 

known distances, r
1 

and r
2

, from the discharging well. 

Theim's equation in standard hydrologic units is: 

where: 

Q = Rate of discharge, cubic feet per day. 

T = Coefficient of transmissibility, cubic feet 
of water per day per foot of aquifer width. 
(See Fig. 7b, Definitions.) 

= Distances from the discharge well to the two 
observation wells, feet. 

lvater level drawdo1.m in the 
wells, feet. 

two observation 

Ln = Naperian logarithm (base e). 

( 1 • 1 ) 
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Theim's formula is based on the following assumptions, 

and its use is dependent upon the degree to which these 

assumptions represent actual field conditions: 

1. The aquifer is homogeneous and isotropic, 
and of infinite areal extent. 

2. The discharge well fully penetrates and 
receives water from the entire thickness 
o£ the aquifer. 

3. The Coefficient of Transmissibility is 
constant at all times and at all places. 

4. There is laminar flow to the discharge well. 

5. Pumping has continued at an uniform rate 
long enough for equilibrium or steady-state 
£low to exist in the hydraulic system. 

Wenze1{5) showed that the equilibrium formulas of 

Slichter{ 6 ), Turneaure and Russell{ 7 ), and Muskat(S) were 

but modified forms o£ Theim's method and were subject to 

the same limiting assumptions. These equilibrium formulas 

depend upon the determination of R, defined as the distance 

from the discharge well at which the drawdown of the water 

level is negligible. These formulas also assume that a 

cond~tion of equilibrium exists over the entire area of in-

f'luence, that is, from the discharge well to the distance, 

R. The assumed radius,R,can be used when the required two 

observation wells are not available and the two points 

necessary for Theim's method are: 

1. The assumed radius of negligible drawdown,R. 

2. The radius of the d~scharge well, r, and its 
water level, s,which can be measured. 
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2. Equilibrium Radius 

Observations of the behavior of the water level around 

pumped wells made by the U. s. Geological Survey show that 

the form of the cone of depression (See definitions.) 

reaches essential stability in a small area around a pumped 

well in a relatively short time after pumping begins. How-

ever, the area of essential stability expands very slowly, 

and a considerable period of pumping is necessary for the 

cone to reach an approximate equilibrium form very far 

from the pumped well. 

Several investigators have given arbitrary values to 

be used for R- Slichter( 6 ), 600 feet; Muskat(B), 500 feetr 

and Tolman( 9 ), 1000 feet. All three of these assumed values 

for R are for artesian aquifers. Leggette ( 10 ), ho,v-ever, 

observed appreciable fluctuations of water levels in ~vells 

caused by shutting down of pumped wells as much as seven 

miles distant from the observation wells. This contrasts 

appreciably with other authors' values. 

The basic assumption of these formulas of the equilibrium 

type is for practical purposes valid for only a small area 

around a discharging well in which equilibrium may be 

roached. The extent of the cone of depression is of 

practical significance in determining the spacing of wells 

and in the solving of many important legal controversies. 

Because empirical values for R, mainly intended for use in 

areas of known permeability, appear so frequently in the 

1iterature, it is often incorrectly assumed that the cone 
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of depression can not exceed these values. 

The formulas so far described are based on the assump-

tion that the hydraulic system can attain a state of equilib-

rium - a condition that is reached only approximately near 

the discharging well. The factor of time is included in 

these formulas only in the sense that the well is assumed 

to have been discharging long enough to produce a state of 

equilibrium. 

J. Non-Equilibrium Eguation 

In 1935 Theis{ 1 ) showed that the unsteady-state flow 

of underground water into a radial sink area, such as a well-

bore or hydrocarbon reservoir, is governed by the Diffusivity 

Equation. 

where: 

As·= S 
'2J r T 

ds at 

S = The Coefficient of Storage. 

s = Drawdown at any point r aro~md a well. 

r = Distance from the discharge well. 

t = Time of pumping. 

( 1 • 2) 

The assumptions imposed on the derivation to Equation (1.2) 

are: 

1. Darcy's Law {steady-state) applies. 

2. The higher order[~:] 2 
term is negligible. 

J. A single fluid is present that occupies the 
entire pore volume. 

4. The reservoir is horizontal, homogeneous, unif'orrn 
in thickness, and of infinite radial extent. 



5. The compressibility and viscosity of the 
fluid remains constant at all pressures. 

6. The fluid density obeys the equation, 

where: 

f - Density of fluid. 0 -

c = Compressibility of fluid. 

1 1 

(1.2a) 

The development of the non-equilibrium equation based 

on Equation (1.2) was a major advance in hydrology. Theis' 

solution to the differential equation for the radial flow 

of water in an elastic artesian aquifer for a constant 

discharge rate is given by: 

J
oO 

where: 

s = 11 h. 6 Q 
T 

1.87 r
2

S 
T t 

-u 
e 

u 
du 

Q = Discharge of the well, gallons per minute. 

t = Time since pumping started, days. 

2 
u = 1.87 r S 

Tt 

( 1 • 3) 

The integral expression in Equation (1.3) cannot be 

integrated directly, but can be approximated by the series(S): 

sc<) e:u du = w(u) = -.577216 

2 
1. 87 r S 

Tt + u -

Ln(u) 

n 
u 

• n(n\) 
• 

( 1 • 4) 

The exponential integral (1.4) is written symbolically 

as W(u) which is read "well function of' u". Values of W(u) 
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have been tabulated by Wenzel(S) and the non-equilibrium 

formula can be solved for I by a type-curve matching 

process( 6o). 

The non-equilibrium solution (1.3) is based on the 

assumptions that: 

1. The aquifer is homogeneous and isotropic. 

2. The aquifer has infinite areal extent. 

J. The discharge or recharge well fully penetrates 
the formation and receives water from the entire 
thickness of the aquifer. 

4. The coefficient of transmissibility is constant 
at all times and at all places. 

5. The well has an infinitesimal (reasonably small) 
diameter. 

6. Water removed from storage is discharged instan­
taneously with the decline in head. 

These restrictions have been found to take on varying 

degrees of significance in practice. Because the non-

equilibrium formula assumes that the transmissibility of 

the aquifer does not change during the discharge period it 

can be strictly applied only to artesian conditions. The 

effect of aquifer heterogeneity on various solutions to 

Equation (l.J) is not definitely known. Stallman( 12 ) and 

other authors have used the theory of images to analyze 

the effect of various types of fj_nite boundaries on the 

solution to the non-equilibrium formula. Jacob(lJ) re­

viewed the works of Muskat(J6 ) and Wenzel(5) concerning 

the effect of a discharge well tapping less than the full 

thickness of an aquifer and concluded that corrections must 
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be made to the water levels observed dur~ng f~eld tests 

before an accurate coeff~c~ent of transm~ss~b~l~ty can be 

calculated from Equat~on (1.J). Muskat( 14 ) showed that the 

error j_n drawdown level calculated by Equat~on (1.J) (wh~ch 

assumes a van~shing wellbore d~ameter rather than a wellbore· 

of f~nite d~ameter) ~s ~nsign~f~cant except at very small 

' 
pumping times or very short distances from the wellbore. 

Jacob(l5) recognized that the ser~es of terms beyond 

Ln(u) ~n Equat~on (1.4) was not s ·~gn~f~cant when (u) becomes 

small (~.e., when t ~ncreases orr decreases) ~nd that t~s 

ser~es could be truncated without add~ng s~gn~f~cant error 

to The~s' equati.on. 

s = __g_ 
47tT 

Jacob's Mod~f~ed Equat~on ~s: 

or in standard hydrolog~c un~ts: 

- 264 Q [ O.JI t] 
s = T Log 2_ 

- r s 
(1.6) 

Jacob realized that after equ~l~br~um was atta~ned, Equat~on 

{1.6) could be solved by graph~cal means to f~nd the storage 

coeffic~ent and the coeff~c~ent of transmiss~b~lity. 

4. Cone of Depress~on 

In nature, the hydraul~c system w~th~n any aquifer ~s 

cons~dered to be in balance. If further d~scharge ~s ~mposed 

by, say, a new well on th~s balanced system, then before 

equ~l~br~um can be re-established, the water level must fall 

throughout the aqu~fer to such an extent that the natural 

d~scharge from the aqu~fer (measured prior to the ne ~ well) 
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is decreased by an amount equal to the new quantity imposed 

on the system by the discharge well, or in a like manner, 

the recharge volume increased by the same magnitude. Until 

this equilibrium is re-established water will be withdrawn 

from storage in the aquifer. Conversely, balance cannot be 

re-established until sufficient water is withdrawn by the 

well from storage to depress the piezometric surface of the 

aquifer sufficient to change the natural discharge or recharge 

by the proper amount. 

In an ideal aquifer of infinite extent the most important 

variable describing the growth of the cone of depression is 

considered to be time. The rate of lateral growth of the 

cone of depression with time during the non-equilibrium 

period of flow depends only on the physical properties of 

the reservoir 

the well( 1 ). 

and is independent of the discharge rate of 

In artesian aquifers, the cone grows laterally 

much faster than it does in water-table aquifers. (see 

Fig. 7C, p. 60) This is due to the quantity of water re-

moved from storage in an artesian aquifer by compaction of 

the strata and the expansion of the water in the aquifer 

upon decline in pressure is much less than the quantity of 

water that would be removed by the dewatering of the aquifer 

pore space under the same pressure decline in a water-tab~e 

aqu:ifer. The cone of depression for fine-grained sand 

aquifers appears to approximate the cone of ideal aquifers. 

The expansion of the cone of depression around a 

discharging well is limited only when the exterior bo~~ary 
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of the aqu~fer ~s reached. The expans~on of the area from 

wh~ch water j_s d~verted, however, w~ll occur unt~l the 

recharge to th~s area ~s equal to the discharge from the 

well. The time at wh~ch stab~l~zation of the cone is achieved 

~s independent of both the rate of discharge and the continu~ty 

of d~scharge of the well. 

5. Vary~ng D~scharge Rate 

A common hydraul~c problem ~s that of determining the 

effects of pump~ng at d~fferent rates on the ult~mate draw-

down or change ~n water level within the ~mmed~ate area of 

the well. The r~te at which water ~s pumped from a well or 

from a reservoir commonly varies with the seasonal surface 

requ~rements. In many cases the pumping rate, as recorded 

in terms o:f da~ly or monthly d~scharge, ~s found to change 

continuously. With this variat~on ~n pumping rate, the 

methods previously described cannot be appl~ed w~thout 

tedious modif~cations. Stallman(l 7 ) ~ntroduced a method of 

approximating th~s vary~ng d~scharge rate by a series of 

graphical steps. The analysis of each step ~s subsequently 

undertaken using the convent~onal equations. A type curve 

f'or analyz~ng the observed drawdowns caused by this stepped 

pumping rate can be constructed by the use of the The~s 

non-equil~lbrium f'ormula. This development proceeds as 

:f'ollows: 

The draw·do1vn, s, at any distance, r, from the pumped 

well, at ~ny time, t, ~s: 

s 
n • (1.7a) 
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Applying the non-equilibrium formula Equation {1.3) to define 

each of the drawdown components given in Equation {1.7a) 

yields 

s = 11~.6 r~ w(u) 1 +AQ2w(u)2 + • 

The corresponding u values are: 

2 _ 1.87 r S u, - ,I(t - t,) 

Thus: 

t - t, t - t, 
u - = u1 ; UJ = u, u 

2 t - t2 t - tJ n 

u 
n 

= 

.fl.Q w{u) ] n n 

2 
1. 87 r S 

= T( t - t ) 
- n 

t - t, 
u, t t 

n 

(1.7b) 

( 1 • 7c) 

(1.7d) 

In this manner a family of curves can be c on·s true ted 

with (1/t) and (1.87 r
2
S/T) as the independent variables and 

n 
~h. QW{u) as the dependent variable. The drawdown at any 

1 
time t at any radius r can be found by superimposing the 

field-data plot of log s versus log {1/t) on this family of 
n 

·type curves {plotted as log ~f1QW( u) versus log { 1 /t) and 
1 

shifting the field-data pl.ot until its curvature is identical 

with an underlying type curve). This serves to identify the 

2 
data curve with a specific {1.87 r S/T). Values for s and 
n 
~ 6Q,i(u) are then read from the graphs and can be entered 

1 
in Equation {1.7b) to solve for I• The computed value of 

.!. can then be used with the value of {1.87 r 2 S/T) to solve 

for S by Equation {1.3). 

6. Jacob and Lohman Solution 

Jacob and Lohman(l 8 ) obtained a solution to the 

diffusivity equation for finding the coefficients S and T 

from a test where the drawdown, s, was held constant by 
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varying the discharge to the well. In this analysis, S and 

1: are assumed to be constant and the aquifer is assumed 

infinite in areal extent. The f .low rate for this analysis 

is found to be: 

Q = 21tTS G(o() -w 

where s = constant = s : 
w 

and: 

G(c<) 

where: 

ol = 

1t 
2 

-1 Yo(x) 
+ Tan J (x) 

0 

(1.8a) 

dx (1.8b) 

( 1 • Be) 

Equations (1.8a and 1.8c) can then be rewritten in standard 

hydrologic units as: 

and: 

where: 

Q = 
T S G(~) 

w 
229 

= .134 It 
r 

2 
S 

w 

(1.9a) 

(1.9b) 

S = Constant drawdown in the discharge well, feet. 
w 

r = Effective radius of the discharge well, feet. 
w 

J (x) = Bessel function of zero order, first kind. 
0 

y (x) = Bessel function 
0 

of zero order, second kind. 

This equation cannot be integrated directly and is often 

solved by numerical methods. 

Jacob and Lohman( 1S) also showed that for large values 



of t, G(«) can be replaced by: 

G(ot) 2 
= w(u) 

and, since w(u) is equal to: 

W(u) = 2.30 Log 

then Equation (1.8a) becomes: 

2.25 T t 

r 
2 

S 
w 

Equation (1~11) is the equation of a straight line 
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(1.10a} 

( 1 • 1 Ob) 

(1.11) 

such that (s /Q) plotted against log (t/r 
2

) has a slope of: 
w w 

2 •. 30 
= 4n T (1.12a) 

Once the slope of the line is determined, the coefficient 

of transmissibility can be computed from the relation: 

2. 30 6 (Log t/r 
2

) 
w ( 1 • 12b) 

The coefficient of storage can then be found by substituting 

the value ofT from (1.12b) and the coordinates of any point 

on the straight-line plot into (1.11). 

B. Aquifer-Petroleum Reservoir Performance 

Aquifers which surround many oil and gas reservoirs 

have the ability to supply water to such reservoirs as oil 

and gas are withdrawn. This water-influx (called natural 

water drive} provides one of the most effective driving 
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mechanisms for the production of oil and gas. Oil replace-

ment by water from the aquifer may occur under the influence 

of various factors operating singly or in combination: by 

volumetric water expansion as a result of field-pressurE' decline~ 

by hydraulic flow as a result of water infiltration at the 

outcrops of the reservoir rock, or by artificial injection 

of water into the oil-bearing horizon. The pressure behavior 

of the reservoir under water drive is dependent _upon the rate 

of hydrocarbon withdrawal and upon the rate of water encroach-

ment. When exact volumetric balance exists between water 

influx and hydrocarbon withdrawals, field pressure is 

maintained. 

Available methods for estimating water-influx into 

hydrocarbon reservoirs which can be applied to the problem 

of water-drive reservoirs include the steady-state method of 

Schilthuis( 4 3), the llurst( 44 ) modified steady-state method, 

and the various ~msteady-state methods such as those of Van 

Everdingen-Hurst(l9), Hurst( 2 o), and Carter-Tracy( 22 ). 

There are two basic approaches by which the water-

influx into a radial sink area can be evaluated; the constant 

terminal pressure approach and the constant terminal rate 

approach. In the constant terminal pressure case the pressure 

at all points in the formation is constant and equal to 

unity at time zero. When the well or reservoir is opened, 

the pressure at the wel .l or reservoj_r boundary, 1~·D .= 1, 

immediately drops to zero and remains zero for the duration 

of the production history. The cumulative amount of 1·1ater 
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:flowing across the well or reservoir boundary is then 

computed as a :function o:f time. On the other hand, in the 

constant terminal rate case it is likewise assumed that 

initially the pressure everywhere in the :formation is con-

stant but that :from time zero onward the :fluid is withdrawn 

:from the well bore or reservoir boundary at a unit rate. 

The resulting pressure drop is then computed as a function 

of the time. 

1. Van Everdingen and Hurst Methods 

Van Everdingen and Hurst( 19) have presented a solution 

to the di:f:fusivity equation (1.2) :for the unsteady-state 

isothermal flow of a slightly compressible :fluid encroaching 

into a homogeneous reservoir sink. Their solution, developed 

by the application of Laplace transforms, yields an exact 

determination of the aquifer water encroachment across the 

aquifer-hydrocarbon reservoir boundary under the assumption 

that such encroachment is of a steady-rate (viz., constant 

terminal rate) nature. 

The pressure drop is given by PD = PD(rD' tD) and at 

the hydrocarbon reservoir boundary where rD = 1: 

(1.13) 

The minus sign is introduced to compensate for the pressure 

gradient direction relative to the radius of the reservoir. 

If the cumulative pressure drop is expressed asA~ then: 
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where q(tD) is a constant relating the cumulative pressure 

drop with the pressure change for a unit rate of production. 

By applying Darcy's equation( 4 ) for the rate of fluid flow 

into the well or reservoir per unit sand thickness, H: 

which simplifies to: 

= g(T).,A.\ 
2n:K 

(1.15) 

(1.16) 

The~ P at the reservoir radius (or well radius) rD = 1 for 

any constant rate of production is given by: 

~p = 9 (T)~ 
2n:K 

(1 ,.17) 

Since the diffusivity equation is linear, the Duhamel 

Superposition Theorem can be applied as a sequence of 

constant terminal pressures or constant terminal rates in 

such a way that the production or pressure history at the 

aquifer-hydrocarbon reservoir boundary (rD = 1) is reproduced. 

The cumulative water produced at time (tD) by a pressure 

drop b. P , operative since time zero, is expressed by: 
0 

(1.18) 

Then considering the pressure drop A P
1

, which occurs at 

time (tD 1 ), and treating this as a separate entity acting 

since time (tD
1
), 'the cumulative water produced by this 

increment of pressure drop is: 

(1.19) 
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By superimposing all the effects of pressure changes 

and by taking very small incremental pressure drops, the 

total water influx in time {tD) is expressed as: 

= 2n¢c 2? ~~p 
rb j ~tn' 

0 

Q{t -t •) dtn' 
D D 

(1.20) 

Hurst( 2 o) also presented a solution to the diffusivity 

equation derived by the application of a Fourier-Bessel 

series for an unsteady-state of water encroachment across an 

aquifer-hydrocarbon reservoir boundary {viz., constant 

terminal pressure case). Due to the similarity of Hurst's 

solution with that of Van Everdingen-Hurst, the Hurst method 

will not be discussed. 

Van Everdingen and Hurst{ 19 ) developed a constant 

terminal pressure solution to the diffusivity equation by 

Laplace transforms which is similar to Hurst's{ 2 o) solution 

except for the nomenclature. By considering variable rates 

of fluid production and reproducing these rates as a series 

of constant steps, the pressure drop at the wellbore or 

reservoir boundary (rn=1) in time {tD)' for the initial rate 

(q ) can be found from: 
0 

(q(t ) - q(t )] p(t t ) 
Dn Dn-1 Dn- Dn-1 (1.21) 



If the increments are infinitesimal: 

AP = 

If q = 0: 
0 

dq{tn') 
dt' P(t -t ') dtn' 

D D D 

b,.P = s-D q(tn') P'(tn-tn') dtn' 

0 
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(1.22) 

(1.23) 

where P'(t ) 
D 

is the derivative of P{tD) with respect to {tD). 

2. The Wilson-Carlile Approximation 

Wilson and Carlile( 21 ) have reproduced the results of 

Van Everdingen-Hurst and of Hurst for the constant terminal 

pressure case with a simple logarithmic time function. This 

simplified approach eliminated the time consuming application 

of dimensionless rate functions in a series summation by 

expressing the water encroachment as a simple function of 

time alone. This approximation, 'vhile reducing the complexity 

of the solution by about So%, reproduces the previous 

so1utions( 19 )( 2 o) to within 99%. The Wilson and Carlile 

approximation is given by: 

i B 
n 

w 
e 

where: 

= 2n~cw H rb
2

Q ~ (1.24) 
j=O 

W = The cumulative volume of water encroaching, bbl. 
e 

H = The net sink formation thickness, feet. 

e = The fraction of the periphery of the sink 
subj~cted to influx of water, fraction. 
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A ' B = Coefficients o:f approximation. 
n n 

tD = Dimensionless time at which w volumes o:f water 
have encroached. e 

c = Compressibility o:f water, 1/psi. w 

~ = Porosity, :fraction. 

AP = Pressure change, psi. 

3. Other Methods 

Carter and Tracy( 22 ) developed a method for calculating 

water influx which eliminated the superposition calculations 

o:f Van Everdingen and Hurst(l 9 ). Their method is somewhat 

s~milar to that o:f Hurst(lB) except that over :finite time 

intervals the water inrlux rates are assumed constant 

rather than assuming constant oil production rates. By 

combining the Hurst approach with the material balance 

equation of Schi.lthuis( 4 3) they devel.oped a method which 

lends itself to easy solution by hruLd calculations. 

Chatas( 2 3)( 24 )( 2 S) ~n a series o:f three articles 

summarized the work o:f Van Everdingen and Hurst and further 

extended their results :for higher and lower ranges o:f 

dimensionless time {tD). 

Many investigators have used the response o:f the 

"dimensionless aquifer" to a unit pressure drop, or a unit 

:fluid-withdrawal volume to calculate the performance o:f an 

aquifer in supplying water-influx to an oil reservoir. In 

the past, these response functions have been calculated 

with the aid o:f ~he Laplace transform. With the development 

o:f high speed computers, these response :func tj_ons have been 
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solved for by finite-difference methods. 

Mue11er( 26 ) expanded the so-called V.T.M. method 

originally proposed by Hurst(lS) and Van Everdingen-Hurst( 19), 

and later expanded upon by Van Everdingen, Timmerman, and 

McMahan( 2 7) to apply to the transient response of non-

homogeneous aquifers. 

In the V.T.M. method, a material balance is made on 

the fluids entering and leaving the reservoir. In this 

balance, the water-influx term is the product of the water-

influx from an arbitrarily selected difuensionless aquifer 

system and a conversion number. If the correct dimensionless 

aquifer has been chosen, then the conversion number will 

remain constant over the history of the reservoir. If such 

a condition exists, then the function associated with the 

particular dimensionless system and the derived conversion 

number can be used to predict the future performance of the 

reservoir. These functions are referred to as "response 

functions". 

The response function requi.red for the solution of the 

constant-terminal-rate problem is a relationship between 

'dimensionless pressure drop (PD) and the dimensionless time 

For the constant terminal pressure case a function 

relating dimensionless flow rate (QD) to dimensionless time 

(tD) is required. 

The shape of these various response functions depends 

upon the geometry of the system, the conditions imposed at 

the inner and outer boundaries, and the ratio of the outer 
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boundary to the inner boundary. Since the system is assumed 

homogeneous, the character of the particular dimensionless 

function depends mainly upon the radius ratio of the aquifer 

system. 

4 .. Mortada's Work 

Mortada( 2 S) discussed the problem of oilf~eld inter-

ference in water-drive reservoirs. He considered the 

problem of multiple oilfields located in a common aquifer 

and the effects of pressure drop in the various oil fields 

on the rate of water-influx into the reservoirs. 

In his paper, Mortada presented solutions to the diffu­

sivity equation (1.2) for values of dimensionless time (tD) 

and dimensionless radius (rD) for the constant rate case 

which are normally required for field analyses with the 

following boundary conditions: 

1. PD(rD' 0) = 0 (uniform initial aquifer pressure) 

2. tD)_,O as rD~ 00 {extensive aquifer) 

J. (constant rate of water influx) • 

Mortada's values for the dimensionless pressure 

PD{rD' tD) were -obtained by several methods. 

For t~ .01 the relationship 

was solved, where: 

rD - 1 
ierfc 

2Vtn 
(1.25) 



ier:fc {x) = 
-x 

e 

2 
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-x er:fc{'i) (1.26) 

which can readily be :found in mathematical :function tables( 2 9) 

For 

(1.27) 

which was derived :from the continuous point sink solution 

o:f Lord Kelvin, where: 

-Ei dx (1.28) 

To bridge the gap between tD ~ .01 and tD ~ 500, a 

digital computer was used to solve a set o:f finite-difference 

equations based upon the diffusivity equation. This tech-

nique provided values o:f PD(rD' tD) which showed no change 

in the third decimal place as the values of 6. tD were chosen 

progressively smaller. 

Flow equations are used in petroleum engineering to 

study the behavior o:f individual wells and reservoirs. For 

individual wells, the pressure response at the wellbore 

:face is the major point of interest; whereas, in the case 

o:f reservoirs, the pressure response at the aquifer-hydro-

carbon interface is sought. To aid in these studies, the 

~low equations have been solved in terms o:f the behavior 

at these two respective boundaries 
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5. Theis and Mortada 

Only limited work has been published concerning the 

pressure conditions away from these inner boundaries, {i.e., 

within the reservoir or aquifer). Theis{ 1 ) and Mortada( 28 ) 

are among the few who have reported on this problem. The 

Theis approach employs the exponential integral and is 

valid for pressure conditions that occur some distance away 

from the wellbore. It is derived from the concept of a point 

source, as opposed to a flow across a finite area. The 

Mortada results, on the other hand, are valid at all points 

within the reservoir or aquifer. They are presented in terms 

of dimensionless ratios of the radius where the pressure 

is desired to the radius where the flow rate is measured. 

Their main use in the past has been in aquifer studies. 

Mortada's results are presented in the form of graphs which 

are limited to a maximum radius ratio of 64 {See Fig. 1-J). 

These graphical results are cumbersome to interpolate at 

non-integral radius ratios, and therefore it often becomes 

necessary to use the analytical expressions given by Mortada: 

equations (1.25) to {1.28). 

6. ~errelationship of Solutions 

The solutions of Mortada and Theis are both based on 

the diffusivity equation (1.2) as applied to the case of 

an infinite radial system subject to a constant terminal 

rate. The diffusivity equation is obtained by combining 

the material balance equation with Darcy's flow equation. 

The asswnptions involved in the use of this equation and 

thus imposed on these two solutions are: 
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1. A single fluid is present that occupies the 
entire pore volume. 
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2. The reservoir is horizontal, homogeneous, uniform 
in thickness, and of infinite radial extent. 

J. The compressibility and viscosity of the fluid 
remain constant at all pressures. 

4. The fluid density obeys the equation, 

~ _f. -c(P -P) - e o • 
0 

The diffusivity equation for the conditions stated 

(1.2a) 

above can be written in cylindrical coordinates (and in oil 

field terms) as: 

1 M = 
r ~r 

¢~c ~ 
K ~t 

( 1 • 29) 

When 0.29) is compared to the Theis solution (1.2), it can 

be seen that pin (1.29) has replaced sin Theis' equation 

and ¢~c has taken the place of S/T in (1.2). Actually the 
K 

onl.y change which has occurred is that the draw·down measured 

in feet of water has been converted to an equivalent pressure 

term. In order to obtain a dimensionless equation to facili-

tate one solution which can be used for application of 

different porosity, permeability, and fluid properties, 

Mortada, Van Everdingen-Hurst, and Driscoll(J2 ) have employed 

the following transformations: 

Dimensionless pressure: 

(1.J0a~ 



Dimensionless radius: 

or: 

r = 
D 

Dimensionless time: 

or: 

r 
r 

w 

Kt 

¢Mer 2 
w 

Kt 

( 1 • JOb) 

(1.31) 

Substituting theE"e dimension]_ess parameters into ( 1. 29) 

yieJ_ds: 
~2PD 1 6Pn d PD 

( 1 • 32) ---- + = 
~ rD 

2 rD OrD ~tD 

One solution of this equation has been given by 

Mortada( 2 S) in which he presented dimensionless pressure 

drop as a function of dimensionJess time. His graphical 

results are presented in Figures (1) to (J). 

If the definition of dimensionless time in (1.31) is 

based upon any radius in the infinite system, we than have: 

Kt 
2 

vJMcr ( 1 • 33) 

The dimensionless time of Mortada (tD) is related to that 

of Equation (1.33) by: 

t -D - ( 1 • 34) 



Term 

K 
H 
p 

q 
)..\ 
t 
¢ 
c 
r 

Table 1 

Definition of Terms in Theis Solution 

Definition w = 21t W = 7.082 X 10-~ 
X = 1. 0 X = 6.331 X 10-

Permeability sq. em. md. 
Thickness em. ft. 
Pressure Drop dynes/sq. em. psi. 
Flow Rate cc./sec. bbl./day 
Viscosity poise cp. 
Time sec. days 
Porosity 
Compressibility dynes/sq. em. psi. 
Distance em. ft. 

(Ref. 40) 

8 -5 W = .953 X 10 6 
X = 4.386 X 10-

md. 
ft. 
ft. water 
gal./min. 
cp. 
mih. 

psi. 
ft. 

w 
\0 
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From Table 2 it can be seen that when {1.J4) is compared 

to the Theis equation {1.2) in the following manner: 

1 
= 4x (1.35) 

and: 

(1.J6) 

Equation {1.37) gives the relationship between the 

methods of analysis used by hydrologi.sts and those commonly 

used in oil field work. 

co-ordinates are: 

wKH/1 P 
q~ 

In oil field terms, the Theis 

XKt 
2 ¢ M cr 

where w and x take on different values according to the 

dimensions selected {See Table 1.). 

The definitions of the dependent and independent 

variables of Theis are compared with those of Mortada, 

( 1 • 37) 

and of Van Everdingen-Hurst in Table 2. The Theis solution 

of the exponential integral is shown in Figure {4b). 

Table 2 

Comparison of Dependent and Independent Variables 

Method 

Theis 

Mortada & 
V.E.-Hurst 

Dimensionless 
Independent Variable 

Kt 
k ¢' ,\t cr 

w 

Dimensionless 
Dependent Variable 

E. (-X) 
1 

----·---------------------------------~--~--------~-------
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Mortada's work shows that for reasonable values or 

real time {t), the Theis point-source solution represents 

the behavior of a slightly compressible system for all 

radial distances greater than about 30 times the radius 

of the pumping well, or in most cases about 15 feet or more 

away from the wellbore. 

If the properties of the aquifer are known, the Theis 

curve {Fig. 4a)can be used directly to predict the behavior 

of the system 15 feet or more away from the wellbore. 

Mortada's solution can then be used to give the aquifer 

behavior in the vicinity of the well (less than 15 feet 

away from the wellbore). 

Mueller and Witherspoon{3 1 ) adjusted the Theis results 

of Figure {4b) in accordance with the definitions of (1.35) 

and (1.36). They also modified Mortada's solutions of 

Figures (1) to (J) by means of Equation {1.J4). Their 

results are a family of curves shown in Figure (5a) which 

converge on Theis' solution. Radius ratios not given in 

Mortada's work have been obtained from the results given 

by Mueller( 26 ). Figure (Sa) shows that the Theis solution 

can be used for radius ratios greater than 20 for practical 

times (tD ~ .1). Figure (Sb) shows the percent error that 

would result by using the Theis solution for various radius 

ratios instead of the Mortada solution. 

At early times and at short distances from the inner 

boundary the "point source" solutions are invalid. The 

error introduced by the Theis solution (See Fig. 5b) may 
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be negligible in most reservoir problems, but in the 

calculation of interference effects in an aquifer the error 

introduced can be appreciable. 

Van Everdingen and Hurst{ 19 ) have presented results 

of the dimensionless pressure drop at the wellbore interface 

(rn=r/rw=1) as a function of dimensionless time defined in 

the same manner as by Mueller. More recently Driscoll{32 ) 

used the concept of dimensionless pressure vs. dimensionless 

time at various radius ratios for finite systems. 

Driscoll discusses the use of well interference and 

pressure build-up data for the determj_nation of water influx. 

His work also considers the problem of an effective compressi-

bility in water reservoirs and gives a relationship for the 

adjusted rock compressibility after overburden pressures 

have been considered. 

Although there are many different types of aquifer 

tests, the constant terminal rate discharge tests followed 

by pressure build-up tests are of partj_cular interest to the 

engineers who develop natural gas storage pools in aquifers 

or those who work with producing gas and oil fields subject 

to water-drive or encroachment. 

7. Radius of Drainage 

Because of the apparent constancy of the pressure at 

various distances out 'in the reservoir, many authors have 

discussed what is termed a "radius of drainage". This 

drainage radius is usually defined as that distance beyond 

which the pressure change is only 1% of the change in 



Reference 

Radius of 
drainage 

Stabiliza­
tion time 

Figure 6 

Van Poolen's Summary or Various Radius-of-Drainage 
and Stabilization-time Equations 

(Rer. JJ) 

(37) 

(Ref. J4) 
(35) 

Tek,Grove, 
and 

Poettmann 
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combe 

(38) 
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Kern Chatas 
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Hutchinson 
Kern 
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pressure in effect at the wellbore. Some authors, however, 

have described this radius as that point across which only 

1% of the flow occurs when 100% flow is being experienced 

at the wellbore. 

Van Poolen( 3 J) has summarized the works of such authors 

as Jones ( 34 ), Tek ( 35 ), ·Muska t ( 36 ), Brownsc ombe and Kern ( 37), 

Chatas( 2 S), Hutchinson·and Kern( 3S), and Hurst, Haynie, and 

Walker(J9 ). Van Poolen's table for the various radius of 

drainage equations developed by each of the above authors 

is given in Figure (6). 

8. Underground Gas Storage in Aquifers 

The use of aquifers for underground storage of gas has 

become extremely important to the natura.~ gas industry. A 

critical problem in assessing the feasibility of a specific 

aquifer for such gas storage use is the determination of 

the permeability of the caprock over the proposed storage 

aquifer. 

Witherspoon, Mueller, (40) 
and Donovan · evaluated the 

undergroun.d gas-storage conditions in aquifers by investi-

gations of groundwater hydrology. Their work presents a 

finite-difference model which divides the aquifer-caprock 

system into layers with each layer further subdivided into 

a group of nested annular rings. The radii of these rings 

were chosen so as to increase in a geometric progression 

such that small radial distances could be used around the 

we11bore and progressively larger radii for greater distances 

away from the well. A sufficient number of annular rings 
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are used so that the pressure trans~ent created by the flu~d 

withdrawal ~s assumed to not reach the outer boundar~es of 

the system. The results obta~ned are therefore the same 

as would be obta~ned with an infinite radial system. 

In th~s approach flu~d ~s produced at a constant rate 

from the innermost ring of the aqu~fer w~thout production 

from the innermost rings of the caprock. A material balance 

is made for every r~ng in the system at finite time steps. 

A point-by-point iteration scheme is then used to solve these 

material balance equations. In this manner, the transi.ent 

behavior of the whole system can be numerically solved with 

the digitalized program. This procedure provides great 

detail on the pressure behavior at all parts of the system. 

Evrenos and Rejda{ 4 l) have found that hydrological 

test~ng of an aquifer considered for natural gas storage 

and computer~zed evaluation of field data is the most 

practical method of determin~ng the tightness of the cap-

rock, aquifer geometry, and the coefficients of trans-

missib~lity, storage, and leakage. 

Their program can be used to 1) compare the actual 

pressure performance of aquifer systems with the calculated 

pressure behavior based on analytical analogs permitting 

the select~on of the analog which best fits the test data; 

and, to 2) predict the pressure response of an aquifer 

discharg~ng through one or more wel.ls in order to help 

design proper test procedures and to monitor test activities 

in the field. 
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Whenever a field data processing and evaluation run 

is made to determine aquifer description from field data, 

the procedure calculates pressures for each observation 

point according to the specified analogs, the input 

parameters, and the actual data point times; compares 

observed pressures to calculated pressures; optimizes the 

fit between field data and analog responses by varying 

certain parameters; and selects the analog which best 

fits field data. 

One of Evrenos and Rejda's five analogs describes 

the pressure behavior of a homogeneous aquifer of infinite 

radial extent without leakage through the aquiclude. 

The research sponsored at the University of Nichigan 

from 1959 to 1961 by the American Gas Association was 

concerned with the prediction of water movement into and 

out of aquifers during gas storage cycles. This research 

led to a wealth of information dealing primarily with the 

movement of water in contact with natural gas reservoirs. 

The v1ork of L. Katz, Tek, Coats, M. Katz, Jones, and 

Miller( 42 ) publj_shed as a result of this research, and 

the later works of Katz, Vary, Elenbaas, Tek, Grove, 

Poettman.n, Yoo, Coats, and White( 45 - 52 ) form one of the 

bases of the growing research effort in the field of under-

ground storage of natural gas in water reservoirs and the 

effects of water movements within these storage reservoirs. 
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III. DISCUSSION 

The research work concerning the unsteady-state 

movement of water in aquifers and the work dealing with 

the unsteady-state water encroachment into hydrocarbon 

reservoirs stem originally from the same equation, namely, 

the Diffusivity Equation. For aquifer studies the hydrolo-

gists choose to express this equation in terms of drawdown, 

while the petroleum engineers, in dealing with hydrocarbon 

reservoirs, prefer pressure as the dependent variable. The 

grouping of terms bn the right-hand side of the diffusivity 

equation also differs depending upon the specific investi­

gation desired. Aquifer investigations usually use S/T, 

while petroleum literature employs ¢Mc/K. In any case, 

the various groups are themselves inter-related so that the 

equation is essentially the same in both approaches. The 

as::;umptions necessary for the application of the diffusivity 

equation (point-source solution) to the unsteady-state flow 

of water are generally the same in both approaches. 

The major difference between the two approaches is 

that the point in the aquifer-hydrocarbon reservoir system 

(or simple aquifer system) at which the evaluation of the 

water movement is made differs between the two ty~es of 

solutions. Hydrologists have made most of their studies 

at the wellbore of the pumping or flo,ving well or at other 

observation wells within the drawdown area of the reservoir. 

They have developed numerous methods for finding the draw-
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down profil.e within the reservoir, the coefficients of 

storage and transmissibility, the permeability of the 

formation, and the quantities of water produced as a result 

of a given drop in head. Petroleum and natural gas engineers, 

however, have devoted the bulk of their research to the 

prediction of the quantity of aquifer water which can 

encroach into the hydrocarbon portion of the reservoir 

under a specified decrease in reservoir pressure (viz. 

reservoir fluid withdrawal). 

These two different approaches are best characterized 

by the works of Theis( 1 ) and of Van Everdingen-Hurst( 19 ). 

Besides attacking the problem of water influx from two 

different directions, these methods also differ in their 

degree of aricuracy and their range of applicat~on. The 

Theis method employs an exponential integral and is derived 

from the concept of a point-source solution and, at best, 

gives only an approximate solution in the vicinity of the 

wellbore. Van Everdingen-Hurst have derived their solutions 

from the concept of a flow across a finite area using Laplace 

trans:forms and by forming a ratio of the radius where the 

pressure is desired to the radius where the flow rate is 

measured. Their development is an exact expression for the 

water-influx into a reservoir. 

Mortada extended the work of Theis to cover the entire 

reservoir and presents a method which can be used to find 

the pressure distribution within the surrounding aquifer • . 

Mueller and Witherspoon have compared the methods of The is 



and Mortada and have found that there are similar groupings 

of the several variables in both methods. 

At the present time there is some question as to just 

what the quantitative definition of the "radius of drainage" 

should be. Several authors have offered equations for a 

drainage radius, derived by differertt techniques, all of which 

give somewhat different results. All these authors do agree, 

however, that this drainage radius is a function of time 

alone for any one combination of reservoir properties. 

During the course of this study it has become evident 

that the development of solutions for aquifer performan~e 

on high-speed digital computers has had a profound effect 

on the research activities of the petroleum industry. Some 

very important aquifer studies employing computer techni.ques 

have been presented by hydrologists who have either been 

employed by petroleum companies or have dealt with aquifer 

problems as related to petroleum or natural gas reservoirs. 

As a result of this investigation, this investigator 

feels that enough similarities exist between the two 

approaches, at least in the basic assumptions made, to 

allow the water-influx method to be applied to aquifer 

problems. If digital computer techniques are employed in 

developing this new method then it should be possible to 

reduce, if not eliminate, the graphical work now required 

in the solution of various aquifer problems. 
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IV. SUGGESTED PROCEDURE FOR FUTURE RESEARCH 

This study suggests that the unsteady-state flow of 

water in infinite radial reservoirs be investigated from 

the point of view of the amounts of aquifer water encroaching 

across an imaginary aquifer-reservoir boundary. This in-

vestigation could be performed by the application of the 

Van Everdingen-Hurst method (with the Wilson-Carlile 

simplification) for water influx determination. By using 

this ~ype of approach to reservoir problems, it is proposed 

that solutions to various aquifer problems could be achieved 

which would not require supporting data from observation 

wells but, instead, would use only discharge well measure­

ments and past production data. 

Four possible objectives are suggested for future 

research into this area: 

1. An attempt should be made to combine the present 

drawdown formulas with the various water-influx 

equations to determine the radius, R, at which 

the cone of depression will stabilize. The 

results of this study should then be compared 

to the values of R determined by the methods 

already presented by several authors. 

2. It is proposed that a method could be developed 

· which would permit the reservoir pressure and 

drawdo'\\rn levels to be calculated for different 



pumping rates at various times through the 

application of the Van Everdingen-Hurst 

Laplacian solutions at the imaginary aquifer­

reservoir boundary. 

3. By calculating the quantities of aquifer water 

encroaching into the reservoir for various 

pumping rates {i.e., for different pressures 

51 

and different drawdown profiles) it is proposed that 

the maximum future pumping rate of aquifer bodies 

can be determined. 

4. By examining the various parameters and constants 

involved in the Theis non-equilibrium and the 

w~ter-influx approaches, the coefficient of storage, 

S, and the coefficient of transmissibility, T, can 

be determined by a method based on the water en­

croaching into the reservoir, past production data, 

and discharge well data rather than by the current 

graphical techniques. 

It is proposed that these four objectives can be best 

attained by mathematical models with the bulk of the work 

being accomplished by computer application. It is antici-

pated that, resulting from this research, the current 

solutions to aquifer problems could be significantly 

improved and that a new approach to various types of solu­

tions could be achieved. 
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V. CONCLUSIONS 

Two different approaches to the problem of under-

ground water movement exist at the present time. Both of 

these approaches start originally with the same basic 

equation {i.e., the diffusivity equation) but the resulting 

methods attack the problem of aquifer water movement from 

two different directions. 

The hydrologists have developed methods by which the 

quantities of water entering the wellbore and the resulting 

pressure profile in the surrounding aquifer can be estimated. 

On the other hand, the petroleum and natural gas engineers 

have been mainly concerned with the quantities of "\vater 

encroaching across the aquifer-hydrocarbon reservoir 

bom~dary and have developed their solutions to reflect tlris 

transient behavior. 

Future research designed to develop new methods for 

calculating the water-influx into reservoirs, the aquifer 

pressure profiles, the radius of drainage, and the coeffi-

cients of storage and transmissibility, can be performed 
~ 

based upon the quantities of water encroaching across an 

imaginary aquifer-reservoir boundary. This research can 

be undertaken mathematically with the application of 

digital computing techniques. 



NOMENCLATURE 

A = area, acres 

A = coefficient of approximation 
n 

B = coefficient of approximation 
n 

c = compressibility of fluid, vol/vol/psi. 

c = compressibility of water, vol/vol/psi. w 

e = constant (2.71828) 

Ei(X) = exponential integral of the argument (x) 

erfc = complementary error function, p. 27. 

G(«) =function, defined in (1.8), p. 17. 

H - net sand thickness, feet 

ierfc = integral of the complementary error function, 
defined by (1.26), p. 26. 

J (x) = bessel function of zero order, first kind 
0 

K = permeability, darcies or millidarcies 

Ln = naperian logarithm, base e 

Log = common logarithm, base 10 

m =height of aqui~er prism, ~eet, Fig. 7, p. 58. 

P = pressure, psi. 
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P = permeability coef~icient (de~ined by Meinzer, p. 5' 

PD =dimensionless pressure, defined in (1.J0a), p. 37. 

E.n -· dimensionless pressure of Mortada, Fig. 1, p. 29. 

q = discharge rate, cubic feet per day 

Q(T) = 

discharge rate over real time T, cubic ~eet/day 

discharge rate to cumulative pressure drop constan· 
defined by (1.16), p. 21. 

cumulative discharge in time tD 
n 

by A P 
n 



Tan 

QD = dimensionless flow rate, definition varies 

R = equilibrium radius of drainage, feet 

r = distance from the wellbore to some point in 
reservoir, feet 

rb = radius of the reservoir, feet 

rD = dimensionless radius, defined in ( 1 • JOb), p. 

r = radius of the discharge well, feet 
w 

rD = dimensionless radius used with Mortada's .in 
PD defined in Fig. 1 ' p. 29. 

s = coefficient of storage, fraction 

54 

38. 

and 

s = drawdown at some distance r from the wellbore, fee 

S = constant drawdown in discharge well, feet 
w 

T = coefficient of transmissibility, cubic feet/day/ft 

t = time, days 

-1 angle whose tangent is = 

tD = dimensionless time, defined in (1.31), p. J8. 

.E.n = dimensionless time of Mortada, Fig. 1 ' p. 29 ... 

tD = dimensionless time based on any radius r, defined 
in (1.33), p. J8. 

u = (r 2
S/ Tt) 1. 87 

w =constant depending upon units used, Table 1, p. 39 . 

W = cumulative volume of encroaching water, barrels 
e 

w{u) =well function of u, defined in (1.4), p. 11. 

X = Theis dimensionless independent variable, Table 2, 

x =constant depending on units used, Table 1, P• 39. 

Y {x) = bessel £unction of zero order, second kind 
0 

b.= chang·e in quantity 

n =constant (3.141596) 



~ = viscosity, centipoise 

8 = fraction of the periphery of the sink subjected 
to influx of water, fraction 

¢ = porosity, fraction 

~ = density, pound/cubic foot 

~ = summation of terms 

~ = differential of 

f = integral of 

00 = infinity 

~= 
Tt 

r 2s 
w 
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DEFINITIONS 

Artesian Aquifer: 

An aquifer which is confined by beds of relatively 

impermeable material on both the top and bottom. These beds 

·are assumed to be fluid in the sense that they have no 

ability to absorb or dissipate changes in forces external 

to or within the aquifer. (See Fig. 7a.) 

Aquiclude: 

The impermeable bed of material overlying the aquifer, 

often termed the caprock in petroleum literature. (Fig.7b) 

Piezometric Surface: 

The level of lvater sustained by the aquifer pressure. 

The natural head of a water well. (Fig. 7a) 

Cone of Depression: 

The cone-shaped region of drawdo'm of the piezometric 

surface surrounding a pumping water well. (Fig. 7c) 

Coefficient of Storage: 

The volume of water released or taken into storage per 

unit surface area of an aquifer per unit change of the 

component of head normal to that surface. Fig. 7a shows a 

prism of height, m, which can be used to define this coeffi­

cient. This prism extends vertically from top to bottom of 

the aquifer and laterally so that its cross-sectional are.a 

is coextensive with the aquifer-surface area over ~hich the 
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head change occurs. The volume of water released from 

storage in this prism, m, for any head change X, divided 

by the product of the prism's cross-sectional area and the 

change in head, X, results in a dimensionless number, S, 

which is the coefficient of storage. 

Coefficient of Permeability: 

This coefficient, P, is a measure of a material!s 

capacity to transmit water. As expressed by Meinzer, it is 

the rate of flow of water in gallons per day through a 

cross-sectional area of 1 square foot under a hydraulic 

gradient of 1 0 
foot per foot at a temperature of 60 F. 

(Fig. 7b) 

Coefficient of Transmissibility: 

Theis introduced this coe~ficient, T, which is expressed 

as the rate of flow of water, at the prevailing water tempera-

ture, in gallons per day; through a vertical strip of aquifer 

1 foot wide extending the full saturated height of an aquifer 

under a hydraulic gradient of 100 percent. A hydraulic 

gradient of 100 percent means a 1-foot drop in the head in 

1 foot of flow distance in the aquifer. (Fig. 7b) 

Water Table Aquifer: 

An aquifer which is not bounded above by an impermeable 

bed, but instead is bounded only by the surface of tl1e ground. 

This type of aquifer has a water table which is the upper 

lim~t of free water existing in the formation. (Fig. 7c) 
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UN IT HYDRAULIC GRADIENT, 
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OF FLOW DISTANCE 

FIGURE 78 

COEFFICIENTS OF TRANSMISSIBILITY 

A NO PERMEABILITY 

(FROM REF· 60 ) 
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