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ABSTRACT

An analysis of the principal theories concerning the
transient movement of water in artesian aquifers and from
artesian aquifers into hydrocarbon reservoirs is presented.
Various analytical methods which can be applied to depict
the behavior of these two types of aquifer systems are
compared.

Most aquifer studies to date have been based upon the
Theis Non-Equilibrium Formula. This equation has been used
to calculate the coefficients of storage and transmissibility
for aquifers; to evaluate well performance; and to investi-
gate problems concerning recharge, movement, and discharge
of aquifer water,. However, one problem which still remains
is that of accurately predicting the recharge volumes which
supply the reservoir drawdown area under the effects of
pressure decline.

The present study suggests a possible means of accurately
determining.recharge volumes by the application of the Van
Everdingen-Hurst Laplacian solution to the radial diffu-
sivity equation for transient water movement. This solution
would be based upon the withdrawal rates, cumulative with-

drawals, and aquifer pressure profiles.
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I. INTRODUCTION

At the present time, much concern is being shown
regarding the serious depletion of fresh water in almost
all parts of the country. Aquifer depletion has already
become critical in some of the more densely populated
sections aloﬁg the east coast. In considering the
potentialities for growth and industrial expansion in
these regions, it is of the utmost importance that accurate
data and techniques are available to provide for the ex-
pPlicit prediction of the quantities of aquifer water which
will be available at various times in the future, and the
rates at which these underground aquifers can be produced
without seriously reducing the recharge volumes or sustain-
ing pressures.

One of the main emphases of current hydrologic research
is the accurate evaluation of the availability of aguifer
water. The worth of an aquifer as a source of surface water
supply rests primarily on its ability to transmit and store
recharge water. Therefore, the Coefficient of Storage (the
ability of the aquifer to store recharge volumes of water)
and the Coefficient of Transmissibility (the index reflecting
the ability of the reservoir to discharge water) form the
bases for most quantitative aquifer studies.

In the past most of the research concerning aquifer
water movement and surface water supply has been undertaken

by hydrologists, geologists, and civil engineers working



either individually or in cooperation with some state or
federal agency such as the U. S. Geological Survey. In the
last few years, however, the development of underground gas
storage pools in aquifers, the increased demand for large
quantities of water for water-flooding projects, and the
problem of large scale salt water disposal has caused many
petroleum and natural gas companies to become actively
engaged in aquifer research. As a result of this new
interest, considerable work has been undertaken recently
by petroleum and natural gas engineers in the analysis of
the underground movement of water in contact with hydro-
carbon reservoirs.

The quantitative rgsearch work concerning acuifer
water niovement presented to date by the hydrologist
generally deals with the amounts of water entering the
wellbore and the resuiting pressure drawdown in the reser-
voir at various producing rates. On the other hand, the
petroleum industry has primarily concerned itself heretofore
with the amount and rate of water influx into oil and gas
reservoirs, and, indirectly, with the transient flow behavior
in aquifers.

These two different approaches to the definition of
aquifer water movement by the hydrologists and by the
petroleum industry have indicated that perhaps some of the
techniques and methods developed by both groups could be
combined into an improved approach to the problem of

underground water movement.



The purpose of this study is threefold:
1. To review the technology concerning water
movement in artesian aquifers and from

artesian aquifers into hydrocarbon reservoirsj

2. To point out the basic similarities and
differences between these two approaches

to aquifer studies; and

3. To investigate the feasibility of adapting
the Van Everdingen-Hurst Laplacian solution
to the diffusivity equation (along with
digital computing techniques) to predict the
deliverability of radial municipal water

supply reservoirs.



IT. LITERATURE REVIEW

A, Aquifer Performance

The flow of aquifer water may occur as a steady-state
or as an unsteady-state phenomenon. If the former is in
effect, all water produced from the aquifer is assumed
immediately replaced by equal amounts flowing in from some
contiguous source., In unsteady-state flow, however, the
volume of water produced from the aquifer system is not
equal to the recharge volume. If recharge is greater than
production (or through-put), the aquifer will be recharged;
if outflow is greater than recharge, the aquifer will be
progressively depleted.

The movement of aquifer water is principally in a
lateral direction through permeable strata and where these
strata lie between relatively impermeable strata, the latter
tend to form more or less effective confining beds. If the
formations are tilted or deformed, the water may flow through
the permeable strata for long distances away from the intake
area. Generally water moves down dip for some distance
away from the intake area, but at later times it may move
either up or down dip depending upon the deformation of
the strata.

If the loss in head due to flow resistance is less
than the net descent of the water-bearing formation, then
the watef is under artesian pressure in the sense that it
will rise in producing wells to some level above the top of

the formation itself. If the loss in head is less than the



descent of the land surface then the artesian pressure may
be sufficient to cause the wells to overflow at the surface.

If water above the overlying confining bed of the
artesian aquifer is under a greater head than the water in
the confined aquifer itself, there will be some degree of
pefcolation or leakage into the artesian aquifer unless the
confining bed is strictly impermeable. In many artesian
systems, such movement or leakage of water in either direc-
tion through the confining beds is an important factor in
the recharge and discharge of the aquifer and in the pre-
diction of the extent of the "cone of depression" around a
discharging well. Hantush and Jacob(16) are among those
authors who have recently considered the problem of leaky
artesian aquifers.

An aquifer is considered to be of infinite areal extent
when its exterior radius is so large relative to its dinterior
radius (represented by a wellbore or the outer boundary of
a hydrocarbon reservoir) that the water movement in the
vicinity of this exterior boundary is negligible during the
time period under consideration (e.g., usually 20 years).

If the radius of water movement (radius of drainage) reaches
the exterior boundary of the aquifer during the above time
period, then the aquifer is considered to be of finite extent.

The pressure decline within an aquifer is, in almost

all cases, an unsteady-state phenomenon in that pressures

within the porous strata at a given point are time-dependent.



As the pressure changes on each element of the water bearing
aquifer, the amount of water leaving each element is not

the same as the amount entering that element due to the
compressibility of the water.

For an artesian aquifer the head of water may decrease
due to production from various wells, but the aquifer remains
saturated before, during, and after this decrease iﬁ head.
The confining impermeable beds can be considered as fluid
in the sense that they have no ability to absorb or dissipate
changes in forces external to or within the aquifer. Since
no dewatering or filling of the pore space is involved in
the case of an artesian aquifer, the water released from or
taken into storage (by production or recharge) can be
attributed only to the compressibility of the aquifer material
and of the water. The volume of water (measured at the
surface) released or stored divided by the product of the
head change and the area of aquifer surface over which the
head change (either a decrease or an increase) is effective
determines the Storage Coefficient (S) of the aquifer (See
Fig. 7a,Definitions.). Normal values of S for artesian
aquifers are from 0.00001 to 0.001.

In_elastic artesian aquifers the Coefficient of
Transmissibility (See Fig. 7bh, Definitions.) is assumed to
decrease due to the compaction of the aquifer upon release
of pressure due to water production. In such aquifers, a
specific amount of water is discharged instantaneously from

storage as the pressure falls.



1. Equilibrium Formula

Prior to 1935, when Theis(1) viewed the problem of aquifer
water movemeﬁt as essentially an unsteady-state relationship,
it was assumed that equilibrium was attained in the producing
portion of the aquifer and that water levels did not fall.

This equilibrium approach was thus based on the assumption

that the aquifer system had been pumped long enough so that
steady-state conditions existed in the reservoir. Theim(z)
developed his Equilibrium Formula through a modification of

(3)

Dupuit' analysis of Darcy's Law(u). This work provided

for the determination of a coefficient of transmissibility,

T, which, in turn, provided the rate of discharge, Q, and

the drawdowns, S and EZ’ for two observation wells located

known distances, r, and r

1 29 from the discharging well,

Theim's equation in standard hydrologic units is:

Q 1nlT2/7]
~ (1.1)

27 [;1 - 32]

where:

Q = Rate of discharge, cubic feet per day.

T = Coefficient of transmissibility, cubic feet
of water per day per foot of aquifer width.
(See Fig. 7b, Definitions.)
r, &r = Distances from the discharge well to the two
1 2 ”
observation wells, feet.
§1 & ;2 = Water level drawdown in the two observation

wells, feet.

Ln = Naperian logarithm (base e).



Theim's formula is based on the following assumptions,

and its use is dependent upon the degree to which these

assumptions represent actual field conditions:

1.

2.

The aquifer is homogeneous and isotropic,
and of infinite areal extent.

The discharge well fully penetrates and
receives water from the entire thickness
of the aquifer.

The Coefficient of Transmissibility is
constant at all times and at all places.

There is laminar flow to the discharge well.
Pumping has continued at an uniform rate

long enough for equilibrium or steady-state
flow to exist in the hydraulic system.

Wenzel(S) showed that the equilibrium formulas of

Slichter(6), Turneaure and Russell(7), and Muskat(s) were

but modified forms of Theim's method and were subject to

the same limiting assumptions. These equilibrium formulas

depend upon the determination of R, defined as the distance

from the discharge well at which the drawdown of the water

level is negligible. These formulas also assume that a

condition of equilibrium exists over the entire area of in-

fluence,

that is, from the discharge well to the distance,

R. The assumed radius, R, can be used when the required two

observation wells are not available and the two points

necessary for Theim's method are:

1.

2.

The assumed radius of negligible drawdown, R.

‘The radius of the discharge well, ry and its

water level, s, which can be measured.



2. Equilibrium Radius

Observations of the behavior of the water level around
pumped wells made by the U. S. Geological Survey show that
the form of the cone of depression (See definitions.)
reaches essential stability in a small area around a pumped
Weil in a relatively short time after pumping begins. How-
ever, the area of essential stability expands very slowly,
and a considerable period of pumping is necessary for the
cone to reach an approximate equilibrium form very far
from the pumped well.

Several investigators have given arbitrary values to
be used for R - Slichter(6), 600 feet; Muskat(B), 500 feety
and Tolman(9), 1000 feet. All three of these assumed valﬁes
for R are for artesian aquifers. Leggette(1o), however,
observed appreciable fluctuations of water ievels in wells
caused by shutting down of pumped wells as much as seven
miles distant from the observation wells. This contrasts
appreciably with other authors' wvalues.

The basic assumption of these formulas of the equilibrium
type is for practical purposes valid for only a small area
around a discharging well in which equilibrium may be
reached. The extent of the cone of depression is of
practical significance in determining the spacing of wells
and in the solving of many important legal controversies.
Because empirical values for R, mainly intended for use in
areas of known permeability, appear so frequently in the

literature, it is often incorrectly assumed that the cone
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of depression can not exceed these wvalues.

The formulas so far described are based on the assump-
tion that the hydraulic system can attain a state of equilib-
r@um - alcondition that is reached only approximately near
the discharging well. The factor of time is included in
tﬂese formulas only in the sense that the well is assumed
to have been discharging long enough to produce a state of
equilibrium,

3. Non-Equilibrium Equation

In 1935 Theis(1) showed that the unsteady-state flow
of underground water into a radial sink area, such as a well-
bore or hydrocarbon reservoir, is governed by the Diffusivity
Equation.

%,

1
2’r2 T

y

v %
H
18]ln

% (1.2)

where:

S = The Coefficient of Storage.

ol
]

Drawdown at any point r around a well.
r = Distance from the discharge well.
t = Time of pumping.
The assumptions imposed on the derivation to Equation (1.2)
are:
1. Darcy's Law (steady-state) applies.
2. The higher order %%% term is negligible.

3. A single fluid is present that occupies the
entire pore volume.

4, The reservoir is horizontal, homogeneous, uniform
in thickness, and of infinite radial extent.
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5. The compressibility and viscosity of the
fluid remains constant at all pressures.

6. The fluid density obeys the equation,

-c(P _-P)
/p==/%e © (1.2a)
where:
/90 = Density of fluid.
c = Compressibility of fluid.

The development of the non-equilibrium equation based
on Equation (1.2) was a major advance in hydrologyv. Theis'
solution to the differential equation for the radial flow
of water in an elastic artesian aquifer for a constant

discharge rate is given by:

—  114.6 Q e "
1.87 rZS
T t
where:

Q = Discharge of the well, gallons per minute.
t = Time since pumping started, days.

u = 1.87 rzs

Tt

The integral expression in Equation (1.3) cannot be

integrated directly, but can be approximated by the series(5):

du = W(u) = -.577216 - Ln(u)

2 = 3 : n (1.4)

u

I u u

The exponential integral (1.#) is written symbolically

as W(u) which is read "well function of u". Values of W(u)
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(5)

have been tabulated by Wenzel and the non-equilibrium

formula can be solved for T by a type-curve matching
(60)

process .

The non-equilibrium solution (1.3) is based on the
assumptions that:

1. The aquifer is homogeneous and isotropic.

2. The aquifer has infinite areal extent.

3. The discharge or recharge well fully penetrates

the formation and receives water from the entire

thickness of the aquifer.

4L, The coefficient of transmissibility is constant
at all times and at all places.

5. The well has an infinitesimal (reasonably small)
diameter. .

6. Water removed from storage is discharged instan-
taneously with the decline in head.

These restrictions have been found to take on wvarying
degrees of significance in practice. Because the non-
equilibrium formula assumes that the transmissibility of
the aquifer does not change during the discharge period it
can be strictly applied only to artesian conditions. The
effect of aquifer heterogeneity on various solutions to
Equation (1.3) is not definitely known. Stallman(12) and
other authors have used the theory of images to analyze
the effect of various types of finite boundaries on the
solution to the non-equilibrium formula. Jacob(13) re-
viewed the works of Muskat(36) and Wenzel(S) concerning
the effect of a discharge well tapping less than the full

thickness of an aquifer and concluded that corrections must
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be made to the water levels observed during field tests
before an accurate coefficient of transmissibility can be
calculated from Equation (1.3). Muskat(1h) showed that the
error in drawdown level calculated by Equation (1.3) (which
assumes a vanishing wellbore diameter rather than a wellbore-
of finite diameter) is insignificant except at very small
pumping times or very short distances from the wellbore.
Jacob(15) recognized that the series of terms beyond
Ln(u) in Equation (1.4) was not 5ignificant when (u) becomes
small (i.e., when t increases or r decreases) and that this

series could be truncated without adding significant error

to Theis' equation. Jacob's Modified Equation is:
LTt
5 = —\_ ,
s = LnT Ln 2= 5772 (1.5)

or in standard hydrologic units:

_ 0.3T t
s=g%—3 Log —5—— (1.6)
- r s

Jacob realized that after equilibrium was attained, Equation
(1.6) could be solved by graphical means to find the storage
coefficient and the coefficient of transmissibility.

4, Cone of Depression

In nature, the hydraulic system within any aquifer is
considered to be in balance. If further discharge is imposed
by, say, a new well on this balanced system, then before
equilibrium can be re-established, the water level must fall
throughout the aquifer to such an extent that the natural

discharge from the aquifer (measured prior to the new well)
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is decreased by an amount equal to the new quantity imposed
on the system by the discharge well, or in a like manner,

the recharge volume increased by the same magnitude. ﬁntil
this equilibrium is re-established water will be withdrawn
from storage in the aquifer. Conversely, balance cannot be
re-established until sufficient water is withdrawn by the

well from storage to depress the piezometric surface of the
aquifer sufficient to change the natural discharge or recharge
by the proper amount.

In an ideal aquifer of infinite extent the most important
variable describing the growth of the cone of depression is
considered to be time. The rate of lateral growth of the
cone of depression with time during the non-equilibrium
period of flow depends only on the physical properties of
the reservoir and is independent of the discharge rate of
the well(1). In artesian aquifers, the cone grows laterally
much faster than it does in water-table aquifers. (See
Fig. 7C, p. 60) This is due to the quantity of water re-
moved from storage in an artesian aquifer by compaction of
the strata and the expansion of the water in the aquifer
upon decline in pressure is much less than the quantity of
water that would be removed by the dewatering of the aquifer
pore space under the same pressure decline in a water-table
aquifer. The cone of depression for fine-grained sand
aquifers appears to approximate the cone of ideal aquifers.

The expansion of the cone of depression around a

discharging well is limited only when the exterior boundary
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of the aquifer is reached. The expansion of the area from
which water is diverted, however, will occur until the

recharge to this area is equal to the discharge from the

well. The time at which stabilization of the cone is achieved
is independent of both the rate of discharge and the continuity
of discharge of the well,

5. Varying Discharge Rate

A common hydraulic problem is that of determining the
effects of pumping at different rates on the ultimate draw-
down or change in water level within the immediate area of
the well. The rate at which water is pumped from a well or
from a reservoir commonly varies with the seasonal surface
requirements. In many cases the pumping rate, as recorded
in terms of daily or monthly discharge, is found to change
continuously. With this variation in pumping rate, the
methods previously described cannot be applied without
tedious modifications. Stallman(17) introduced a method of
approximating this varying discharge rate by a series of
graphical steps. The analysis of each step is subsequently
undertaken using the conventional equations. A type curve
for analyzing the observed drawdowns caused by this stepped
pumping rate can be constructed by the use of the Theis
non-equilibrium formula. This development proceeds as
follows:

The drawdown, g, at any distance, r, from the pumped
well, at any time, t, is:

S = 8 + s + S + <« o o S

1 2 3 n . (1.7a)
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Applying the non-equilibrium formula Equation (1.3) to define
each of the drawdown components given in Equation (1.7a)
yields

5 = L8 lAa, W), +Au(), + - . Ao w(w), | (1.70)

The corresponding u values are:

1 T(t - t ! Y T PlE - E Pt "n T T(t - t_) :
= 1 - 2 - n
Thus:
- t1 t - t1 - t1 ( )
u, = u — 3 u, = u —_— ; u_ = u Cie——— 1.7d
2 1t - t2 3 1t t3 n 1t tn

In this manner a family of curves can be constructed

with (1/t) ahd (1.87 rZS/z) as the independent variables and
ZnA QW(u) as the dependent wvariable. The drawdown at any
lime t at any radius r can be found by superimposing the
field-data plot of log s versus log (1/t) on this family of
type curves (plotted as logﬁAQW(u) versus log (1/1’:) and
shifting the field-data plot1until its curvature is didentical
with an underlying type curve). This serves to identify the
data curve with a specific (1.87 rZS/I). Values for s and
£E[§QW(u) are then read from the graphs and can be entered
;n Equation (1;7b) to solve for T. The computed value of

T can then be used with the value of (1.87 rZS/z) to solve
for S by Equation (1.3).

6. Jacob and Lohman Solution

Jacob and Lohman(18) obtained a solution to the
diffusivity equation for finding the coefficients S and T

from a test where the drawdown, ;, was held constant by
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varying the discharge to the well. In this analysis, S and
T are assumed to be constant and the aquifer is assumed
infinite in areal extent. The flow rate for this analysis

is found to be:

Q = 21@_st(°() (1.8a)
where s = constant = St
and: oo
2 Y (x)
_ 4 - X T - o
G(X) = = xe >+ Tan EZT;j- dx (1.8b)
©
where:
T t
r °s °
w

Equations (1.8a and 1.8c) can then be rewritten in standard

hydrologic units as:

T s G(®)
Q= —>%35 — (1.92)
and:
ol = .12483“_ t (
T 1.9b)
where:
Sw = Constant drawdown in the discharge well, feet.
rw = Effective radius of the discharge well, feet.
Jo(x) = Bessel function of zero order, first kind,
Yo(x) = Bessel function of zero order, second kind.

This equation cannot be integrated directly and is often
solved by numerical methods.

Jacob and Lohman(18) also showed that for large values
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of t, G(®) can be replaced by:

2

c(R) = en) (1.10a)

and, since W(u) is equal to:

2.25 T ¢t
W(u) = 2.30 Log —5—— (1.10b)
r S
w
then Equation (1.8a) becomes:
bn T s
et
_ _T2.30
Q= TogT2.25 T ¢ (1.11)
r 2 S
w

Equation (1.11) is the equation of a straight line

such that (SW/Q) plotted against log (t/rwz) has a slbpe of:

Z&(SW/Q) _ 2.30

T hn T

Slope =

A Log(t/2.7) (1.12a)

Once the slope of the line is determined, the coefficient

of transmissibility can be computed from the relation:

2.30 A (Log t/rwz)
I-= in A (5_/9Q) (1.12pb)

The coefficient of storage can then be found by substituting
the value of T from (1.12b) and the coordinates of any point
on the straight-line plot into (1.11).

B. Aquifer-Petroleum Reservoir Performance

Aquifers which surround many oil and gas reservoirs
have the ability to supply water to such reservoirs as oil
and gas are withdrawn. This water-influx (called natural

water drive) provides one of the most effective driving
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mechanisms for the production of o0il and gas. Oil replace-
ment by water from the aquifer may occur under the influence
of various factors operating singly or in combination: by
volumetric water expansion as a result of field-pressure decline,
by hydraulic flow as a result of water infiltration at the
outcrops of the reservoir rock, or by artificial injection
of water into the oil-bearing horizon. The pressure behavior
of the reservoir under water drive is dependent upon the rate
of hydrocarﬁon withdrawél and upon the rate of water encroach-
ment. When exact volumetric balance exists between water
influx and hydrocarbon withdrawals, field pressure is
maintained.

Available methods for estimating water-influx into
hydrocarbon reservoirs which can be applied to the problem
of water-drive reservoirs include the steady-state method of
Schilthuis(hB), the Hurst(hu) modified steady-state method,
and the various unsteady-state methods such as thosé of Van

(19) (20) (22)

Everdingen-Hurst Hurst and Carter-Tracy
There are two basic approaches by which the water-

influx into a radial sink area can be evaluated;_the constant

terminal pressure approach and the constant terminal rate

approach. In the constant terminal pressure case the pressure

at all points in the formation is constant and equal to

unity at time zero. When the well or reservoir is opened,

the pressure at the well or reservoir boundary, Ty = 1,

immediately drops to zero and remains zero for the duration

of the production history. The cumulative amount of water
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flowing across the well or reservoir boundary is then
computed as a function of time. On the other hand, in the
constant terminal rate case it is likewise assumed that
initially the pressure everywhere in the formation is con-
stant but that from time zero onward the fluid is withdrawn
from the well bore or reservoir boundary at a unit rate.
The resulting pressure drop is then computed aé a function
of the time.

1. Van Everdingen and Hurst Methods

(19)

Van Everdingen and Hurst have presented a solution
to the diffusivity equation (1.2) for the unsteady-state
isothermal flow of a slightly compressible fluid encroaching
into a homogeneous reservoir sink. Their solution, developed
by the application of Laplace transforms, yields an exact
defermination of the aquifer water encroachment across the
aquifer-hydrocarbon reservoif boundary under the assumption
that such encroachment is of a steady-rate (viz., constant
terminal rate) nature.

The pressure drop is given by PD = PD(rD, tD) and at
the hydrocarbon reservoir boundary where rp = 1¢

B_f__D_

37D

e (1.13)

rD=1

The minus sign is introduced to compensate for the pressure
gradient direction relative to the radius of the reservoir.

If the cumulative pressure drop is expressed as AP, then:

AP =q(ty) Pylry, tp) (1.14)
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where q(tD) is a constant relating the cumulative pressure
drop with the pressure change for a unit rate of production.
By applying Darcy's equation(h) for the rate of fluid flow

into the well or reservoir per unit sand thickness, H:

_ —2ﬂKq(tD) 'bPD(rD, tD)
Q) = M D p (1.15)

which simplifies to:

9.(21_& (1.16)

q =
(tD) 21K "

The AP at the reservoir radius (or well radius) ry = 1 for

any constant rate of production is given by:

AP = 211:KM Ple) . (1.17)

Since the diffusivity equation is linear, the Duhamel
Superposition Theorem can be applied as a sequence of
constant terminal pressures or constant terminal rates in
such a way that the production or pressure history at the
aquifer-hydrocarbon reservoir boundary (rD = 1) is reproduced.

The cumulative water produced at time (tD) by a pressure

dropAPo, operative since time zero, is expressed by:

Q(py = 2nfe rbZZSpo Q(tD) . (1.18)

Then considering the pressure drqp[& P1, which occurs at
time (tD1)’ and treating this as a separate entity acting
since time (tD1), ‘the cumulative water produced by this

increment of pressure drop is:

Qr) = 2nge rb%A:P1 Q(tD-tm) . (1.19)
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By superimposing all the effects of pressure changes
and by taking very small incremental pressure drops, the
total water influx in time (tD) is expressed as:

t

D étﬁ
2 P
= 27 r — dt_ ' 1.20
Q(T) ¢C b BtD' Q(tD_tD') D ( )
0]
(20) . . e
Hurst also presented a solution to the diffusivity

equation derived by the application of a Fourier-Bessel
series for an unsteady-state of water encroachment across an
aquifer-hydrocarbon reservoir boundary (viz., constant
terminal pressure case). Due to the similarity of Hurst's
solution with that of Van Everdingen-Hurst, the Hurst method
will not be discussed.

Van Everdingen and Hurst(19) developed a constant
terminal pressure solution to the diffusivity equation by
Laplace transforms which is similar to Hurst's(zo) solution
except for the nomenclature. By considering variable rates
of fluid production and reproducing these rates as a series
of constant steps, the pressure drop at the wellbore or
reservoir boundary (rD=1) in time (tD), for the initial rate

(qo) can be found from:

AP = qu(tD) + [q1(tD1) ™ Ple-t.) +

) Pe -t

T [q(tDn) B q(t Dn Dn-1) *

(1.21)
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If the increments are infinitesimal:

tp
dq(ty")
P = P + —=p dt_!
£ P (tp) dt," (tp-tp') ©°D (1.22)
If q, = O:
tp
P = X dt_*
A Utp') © (tp-tp') D (1.23)
0

where P'(tD) is the derivative of P(tD) with respect to (tD).

2. The Wilson-Carlile Approximation

Wilson and Carlile(21) have reproduced the results of
Van Everdingen-Hurst and of Hurst for the constant terminal
pressure case with a simple logarithmic time function. This
simplified approach eliminated the time consuming application
of dimensionless rate functions in a series summation by
expressing the water encroachment as a simple function of
time alone, This approximation, while reducing the complexity
of the solution by about 80%, reproduces the previous
solutions(19)(20) to within 99%. The Wilson and Carlile

approximation is given by:

B

i
. n
2 :E
W, = 2n¢cw Hr “e QSP)j An[tDi-tDj] (1.24)
j=0

S

where:
W = The cumulative volume of water encroaching, bbl.
H = The net sink formation thickness, feet.

= The fraction of the periphery of the sink
subjected to influx of water, fraction.
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An, Bn = Coefficients of approximation.
tD = Dimensionless time at which We volumes of water
have encroached.
By = Compressibility of water, 1/psi.
g = Porosity, fraction.
AP = Pressure change, psi.

3. Other Methods

(22)

Carter and Tracy developed a method for calculating

water influx which eliminated the superposition calculations

(19)

of Van Everdingen and Hurst -Their method is somewhat
similar to that of Hurst(18) except that over finite time
intervals the water influx rates are assumed constant
rather than assuming constant oil production rates. By
combining the Hurst approach with the material balance
(43)

equation of Schilthuis they developed a method which

lends itself to easy solution by hand calculations.

Chatas(ZB)(zu)(zs) in a series of three articles
summarized the work of Van Everdingen and Hurst and further
extended their results for higher and lower ranges of
dimensionless time (tD).

Many investigators have used the response of the
"dimensionless aquifer" to a unit pressure drop, or a unit
fluid-withdrawal Yolume to calculate the performance of an
aquifer in supplying water-influx to an oil reservoir. In
the past, these response functions have been calculated

with the aid of the Laplace transform. With the development

of high speed computers, these response functions have been
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solved for by finite-difference methods.

Mueller(26) expanded the so-called V.T.M. method

(18) (19)

originally proposed by Hurst and Van Everdingen-Hurst ’
and later expanded upon by Van Everdingen, Timmerman, and
McMahan(27) to apply to the transient response of non-
homogeneous aquifers.

In the V.T.M. method, a material balance is made on
the fluids entering and leaving the reservoir. In this
balance, the water-influx term is the product of the water-
influx from an arbitrarily selected dimensionless aquifer
system and a conversion number, If the correct dimensionless
aquifer has been chosen, then the conversion number will
remain constant over the history of the reservoir. If such
a condition exists, then the function associated with the
particular dimensionless system and the derived conversion
number can be used to predict the future performance of the
reservoir., These functions are referred to as "response
functions",.

The response function required for the solution of the
constant-terminal-rate problem is a relationship between
‘dimensionless pressure drop (PD) and the dimensionless time
(tD). For the constant terminal pressure case a function
relating dimensionless flow rate (QD) to dimensionless time
(tD) is required.

The shape of these various response functions depends
upon the geometry of the system,vthe conditions imposed at

the inner and outer boundaries, and the ratio of the outer
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boundary to the inner boundary. Since the system is assumed
homogeneous, the character of the particular dimensionless
function depends mainly upon the radius ratio of the aquifer
system.

4, Mortada's Work

Mortada(zs) discussed the problem of oilfield inter-
ference in water-drive reservoirs. He consfdefed the
problem of multiple oilfields located in a common aquifer
and the effects of pressure drop in the wvarious oil fields
on the rate of water-influx into the reservoirs.

In his paper, Mortada presented solutions to the diffu-
sivity equation (1.2) for values of dimensionless time (tD)
and dimensionless radius (rD) for the constant rate case
which are normally required for field analyses with the
following boundary conditions:

1. PD(rD, O) = 0 (uniform initial aquifer pressure)

2n PD(rD, tD)—é'O as r-—>» ©O (extensive aquifer)

3. BPD = -1 (constant rate of water influx) ,

P50
r.=1

Mortada's values for the dimensionless pressure
PD(rD, tD) were -obtained by several methods.

For tDs .01 the relationship

2Vt r_. - 1
: D .
PD(rD, tD) = ——— ijerfc ou . N— (1.25)

= 2%

was solved, where:
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2

-X
e

ierfc(x) = -x erfc(x) (1.26)

T
which can readily be found in mathematical function tables(29)
For tD > 500:

-r2
1

i D
PD(rD, tD) =3 -Ei —Egg— (1.27)

which was derived from the continuous point sink solution

of Lord Kelvin, where:

-r? X _
-Ei |47 |= S — dx . (1.28)
tp =
T2
D
hep

To bridge the gap between tD < .01 and tD > 500, a
digital computer was used to solve a set of finite-difference
equations based upon the diffusivity equation. This tech-
nique provided wvalues of PD(rD, tD) which showed no change
in the third decimal place as the values of A tD were chosen
progressively smaller.

Flow equations are used in petroleum engineering to
study the behavior of individual wells and reservoirs. For
individual wells, the pressure response at the wellbore
face is the major point of interest; whereas, in the case
of reservoirs, the pressure response at the aquifer-hydro-
carbon interface is sought. To aid in these studies, the
flow equations have been solved in terms of the behavior

at these two respective boundaries
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5. Theis and Mortada

Only limited work has been published concerning the
pressure conditions away from these inner boundaries, (i.e.,
within the reservoir or aquifer). Theis(1) and Mortada(zs)
are among the few who have reported on this problem. The
Theis approach employs the exponential integral and is
valid for pressure conditions that occur some distance away
from the wellbore. It is derived from the conéept of a point
source, as opposed to a flow across a finite area. The
Mortada results, on the other hand, are valid at all points
within the reservoir or aquifer. They are presented in terms
of dimensionless ratios of the radius where the pressure
is desired to the radius where the flow rate is measured.
Their main use in the past has been in aquifer studies.
Mortada's results are presented in the form of graphs which
are limited to a maximum radius ratio of 64 (See Fig. 1-3).
These graphical results are cumbersome to interpolate at
non-integral radius ratios, and therefore it often 5ecomes
necessary to use the analytical expressions given by Mortada:
equations (1.25) to (1.28).

6. Interrelationship of Solutions

The solutions of Mortada and Theis are both based on
the diffusivity equation (1.2) as applied to the case of
an infinite radial system subject to a constant terminal
rate. The diffusivity equation is obtained by combining
the material balance equation with Darcy's flow equation,
The assumptions involved in the use of this equation and

thus imposed on these two solutions are:
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1. A single fluid is present that occupies the
entire pore wvolume.

2., The reservoir is horizontal, homogeneous, uniform
in thickness, and of infinite radial extent.

3. The compressibility and wviscosity of the fluid
remain constant at all pressures.

4, The fluid density obeys the equation,

P = Poe'c(Po-P). (1.2a)

The diffusivity equation for the conditions stated
above can be written in cylindrical coordinates (and in oil

field terms) as:

2
S AER ELL R ),

When 0.29) is compared to the Theis solution (1.2), it can
be seen that p in (1.29) has replaced s in Theis' equation
and PAAc has taken the place of S/z in (1.2). Actually the
only Ehange which has occurred is that the drawdown measured
in feet of water has been converted to an equivalent pressure
term. In order to obtain a dimensionless equation to facili-
tate one solution which can be used for application of
different porosity, permeability, and fluid properties,

Mortada, Van Everdingen-Hurst, and Driscoll(32) have employed

the following transformations:

Dimensionless pressure:

2n K H[P_-P_]
2 1 \
P = e 1 o 308.
D qa M . ( ’
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Dimensionless radius:

- r_
p T ¢
w
or: (1.30b)
R
D ~ ry .

Dimensionless time

¢ = —Xt
D 2
¢Akcrw
or: (1.31)
Kt
t, = ————
D ¢Alcrb2

Substituting these dimensionless parameters into (1.29)

yvields: >

P P P
R TR
D

One solution of this equation has been given by
Mortada(zs) in which he presented dimensionless pressure
drop as a function of dimensionless time. His graphical
results are presented in Figures (1) to (3).

If the definition of dimensionless time in (1.31) is

based upon any radius in the infinite system, we than have:

T o= Kt
D~ gmor? (1.33)

The dimensionless time of Mortada (tD) is related to that

of Equation (1.33) by:

tp = 2 . (1.34)



Table 1

Definition of Terms in Theis Solution

Term Definition W= 2m w=7.082 x 1075 w = 8,953 x 10'2
x = 1.0 x = 6,331 x 1.0-3 x = 4,386 x 10°

K Permeability sq. cm. md., md.

H Thickness cm, ft. ft.

P Pressure Drop dynes/sq. cm, psi. ft. water

a Flow Rate cc./sec. bbl./day gal./min.

M Viscosity poise cp. cp.

t Time sec., days min,

¢ Porosity

c Compressibility dynes7sq. cm, psi. psi.

r Distance cm, ft. ft.

(Ref. 40)

6€
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From Table 2 it can be seen that when (1.34) is compared

to thevTheis equation (1.2) in the following manner:

T, = Ix (1.35)
and:
E.|[-X ,
APD=-—1£—]—- (1.36)

Equation (1.37) gives the relationship between the
methods of analysis used by hydrologists and those commonly
used in oil field work. In oil field terms, the Theis

co-ordinates are:

KHA P - XKt
p, = =22 0 T oo 22k (1.37)
D a M D ¢|&cr2

where w and x take on different values according to the
dimensions selected (See Table 1.).

The definitions of the dependent and independent
variables of Theis are compared with those of Mortada,
and of Van Everdingen-Hurst in Table 2. The Theis solution

of the exponential integral is shown in Figure (hb).

Table 2

Comparison of Dependent and Independent Variables

Method Dimensionless Dimensionless

Independent Variable Dependent Variable
r2 c
i = . -X
Theis X =T B, (-X)
|
t
Mortada & £ = K APD

V.E.-Hurst D ¢Mcr B
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Mortada's work shows that for reasonable values of
real time (t), the Theis point-source solution represents
the behavior of a slightly compressible system for all
radial distances greater than about 30 times the radius
of the pumping well, or in most cases about 15 feet or more
away from the wellbore.

If the properties of the aquifer are known, the Theis
curve (Fig. 4a) can be used directly to predict the behavior
of the system 15 feet or more away from the wellbore.
Mortada's solution can then be used to give the aquifer
behavior in the wvicinity of the well (less than 15 feet
away from the wellbore).

Mueller and Witherspoon(31) adjusted the Theis results
of Figure (hb)in accordance with the definitions of (1.35)
and (1.36). They also modified Mortada's solutions of
Figures (1) to (3) by means of Equation (1.34). Their
results are a family of curves shown in Figure (Sa) which
converge on Theis' solution. Radius ratios not given in
Mortada's work have been obtained from the results given

by Mueller(26).

Figure (Sa) shows that the Theis solution
can be used for radius ratios greater than 20 for practical
times (tD > .1). Figure (5b) shows the percent error that
would result by using the Theis solution for various radius
ratios instead of the Mortada solution.

At early times and at short distances from the inner

boundary the "point source" solutions are invalid. The

error introduced by the Theis solution (See Fig. 5b) may
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be negligible in most reservoir problems, but in the
calculation of interference effects in an aquifer the error
introduced can be appreciable.

(19)

Van Everdingen and Hurst have presented results

of the dimensionless pressure drop at the wellbore interface
(rD=r/rw=1) as a function of dimensionless time defined in
the same manner as by Mueller. More recently Dfiscoll(Bz)
used the concept of dimensionless pressure vs. dimensionless
time at various radius ratios for finite systems.

Driscoll discusses the use of well interference and
pressure build-up data for the determination of water influx.
His work also considers the problem of an effective compressi-
bility in water reservoirs and gives a relationship for the
adjusted rock compressibility after overburden pressures
have been considered.

Although there are many different types of aquifer
tests, the constant terminal rate discharge tests followed
by pressure build-up tests are of particular interest to the
engineers who develop natural gas storage pools in aquifers
or those who work with producing gas and oil fields subject
to water-drive or encroachment.

7. Radius of Drainage

Because of the apparent constancy of the pressure at
various distances out in the reservoir, many authors have
discussed what is termed a "radius of drainage". This
drainage radius is usually defined as that distance beyond

whidh the pressure change is only 1% of the change in



Figure 6

Van Poolen's Summary of Various Radius-of-Drainage
and Stabilization-time Equations

(Ref. 33)
(37)
(35) (36)  Browns-  (25) (38) (64) (33)
(Ref. 34) Tek,Grove, combe
P.E, and Kern Chatas Hutchinson
Reference Jones Poettmann Muskat M.D.H. radial Kern Hurst Present
cC-g=-5s Kt . Kt Kt Kt Kt Kt Kt Kt
units l#/a——MC 4,29 a———M S 2 m\—c' 784 -6"\—0 2\{514—0 1.5|a‘rc 2.6408 m 2 6—'“0
Radius of ‘
drainage t
Field Kt Kt Kt Kt Kt Kt Kt Kt
units 10¢Mc 9 guc 4O gmc ¥ 50 g Mc Y 40 Gmuc | 70 @ac 22.5 @Mc | 39.2 Fmc
C-g-5s gklcr2 ¢Acr2 ¢A&cr2 ¢A\cr2 ¢:ch2 ﬁAlcrz’ ¢}&cr2 ¢A\cr2
units 16K 18.45K LK 3. 18K LK 2.25K "~ 6.97K LK
Stabiliza- -
tion time 2 5 > 5 > _ 2 > N
Field 10 gmcr 9 gmcr” 4o dMcr® 50 @gmer” 40 @gMcr® 70 dncr® - 22.5 dMcr 39.2 @Mcr
units K K K K K K K K
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pressure in effect at the wellbore. Some authors, however,
have described this radius as that point across which only
1% of the flow occurs when 100% flow is being experienced
at the wellbore.

(33)

Vaq Poolen has summarized the works of such authors

(3%) | 10k (35), Muskas(36), (37)

as Jones Brownscombe and Kern
Chatas(zs), Hutchinson and Kern(38), and Hurst, Haynie, and
Walker(39). Van Poolen's table for the various radius of
‘drainage equations developed by each of the above authors

is given in Figure (6).

8. Underground Gas Storage in Aquifers

The use of aquifers for underground storage of gas has
become extremely important to the natural gas industry. A
critical problem in assessing the feasibility of a specific
aquifer for such gas storage use is the determination or
the permeability of the caprock over the proposed storage
aquifer,

Witherspoon, Mueller, and Donovan(ho) evaluated the
underground gas-storage conditions in aquifers by investi-
gations of groundwater hydrology. Their work presents a
finite-difference model which divides the aquifer-caprock
system into layers with each layer further subdivided into
a group of nested annular rings. The radii of these rings
were chosen so as to increase in a geometric progression
such that small radial distances could be used around the

wellbore and progressively larger radii for greater distances

away from the well. A sufficient number of annular rings
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are used so that the pressure transient created by the fluid
withdrawal is assumed to not reach the outer boundaries of
the system. The results obtained are therefore the same

as would be obtained with an infinite radial system.

In‘this approach fluid is produced at a constant rate
from the innermost ring of the aquifer without production
from the innermost rings of the caprock. A material balance
is made for every ring in the system at finite time steps.

A point-by-point iteration scheme is then used to solve these
material balance equations. In this manner, the transient
behavior of the whole éystem can be numerically solved with
the digitalized program. This procedure provides great
detail on the pressure behavior at all parts of the system.

Evrenos and Rejda(u1) have found that hydrological
testing of an aquifer considered for natural gas storage
and computerized evaluation of field data is the most
practical method of determining the tightness of the cap-
rock, aquifer geometry, and the coefficients of trans-
missibility, storage, and leakage.

Their program can be used to 1) compare the actual
pressure performance of aquifer systems with the calculated
pressure behavior based on analytical analogs permitting
the selgction of the analog which best fits the test dataj;
and, to 2) predict the pressure response of an aquifer
discharging through one or more wells in order to help
design proper test procedures and to monitor test activities

in the field.
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Whenever a field data processing and evaluation run
is made to determine aquifer description from field data,
the procedure calculates pressures for each observation
point according to the specified analogs, the input
parameters, and the actual data point times; compares
observed pressures to calculated pressures; optimizes the
fit between field data and analog responses by varying
certain parameters; and selects the analog which best
fits field data.

One of Evrenos and Rejda's five analogs describes
the pressure behavior of a homogeneous aquifer of infinite
radial extent without leakage through the aquiclude.

The research sponsored at the University of Michigan
from 1959 to 1961 by the American Gas Association was
concerned with the prediction of water movement into and
out of aquifers during gas storage cycles. This research
led to a wealth of information dealing primarily with the
movement of water in contact with natural gas reservoirs.
The work of L. Katz, Tek, Coats, M. Katz, Jcnes, and
Miller(hz) published as a result of this research, and
the later works of Katz, Vary, Elenbaas, Tek, Grove,

(45 - 52)

Poettmann, Yoo, Coats, and White form one of the
bases of the growing research effort in the field of under-
ground storage of natural gas in water reservoirs and the

effects of water movements within these storage reservoirs.
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ITII. DISCUSSION

The research work concerning the unsteady-state
movement of water in aquifers and the work dealing with
the unsteady-state water encroachment into hydrocarbon
reservoirs stem originally from the same equation, namely,
the Diffusivity Equation. For aquifer studies the hydrolo-
gists choose to express this equation in terms of drawdown,
while the petroleum engineers, in dealing with hydrocarbon
reservoirs, prefer pressure as the dependent variable. The
grouping of terms on the right-hand side of the diffusivity
equation also differs depending upon the specific investi-
gation desired. Aquifer investigations usually use S/E,
while petroleum literature employs ¢AAC/K. In any case,
the various groups are themselves inter-related so that the
equation is essentially the same in both approaches. The
assumptions necessary for the application of the diffusivity
equation (point-source solution) to the unsteady-state flow
of water are generally the same in both approaches.

The major difference between the two approaches is
that the point in the aquifer-hydrocarbon reservoir system
(or simple aquifer system) at which the evaluatién of the
water moveﬁent is made differs between the two types of
solutions. Hydrologists have made most of their studies
at the wellbore of the pumping or flowing well or at other
observation wells within the drawdown area of the reservoir.

They have developed numerous methods for finding the draw-
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down profile within the reservoir, the coefficients of

storage and transmissibility, the permeability of the
formation, and the quantities of water produced as a result
of a given drop in head. Petroleum and natural gas engineers,
however, have devoted the bulk of their research to the
prediction of the quantity of aquifer water which can
encroach into the hydrocarbon portion of the reservoir

under a specified decrease in reservoir pressure (viz.
reservoir fluid withdrawal).

These two different approaches are best characterized
by the works of Theis(1) and of Van Everdingen—Hurst(19).
Bésides attacking the problem of water influx from two
different directions, these methods also differ in their
degree of accuracy and their range of application. The
Theis method employs an exponential integral and is derived
from the concept of a point-source solution and, at best,
gives only an approximate solution in the wvicinity of the
wellbore, Van Everdingen-Hurst have derived their solutions
from the concept of a flow across a finite area using Laplace
transforms and by forming a ratio of the radius where the
pressure is desired to the radius where the flow rate is
measured. Their development is an exact expression for the
water-influx into a reservoir.

Mortada extended the work of Theis to cover the entire
reservoir and presents a method which can be used to find
the pressure distribution within the surrounding aquifer.

Mueller and Witherspoon have compared the methods of Theis
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and Mortada and have found that there are similar groupings
of the éeveral variables in both methods.

At the present time there is some question as to just
what the quantitative definition of the "radius of drainage"
should be. Several authors have offered equations for a
drainage radius, derived by different techniques, all of which
give somewhat different results. All these authors do agree,
however, that this drainage radius is a function of time
alone for any one combination of reservoir properties.

During the course of this study it has become evident
that.the development of solutions for aquifer performance
on high-speed digital computers has had a profound effect
on the research activities of the petroleum industry. Some
very important aquifer studies employing computer techniques
have been presented by hydrologists who have either been
employed by petroleum companies or ha&e dealt with aquifer
problems as related to petroleum or natural gas reservoirs.

As a result of this investigation, this investigator
feels that enough similarities exist between the two
approaches, at least in the basic assumptions made, to
allow the water-influx method to be applied to aduifer
problems. If digital computer techniques are employed in
developing this new method then it should be possible to
reduce, if not eliminate, the graphical work now required

in the solution of various aquifer problems.
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Iv. SUGGESTED PROCEDURE FOR FUTURE RESEARCH

This study suggests that the unsteady-state flow of
water in infinite radial reservoirs be investigated from
the point of view of the amounts of aquifer water encroaching
across an imaginary aquifer-reservoir boundary. This in-
vestigation could be performed by thé application of the
Van Everdingen-Hurst method (with the Wilson-Carlile
simplification) for water influx determination. By using
this type of approach to reservoir problems, it is proposed
that solutions to various aquifer problems could be achieved
which would not require supporting data from observaticn
wells but, instead, would use only discharge well measure-
ments and past production data.

Four possible objectives are suggested for future

research into this area:

1. An attempt should be made to combine the present
drawdown formulas with the wvarious water-influx
equations to determine the radius, R, at which
the cone of depression will stabilize. The
results of this study should then be compared
to the values of R determined by the methods

already presented by several authors.

2. It is proposed that a method could be developed
"which would permit the reservoir pressure and

drawdown levels to be calculated for different
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pumping rates at various times through the
application of the Van Everdingen-Hurst
Laplacian solutions at the imaginary aquifer-

reservoir boundary.

3. By calculating the quantities of aquiferbwater
encroaching into the reservoir for various
pumping rates (i.e., for different pressures
and different drawdown profiles) it is proposed that
the maximum future pumping rate of aquifer bodies

can be determined.

L, By examining the wvarious parameters and constants
involved in the Theis non-equilibrium and the
wptef—influx approaches, the coefficient of storage,
S, and the coefficient of transmissibility, T, can
be determined by a method based on the water en-
croaching into the reservoir, past production data,
and discharge well data rather than by the current

graphical techniques.

It is proposed that these four objectives can be best
attained by mathematical models with the bulk of the work
being accomplished by computer application. It is antici-
pated that, resulting from this research, the current
solutions to aquifer problems could be significantly
improved and that a new approach tc various types of solu-

tions could be achieved.
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V. CONCLUSIONS

Two different approaches to the problem of under-
ground water movement exist at the present time. Both of
these approaches start originally with the same basic
eqﬁation (i.e., the diffusivity equatibn) but the resulting
methods attack the problem of aquifer water movement from
two different directions.

The hydrologists have developed methods by which the
quantities of water entering the wellbore and the resulting
pressure profile in the surrounding aquifer can be estimated.
On the other hand, the petroleum and natural gas engineers
have been mainly concerned with the quantities of water
encroaching across the aquifer-hydrocarbon reservoir
boundary and have developed their solutions to reflect this
transient behavior.

Future research designed to develop new methods for
calculating the water-influx into reservoirs, the aquifer
pressure profiles, the radius bf drainage, and the coeffi-
cients of storage and transmissibility, can be performed
based upon the quantities of water encroéching across an
imaginary aquifér-reservoir boundary. This research can
be undertaken mathematically with the application of

digital computing techniques.
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NOMENCLATURE

area, acres

coefficient of approximation

coefficient of approximation
compressibility of fluid, vol/vol/psi.
compressibility of water, vol/vol/psi;
constant (2.71828)

exponential integral of the argument (X)‘
complementary error function, p. 27.
function, defined in (1.8), p. 17.

net sand thickness, feet

integral of the complementary error function,
defined by (1.26), p. 26.

bessel function of zero order, first kind
permeability, darcies or millidarcies
naperian logarithm, base e

common logarithm, base 10

height of aquifer prism, feet, Fig. 7, p. 58.
pressure, psi.

permeability coefficient (defined by Meinzer, p.

dimensionless pressure, defined in (1.30a),p. 37 «

dimensionless pressure of Mortada, Fig. 1, p. 29.

discharge rate, cubic feet per day

diScharge rate over real time T, cubic feet/day

discharge rate to cumulative pressure drop constan-

defined by (1.16), p. 21.

cumulative discharge in time tD by A Pn
n
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dimensionless flow rate, definition wvaries
equilibrium radius of drainage, feet

distance from the wellbore to some point in

reservoir, feet

radius of the reservoir, feet

dimensionless radius, defined in (1.30b), p. 38.
radius of the discharge well, feet
dimensionless radius used with Mortada's ED and

P defined in

—D 29-

Fig. 1, p.

coefficient of storage, fraction

drawdown at some distance r from the wellbore, fee
constant drawdown in discharge well, feet
coefficient of transmissibility, cubic feet/day/ft
time, days

anglile whose tangent is

dimensionless time, defined in (1.31), p. 38.
dimensionless time of Mortada, Fig. 1, p. 29.,
dimensionless time based on any radius r, defined
in (1.33), p. 38.

(r®s/ Tt) 1.87

constant depending upon units used, Table 1, p. 39.
cumulative volume of encroaching water, barrels
well function of u, defined in (1.4), p. 11.

Theis dimensionless independent variable, Table 2,

constant depending on units used, Table 1, p. 39.
bessel function of zero order, second kind

change in quantity

constant (3.141596)
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viscosity, centipoise

fraction of the periphery of the sink subjected
to influx of water, fraction

porosity, fraction
density, pound/cubic foot
summation of terms
differential of

integral of

infinity
Tt

Ut
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DEFINITIONS

Artesian Aguifer:

An aquifer which is confined by beds of relatively
impermeable material on both the top and bottom. These beds
"are assumed to be fluid in the sense that they have no
ability to absorb or dissipate changes in forces external

to or within the aquifer. (See Fig. 7a.)

Aquiclude:

The impermeable bed of material overlying the aquifer,

often termed the caprock in petroleum literature. (Fig.7b)

Piezometric Surface:

The level of water sustained by the aquifer pressure.

The natural head of a water well. (Fig. 7a)

Cone of Depression:

The cone-shaped region of drawdown of the piezometric

surface surrounding a pumping water well. (Fig. 7c)

Coefficient of Storage:

The volume of water released or taken into storage per
unit surface area of an aquifer per unit.change of the
component of head normal to that surface. Fig. T7a shows a
prism of height, m, which can be used to define this coeffi-
cient. This prism extends vertically from top to bottom of
the aquifer and laterally so that its cross-sectional area

is coextensive with the aquifer-surface area over which the



head change occurs. The wvolume of water released from
storage in this prism, m, for any head change i, divided
by the product of the prism's cross-sectional area and the
change in head, i, results in a dimensionless number, S,

which is the coefficient of storage.

Coefficient of Permeability:

This coefficient, P, is a measure of a material's
capacity to transmit water. As expressed by Meinzer, it is
the rate of flow of water in gallons per day through a
cross-sectional area of 1 square foot under a hydraulic

gradient of 1 foot per foot at a temperature of 6OOF.

(Fig. 7b)

Coefficient of Transmissibilitv:

Theis introduced this coefficient, T, which is expressed
as the rate of flow of water, at the prevailing water tempera-
ture, in gallons per day, through a vertical strip of aquifer
1 foot wide extending the full saturated height of an aquifer
under a hydraulic gradient of 100 percent. A hydraulic
gradient of 100 percent means a 1-foot drop in the head in

1 foot of flow distance in the aquifer. (Fig. 7b)

Water Table Aquifer:

An aquifer which is not bounded above by an impermeable
bed, but instead is bounded only by the surface of the ground.
This type of aquifer has a water table which is the upper

limit of free water existing in the formation. (Fig. 7c)
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