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ABSTRACT 

Text mining helps in extracting knowledge and useful information from 

unstructured data. It detects and extracts information from mountains of documents and 

allowing in selecting data related to a particular data. 

In this study, text mining is applied to the 10-12b filings done by the companies 

during Corporate Spin-off. The main purposes are (1) To investigate potential and/or 

major concerns found from these financial statements filed for corporate spin-off and (2) 

To identify appropriate methods in text mining which can be used to reveal these major 

concerns. 

10-12b filings from thirty-four companies were taken and only the “Risk Factors” 

category was taken for analysis. Term weights such as Entropy, IDF, GF-IDF, Normal 

and None were applied on the input data and out of them Entropy and GF-IDF were 

found to be the appropriate term weights which provided acceptable results. These 

accepted term weights gave the results which was acceptable to human expert’s 

expectations. The document distribution from these term weights created a pattern which 

reflected the mood or focus of the input documents. 

In addition to the analysis, this study also provides a pilot study for future work in 

predictive text mining for the analysis of similar financial documents. For example, the 

descriptive terms found from this study provide a set of start word list which eliminates 

the try and error method of framing an initial start list. 
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1. INTRODUCTION 

The purpose of this research is to apply text mining to the 10-12b filing s done by 

the companies during Corporate Spin-off. The main purposes are (1) To investigate 

potential and/or major concerns found from these financial statements filed for corporate 

spin-off and (2) To identify appropriate methods in text mining which can be used to 

reveal these major concerns. 

Deep penetration of personal computers, data communication networks, and the 

Internet has created a massive platform for data collection, dissemination, storage, and 

retrieval. Every day, people engage in numerous online activities, including reading the 

news and product reviews, commenting on developing events, buying and selling stocks, 

and widening their social networks. This widespread engagement with online worlds has 

facilitated the creation of large amounts of textual data (Lu et al., 2007).  

  The common knowledge is that almost 80% of the corporate data is textual (Chen, 

2001; Robb, 2004). These texts contain vast amounts of untapped data, which is very 

difficult to decipher because of its unstructured nature. Text mining is often used to aide 

in the extraction of knowledge and useful information from these textual documents. Text 

mining explores for data in text files to establish valuable patterns and rules that indicate 

trends and significant features about specific topics (Lau et al., 2005). Text mining 

extracts high-level knowledge and useful patterns from low-level textual data (Durfee et 

al., 2007). Text mining tools seek to automatically analyze and learn the meaning of 

implicitly unstructured information. The key to gaining knowledge from internal and 

external textual repositories is by exploiting computers for processing the vast amounts of 

textual data with text mining software using text clustering to discover intrinsic 

knowledge within documents. Low-level data is transformed to richer data by detecting 

meaningful themes implicitly present in the data (Leong et al., 2004). 

 Text mining uncovers the underlying themes contained in large document 

collections. Text mining applications have two phases: exploring the textual data for its 

content, and then using discovered information to improve the existing processes. Both 

phases are important and are often referred to as descriptive mining and predictive 

mining, respectively. 
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Descriptive mining involves discovering the themes and concepts that exist in a 

textual collection. For example, many companies collect customers' comments from 

sources that include the Web, e-mail, and call centers. In general, mining the textual 

comments includes providing detailed information about the terms, phrases, and other 

content by extracting meaningful information from the textual collection. Also, clustering 

the documents into meaningful groups and reporting the concepts that are discovered in 

the clusters are performed as a part of descriptive mining. Results from descriptive 

mining provide a better understanding of the textual collection.  

On the other hand, predictive mining involves classifying the documents into 

categories and using the information that is implicit in the text for decision making. 

Predictive modeling involves examining past data to predict future results. Both of these 

aspects of text mining share some of the same requirements. Namely, textual documents 

that human beings can easily understand must first be represented in a form that can be 

mined by the software. The raw documents require processing before the patterns and 

relationships that they contain can be discovered. Although the human mind 

comprehends chapters, paragraphs, and sentences, computers require structured 

(quantitative or qualitative) data. As a result, an unstructured document must be 

converted into a structured form before it can be mined. 

Text mining differs from data mining in different ways. Unlike data mining, text 

mining works with an unstructured or semi-structured collection of text documents (Lau 

et al., 2005). In general, texts present in large databases cannot be analyzed by normal 

data mining statistical methods but can be preprocessed by text mining technology, which 

extracts knowledge from very large amounts of textual data (Nasukawa & Nagano, 

2001). 

Text mining is used in medical and business applications, as well as the sports and 

insurance industries. The new trend emerging from text mining is its application in the 

financial industry. Various text mining tools are applied to analyze the financial 

performance of an industry, and also aide in making major decisions on the company as a 

whole. Financial applications cover a wide range of functions, including forecasting the 

stock market, currency exchange rates, bank bankruptcies, understanding and managing 

financial risks, trading futures, future trends of stocks in the market, credit ratings, loan 
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management, bank customer profiling, and money laundering analyses (Nakhaeizadeh et 

al., 2002).  

Stock market forecasting includes uncovering market trends, planning investment 

strategies, identifying the best time to purchase the stocks, and which stocks to purchase. 

Financial institutions produce huge datasets that build a foundation for approaching these 

enormously complex and dynamic problems with data mining tools. Potential significant 

benefits of solving these problems motivated extensive research for years (Kovalerchuk, 

2006). 

Generally, finance-related textual content falls roughly into three categories. The 

first category includes forums, blogs, and wikis. A typical IT company forum has 

hundreds of new messages every day. Users actively share their investment strategies, 

new product information, perspectives and opinions. Information about the company’s 

background, rumors, and news updates are also prevalent in many finance-related blogs 

and wiki sites (Lu et al., 2007). 

The second category of finance-related content includes news and research 

reports. Newspaper articles are often accessible on news websites. Moreover, various 

finance portals provide intraday updates with contents from newswire services. Some 

portal sites also provide access to research reports generated by analysts (Lu et al., 2007). 

The third category involves finance-related content generated by firms. Many 

firms maintain their own websites as a communication channel with consumers and 

investors (Lu et al., 2007). 

This thesis is primarily about applying text mining techniques in the case of 

corporate spin-off’s. The structure of this thesis begins with the literature review which 

defines text mining, its processes and methods, and its application to various industries 

like medical, business and finance. An explanation about corporate spin-offs and more 

detailed information about it are mentioned as a part of the financial application. This is 

followed by the Methodology section, which explains the method used in the study for 

data analysis. The data used for this research has been identified and the results analyzed. 

The methodology and the data section is followed by the conclusion of the analysis and 

how these conclusions can be used for future study is suggested as future works.  
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2. LITERATURE REVIEW 

2.1. DEFINITION OF TEXT MINING 

Text mining explores data in text files to establish valuable patterns and rules that 

indicate trends and significant features about specific topics ( Lau et al., 2005). Text 

mining is also defined as a sub-specialty of knowledge discovery from data and as a 

process of utilizing computers to extract useful information from vast volumes of digital 

content. Low-level data is transformed to richer data by detecting meaningful themes 

implicitly present in the data (Leong et al., 2004).  

Text mining is a knowledge-intensive process in which a user interacts with a 

document collection over time by using a suite of analysis tools (Feldman et al., 2007). 

To be more specific, the process is aimed to understand and interpret semi-structured and 

unstructured data (Sirmakessis, 2004) in order to discover and extract knowledge from 

them, unlike data mining, which discovers knowledge from structured text (Ananiadou  

& McNaught, 2006). 

In a direct reference to text mining and its properties, Nasukawa  and Nagano 

(2001) defined text mining as a method which detects and extracts relevant documents 

from mountains of documents based on select data related to specific topics of interest so 

that the amount of data to be handled is reduced without losing the required information. 

This makes it possible to discover patterns and trends semi-automatically from huge 

collections of unstructured text using technologies such as natural language processing, 

information retrieval, information extraction, and data mining (Uramoto et al., 2004). 

It is not necessary that all text mining process follow the order of natural language 

processing, information retrieval, information extraction, and data mining, but most of 

the text mining processes follow one of these steps, thereby showing the importance of 

each step in the process of text mining. 
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2.2. TEXT MINING PROCESS 

2.2.1. Information Retrieval. Much of business information is text and the 

information is subject to frequent changes. The use of efficient and effective mechanisms 

to retrieve required business information is a key to business success, and automated 

processing of text to extract key terms is an essential component of such an information 

retrieval (IR) system (Gao et al., 2005).  

Nasukawa and Nagano (2001) mentioned that information retrieval is probably 

the most common technology to use when faced with a very large number of documents. 

They also stated that the term “Text Mining” (or Text Data Mining) detects and extracts 

documents wanted from mountains of documents, and allows selection of data related to 

some specific topics. 

An Information Retrieval (IR) system performs a matching function between data 

(Miller, 2005). IR consists of two key processes: document storage and document 

retrieval (Gao et al., 2005). In the storage process, an IR system defines a collection of 

documents, specifies the manipulation of the documents, and represents the documents 

with an index. In the retrieval process, a user specifies an information requirement, which 

is then manipulated by the system and represented with a query in a certain format 

according to the retrieval strategy of the system. The query is then compared with the 

index to identify documents that are relevant to the query and relevant documents are 

retrieved and presented to the user. 

Three key issues must be considered in Information Retrieval (Gao et al., 2005). 

Firstly, the choice of appropriate terms is a challenge for both index creation and query 

generation. A term can be a single word or a multi-word phrase. Most experiments show 

that using phrases in IR obtains consistent results (Koster & Seutter, 2003).  

Secondly, a fundamental problem that hinders a successful retrieval is term 

mismatch or a vocabulary problem (Tseng, 2002). Frequently, terms used by users do not 

match those that represent the same or similar meanings in documents. A common 

solution to this problem is to create a thesaurus, which coordinates the usage of the query 

terms and index terms. 

Thirdly, without detailed knowledge of the document collection and retrieval 

environment, users find it difficult to formulate appropriate queries. In some situations, 
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users do not know what they really want to search for (Zhou & Zhang, 2003). In other 

situations, they cannot specify their precise information requirement (Nakashima et al., 

2003). However, most users can explain their requirements with reference to a specific 

example. Therefore, some IT systems incorporate the technique of case-based reasoning 

(CBR) (Gao et al., 2005), which formulates a query by analyzing examples of relevant 

documents. A major task of CBR is to extract terms from the examples for the generation 

of a query.  

2.2.2. Information Extraction.  Text mining looks for patterns in unstructured 

text. The related task of Information Extraction (IE) is about locating specific items in 

Natural-language documents (Kanya & Geetha, 2007). Companies are increasingly 

applying IE behind the scenes to improve information and knowledge management 

applications such as text search, text categorization, data mining and data visualization 

(Taylor, 2004).  

The objective of IE is to extract certain pieces of information from text that are 

related to a prescribed set of related concepts, namely, an extraction scenario (Jordi et al., 

2007). 

Mooney and Bunescu (2007) mentioned that Information Extraction distills 

structured data or knowledge from unstructured text by identifying references to named 

entities as well as stated relationships between such entities. IE systems can be used to 

directly extricate abstract knowledge from a text corpus or to extract concrete data from a 

set of documents, which can then be further analyzed with traditional data mining 

techniques to discover more general patterns.  

Information retrieval (IR) and Information Extraction (IE) are two major areas of 

Text Based Intelligence systems (Jordi et al., 2007). IR techniques are used to select 

those documents from a collection that most closely conform to the restrictions of a 

query, commonly a list of keywords. As a consequence, IR techniques allow recovering 

relevant documents in response to the query. 

IE technology involves a more in-depth understanding task. While in IR the 

answer to a query is simply a list of potentially relevant documents, in IE the relevant 

content of such documents has to be located and extracted from the text. This relevant 
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content, represented in a specific format, can be integrated into knowledge-based systems 

as well as used in IR in order to obtain more accurate responses.  

IE can serve an as important technology for text mining (Mooney & Bunescu, 

2007). If the knowledge to be discovered, is expressed directly in the documents to be 

mined, then IE alone can serve as an effective approach to text mining. However, if the 

documents contain concrete data in unstructured form rather than abstract knowledge, it 

may be useful to first use IE to transform unstructured data in the document corpus into a 

structured database, and then use traditional data mining tools to identify abstract patterns 

in this extracted data. 

IE concerns locating specific pieces of data in natural-language documents, 

thereby extracting structured information from unstructured text (Mooney & Bunescu, 

2007). One type of IE is entity recognition, which involves identifying references to 

particular kinds of objects such as names of people, companies, and locations. 

Another application of IE is extracting structured data from unstructured or semi-

structured web pages. When applied to semi-structured HTML, typically generated from 

an underlying database by a program on a web server, an IE system is typically called a 

wrapper, and the process is sometimes referred to as screen scraping.  

IE has its own benefits which help an analyst in a great way. It ideally projects as 

a sole way for information extraction from huge sets of documents which an analyst can 

use to exploit the data. These aides an analyst in identifying the required information 

from the pile of data, thereby, speeding up the process for the analyst. Patterns and trends 

will also be easily identified, further assisting the analyst in simplifying the process in a 

more effective manner. 

The most related research is document explorer (Feldman et al,; 1998) which uses 

automatic term extraction for discovering new knowledge from texts. However document 

explorer assumes semi-structured documents such as SGML text unlike DISCOTEX 

developed for natural language text. Similarly automatic text categorization has been 

used to map web documents to pre-defined concepts for further discovery of relationships 

among the identified concepts (Loh et al.; 2000). One of the limitations for these 

approaches is that they require a substantial amount of domain knowledge. 
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2.2.3. Data Mining.  Data mining means extracting or “mining” knowledge from 

large amounts of data, which are also referred to as knowledge mining from data, 

knowledge extraction, pattern analysis, data dredging and knowledge discovery in a 

database. Data mining is a multidisciplinary field including database technology, AI 

(artificial intelligence), Machine Learning, Neural Networks, statistics and so on. Data 

cleaning and integration, data collection, data transformation, data mining, knowledge 

evaluation and presentation are the general processes in a project of data mining (Li & 

Zhang, 2009).   

The function of data mining includes association analysis, classification and 

prediction, clustering analysis, outlier analysis, etc. (Olson et al., 2001). 

Data mining is a process by which accurate and previously unknown information 

is extracted from large volumes of data. This information should be in a form that can be 

understood, acted upon, and used for improving decision processes (Apte, 2007).  

Apte (2007) divided data analysis algorithms into three major categories based on 

the nature of their information extraction: predictive modeling (also called classification 

or supervised learning), clustering (also called segmentation or unsupervised learning) 

and frequent pattern extraction. In this thesis, classification and clustering are discussed 

below. 

Classification. Classification or Predictive modeling is based on techniques used for 

classification and regression modeling. One field in the tabular data set is pre-identified 

as the response or class variable. These algorithms produce a model for that variable as a 

function of the other fields in the data set, pre-identified as the features or explanatory 

variables (Apte, 2007).  

Classification is identified as the task of assigning the class label to the 

unclassified data objects as accurately as possible by building a model for target attribute 

as a function of predictive attributes based on the pre-classified dataset (Hongqi Li et al., 

2008). On the other hand, Guyon and Elisseeff (2003) mentioned that feature selection 

for classification is the technique of choosing an optimal subset of features (also called 

attributes or variables) by removing the most irrelevant and redundant features from the 

dataset in order to enhance model generalization capability and simplify data mining 

results. 
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The classification process has two phases (Wah et al., 2001). The first phase is the 

learning process whereby training data is analyzed by a classification algorithm. The 

learned model or classifier is represented in the form of classification rules. The second 

phase is classification, and test data are used to estimate the accuracy of classification 

rules. If the accuracy is considered acceptable, the rules can be applied to the 

classification of new data.  

Some of the techniques used for data classification are decision trees. The 

advantage of the decision tree technique is that it does not require any domain knowledge 

or parameter setting, and is appropriate for exploratory knowledge discovery. The second 

technique is neural-network, which has a high tolerance of noisy data as well as the 

ability to classify patterns on which they have not been trained. It can be used when we 

have little knowledge of the relationship between attributes and classes. Next, the K-

nearest-neighbor technique is an instance-based learning using distance metric to measure 

the similarity of instances.  

Clustering: Clustering is one of the important techniques of data mining (Han et al., 2001; 

Qian & Dong 2004). Clustering can divide data objects into several classes or clusters 

based on data objects comparability (Zhifu et al., 2007). So the objects of the same 

cluster have high comparability but have a greater difference between the objects of 

different clusters.  

Clustering analysis has been applied to various fields such as pattern 

identification, data analysis, and image processing and so on (Zhifu et al., 2007). K-

Means clustering algorithm is a general and simple clustering algorithm and it can divide 

n objects into K classes or clusters by using a K parameter, resulting in a high 

comparability in one class and low comparability between different classes (Han et al., 

2001). 

The process of a common K-Means algorithm is as follows: First, randomly select 

K objects where each object originally expresses the average or center of one cluster. 

Then the remaining objects can be given to the nearest cluster according to the distances 

between the object and the center of every cluster. Next, compute the average of every 

cluster over again. This process repeats continually until the rule function is constringed. 
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Clustering determines the features which better describe objects in the set, intra-

cluster similarity, while distinguishing objects in the set from the collection, inter-cluster 

dissimilarity (Yates & Neto, 1999). Intra-cluster similarity measures a raw frequency of a 

term ݇௜ inside document ௝݀, aka the TF factor. Inter-cluster dissimilarity measures the 

inverse of the frequency of a term ݇௜ among the documents in the collection, aka inverse 

document frequency or IDF factor. IDF weighting focuses on inter-cluster dissimilarity 

and tries to reduce the effect when the terms appearing in many documents are not useful 

for distinguishing documents. The product of TF and IDF (TFIDF) was proposed as a 

reasonable measure which tries to balance the two effects, intra-cluster similarity and 

inter-cluster dissimilarity. 

 

 

2.3. TEXT MINING METHODS 

Text mining is the base of several analysis and researchers have developed 

various text mining methods to analyze related issues. Durfee et al. (2007) proposed the 

use of a text clustering methodology known as the Prototype matching method as a text 

mining technique. Prototype matching method was implemented in a prototyping 

software package called GILTA-3, which seeks similarity between the document 

prototype and the closest-matching subject documents. 

A new prototype of text mining called Text Analysis and knowledge mining 

(TAKMI) was developed by Nasukawa and Nagano (2001) which, when applied in the 

PC help centers, can automatically detect product failures and can also determine issues 

that have lead to an increase in problems and thereby help in analyzing them and 

identifying changes in customer behavior involving a particular product. Mooney and 

Bunescu (2005) proposed the use of Information Extraction as a methodology to directly 

extract knowledge from text and then discover knowledge by mining data previously 

extracted from an unstructured or semi-structured text. Mooney and Bunescu (2005) 

developed an IE method called Relational Markov Networks that captures dependencies 

between distinct candidate extractions in a document, whereas, (Hearst, 1999) used text 

compression as a key technology of text mining.  
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Dörre et al. (1999) developed IBM Intelligent Miner, which is a software 

development tool kit for building text mining applications. It addresses system 

integrators, solution providers, and application developers. The main work of the 

intelligent miner’s tool is the feature extraction and mining in documents. Wang et al. 

(2004) proposed a text mining methodology using an associational approach. This 

method enables multiple classifications of a same set of high frequency words and 

achieves high performance even with unstructured text data in terms of retrieval 

efficiency and explanatory power of the final result.  

Udoh and Rhoades (2006) explained a new method named Wordstat. It 

determines the dominant activities in a small enterprise such as a company or an 

institution. An analysis of document profiles is done, which is generated by extracting the 

frequencies of certain terms on the basis of repetitive occurrence and co-occurrence of 

those terms. The main conclusion drawn is Wordstat’s ability in detecting patterns and 

similarities in documents. 

2.3.1. Dimension Reduction.    Dimension reduction refers to mapping points in 

a high dimensional space to a space with low dimensions while approximately preserving 

some property of the original points (Charikar & Sahai, 2002). 

Advances in data collection and storage capabilities during the past decades have 

led to an information overload in most sciences. Researchers working in domains as 

diverse as engineering, astronomy, biology, remote sensing, economics, and consumer 

transactions, face larger and larger observations and simulations on a daily basis (Fodor, 

2002). Such datasets, in contrast with smaller, more traditional datasets that have been 

studied extensively in the past, present new challenges in data analysis. Traditional 

statistical methods break down partly because of the increase in the number of 

observations, but mostly because of the increase in the number of variables associated 

with each observation. The dimension of the data is the number of variables that are 

measured on each observation (Fodor, 2002). 

High-dimensional datasets present many mathematical challenges as well as some 

opportunities, and are bound to give rise to new theoretical developments (Donoho, 

2000). One of the problems with high-dimensional datasets is that, in many cases, not all 

the measured variables are “important” for understanding the underlying phenomena of 



 

 

12

interest. While certain computationally expensive novel methods (Breiman, 2001) can 

construct predictive models with high accuracy from high-dimensional data, it is still of 

interest in many applications to reduce the dimension of the original data prior to any 

modeling of the data. 

The set of techniques that can be employed for dimension reduction can be 

partitioned in two important ways; they can be separated into techniques that apply to 

supervised or unsupervised learning, and into techniques that either entail feature 

selection or feature extraction (Cunningham, 2007).  

2.3.1.1 Feature selection. Feature selection (FS) algorithms take an alternate 

approach, to dimension reduction by locating the best minimum subset of the original 

features, rather than transforming the data to an entirely new set of dimensions 

(Cunningham, 2007). For the purpose of knowledge discovery, interpreting the output of 

algorithms based on feature extraction can often prove to be problematic, as the 

transformed features may have no physical meaning to the domain expert. In contrast, the 

dimensions retained by a feature selection procedure can generally be directly interpreted. 

Feature selection in the context of supervised learning is a reasonably well posed 

problem. The objective can be to identify features that are correlated with or predictive of 

the class label. Or more comprehensively, the objective may be to select features that will 

construct the most accurate classier. In unsupervised feature selection the object is less 

well posed and consequently it is a much less explored area (Cunningham, 2007). 

In supervised learning, selection techniques typically incorporate a search strategy 

for exploring the space of feature subsets, including methods for determining a suitable 

starting point and generating successive candidate subsets, and an evaluation criterion to 

rate and compare the candidates, which serve to guide the search process. The evaluation 

schemes used in both supervised and unsupervised feature selection techniques can 

generally be divided into three broad categories (Jolliffe, 1972; Cardoso, 1984). 

 Filter. Filter approaches attempt to remove irrelevant features from the feature set prior 

to the application of the learning algorithm. Initially, the data is analyzed to identify those 

dimensions that are most relevant for describing its structure. The chosen feature subset is 

subsequently used to train the learning algorithm. Feedback regarding an algorithm's 
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performance is not required during the selection process, though it may be useful when 

attempting to gauge the effectiveness of the filter (Cunningham, 2007). 

Wrapper. Wrapper methods for feature selection make use of the learning algorithm itself 

to choose a set of relevant features. The wrapper conducts a search through the feature 

space, evaluating candidate feature subsets by estimating the predictive accuracy of the 

classier built on that subset. The goal of the search is to find the subset that maximizes 

this criterion (Cunningham, 2007). 

Embedded. Embedded approaches apply the feature selection process as an integral part 

of the learning algorithm. The most prominent example of this is the decision tree 

building algorithms such as Quinlan's C4.5 (Hialthouse, 1996). There are a number of 

neural network algorithms that also have this characteristic. Breiman (2007) has shown 

recently that Random Forests, an ensemble technique based on decision trees, can be 

used for scoring the importance of features. He shows that the increase in error due to 

perturbing feature values in a data set and then processing the data through the Random 

Forest is an effective measure of the relevance of a feature.  

2.3.1.2 Feature extraction. Feature extraction involves the production of a new 

set of features from the original features in the data, through the application of some 

mapping. Well-known unsupervised feature extraction methods include Principal 

Component Analysis (PCA) and spectral clustering (Ng et al., 2001). The important 

corresponding supervised approach is Linear Discriminant Analysis (LDA) (Hyvarinen et 

al., 2001). 

2.3.2.  Term Document Frequency. Term Frequency is a weight and statistical 

measure used to evaluate how important a word is to a document in a collection or 

corpus. The importance increases proportionally to the number of times a word appears in 

the document but is offset by the frequency of the word in the corpus. Variations of the 

term frequency weighting scheme are often used by search engines as a central tool in 

scoring and ranking a document's relevance given a user query (Jones & Karen, 1972).  

The document representation is one of the pre-processing processes that are used 

to reduce the complexity of the documents and make them easier to handle. The 

document is first transformed from the full text version to a document vector, an 
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important aspect in the document’s categorization, which denotes the mapping of a 

document into a compact form of its content (Khan et al., 2010). 

A text document is typically represented as a vector of term weights i.e. word 

features from a set of terms (dictionary), where each term occurs at least once in a certain 

minimum number of documents. A major characteristic of the text classification problem 

is the extremely high dimensionality of text data. The number of potential features often 

exceeds the number of training documents. Feature selection is used to create vector 

space, which improves the scalability, effectiveness and accuracy of a text classifier. “A 

good feature selection method should consider domain and algorithm characteristics 

(Chen, 2009)”. 

The most common method for document representation is Vector Space Model 

(VSM) which is most widely used for document categorization. The VSM represents 

each document as a feature vector of the terms (words or phrases) in the document. Each 

feature vector contains term weights (usually term-frequencies) of the terms in the 

document. However, this method has some disadvantages, one which does not consider 

the dependency between the terms and also ignores the sequence and structure of the term 

in the documents (Khan et al., 2010). 

A vector-space approach is commonly employed to convert qualitative 

representation of documents into a quantitative one since it is simple as well as has been 

proved to be superior or as good as the known alternatives (Baeza-Yates & Ribeiro-Neto, 

1999). Coussement (2008) described the approach as “the mean that original documents 

are converted into a vector in a feature space based on the weighted term frequencies. 

Each vector component reflects the importance of the corresponding term by giving it a 

weight if the term is present or zero otherwise.” The final vector is represented as a term-

document frequency matrix. 

In the first two steps, the most informative terms were selected. Thus, the current 

set of terms is ready to be converted. Base on the term assignment array of Salton and 

McGill (1983), the vector representation of documents can be represented as a term 

document frequency matrix as shown in Table 2.1. Terms are rows and documents are 

columns. Each cell contains a frequency value of the term in the document. In the matrix, 

fi,j is the number of times that term i appears in document j. 
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Table 2.1 Term-Document Frequency Matrix 

Terms Documents 

D1 D2 … Dn 

T1 ݂1,1 ݂1,2 … ݂1,݊
T2 ݂2,1 ݂2,2 … ݂2,݊

… … … … … 

Tm ݂݉,1 ݂݉,2 … ݂݉,݊
 

 

 

 Albright (2004) described this model in detail. The model ignores the context of 

the documents while providing their quantitative representation. The resulted matrix is 

generally sparse and will become much sparse when the size of document collection 

increases, since few terms are contained in any single document. Also, only hundreds of 

documents can yield thousands of terms. Huge computing time and space are required for 

the analysis. Therefore, reducing dimensions of the matrix can improve performance 

significantly.  

In addition, another way to improve retrieval performance of the analysis is to 

apply weighting methods (Berry & Browne, 1999). According to Berry and Browne 

(1999), the performance refers to the ability to retrieve relevant information while 

dismissing irrelevant information. Each element of the matrix (a୧,୨) can be applied to the 

weighting and represented as 

 a୧,୨ ൌ  l୧,୨g୧d୨ , where 

 

 l୧,୨ is the frequency weight for term i occurring in document j,  ݃௜ is the term weight for term i in the collection, and  
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௝݀ is a document normalization factor indicating whether document j is 

normalized. 

This equation was originally applied from information retrieval for search engines 

where longer documents have a better chance to contain terms matching the query than 

the shorter ones. Therefore, the document normalization factor was included to equalize 

the length of the document vectors from documents which vary in length (Salton & 

Buckley, 1988). Since this paper focused on text mining and the lengths of the documents 

in the collection were not varied, the third factor was unnecessary and ignored by 

replacing the variable with 1. Then, the final equation is 

 a୧,୨ ൌ  l୧,୨ 
 

Defining the appropriate weighting depends on characteristics of the document 

collection. The frequency weights and term weights are popular weighting schemes 

which are described in more detail in the following subsections.. 

2.3.3. Frequency Weights. Frequency weight is used to adjust the frequencies in 

the term-by-document matrix to prevent high-frequency, commonly-occurring terms 

from dominating the analysis. Frequency weights are functions of how many times each 

term appears in a document (Chisholm & Kolda, 1999). Because unique, often rare terms 

can play a significant role in distinguishing between different types of documents, it is 

normal to try to adjust rare term frequencies with a weight factor to give them an 

opportunity to contribute more to the analysis. They are functions of the term frequency 

 This factor measures the frequency of occurrence of the terms in the document by .(ܒ,ܑܔ)

using a term frequency (TF). Common methods include binary and logarithm. Three 

common weighting schemes are shown below where ܒ,ܑ܎ represents the original frequency 

of term i appears in document j. 

 

Binary:        l௜,௝ ൌ   ቄ1 if term i is in document j0 otherwise                               

 
Logarithm:           l୧,୨ ൌ  logଶሺf୧,୨ሻ 
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None or 
Term Frequency:        l௜,௝ ൌ  f௜,௝ 

 

Sometimes, a term is repeated in a document for a lot of time; thus, it reflects high 

frequency in the document collection as a whole even though it appears in only one 

document. To reduce the effect from the repetitive terms, Binary and Logarithm can be 

applied to the term frequency. Binary formula gives every word that appears in a 

document equal relevance. This can be useful when the number of times a word appears 

is not considered important (Polettini, 2004). 

The Binary method takes no repetitive effect into account while Logarithm 

reduces the effect, but still maintains it in some degree. Therefore, the Logarithm is a 

method in between Binary and None. Moreover, taking log of the raw term frequency 

reduces effects of large differences in frequencies (Dumais, 1991). Logarithms are used 

to adjust within-document frequency because a term that appears ten times in a document 

is not necessarily ten times as important as a term that appears once in that document. 

Logarithms formulas decrease the effects of large differences in term frequencies 

(Polettini, 2004). 

According to Berry and Browne (1999), the selection of appropriate weighting 

methods depends on the vocabulary or word usage patterns for the collection. The simple 

term frequency or none weighting term frequency is sufficient for collection containing 

general vocabularies (e.g., popular magazines, encyclopedias) (Berry & Browne, 1999). 

Term frequency formula counts how many times the term occurs in a document. Term 

frequency is used alone and it works well involving common words and long documents. 

This formula gives more credit to words that appears more frequently, but often too much 

credit (Kolda, 1997).   

If the collection spans general topics such as news feeds, magazine articles, etc., 

using term frequency would suffice. If the collection were small in nature with few terms 

in the vocabulary, then binary frequencies would be the best to use (Giles et al., 2003).  

 Logarithms are a way to de-emphasize the effect of frequency. Literature 

proposes log as the most used frequency weight (Kolda, 1997). Logarithms are used to 

adjust within-document frequency because a term that appears ten times in a document is 
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not necessarily ten times as important as a term that appears once in that document. 

Logarithms formulas decrease the effects of large differences in term frequencies 

(Polettini, 2004).The logarithm formulas offer a middle ground (Polettini, 2004). 

2.3.4. Term Weights.  Term weights are statistical measures used to evaluate 

how important a word is to a document in a collection or corpus. They take word count in 

the document into account. Term weights are functions of how many times each term 

appears in the entire document collection (Chisholm & Kolda, 1999).Common methods 

are 

 

Entropy           :              ܩ௜ ൌ 1 ൅ ∑௝ ௣೔,ೕ௟௢௚మሺ௣೔,ೕሻ௟௢௚మ௡  

GF-IDF :           ܩ௜ ൌ  ሺ∑௝ ௜݂,௝ሻ/∑௝ܺሺ ௜݂,௝ሻ 

IDF  :   ܩ௜ ൌ  log ሺ݊ ∑௝ܺሺ ௜݂,௝ሻ⁄  

Normal :   ܩ௜ ൌ  1 ට∑௝ ௜݂,௝ଶൗ  

None  :    ܩ௜ ൌ   1 

 

Where, ௜݂,௝ represents the original frequency of term i appears in document j, n is number 

of documents in the collection, as well as 

 

    p୧ ൌ  f୧,୨ ∑୨f୧,୨⁄   
 X൫f୧,୨൯ ൌ   ቄ1 if term i is in document j0 otherwise                             
 

In determining the term weights, the likelihood that the collection will change 

needs to be considered (Giles et al., 2003). The choice for an appropriate term weight 

depends on the state of the document collection, or how often the collection is likely to 

change (Berry & Browne, 1999). This weighting scheme responds to new vocabulary and 

accordingly affects all rows of the matrix. All of the formulas emphasize those words that 

occur in few documents whereas they give less weight to terms appearing frequently or in 
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many documents in the document collection. In general, the document collection will 

work well with some weighting schemes and poorly with others (Giles et al., 2003).  

Term weights try to give a “discrimination value” to each term. Many schemes 

are based on the idea that the less frequently a term appears in the whole collection, the 

more discriminating it is (Salton & Buckley, 1988).  

Entropy is based on information theoretic ideas and is the most sophisticated 

weighting scheme. It assigns weights between 0 and 1 for a term that appears in only one 

document. If a term appears once in every document, then that term is given a weight of 

zero. If a term appears once in one document, then that term is given a weight of one. 

Any other combination of frequencies will yield a weight somewhere between zero and 

one. Entropy is a useful weight because it gives higher weight for terms that appear fewer 

times in a small number of documents (Polettini, 2004). So this formula takes into 

account the distribution of terms over documents (Dumais, 1991). 

The Inverse Document Frequency (IDF) is a popular measure of a word’s 

importance (Polettini, 2004). IDF is the logarithm of the inverse of the probability that 

term i appears in a random document j. It awards high weight terms appearing in few 

documents in the collection and low weight for terms appearing in many documents in 

the collection (Chisholm & Kolda, 1999).  GF (Global Frequency) - IDF assigns the 

smallest possible weight if a term appears once in every document or once in one 

document (Chisholm & Kolda, 1999). 

According to Salton and Buckley (1988), one of the commonly used documents 

term weighting is obtained by the inner product operation of none or simple term 

frequency and the Inverse document frequency. In the analysis done on improving the 

retrieval of information from external sources, Dumais (1991) found that using IDF and 

Entropy term weight improved the performance by an average of 30% whereas when 

used with the combination of log and entropy, the performance improved by 40%.  

Another popular method is combining Term frequency and IDF to form their 

product TF * IDF. Accordingly to Mittermayer (2004), when TF is used it is assumed 

that important terms occur in the document collection more often than unimportant ones. 

The application of IDF presupposes that the rarest terms in the document collection have 

the highest explanatory power. With the combined procedure TF*IDF the two measures 
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are aggregated into one variable. Tseng et al. (2007) used TF*IDF as a weighting method 

to analyze the data for pattern analysis. Loughran and McDonald (2009)  used the TF * 

IDF method weighting scheme to perform an analysis on the financial texts and also on 

the 10-K filings for finding out alternative negative word list that better reflects the tone 

of the financial text than the already existing word list. They used this weighting scheme 

as TF represents the method used to account for the word frequency and normalization 

and IDF is used to adjust the impact across the entire collection. 

2.3.5. Core Mining Process.  The stage inherits analysis methods from data 

mining such as classification, decision trees, and clustering. Since the goal was to cluster 

the document filings into several clusters without pre-defined categories, this research 

only focuses on clustering. The clustering method being used in this research was 

Expectation- maximization (EM). 

Expectation-Maximization (EM): The Expectation-Maximization (EM) algorithm is 

generally a framework for estimating the parameters of distribution of variables in data 

(Feldman & Sanger, 2007). It is adapted to the clustering problem as a probabilistic 

clustering technique which is not based on distance unlike the k-means method. 

According to Bradley et al. (1998), EM performed superior to other alternatives for 

statistical modeling purposes. It attempts to group items similar to each other together. In 

general, data is not distributed in the same pattern; thus, some combinations of attributes 

are more preferable than the others. The concept of density estimation is applied to EM, 

in order to identify the dense regions of the probability density of the data source. The 

goal of EM is to identify the parameters of each of k distribution that meet the probability 

of the given items belonging to the cluster. Initially, parameters of k distributions are 

randomly or externally selected. Then, the algorithm proceeds iteratively as described in 

the following steps (Feldman & Sanger, 2007). 

• Expectation: Compute probability of the item belonging to the cluster by using the 

current parameters of the distributions, and then re-label all items accordingly to 

the probability. 

• Maximization: Using current labels of the items, re-estimate the parameters of the 

distributions to maximize the likelihood of the items 
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• If the change in log-likelihood after each iteration becomes small, stop the 

process; otherwise, repeat the process again 

Finally, clustering results are labels of the items, generated clusters, attached with 

estimated distributions. 

After text mining process is done, a set of clusters is generated, along with 

assignments of each document to clusters. 

 

 

2.4. TEXT MINING APPLICATIONS 

Various methodologies have been developed for text mining to be applied in 

diverse organizations. Methodologies ranging from simple text mining tools to complex 

algorithms have been researched and used for the final benefit of the organization. 

Separate text mining technologies have been developed respective to a particular 

organization. Mooney and Bunescu (2005) developed a simple text mining technology 

using information extraction to directly extract knowledge from text and then to discover 

knowledge by mining data. Already existing software such as IBM Intelligent Miner, 

SAS text miner and SPSS text mining tools are also used by organizations for their text 

mining process. Adeva and Calvo (2006) mention a text mining tool called Pimiento, 

which can be used to track plagiarism in universities. 

For the medical industry, Uramoto et al. (2004) from IBM have developed a tool 

named MedTAKMI, which is capable of running the entire biomedical database in an 

interactive manner. Text mining tools have also been developed for analyzing 

competitors’ online persuasive themes in the hotel and auction industries, as well as e-

mail bounce management. 

For patent analysis, Xu (2009) discusses patent map, a text mining technology 

which is a process of gathering information and building a map, which also mines and 

analyses the patent documents.  

NTM Agent, a text mining agent for net auction, was developed to resolve the 

problems customers faced in net auctions. The NTM agent primarily does the work of 

collecting web pages of the satisfied items for the user’s search demand, extracts certain 

features of the items from the web pages and then makes a table which contains all the 



 

 

22

captured features. The table can be used by the user to get details about the different 

items which he/she would like to buy (Kusumura et al.; 2003). 

Text mining is also used in developing standardized descriptions of taxa in 

paleontology (Lea et al., 2006). A framework that uses text mining techniques was 

proposed which develops a taxon description recommendation system. This study 

provided insights on how text mining can be used to develop a descriptive model, as well 

as how the descriptive terms generated during the text mining process can be used to 

provide a basic set for a standard lexicon to develop a standardized taxon description 

recommendation. 

A pilot study was performed by Katerattanakul (2010) on the application of text 

mining to find new information from a collection of survey comments evaluating the civil 

engineering learning system. Text mining helped in categorizing the comments into 

different groups in an attempt to identify "major" concerns from the users or students. 

This assisted the evaluators of the learning system to obtain the ideas from those 

summarized terms without the need of going through a potentially huge amount of data. 

Various text mining tools have been used in the fields of customer relationship 

management, insurance industry, and archeological industry and also in the sports 

industry. 

2.4.1. Text Mining in Medical Applications.   The life science industry is an 

emerging market in which application spaces, such as drug discovery and development in 

the pharmaceutical sector and clinical record management in health care, have become 

areas of significant recent interest (Arlington et al., 2004).  

Early papers mention the possibility of knowledge discovery from biomedical literature 

(Hearst, 1999).  

Uramoto  et al. (2005) presented a method to perform text mining on unstructured 

biomedical documents to facilitate knowledge discovery from the very large text 

databases using a tool named MedTAKMI. MedTAKMI tool is capable of running the 

entire biomedical database in an interactive manner. MedTAKMI was developed for a 

hierarchical category viewer because most biomedical entries are defined hierarchically.  

By mainly developing for medical purposes, it can scan millions of documents and 
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retrieve information. This shows the flexibility of text mining tools in terms of unique 

business applications. 

With the advances in medical technology and wider adoption of electronic 

medical record systems, large amounts of medical text data are produced in hospitals and 

other health institutions daily. These medical texts include the patient’s medical history, 

medical encounters, orders, progress notes, test results, etc. Although these text data 

contain valuable information, most are just filed and not referred to again. These are 

valuable data that are not used to their full advantage. Gong et al (2008) mentions mining 

in radiology reports due to the availability of rich information like describing a 

radiologist’s observation on the patient’s medical conditions. 

Gong et al. (2008) proposed a text mining system which extracts and uses 

information in radiology reports. This system consists of three main modules: “a medical 

finding extractor, a report and image retriever, and a text assisted image feature 

extraction”. To conduct research using the given text mining approach, large amounts of 

textual data produced in hospitals and other health institutions were taken as input. These 

medical texts include the patient’s medical history, medical encounters, orders, progress 

notes, test results etc. This paper has proposed a text mining system which extracts and 

uses the information present in radiology reports. The structuring of free text reports 

bridges the gap between users and report database, making the information contained in 

the reports readily accessible. It also serves as an immediate result to other components 

of the system. 

The ability to automatically identify relationships between cancer diseases and 

external factors from medical records for supporting cancer diagnosis would be a 

valuable contribution in public health fields. Lee et al. (2007) proposed a prototype for 

automating the extraction of relationships between cancer diseases and potential factors 

from clinical records. The methodology proposed here is of three stages which describes 

the framework for discovery of the relationships between cancer diseases and potential 

factors from clinical medical records. This paper discusses the text mining processes 

which extract patterns from clinical records. The three stages of the methodology begin 

with utilizing the cancer ontology thesaurus for extracting the key terms from clinical 

records, after which the algorithm was used to extract relationship between cancer 
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diseases and potential factors from medical records, and finally the SVM method was 

used to support the relatedness between the text and clinical records. 

Tasha et al. (2006) made comparisons between the use of traditional text mining 

and natural language processing techniques and how these techniques can be integrated 

for future biomedical ontology and a user development interface. They described a 

common vocabulary that can be used to describe age related macular degeneration 

(AMD) through certain methods, and one among them is text mining. In the text mining 

methodology, a collection of documents known as a “corpus” is used as an input for all 

text mining algorithms. “The unstructured text in the corpus becomes a structured data 

object via the creation of a term-by-document frequency matrix”. The research of this 

paper has found that human expert results were the best. But they have worked on how 

“text mining methods and Natural Language processing methods will enhance the 

analysis and generation of future descriptions”. 

2.4.2. Text Mining in Business Applications. Text mining is used in various 

business applications. Lau et al. (2005) proposed text mining as a means of information 

management which the hoteliers can use to develop competitive and strategic 

intelligence. Application of text mining in the hotel Industry is relatively new (Lau et al., 

2005). The authors used the “online Text Mining” method to search through the internet 

to get vast amounts of business information from customer forums, their expectations 

about rooms and their prices, which can help the managers to better understand the 

customers and their business as a whole thereby keeping off the competitors.  

Leong et al. (2004) used text mining to analyze competitors’ online promotional 

text messages by taking the sites of top educational sites in the USA and analyzing their 

position with respect to the competitors by using a text mining tool from Megaputer 

called “Text Analyst”. Text Analyst summarizes the text and identifies the key concepts. 

It sums up the frequency of occurrences of each concept and assigns a numeric semantic 

weight to each concept in relation to its importance in the document.  

In addition to other applications of text mining, it is also used in the context of 

news. Kroha et al. (2006) framed a methodology to cleanse and classify business news 

and then investigate the similarity between the good news and bad news, by framing two 

types of templates. The first template was “to analyze the relative frequency of the given 
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words” and the second template was to “analyze the probabilistic profile of news 

(frequency of positive and negative news)”. 

Kusumura et al. (2003) proposed a text mining agent named NTM Agent to 

resolve the problems faced during Net auctions.  This text mining tool will help in 

supporting bidders on net auctions by automatically generating a table containing the 

features of some items for comparison. Grieser et al. (2009) used text mining for more 

day-to-day activities in e-mail bounce management.  They proposed a model which 

predicts the possibility of deliverability to an e-mail address using decision trees, 

targeting on improvement of addressability and mentioned turnovers.  

Text mining with classification techniques such as Naïve Bayes, Linear 

Regression, and Rule Induction were used as part of a methodology that used two text 

mining applications. They were Text Miner Software Kit and Rule Induction Kit for Text 

(Ticom et al., 2007). This methodology is subsequently integrated with an Expert System. 

The objective is to reduce the amount of different words to be treated. The aim of 

stemming is not reach the basic rules of language’s linguistics but to improve the 

performance of the application of text mining. 

In addition to above business applications, Text Mining is also applied in the 

insurance industry. Ellingsworth and Sullivan (2003) proposed a case study of how text 

mining was used in the field of insurance by Fireman's Fund Insurance Company to 

understand rising homeowner claims and suspicious auto claims. Arora and Purushotham 

(2005) also applied text mining in the field of sports where they demonstrated the 

benefits of combining classification and clustering techniques which will help in 

grouping articles which are very similar. They also mentioned the use of cluster 

hypothesis which helps in speeding up the retrieval process. 

Chang et al. (2009) applied text mining by applying the data warehouse and data 

mining technologies to analyze customer behavior in order to form the correct customer 

profiles and its growth model under Internet and e-commerce environments. Godbole and 

Roy (2008) explained a text mining solution in the services industry which is mainly used 

in contact centers. They proposed a methodology using an application named C-Sat. This 

application primarily takes data from customers interacting with contact centers. The C-

Sat analysis is integrated with the business intelligence solution and an interactive 
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document labeling interface named IBM technology to Automate Customer Satisfaction 

Analysis (I-TACS). 

Yu et al. (2007) developed a framework which analyses news articles and helps to 

measure the social importance of many events, providing an understanding about current 

interests. A theoretical framework of a text mining enhanced approach is proposed to 

accommodate short-term variations caused by special events, such as severe weather 

conditions. A sentiment analysis approach for extracting sentiments associated with 

positive or negative polarities from a series of news reports is utilized to illustrate the 

impact on energy demand from a special event. The magnitudes of the sentiments from 

the series of news articles are used to compose a time-series pattern to represent the 

events that are translated into the causes of short-term demand or price variation. 

2.4.3. Text Mining in Financial Applications.  Extracting and mining relevant 

information from vast amount of text is a daunting task due to the lack of formal structure 

in the documents. Mining information from financial data can become even more 

complex because of the alphanumeric characteristics and other formulae involved as a 

part of the financial information.  

Text mining has been used in various forms of financial data. Various research 

authors have analyzed the advantage of using text mining for identifying hidden 

information from financial news, analyzing performance indicators from financial 

statements, Analyzing stock market trends and other applications. In this section, more 

details on the application of text mining on financial data and the data analysis on it. 

2.4.3.1 Text mining in predicting stock market trends from news.  

Large amounts of financial news are continuously posted on the web. For people 

following stock markets or market movements closely there is a need to organize this 

information and keep track of its development (Ingvaldsen et al., 2006). Online financial 

news from different sources is widely available on the Internet. In order to decide the best 

investment strategy, financial analysts have to catch up with the latest information 

provided by the online news agencies (Cheung et al., 2004). The behavior of the market 

is dictated by contemporary local and global events, which are not captured in the 

structured data. Text mining is expected to play an important role in designing strategies 

for prediction of market behavior since it can be employed successfully to analyze 



 

 

27

financial news articles and reports in conjunction with time-series market data (Mahajan 

et al., 2004). This mined knowledge can assist financial analysts in making investment 

decisions in the shortest amount of time. They can catch up with or monitor the latest 

financial activities easily through the system. An information overflow problem can be 

significantly reduced as well (Cheung et al., 2004). 

The financial news is mainly analyzed on predicting the performance of stocks 

during various time periods. Ingvaldsen et al. (2006) describes a framework that 

investigates the applicability of text mining operations as a means to manage and extract 

structures from financial news streams. The framework consists of following modules: 

Article Fetcher, Part of Speech Tagger, Named Entity Fetcher, Feature Extractor, and 

Vector Comparator. The Article Fetcher listens periodically for newly distributed news 

articles by extracting the titles and ingresses of the articles. The pre-trained part of speech 

taggers are available online in English. The named entity fetcher utilizes static lists of 

organizations and persons. According to Ingvaldsen et al. (2006) this framework shows 

how elements from information retrieval, information extraction and natural language 

processing can be applied to extract named entities from financial news streams and 

represent these as temporal and spatial vectors.  

Fawcett and Provost (1999) proposed a framework which would issue an alarm on 

a specific company when a stock shifts at least 10%. They define activity monitoring as 

discovering market changes in a time series. A similar system developed by Lavrenko 

and Allan (2000) also monitors unusual trends in the time series with alarms in the form 

of recommended stories. They make a news recommendation by estimating the 

importance of a story to the stock market. A language model is learned based on trend 

types of the financial market. Their focus is on the influence of the news story on the 

market trend rather than the mining of related financial activities. 

Cheung et al. (2004) developed a financial knowledge management system, 

known as FAM (Financial Activity Mining), which is able to digest online news and 

conduct financial activity mining. The online news can come from various news agencies 

from the Web or subscribed newsfeed services. These information sources provide real-

time international, political and economic news, citations from worldwide bankers and 

politicians as well as recommendations from different financial analysts. FAM can fetch 
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the news articles from the above sources automatically. The whole mining process is 

conducted via an unsupervised learning algorithm. As a result, financial analysts can 

digest and monitor the latest financial activities produced by the mining results. The key 

difference between the FAM by Cheung et al. (2004) and other systems developed by 

Fawcett and Provost (1999) and Lavrenko and Allan (2000) is that FAM is able to 

present news on specific companies or activities. The system is particularly helpful for 

tracking the stock performance of a targeted company or an event, with all the related 

news collected in the form of clusters. Clear presentation of relationships between related 

activities provides a convenient environment for users to monitor the financial market. 

Kaya and Karsligil (2010) also developed a model where they predict stock prices 

using financial news articles. A prediction model which finds and analyzes the 

correlation between contents of news articles and stock prices and then makes predictions 

for future prices was developed. The financial news articles published in the previous 

year are retrieved, and the prices for the same period are taken. All articles are labeled 

positive or negative according to their effects on stock price, so price changes are used to 

label the articles. While analyzing textual data, word couples consisting of a noun and a 

verb as are used instead of single words. Afterwards, a support vector machine classifier 

is trained with labeled train articles. Finally, classes of test articles are predicted using the 

model results from the train phase.  

There are other substantial works completed on the prediction of stock prices. 

These works are basically text categorization systems targeted to predict stock price 

movement by classifying financial news articles as positive or negative. Since the 

problem is converted to a text categorization problem, several feature selection and 

classification methods are used in these works. In the frameworks of Mittermayer (2004) 

and Wuthrich et al. (1999), term frequency – inverse document frequency technique is 

used as a feature selection method. Falinouss (2007) use chi-square statistics feature 

selection method. Support vector machines, k nearest neighbor and naive bayes are most 

widely used methods for classification. In the classification phase several researchers 

(Koppel and Shtrimberg, 2004; Fung et al., 2005; Mittermayer and Falinouss, 2007), 

support vector machines method. While some researchers (Gidofalvi , 2001 ; Kroha and 

Baeza-Yates , 2004) use naive bayes.  Other researches (Wuthrich et al., 1998; Y.-C. Wu, 
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2007) use k-nearest neighbor method for classification. The accuracy rates of these works 

are mostly below 60%. These relatively low success rates are caused by the nature of 

stock price movements, which are a result of decisions of investors, since it is hard to 

predict human behavior. 

2.4.3.2 Text mining for predicting impact on stock market. Financial data 

analysis has traditionally dealt with large volumes of structured data reflecting economic 

performance. However the behavior of the market is dictated by contemporary local and 

global events, which are not captured in the structured data. Text mining is expected to 

play an important role in designing strategies for prediction of market behavior, since it 

can be employed successfully to analyze financial news articles and reports in 

conjunction with time-series market data. Text-mining can be employed to extract 

information about related contemporary events from financial news reports, and also 

explain the causes for poor performance or a sudden upturn in the market. In the recent 

past, the use of text-mining has been reported for predicting individual company’s’ stock 

prices. Information extracted from various sources is used to design strategies to help 

potential investors. However these systems did not attempt to identify the factors that 

affect the market as a whole.  

Mahajan et al. (2008) proposed a text-mining system that analyzes market news 

about the Indian stock market and correlates it with the actual stock market behavior. The 

aim is to identify the major events that have impacts on the stock market, and 

characterize them in order to design strategies for predicting the market. Kloptchenko et 

al. (2002) presented a mining technique that analyzed quantitative and qualitative data 

from annual financial reports in order to see if the textual part of the report contains some 

indication about future financial performance. Seo et al. (2004) explained a multi-agent 

Portfolio management system that evaluates the risks associated with the individual 

companies in a portfolio. Wutrich et al. (1998) predicts the movement of five major 

global stock indices based on current news. Ingvaldsen et al. (2006) addressed the 

problem of extracting, analyzing and synthesizing valuable information from continuous 

text streams covering financial information. Lavrenko et al. (2000) presented an approach 

to identify news stories that influence the behavior of financial markets, by correlating 

contents of news articles to trends in financial market. Mittermayer(2004) proposed the 
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NewsCats system to categorize financial news articles into pre-defined categories and 

then derive appropriate trading strategies based on these categories. Thomas and Sycara 

(2004) described a system that can learn profitable trading rules using data from stock 

chat boards. 

2.4.4. Text Mining on Financial Reports. A huge amount of electronic 

information concerning company’s financial performance is available in organizational 

databases and on the Internet today. Numeric financial information is important for many 

stakeholders and is extensively analyzed with advanced computational methods. Textual 

financial information in form of reports and news contain not only the factual description 

of events, but also explain why they have happened (Kloptchenko, 2004). Exploiting 

finance and business related textual information in addition to numeric financial 

information should increase the quality of decision-making. Constantly updated text 

collections have grown so large that there is not enough time to read and analyze them 

manually. Additionally, the ambiguous structure of texts makes their analysis rather 

complicated. Researchers are searching for elegant and computationally feasible tools 

that would be able to handle sophisticated text-related tasks without thorough linguistic 

preprogramming (Kloptchenko, 2004).  

The message, stylistic focus, language and readability of financial reports are 

good indications about the perspectives and developments of any company. These 

indications can guide companies’ decision makers to more efficient acts on the market. 

Although, financial experts and experienced readers can detect those indications and 

make more precise financial decisions, the manual analysis of textual reports requires a 

lot of time, and time is a costly asset in a financial community. Text mining methods aim 

to offer an automatic way for analyzing and discovering previously unknown patterns in 

text (Hearst, 1999). Therefore, less expensive computer-based solutions for mining 

financial texts for hidden indications of companies’ perspectives are needed. 

Annual reports, while being important documents to stockholders and financial 

communities are controversial. They generate disagreement regarding audience, 

objectives and credibility (Thomas, 1997). As a genre, annual reports resemble quarterly 

reports closely. The same writers produce quarterly and annual reports for the same 

readers within the same community. The reports have a similar structure, conventions, 
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basic functions and communicative purposes but the time spans are different. The study 

of the linguistic contents of quarterly reports has nevertheless been overlooked in favor of 

the study of the language of annual reports (Kloptchenko, 2004). In the short-term 

perspective quarterly reports are informative and important means for companies in 

appraising past performance and projecting future opportunities to the readers, who 

primarily consist of investors and analysts. Typically the beginning of every report, 

known as the manager’s/president letter/message to stockholders, contains management’s 

strategy, summary of the financial performance for the year and an attempt to put in 

perspective the success or failure of the various initiatives of the company (Thomas, 

1997). 

Various researchers have analyzed the annual reports and the advantage of using 

text mining. Thomas (1997) concentrated on transitivity, thematic structure, context, 

cohesion and condensation in the language used in the reports. The researcher studied the 

annual reports of a machine tool manufacturer during a period, which began with 

prosperity and ended with severe losses. During the time frame of the analysis, the 

structure of the language used in the reports had changed. According to Thomas’ study, 

an increase in the use of passive constructions can be seen as the profits decrease. There 

is also an increase in verbs that present the actor (i.e. the company) as “being” rather than 

as “doing”. This indicates that management is trying to present itself as a victim of 

unfortunate circumstances. This creates an impression of objectivity for the reader, as if 

the management was presenting plain facts on recent events. On the other hand, when the 

company was making more profit, it presented itself as aggressive and forward moving 

through the use of active voice and verbs with both an actor and a goal. A close look at 

the language structure in the letters to stockholders made by Thomas (1997) showed that 

the structure of the financial reports might reveal some things that the company may not 

wish to announce directly to its outside audience.  

Kendal (1993) introduced the concept of drama when she noticed a similar 

opposition between the actions of the company and circumstances created by nonhuman 

agents. Kendall has classified the words and phrases describing actors and objects in the 

drama into two groups, God terms and Devil terms. Some examples of god terms are 

growth, increased sales and competitive position. These words represent concepts that are 



 

 

32

unquestionably good in the eyes of the company. Devil terms, on the other hand, are 

terms like losses, decline in sales and regulations. 

Other studies have been made with a focus on the relationship between the 

readability of the annual reports and the financial performance of a company 

(Subramanian et al., 1993). The annual reports of the companies that performed well 

were easier to read than those that originated from companies that did not perform well. 

Studies have also shown that writers of annual reports see the message they put in the 

report as their personal representation (Winsor, 1993). The annual reports are not only the 

best possible description of a company, but are also a description of a company’s 

managerial priorities. Thus, the communication strategies hidden in annual reports differ 

in terms of the subjects emphasized when the company’s performance worsens (Kohut & 

Segars, 1992). After performing computer-aided content analysis of more than four 

hundred president’s letter to shareholders and examining empirical linkages between 

themes in annual reports and companies’ performances, Osborn et al. (2001) conclude 

that the text in annual reports reflects the strategic thinking of the management of a 

company.  

Attempts to semi-automatically analyze a company’s performance by examining 

quantitative and qualitative parts from annual reports have been done by Back et al. 

(2001) and Kloptchenko et al. (2002). Back et al. (2001) indicated that there are 

differences in qualitative and quantitative data clustering results due to a slight tendency 

to exaggerate the performance in the text. Kloptchenko et al. (2002) attempted to explain 

this tendency using quantitative analysis by means of self-organizing maps for financial 

ratio clustering, and qualitative analysis by means of the prototype matching for quarterly 

report text clustering. In both studies the researchers noticed that the combination of two 

mining techniques for two different types of data describing the same phenomena could 

bring additional knowledge to a decision maker. While annual/quarterly reports explicitly 

state information about a company’s past performance, they also contain some 

indications of future performance, i.e. the tables with financial numbers indicate how 

well a company has performed, while the linguistic structure and written style of the text 

may tell what a company intends to do. The study has shown that the sophisticated semi-
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automatic analysis of the style and content of the financial reports help to reveal insiders’ 

moods and anticipations about the future performance of their company. 

 

 

2.5. CORPORATE SPIN – OFF’S 

Corporate spin-offs play a key role for industrial dynamics, innovations and 

national competitiveness in developed countries. Spin-offs are a major determinant of the 

formation of new firms in high and low technology industries (Pickerodt & Stieglitz, 

2004). Since Hite et al., (1983), the empirical literature has repeatedly documented that 

parent company stockholders gain during spin-off announcement period (for example, 

Allen et al., 1985; Krishnaswami and Subramaniam, 1999).  

Recent empirical evidence goes beyond showing the positive announcement 

effects of spin-offs on stock price. Cusatis et al. (1993) show that, in addition to the 

positive abnormal stock returns for parent firms on the announcement date, both spin-offs 

and their parents experience significantly positive abnormal returns for up to three years 

beyond the spin-offs’ announcement date. Further, both spin-offs and their parents 

experience significantly more takeovers than do control groups of similar firms. Cusatis 

et al. (1993) also show that spin-off/parent combinations not reporting takeover activity 

within three years do not have positive long-term abnormal stock returns. 

Many explanations are provided in literature to explain why shareholders gain 

during spinoffs.  Miles and Rosenfeld (1983) and Daley et al. (1997) verify a correlation 

between announcement return and investment policy of the parent company, interpreting 

the spin-off as the chance to eliminate “negative synergies” generated by a management 

unable to replicate the role of financial markets. Burch and Nanda (2002) showed that an 

increase in corporate focus partly explains the increase in the value of the firm. Aron 

(1991) argued that spin-offs benefit the firm since, after the spin-off; the equity values of 

the securities traded provide a much cleaner signal of managerial productivity than when 

the two divisions were part of a combined firm. The argument is that this enables the firm 

to provide better incentives for firm management based on the stock price of the 

individual firms. However, this argument requires the somewhat strong assumption that 
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equivalent incentive contracts cannot be written based on the profitability of the 

individual divisions when they are part of a combined firm. 

Habib et al. (1997) argued that spin-offs improve the quality of the information 

managers and uninformed investors can infer from the prices of the firm’s traded 

securities, therefore leading to an increase in the expected price of the firm’s equity. 

Nanda and Narayanan (1999) suggested that the firm may be undervalued if the market 

cannot observe the cash flows of each individual division in that firm. Therefore, the firm 

that needs external financing could resort to divestures such as spin-offs in order to raise 

capital at a fair market price after the divesture. Krishnaswami and Subramaniam (1999) 

tested the hypothesis that such positive market reactions to spin-offs are due to a 

reduction in the information asymmetry existing in the market for the equity of the parent 

firm.  

Chemmanura and Yanb (2003) develops a new rationale for the performance and 

value improvements arising from spin-offs, which is consistent with this recent (as well 

as earlier) empirical evidence. The authors developed a theoretical analysis which 

demonstrates how spin-offs can increase the probability of a takeover by the right kind of 

(value-improving) management team. The authors showed how such spin-offs can 

enhance the level of firm performance even in the absence of such a value-improving 

takeover by serving to discipline firm management. Finally, the analysis demonstrates 

that, while a spin-off will lead to positive abnormal stock-price returns on the 

announcement day, it will also lead to increases in operating performance and to 

abnormal stock price performance (on average) in the period following the spin-off for 

certain categories of firms. 

A different body of literature focused on the effects of investment decisions on 

stock prices. A number of studies explored the effects of investment choices on stock 

returns (McConnell & Muscarella, 1985; Fazzari et al., 1988; Morck et al., 1990). In 

these studies, correlation between stock prices and investment policy has been 

documented in two ways: on the one hand, firms tend to invest more following increases 

in their stock prices (Fazzari et al., 1988; Morck et al., 1990), on the other hand, it is also 

the case that stock prices tend to respond favorably to announcements of major capital 

investments (McConnell & Muscarella, 1985). Furthermore, a significant positive 
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relationship between the magnitude of the stock market reaction to capital investment 

announcements and the level of new investment has been documented (Blose & Shieh, 

1997). 

In contrast with the main findings of the above studies, Titman et al. (2003) 

registered an inverse relationship between increase in capital investments and stock 

returns. Adopting Jensen’s approach, the authors accept that managers can be “empire 

builders”, and invest for their own benefits rather than for the benefits of the firm’s 

shareholders (Jensen, 1986), with negative consequences on stock prices. The authors 

show that firms that increase capital investments the most tend to underperform their 

benchmarks over the following five years. 

Investment policies seem to be an important factor in determining the stock 

performance. With a more general perspective, investment choices are documented to 

play an important role in explaining returns of all the listed companies. Titman et al. 

(2003) provide a significant contribution to the debate on capital investments and stock 

returns. Differently from what previously documented (McConnell and Muscarella, 1985; 

Blose and Shieh, 1997), the authors verify the existence of a negative relation between 

increase in capital investments and subsequent excess returns, measured through the 

Fama-French-Cahart α (Cahart, 1997). This negative relationship is shown to be stronger 

for firms with greater investment discretion (firms with higher cash flows and lower 

leverage ratios). 

Rovetta (2005) analyzed excess returns related to corporate spin-off with respect 

to changes in investment policies of the spun off companies (subsidiaries). Spun off 

companies gain substantial excess returns on the three years following the spin-off and, at 

the same time, they show a general decrease in the level of capital investments. 

Moreover, following the spin-off, a substantial increase in investment efficiency can be 

documented for the well performing companies. Investment in low-Q subsidiaries 

strongly decreases and investment in high-Q tends to increase or remain substantially 

unchanged. Results provide evidence on the existence of a direct relationship between the 

size of the change in the level of investment, the Tobin’s Q, and the dimension of the 

excess return. 
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Linking together the financial literature on the changes in investment policies 

after corporate spinoffs and on the effects of investment decisions on stock prices 

(Titman et al., 2003), this article provides evidence on the relationship between the 

dimension of the excess returns subsequent to the spinoffs, measured through the Fama 

and French alpha (Fama and French, 1993), and the changes in investment behavior in 

the spun-off companies. 

Corporate spin-offs could relax financial constraints at the origin of investment 

inefficiency in two different ways.  Spin-offs help divisions to adopt specific financial 

policies that allow them to define their capital structure in a more efficient way, using an 

amount of debt that fits the segment growth opportunities (Ofek & Stulz, 1996). On the 

same lines, Gertner et al. (2002), Ahn and Denis (2003), and Dittmar and Shivdasani 

(2003) explore corporate spin-offs with the objective to verify a relationship between 

market values and investment policies.  Gertner et al. (2002) show that changes in the 

investment behavior of the spun off companies explain the gains on the financial market. 

Ahn and Denis (2003) provide evidence that the reduction in the diversification discount 

is positively related to changes in measures of investment efficiency for spinoffs. Dittmar 

and Shivdasani (2000) examine the effects of divestitures of specific business segments 

on the investment policy of the parent company. Over a sample of 278 divestitures (15 of 

which are pure spin-off) completed by 235 firms from 1983 to 1994, the authors verify a 

correlation between the decline in the diversification discount around the divestiture and 

the change in the investment policy of the firms’ remaining segments. The level of 

investment in segments that under-invest relative to single segment firms increases after 

the divestiture, while the level of investment in segments that overinvest declines 

(Rovetta, 2005). 

Researchers (Desai and Jain, 1999 ; Daley et al., 1997), showed that both the 

market reaction to spin-off announcements and the long-term abnormal returns and 

operating performance are significantly greater in unrelated spin-offs (where the spun-off 

subsidiary operates in an industry unrelated to the parent firm) than in related spin-offs. 

Other studies show that the magnitude of the market reaction to spin-off announcements 

is increasing in the size of the spun-off division as a fraction of the combined firm 

existing prior to the spin-off. 
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3. RESEARCH OBJECTIVES AND METHODOLOGY 

In this study, text mining is applied to the 10-12b filings done by the companies 

during corporate spin-off. The main purposes are  

(1) To investigate potential and/or major concerns found from these financial 

statements filed for corporate spin-off, and;  

(2) To identify appropriate methods in text mining can be used to reveal these 

major concerns.    

A spin- off is used to separate two businesses that have become incompatible or 

whose collective business success has become subdued by the common ownership. This 

will help a corporation in getting the investors and lenders provide capital to one but not 

all operations. Also since a spin-off would result in two separate entities, compensation in 

the form of stock ownership could be given to employees in the specific business for 

which they are responsible. Spinning off a separate business can establish a separate 

identity and operating history that makes both the spun-off company and the distributing 

company more readily marketable to a buyer in the future.  

 

 

3.1. DATA 

In this research, the financial documents (10-12b filings) from corporate spin-off 

are collected. The analysis is focused on the risk factors part of the financial documents, 

in particular, the risk factors for the company or the risk factors for the business 

environment are used. 

10-12b is a filing with Securities and Exchange Commission (SEC) which is 

required when a public company issues a new class of stock through spin-off. SEC Form 

10-12b contains information about the original shared issued, the new shares affected and 

the information about how and on which exchange the new shares will trade.  

For this study, the 10-12b filings done by 34 companies were taken for analysis. 

The number of employees in these companies varies between 500 and 50,000. Table 3.1 

shows the list of 34 companies used for analysis. 
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Table 3.1 Companies Data for Analysis 

ID Company 
Year of 
Filing 

SIC 
Code Industry 

1 A.H.BELO CORP 2007 2711 
Newspapers: Publishing, or 
Publishing and Printing 

2 ACUITY BRANDS INC 2001 3640 
Electric Lighting And Wiring 
Equipment 

3 ALBERTOCULVER CO 2006 5990 
Retail Stores, Not 
Elsewhere Classified 

4 ALLEGIANCE CORP 1996 8093 

Specialty Outpatient 
Facilities, Not Elsewhere 
Classified 

5 ALTISOURCE PORTFOLIO SOLU 2009 7380 
Miscellaneous Business 
Services 

6 AMC NETWORKS INC 2011     

7 AMETEK_INC 1997 3621 Motors and Generators 

8 AOL_INC 2009 7374 

Computer Processing and 
Data Preparation and 
Processing Services 

9 ARCH_CHEMICALS_INC 1998 2800 
Chemicals & Allied 
Products 

10 BABCOCK_&_WILCOX_CO 2010 3510 Engines And Turbines 

11 BRINK'S_HOME_SECURITY_HOL 2008 7380 
Miscellaneous Business 
Services 

12 CERIDIAN_CORP_DE 2000 8742 
Management Consulting 
Services 

13 CIMAREX_ENERGY_CO 2002 1311 
Crude Petroleum and 
Natural Gas 

14 CIRCOR_INTERNATIONAL_INC 1999 3490 
Miscellaneous Fabricated 
Metal Products 

15 CIT_GROUP_INC 2002 6172 Finance Lessors 

16 CONSOLIDATED_FREIGHTWAYS 1996 4213 Trucking, Except Local 

17 DELTA_APPAREL,_INC_ 1999 5130 
Apparel, Piece Goods, And 
Notions 

18 DELTIC_TIMBER_CORP 1996 2421 
Sawmills and Planning 
Mills, General 

19 DUN_&_BRADSTREET_CORPNW 2000 7320 
Consumer Credit Reporting 
Agencies, Mercantile 

20 HANESBRANDS_INC. 2006 5600 
Retail-Apparel & Accessory 
Stores 

21 HOSPIRA_INC 2003 2834 
Pharmaceutical 
Preparations 

22 INTERMEC,_INC 1997 3577 

Computer Peripheral 
Equipment, Not Elsewhere 
Classified 
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Table 3.1 Companies Data for Analysis (Cont’d) 

 

ID Company 
Year of 
Filing 

SIC 
Code Industry 

23 JOHN_BEAN_TECHNOLOGIES_CO 2008 3550 

Special Industry 
Machinery, Except 
Metalworking 

24 LUCENT_TECHNOLOGIES_INC 1996 3661 
Telephone and Telegraph 
Apparatus 

25 MARINE_PRODUCTS_CORP 2000 3730 
Ship And Boat Building And 
Repairing 

26 MARRIOTT_INTERNATIONAL_IN 1998 7011 Hotels and Motels 

27 NCR_CORP 1996 3578 

Calculating and Accounting 
Machines, Except 
Electronic Computers 

28 NEENAH_PAPER_INC 2004 2621 Paper Mills 

29 NORTEK_INC 2010 3634 
Electric House wares and 
Fans 

30 PHILIP_MORRIS_INTERNATION 2007 2111 Cigarettes 

31 TELEDYNE_TECHNOLOGIES_INC 1999 8711 Engineering Services 

32 WYNDHAM_WORLDWIDE_CORP 2006 7011 Hotels and Motels 

33 MEDCO_HEALTH_SOLUTIONS_IN 2003 5912 
Drug Stores and 
Proprietary Stores 

34 MOTOROLA_SPIN OF 2010 3663 

Radio and Television 
Broadcasting and 
Communications 
Equipment 

 

 

Also in Table 3.1, additional information such as the year the companies had 

performed the spin – off along SIC code of the companies is shown. SIC code is a coding 

system developed by United States government for classifying industries and it is a four 

digit coding system. It is a number used to specify what industry a particular company 

belongs to. Some companies append two or four additional digits to the standard SIC 

code to form a six or eight digit SIC code, allowing more specific business classification.  

From Table 3.1, A.H Belo Corp Company has a SIC code of 2711. This means 

that that company belongs to the Newspapers (Publishing, or Publishing and Printing) 

Industry. Each of the thirty – four companies used for analysis have been classified based 

on their SIC code, type of industry and also the year the filing was done by the 

companies. Figure 3.1 shows a screenshot of 10-12b filing filed by Motorola Inc 



 

 

40

 
Figure 3.1 Sample 10-12b Filing 

 

 

Figure 3.2 shows the screenshot of the Risk Factors mentioned in the 10-12b 

filing of AOL, Inc.  

 

 

 
Figure 3.2 Sample Risk Factors in a 10-12b Filing 
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3.2. IMPLEMENTATION PLATFORM 

This study applies SAS Enterprise Miner as the tool to analyze 10-12b filings 

done by the companies during corporate spin-off. SAS Text Miner 4.1 is a plug-in for the 

SAS Enterprise Miner 6.1 environment. SAS Enterprise Miner provides various data 

mining tools that facilitate the prediction aspect of text mining. Text Miner encompasses 

the parsing and exploration aspects of text mining and prepares data for predictive mining 

and further exploration. Also the Text Miner enables to choose from a variety of parsing 

options to parse documents for detailed information about the terms, phrases, and other 

entities in the collection. Documents can be clustered into meaningful groups and report 

concepts that can be discovered in the clusters.  

The following processing steps were conducted in this study with the help of the 

software. 

File preprocessing: This step creates a single data set from the document collection.  

Text parsing: This step decomposes textual data and generates a quantitative 

representation suitable for data mining purposes. 

Transformation (dimension reduction): During this step, transformation of the 

quantitative representation into a compact and informative format is performed. 

Document analysis: This step performs clustering analysis on the document collection. 

The outcome of clustering is presented by the descriptive terms of each cluster. It 

is necessary to try a different combination of frequency weights and term weights options 

before a satisfied result is available. Some terms may be eliminated from the document 

collection. Different number of clusters will be examined. Finally, Human expert opinion 

is used to verify the satisfactory of the text mining data. 

 

 

3.3. TEXT MINING PROCESS 

This study focuses on applying Frequency weights and term weights methods, 

such as Entropy, GF-IDF, IDF, Normal and None, on the 10-12b filings done by 

companies. The purpose is to find out which method(s) present the results would meet 

human expert’s expectation. 
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For this study, analysis was performed on the “Risk factors” category mentioned 

in each filing by the Spin-off companies. Figure 3.3 shows the input data fed into the 

enterprise miner 

 

 

 

 

 
Figure 3.3 Input Data Fed into Enterprise Miner 

 

 

 

 

The risk factors from each spin-off filing was entered into one cell of an excel 

sheet. Each cell was assigned an ID to keep track of the identification of the documents. 

A target value was induced to be default “1”, as this study focuses only on one category 

which is the “Risk Factors”. So, for the analysis, the input file contained 34 lines with 

each line representing the risk factors of the companies. 
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 After the input data file was prepared, the model for text mining was created as a 

diagram in SAS Enterprise Miner, displayed in Figure 3.2. The left node is titled Input 

Data node into which the data file was imported, and the right node titled Text Miner, in 

which the text mining process would be performed to explore information in the 

document collection. Both nodes were connected via a line. The direction of the arrow 

represents the data flow. The input data was fed into the text mining process. SAS 

Enterprise Miner automatically processes the files based on parameter settings. Figure 3.4 

shows the text mining model used for the initial data analysis. 

 

 

 
    Figure 3.4 Text Mining Model 

 

 

 

To improve performance, the dimensional reduction technique was applied; thus, 

the “Compute SVD” was set to “Yes”.  

Singular Value Decomposition (SVD) is a popular approach which was also used 

in this research. SVD resolution determines the number of SVD (dimensions) extracted. 

For a “High” SVD dimension value more information is kept but it requires longer 

computation time. For a “Low” SVD dimension, less information is kept but it takes less 

computation time. Since the data size used in this study is small, the computation time is 

not an issue. Hence SVD dimension value of “High” was used for analysis. 

The higher resolution yields more SVD dimensions, which summarizes the data 

set more efficiently although it requires more computing resources. The number of SVD 

dimensions should be large enough to prevent loss of concepts small enough to limit 

noise. Dumais (1991) performed information retrieval and found that performance 

increased over the first 100 dimensions, hitting the maximum, and then falling off slowly. 

Thus, 100 seemed to be a good start for the maximum number of SVD dimensions. Table 
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3.2 shows the key parameter settings used for the analysis. None, Log and Binary 

frequency weight was used for analysis and all the five term weights – Entropy, GF-IDF, 

IDF, Normal and None , was used for analysis. 

 

 

Table 3.2 Parameter Settings for Term-Document Frequency Matrix Conversion Stage 

Property Value 
Compute SVD Yes 

SVD Resolution High 
Max SVD Dimensions 100 
Scale SVD Dimensions No 
Frequency weighting  None 

Term Weight  Entropy 
 

 

 

Core Mining Processing. Clustering technique was applied to the risk factors taken from 

the 10-12b filing into clusters. Table 3.3 shows some key parameter settings for this 

clustering process. The fixed set of clustering was set. The exact number was set to 5 

since the document collection was small and 5 clusters should be sufficient to cover all 

ideas. Expectation-maximization (EM) clustering technique was being used. The number 

of descriptive terms was set to 10. This number is reasonable for the size of data as it 

would help in identifying a cluster more easily. Clustering worked on the term-frequency 

matrix after dimensional reduction (i.e., SVD) had been applied. 

 

 

Table 3.3 Parameter Settings for Clustering of Core Mining Processing 

Property Value 
Automatically Cluster No 

Exact or Maximum Number  Exact 
Number of Clusters 5 
Cluster Algorithm EXPECTATION-MAXIMIZATION 
Descriptive Terms 10 

What to Cluster  SVD Dimensions 
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4. ANALYSIS AND RESULTS 

4.1. FIRST ANALYSIS 

The analysis was started without any pre-defined parameter setting. Table 4.1 

shows the parameter setting performed for the first analysis. 

 

 

 

Table 4.1 First Analysis Parameter Setting 

Parameter Value 
SVD Dimension High 

Number of Cluster Maximum 7 
Descriptive Terms 5 

 

 

 

The parameters started with a minimum descriptive term of 5 and the system was 

allowed to decide on the number of clusters, by keeping the setting as maximum.  

For this analysis, the data set was analyzed with all the frequency terms and all 

the term weights. For example, an analysis was done first with the frequency weight of 

None, Log and Binary with the term weight Entropy. It was followed by the combination 

of None, log and Binary frequency weight with GF-IDF. This step was repeated till all 

the five term weights were covered with all the three frequency weights. Table 4.2 shows 

the analysis done with the combination of None/log/Binary with the term weight Entropy. 

 This analysis did not provide any reasonable outcome out of the clusters. The 

system generated 2 clusters due to this setting. Usage of different term frequencies like 

None, Binary and Log with the term weights didn’t make any difference at all. For 

example, in Table 4.2, the descriptive terms generated out of None/Entropy is exactly the 

same as the descriptive terms generated for Log/Entropy and Binary/Entropy. Different 

frequency terms did not provide different descriptive terms for the clusters generated. 

Hence a decision was made to focus on the default frequency term which is None. 
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Table 4.2 Descriptive Terms from None/Log/Binary with Entropy 

 

Frequency Weight None 
Term weight Entropy 

ID Descriptive Terms Freq Percentage RMS Std 
1 may, + risk, + factor, new, + affect 24 0.7058824 0.181636 

2 
significant, economic, portion, 

historical, including 10 0.2941177 0.176612 
Frequency Weight Binary 

Term weight Entropy 
ID Descriptive Terms Freq Percentage RMS Std 
1 may, + risk, + factor, new, + affect 24 0.7058824 0.181636 

2 
significant, economic, portion, 

historical, including 10 0.2941177 0.176612 
Frequency Weight Log 

Term weight Entropy 
ID Descriptive Terms Freq Percentage RMS Std 
1 may, + risk, + factor, new, + affect 24 0.7058824 0.181636 

2 
significant, economic, portion, 

historical, including 10 0.2941177 0.176612 
 

 

 

 

4.2.  SECOND ANALYSIS 

For the second analysis the parameter settings were slightly modified. Table 4.3 

shows the parameter settings used for the second analysis. 

 

 

 

Table 4.3 Second Analysis Parameter Setting 

Parameter Value 
SVD Resolution High 

Frequency Weight None 
Number of clusters  5 
Number of Terms 10 
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During the second analysis, fixed number of clusters and an increase in number of 

terms was performed. Increasing the number of descriptive terms to 10 will not change 

the outcome but will provide more information about the clusters. The “None” frequency 

weight was chosen to be the only frequency weight since the first analysis did not show 

any difference among various frequency weights. In this analysis, analysis was done 

using only one frequency weight on all the five term weights. Table 4.4 shows the cluster 

output using None/Entropy. 

 

 

 

Table 4.4 Descriptive Terms from None with Entropy (Second Analysis) 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 

information, + statement, statement, information, 
following, carefully, below, consider, forward-

looking, in addition to 11 0.323529412 0.175388 

2 
economic, portion, significant, including, + 

operation, + business, + condition, + affect, + result 6 0.176470588 0.165882 
3 + year, + loss, december, historical, + result 4 0.117647059 0.169672 

4 
competition, compete, attract, effectively, intense, + 

industry, adversely, ability, + affect, + business 6 0.176470588 0.173274 

5 
history, operating, products, continue, company, + 

business, + affect, + operation 7 0.205882353 0.17859 
 

 

 

 

According to human expert, this analysis resulted in clusters which were too 

noisy. Lots of “non – important” and “meaningless” terms such as information, 

statement, including, year, month (like december), historical/history, operation, in 

addition to, and U.S were found in the cluster. This resulted in the need to rerun the 

analysis by removing the unwanted terms. The number of clusters and the number of 

terms were unchanged.  
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4.3. THIRD ANALYSIS 

For the third analysis, the parameters were kept the same. The only difference 

when compared with the second and third analysis is the removal of unwanted terms from 

the descriptive terms of the clusters. Also in this analysis, the distribution of documents 

in the cluster was taken for more detailed analysis. Table 4.5 shows the cluster outcome 

with None/Entropy 

 

 

 

Table 4.5 Descriptive Terms from None with Entropy (Third Analysis) 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
portion, significant, + revenue, + product, + 

industry, + business 5 0.14705882 0.173003 

2 
value, + loss, financial, + result, continue, subject, 

substantial, + condition, + factor, may 9 0.26470588 0.17308 

3 

stock, distribution, common, below, + certain risk 
factor, + describe, + own, + risk, + shareholder, + 

involve 8 0.23529412 0.168023 
4 + constitute 3 0.08823529 0.170131 

5 
competition, adversely, ability, attract, compete, 

effectively, intense, introduce, manner, profitability 9 0.26470588 0.175318 
 

 

 

 

This analysis resulted in the outcome of more meaningful information from the 

clusters. Cluster # 1, cluster # 2 and Cluster # 5 had good information to be analyzed and 

there were no repetitions of any term in the cluster due to the removal of unwanted words 

before running the analysis. Analysis was also performed on the clustering of the 

documents in different clusters. The document distribution was taken from the SAS 

Enterprise miner and analysis was performed on which documents went to which cluster. 

Also the appearance of patter in these document distributions was noticed. Table 4.6 

shows the document distribution of Table 4.5. 
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                  Table 4.6 Document Distribution in None/Entropy 

 

Cluster Document ID 
1 10,2,26,8,20 
2 34,15,28,23,14,27,18,30,17 
3 16,6,24,7,29,9,19,22 
4 13,25,4 
5 31,32,11,5,12,3,21,1,33 

 

 

More detailed description of the third analysis is given under the Results section. 

 

 

 

4.4. FINAL ANALYSIS 

In the final analysis, an effort was made to reduce the number of clusters and to 

find better information from the clusters. Except the cluster settings, all the other 

parameter settings remained the same. Table 4.7 shows the parameter settings used for 

the final analysis. 

 

 

 

                         Table 4.7 Final Analysis Parameter Setting 

Parameter Value 
SVD Resolution High 

Frequency Weight None 
Number of clusters 4 and 3 
Number of Terms 10 

 

 

 

This analysis did not provide the result as expected. The 4-cluster and 3-cluster 

analysis were not as meaningful as the 5-cluster analysis. Table 4.8 shows the descriptive 

terms formed from None/Entropy method 
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Table 4.8 Descriptive Terms from None with Entropy (4 Clusters) 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 

businesses, manufacturing, portion, products, + 
company, + constitute, significant, continue, 

company, + industry 12 0.35294118 0.182761 

2 

+ involve, stock, common, consider, set, + certain 
risk factor, + contain, + describe, + shareholder, + 

risk 7 0.20588235 0.172841 

3 

competition, adversely, ability, attract, financial 
condition, intense, introduce, manner, part, 

profitability 13 0.38235294 0.171909 
4 + loss 2 0.05882353 0.076692 

 

 

 

 

Table 4.9 shows the descriptive terms formed by using three clusters and using 

the frequency weight of None with term weight Entropy. 

 

 

 

Table 4.9 Descriptive Terms from None with Entropy (3 Clusters) 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 

+ involve, stock, distribution, common, consider, 
set, + certain risk factor, + describe, + own, + 

shareholder 9 0.26470588 0.177409 

2 
continue, substantial, portion, spinco, + loss, + 

industry, + product, significant, + business, new 12 0.35294118 0.184773 

3 
financial, competition, ability, attract, financial 

condition, intense, introduce, manner, timely, value 13 0.38235294 0.169627 
 

 

 

4.5. RESULTS 

The third analysis was chosen as the final analysis. According to human expert’s 

opinion, more useful and considerable meaningful information was found from Entropy 
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method and GF-IDF method of the 5-cluster analysis. Table 4.10 shows the descriptive 

terms formed out of None/GF-IDF method and Table 4.11 shows its corresponding 

document distribution in the clusters formed. Remaining analysis from other methods 

with None frequency weight and its corresponding document distribution are showed in 

Appendix. 

 

 

Table 4.10 Descriptive Terms from None/GF-IDF 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 + loss 2 0.05882353 0.070571 

2 

+ risk, + involve, stock, distribution, common, 
below, businesses, consider, set, + certain risk 

factor 13 0.38235294 0.176889 

3 

financial, financial condition, introduce, manner, 
profitability, timely, value, + result, + condition, + 

affect 12 0.35294118 0.158539 
4 + constitute 3 0.08823529 0.169985 

5 
+ product, substantial, continue, significant, + 

industry 4 0.11764706 0.166162 
 

 

 

 

        Table 4.11 Document Distribution for None/GD-IDF 

Cluster Document ID 
1 34,27 
2 13,32,16,2,6,24,7,8,12,9,1,33,22 
3 31,15,11,28,23,5,29,3,14,21,19,17 
4 26,25,4 
5 10,18,30,20 

  

 

From the results, sentences which show the descriptions for each cluster were 

taken from the input documents. Table 4.12 shows the descriptive terms and its 

corresponding input text sentences. The analysts have to use their domain knowledge in 
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finding the “real sentences” which matches most of the descriptive terms from each 

cluster.  

In the None/Entropy method, cluster # 2, 3 and 5 provide good details about each 

cluster, whereas clusters 1 and 4 are considered to be outliers. The outliers could be 

useful when performing further analysis combined with target variables. However, for 

clustering analysis purpose, these outlier clusters are not considered. 

 

 

 

Table 4.12 Descriptive Terms and Input Text with None/Entropy Method 

 

ID 
Descriptive 

Terms Input Text/Example 

2 

value, + 
loss, 

financial, + 
result, 

continue, 
subject, 

substantial, 
+ condition, 

+ factor, 
may 

Substantial operating losses in each of the last three years and may continue 
to incur financial losses 
 
Changes in food consumption patterns may negatively affect our business, 
financial condition, results of operations and cash flows 
 
Not be able to realize the entire book value of goodwill and other intangible 
assets 
 
If we are unable to develop, preserve and protect our intellectual property 
assets, our business, financial condition, results of operations and cash flows 
may be negatively affected. 

3 

stock, 
distribution, 

common, 
below, + 

certain risk 
factor, + 

describe, + 
own, + risk, 

+ 
shareholder, 

+ involve 

The combined trading price of Western Atlas Common Stock and Company 
Common Stock held by shareholders after the Distribution may be less than, 
equal to or greater than the trading price of Western Atlas Common Stock 
prior to the Distribution 
 
Substantially all of the shares of Company Common Stock will be eligible for 
immediate resale in the public market after the Distribution. 
 
Trading in the Company Common Stock to be distributed may commence on 
a "when issued" basis prior to the Distribution Date. 

5 

competition, 
adversely, 

ability, 
attract, 

compete, 
effectively 

Increasing Competition could reduce the demand for our products and 
services. 
 
Having no operating history as an independent company makes it difficult to 
predict out profitability as a stand-alone company 

 



 

 

53

Table 4.12 Descriptive Terms and Input Text with None/Entropy Method (Cont’d) 

ID 
Descriptive 

Terms Input Text/Example 

5 

, intense, 
introduce, 
manner, 

profitability 

 
 
We operate in a competitive business environment, and if we are unable to 
compete effectively, our results of operations and financial condition may be 
adversely affected. 
 
There can be no assurance that we will be able to compete successfully 
against current or future competitors or that competitive pressures we face in 
the markets in which we operate will not materially adversely affect our 
business, financial condition and results of operations 

 

 

 

Table 4.13 shows the descriptive terms and its corresponding input texts from the 

input documents with the method None/GF-IDF 

 

 

 

Table 4.13 Descriptive Terms and Input Text with None/GF-IDF Method 

 

 

ID 
Descriptive 

Terms Input Text/Example 

    

Shareholders of CFI should be aware that the Distribution and ownership of 
the Common Stock involves certain risk factors, including those described 
below and elsewhere in this Information Statement, which could adversely 
affect the value of their holdings. 
 
Until the Company Common Stock is fully distributed and an orderly market 
develops, the prices at which such stock trades may fluctuate significantly 
and may be lower than prices that would be expected for a fully distributed 
issue 
 
The aggregate market values of Olin Common Stock and Company 
Common Stock after the Distribution may be less than, equal to, or greater 
than the market value of Olin Common Stock prior to the Distribution. 
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Table 4.13 Descriptive Terms and Input Text with None/GF-IDF Method (Cont’d) 

 

ID 
Descriptive 

Terms Input Text/Example 

2 

+ risk, + 
involve, 
stock, 

distribution, 
common, 

below, 
businesses, 
consider, 

set, + certain 
risk factor 

 
 
 
 
Trading in the Company Common Stock to be distributed may commence 
on a "when issued" basis prior to the Distribution Date. 
 
Substantially all of the shares of Company Common Stock will be eligible 
for immediate resale in the public market after the Distribution. 

3 

financial, 
financial 

condition, 
introduce, 
manner, 

profitability, 
timely, 
value, + 
result, + 

condition, + 
affect 

Performance under government contracts has certain inherent risks that 
could have a material effect on our business, results of operations and 
financial condition. 
 
Delays or further declines in U.S. military expenditures could adversely 
affect our business, results of operations and financial condition, depending 
upon the programs affected, the timing and size of the changes and our 
ability to offset the impact with new business or cost reductions. 
 
Acquisitions involve inherent risks that may adversely affect our operating 
results and financial condition 
 
Our operating results will depend in part on our ability to introduce new 
and enhanced products on a timely basis 
 
The distribution and ownership of our common stock involve a number of 
risks and uncertainties 

 

 

 

The sentences taken from the original data set, which are related to the descriptive 

terms from both the Entropy and GF-IDF, provide some sense of important concepts 

reviewed under the “Risk Factors” category in each document filing. 

In the next two sections, the two accepted methods which produced acceptable 

results according to the human expert’s expectations are analyzed. The important 

information from each term method as well as the pattern formed out of the document 

distribution in the clusters, are explained. 
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4.5.1. Result Analysis from None/Entropy. Using the None/Entropy method, 

from cluster # 2, important information such as  “Continuation of substantial operating 

losses”, “Change in pattern which might affect the business, financial condition, results 

of operations and cash flows”, “loss of goodwill and other intangible assets” and also the 

requirement to “develop, preserve and protect the intellectual property assets”, are 

obtained. These are some of the most important risk factors which any organization needs 

to take care.  

From cluster # 3, important information related to the stocks can be derived such 

as “the trading price of the parent and the spin-off company after the spin-off may be less 

or more or equal to the trading price of the parent company before a spin-off”. Other 

information which the shareholder might find useful are the “Eligibility to resell the 

company’s common stock after the distribution” and also the information that “trading 

can commence on a “when issued” basis even prior to the distribution date.  This 

information will really be useful from a shareholder point of view. 

Cluster # 5 gives out details like how ‘increasing competition” can affect the 

company’s products and services. It also gives out important information where the new 

company with “no operating history” makes it difficult to for that organization to predict 

the profitability as a stand along company. Also due to the competitive environment, if 

the new companies are unable to compete effectively, then the operation results and 

financial condition will be severely affected. These details will give an idea to the 

shareholder and stockholder to decide on buying shares and stocks from the new 

company.  

Lau et al. (2005) considered text mining as exploring for data in text files to 

establish valuable patterns and rules that indicate trends and significant features about 

specific topics. Identical to this, a pattern has been noticed on the document distribution 

based on the clusters formed under the none/Entropy 

From the results, a pattern is formed  based on the mood or focus of the risk 

factors given in the input documents. For example, consider the cluster # 2 from the 

method None/Entropy. The documents formed under this cluster are document ID’s 34, 

15, 28, 23, 14, 27, 18, 30, and 17. All these documents belong to different industrial spin 

- off's. But there is one common point upon which a pattern is formed. They are give 
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primary importance to the “financial condition” of the company after a spin-off. These 

documents also mention about the products and common stock, but the focus of the risk 

factors in these documents has been primarily towards the financial condition of these 

companies.  

Similarly cluster # 4 under the None/Entropy method has the documents 16, 6, 24, 

7, 29, 9, 19, and 22 distributed. These documents have “common stock distribution” as a 

pattern which has made all these documents to appear under the same cluster. The risk 

factors in all these documents predominantly mention about the distribution of stock after 

the spin-off and how the shareholder will be affected due to this spin-off. 

Cluster # 5 has the documents 31, 32, 11, 5, 12, 3, 21, 1, and 33 distributed in it. 

In this cluster, the pattern points towards the “competitiveness” mentioned in the risk 

factors in each financial document. These documents mostly emphasize the risks on how 

the new company will face the competition from the competitors in the open market as an 

independent entity. 

4.5.2. Result Analysis from None/GF-IDF. From the None/GF-IDF method, 

relatable information such as “Distribution and ownership of the Common Stock involves 

certain risk factors”, “fluctuating of company Common Stock prices before and after a 

spin-off”,  “trading of common stock prior to the distribution date” and also the “ability 

to resell the common stock after spin-off”. These are very useful information to a 

shareholder in getting the right details out of a company and also in deciding the future 

course of the spin-off company.  

Cluster # 5 from None/GF-IDF mentions more about the financial outcome of the 

spin-off companies related to the input data. From the cluster, information on how the 

delay in military expenditures could adversely affect the business, results of operations 

and financial condition of the company. All these sentences provide a gist of the 

important concepts mentioned in the spin-off filing reports under the risk factors 

category. 

Both these clusters provide the information regarding the stocks of the parent as 

well as the spin-off company.   

Text mining explores data in text files to establish valuable patterns and rules that 

indicate trends and significant features about specific topics (Lau et al., 2005). Identical 
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to this, a pattern has been noticed on the document distribution based on the clusters 

formed under None/GF-IDF method. 

Consider the cluster # 2 under the None/GF-IDF method. Documents 13, 32, 16, 

2, 6, 24, 7, 8, 12, 9, 1, 33, and 22 are distributed under this cluster. These documents 

predominantly focus on the risks regarding the common stock distribution among its 

shareholders. These input documents also mention about the loss that will be incurred and 

also the products that will be affected due to the loss of good will by the company, but 

the primary focus has been towards the common stock distribution and how this is going 

to be risky to its shareholders and stockholders. 

Under cluster # 3 documents 31, 15, 11, 28, 23, 5, 29, 3, 14, 21, 19, 17 are 

distribution. These documents have stressed the importance of the financial condition of 

the company after a spin-off. Thus most of the documents emphasizing this point have 

been distributed under the same cluster. 

Even though None/Entropy and None/GF-IDF provided different outcomes, it 

meets the human expert’s expectations on the results.  
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5. CONCLUSION AND FUTURE WORK 

5.1. CONCLUSION 

Text mining provides an idea of what the final output will look like. It basically 

helps in the data analysis thereby helping to find related sentences based on the 

descriptive terms generated in the clusters. 

In this study, analysis is done on the 10-12b filings done by the companies during 

corporate spin-off. Text mining was applied to the 10-12b filings to investigate potential 

and/or major concerns found from these financial statements filed for corporate spin-off 

and also to identify appropriate methods in text mining which can be used to reveal these 

major concerns. 

10-12b filings from thirty-four companies were taken and only the “Risk Factors” 

category was taken for analysis. 

The most important thing in any analysis is the data gathered. Getting the right 

data is the key in getting some reasonable results. Spin-off’s done by thirty-four 

companies were taken for analysis. All these spin-off filings were done between 1996 and 

2011 and none of these companies belonged to the same industry.  This resulted in the 

data containing companies filed during various periods and belonging to various 

industries.  

The first analysis was performed using all three frequency weights such as None, 

Log and Binary in a combination with all the five term weights such as Entropy, GF-IDF, 

IDF, Normal and None. Even though the formula used by the frequency weights were 

different, they all provided the same outcome. This resulted in the narrowing down the 

analysis on using only the default “None” frequency term. 

Among all the analysis performed in this study, the third analysis in which 5-

clusters were used and the unwanted words were removed provided better results. From 

the cluster # 2, 3 and 5 produced in the 5-cluster analysis under the None/Entropy 

method, related sentences from the input texts were formed. The remaining clusters 1 and 

4 are outliers. The same was done with the cluster # 2 and 3 from the None/GF-IDF 

method. These sentences provided important concepts which were reviewed under the 

risk factors category in each filing. In this method, clusters 1, 4 and 5 are outliers. 



 

 

59

In this study, clusters formed from the methods Entropy and GF-IDF, produced 

better results. This confirms with prior literature, that Entropy and GF-IDF are two 

methods that generally produce better results (Dumais, 1991; Chisholm & Kolda, 1999; 

Jarman, & Berndt, 2010; Katerattanakul, 2010). 

Meaningful clusters were formed even from the final analysis where the number 

of cluster was taken as three and four, but it didn’t keep an extra cluster to host the 

outliers. This actually made the three clusters from the None/Entropy method and the two 

clusters from the None/GF-IDF, easier to understand. Forcing down the analysis to three 

clusters actually made the descriptive terms set (from the final analysis) confusing. This 

is due to the inclusion of outliers in one of the meaningful clusters thereby reducing the 

purity of the clusters. 

Text mining creates patterns based on the input data, taken for analysis. With the 

input data used for analysis, a pattern was formed based on the mood or focus of the 

documents. Documents which predominantly emphasized on the effects of the spin-off on 

the financial condition of the company were grouped together in a cluster. Similarly, 

documents which emphasized more on the effects of the spin-off on the common stock of 

the company were grouped together.  

Analysis was also performed to identify any pattern which was formed based in 

the year of filing the 10-12b and also based on the SIC code. But no significant pattern 

was found out of the clusters. 

For this analysis, the appropriate term weights were chosen as Entropy and GF-

IDF. The better of the two term weights cannot be identified due to the unavailability of 

the target variable. Hence the evaluation is based on human judgment. 

Also for any analysis, the analyst needs to have full understanding of the domain. 

This limits the application of text miner by an analyst without considerable understanding 

on the domain details.  

Irrespective of these limitations, text mining makes it easier by taking sizable 

amounts of data and finding the best descriptive terms which in turn benefits in 

identifying typical sentences represented by these descriptive terms from the input texts.  
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5.2. FUTURE WORK 

Future works include performing a study to identify how the outline clusters 

formed during an analysis can be used in finding clues related to unsuccessful spin-off. 

This study might require a model building with classification. 

With the availability of more data, a pattern can be found which can be associated 

with the SIC code or the year of filing. Individual categorized data can further be 

categorized in order to deepen the analysis. Further clustering can be performed on the 

existing cluster for better analysis and results. 

In this analysis, two potential useful set of outcomes have been proposed. 

Identifying the best out of it is something which can be done in future. In order to 

perform this, result of the spin-off is essential, as it gives target variables of the spin-off 

of a particular company. A predictive modeling using target variables would be able to 

actually evaluate the two clustering outputs. 

Generally, a 10-12b filing has huge information about the Risk Factors associated 

with any spin-off. The filing has minimum four pages of documents which explain all the 

unknown and known risks. But in one cell of an excel sheet, the maximum number of 

characters which can be entered is 32767. Hence due to the restriction on the character 

limit in the input file, this study focused on only the “Risks Relating to the Company” 

and “Risks Relating to the Business”. Future study can be performed to overcome this 

restriction in order to perform complete analysis of a particular category and can be 

applied to all categories in the filing. 

Further, other categories from the Spin – off filing such as “Forward-looking 

statements”, “Distribution Details”, “Dividend Policy”, “Compensation Discussion and 

Analysis” can be undertaken and then the results from each category can be combined 

which will in turn form the basic precautions which any organization can take into 

account when any spin – off occurs. This could help the analyst obtain a broader view of 

the spin-off documents. 

This research work serves as a pilot study of next levels of similar studies. A set 

of start word list can be developed which will eliminate the try and error method of 

framing an initial list. This work will help researchers in saving time associated in the 

cumbersome process.  
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Also more detailed analysis can be performed on the financial data by working 

with human experts. This will help in identifying any previous ignored or missed data 

which can be used for future analysis. 
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     APPENDIX: ANALYSIS RESULTS 

RESULTS FROM 5-CLUSTER ANALYSIS 

Entropy Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
portion, significant, + revenue, + product, + industry, + 

business 5 0.14705882 
0.17300

3 

2 
value, + loss, financial, + result, continue, subject, 

substantial, + condition, + factor, may 9 0.26470588 0.17308 

3 

stock, distribution, common, below, + certain risk 
factor, + describe, + own, + risk, + shareholder, + 

involve 8 0.23529412 
0.16802

3 

4 + constitute 3 0.08823529 
0.17013

1 

5 
competition, adversely, ability, attract, compete, 

effectively, intense, introduce, manner, profitability 9 0.26470588 
0.17531

8 
 

Document Distribution 

 

Cluster Document ID 
1 10,2,26,8,20 
2 34,15,28,23,14,27,18,30,17 
3 16,6,24,7,29,9,19,22 
4 13,25,4 
5 31,32,11,5,12,3,21,1,33 

 

GF-IDF Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 + loss 2 0.05882353 
0.07057

1 

2 
+ risk, + involve, stock, distribution, common, below, 

businesses, consider, set, + certain risk factor 13 0.38235294 
0.17688

9 

3 

financial, financial condition, introduce, manner, 
profitability, timely, value, + result, + condition, + 

affect 12 0.35294118 
0.15853

9 

4 + constitute 3 0.08823529 
0.16998

5 

5 + product, substantial, continue, significant, + industry 4 0.11764706 
0.16616

2 
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Document Distribution 

 

Cluster Document ID 
1 34,27 
2 13,32,16,2,6,24,7,8,12,9,1,33,22 
3 31,15,11,28,23,5,29,3,14,21,19,17 
4 26,25,4 
5 10,18,30,20 

 

 

IDF Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
significant, portion, substantial, + revenue, + 

product, + industry, + business 6 0.1764706 0.170895 

2 
value, + loss, financial, + result, + condition, + 

factor, continue, may, + affect 8 0.2352941 0.168234 

3 

stock, distribution, common, below, + certain 
risk factor, + describe, + own, + risk, + 

shareholder, + involve 8 0.2352941 0.167535 
4 + constitute 3 0.0882353 0.169359 

5 

competition, adversely, ability, attract, 
compete, effectively, intense, introduce, 

manner, profitability 9 0.2647059 0.173958 
 

 

Document Distribution 

 

Cluster Document ID 
1 10,2,26,8,30,20 
2 34,15,28,23,14,27,18,17 
3 16,6,24,7,29,9,19,22 
4 25,4 
5 31,32,11,5,12,3,21,1,33 
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Normal Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
portion, + competitor, significant, substantial, 

+ industry, + product 6 0.1764706 0.176993 

2 
+ relate, set, consider, + risk, carefully, + 

business 4 0.1176471 0.171749 

3 

operating, distribution, compete, effectively, 
introduce, manner, part, profitability, new, 

company 16 0.4705882 0.178784 
4 + constitute 2 0.0588235 0.115472 

5 
value, financial, + result, + condition, 

economic, + factor, + affect, may, + business 6 0.1764706 0.161414 
 

Document Distribution 

 

Cluster Document ID 
1 10,2,26,33,30 
2 13,32,7,8 
3 34,31,16,6,24,11,5,12,3,9,21,1,27,18,19,22 
4 25,4 

 

 

None Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
significant, portion, continue, + product, + 

industry, new, + business 7 0.2058824 0.17001 
2 + loss, + result, financial 5 0.1470588 0.1524 

3 

stock, distribution, common, carefully, below, 
consider, part, set, + certain risk factor, + 

factor 12 0.3529412 0.17619 
4 + constitute 4 0.1176471 0.18099 

5 

competition, compete, attract, effectively, 
intense, + industry, adversely, ability, + affect, 

new 6 0.1764706 0.17139 
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Document Distribution 

 

Cluster Document ID 
1 2,26,8,12,18,30,20 
2 34,28,23,27,19 
3 13,31,15,16,6,24,7,11,29,9,14,22 
4 25,21,4,17 
5 10,32,5,3,1,33 

 

 

RESULTS FROM 4-CLUSTER ANALYSIS 

 

Entropy Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 

businesses, manufacturing, portion, products, + 
company, + constitute, significant, continue, company, 

+ industry 12 
0.3529411

8 0.182761 

2 
+ involve, stock, common, consider, set, + certain risk 

factor, + contain, + describe, + shareholder, + risk 7 
0.2058823

5 0.172841 

3 
competition, adversely, ability, attract, financial 

condition, intense, introduce, manner, part, profitability 13 
0.3823529

4 0.171909 

4 + loss 2 
0.0588235

3 0.076692 
 

 

Document Distribution 

Cluster Document ID 
1 10,2,26,28,12,25,9,1,18,30,4,20 
2 13,16,24,7,8,22,17 
3 31,15,32,6,11,23,5,29,3,14,21,19,33 
4 34,27 
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GF-IDF Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
effectively, compete, businesses, part, unable, + 

depend, + business, new, performance, competition 10 0.29411765 
0.16301

3 

2 

+ factor, value, + certain risk factor, + contain, + 
describe, financial, + condition, + result, + affect, 

carefully 11 0.32352941 
0.16108

6 

3 
+ competitor, demand, + product, substantial, + 

revenue, + industry, continue, significant 6 0.17647059 
0.17027

6 
4 + loss, + constitute 7 0.20588235 0.18528 

 

Document Distribution 

 

Cluster Document ID 
1 31,32,2,6,8,11,12,3,9,1 
2 15,16,7,28,23,5,29,14,19,22,17 
3 10,21,18,33,30,20 
4 13,34,26,24,25,27,4 

 

 

 

IDF Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 

businesses, manufacturing, portion, products, + 
constitute, significant, company, continue, + industry, 

substantial 11 
0.3235294

1 0.181136 

2 
+ involve, stock, common, consider, set, + certain risk 

factor, + describe, + shareholder, + risk, carefully 6 
0.1764705

9 0.166166 

3 
competition, adversely, ability, attract, financial 

condition, intense, introduce, manner, part, profitability 13 
0.3823529

4 0.170714 

4 + loss, + result, financial 4 
0.1176470

6 0.163969 
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Document Distribution 

 

Cluster Document ID 
1 10,2,26,12,25,9,1,18,30,4,20 
2 13,16,24,7,7,8,22 
3 31,15,32,6,11,5,29,3,14,21,19,33,17 
4 34,28,23,27 

 

 

Normal Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
substantial, manner, introduce, demand, part, portion, 

spinco, timely, + competitor, + depend 12 0.35294118 
0.17635

8 

2 
+ involve, + describe, + certain risk factor, set, 

consider, + risk, stock, common, carefully, + factor 5 0.14705882 0.16472 

3 

+ affect, financial, performance, adversely, compete, 
effectively, financial condition, value, + result, + 

condition 14 0.41176471 
0.17899

9 

4 + constitute 3 0.08823529 
0.16980

9 
 

 

 

Document Distribution 

 

Cluster Document ID 
1 34,10,31,2,26,6,24,21,19,33,30,20 
2 13,16,7,8,22 
3 15,32,11,28,23,5,29,12,3,9,14,1,18,17 
4 25,27,4 
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None Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
+ factor, carefully, consider, set, value, + certain risk 

factor, + contain, + describe, financial, + risk 12 0.35294118 
0.16431

9 

2 
competition, businesses, compete, effectively, intense, 

part, products, unable, + depend, + business 13 0.38235294 0.17054 

3 demand, significant, + product, substantial, + revenue 5 0.14705882 
0.16954

4 

4 + loss 4 0.11764706 
0.17868

3 
 

Document Distribution 

 

Cluster Document ID 
1 13,15,16,7,28,23,5,29,14,19,22,17 
2 31,32,2,6,8,11,12,3,25,9,1,18,33 
3 10,26,21,30,20 
4 34,24,27,4 

 

 

RESULTS FROM 3-CLUSTER ANALYSIS 

 

 

Entropy Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
+ involve, stock, distribution, common, consider, set, + 

certain risk factor, + describe, + own, + shareholder 9 0.26470588 
0.17740

9 

2 
continue, substantial, portion, spinco, + loss, + 

industry, + product, significant, + business, new 12 0.35294118 
0.18477

3 

3 
financial, competition, ability, attract, financial 

condition, intense, introduce, manner, timely, value 13 0.38235294 
0.16962

7 
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Document Distribution 

 

Cluster Document ID 
1 13,16,26,24,7,8,25,9,22 
2 34,10,2,6,11,12,1,27,18,20,4,20 
3 31,15,32,28,23,5,29,3,14,21,19,33,17 

 

 

GF-IDF Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
substantial, ability, attract, demand, introduce, manner, 

timely, value, + company, financial 15 0.44117647 0.1731 

2 
stock, common, consider, set, + certain risk factor, + 
describe, + shareholder, + risk, carefully, + involve 7 0.20588235 

0.17668
3 

3 

businesses, compete, effectively, products, + business, 
company, + industry, adversely, competition, 

performance 12 0.35294118 
0.16359

2 
 

Document Distribution 

 

Cluster Document ID 
1 34,10,31,15,28,23,5,14,21,27,19,33,30,17,20 
2 13,16,26,24,7,4,22 
3 32,2,6,8,11,29,12,3,25,9,1,18 

 

IDF Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
financial, economic, compete, businesses, effectively, 
financial condition, portion, value, + affect, + result 17 0.5 

0.17928
1 

2 
+ risk, + involve, stock, common, consider, set, + 

certain risk factor, + describe, + relate, + shareholder 7 0.20588235 
0.17105

6 

3 
substantial, manner, introduce, demand, timely, + 

constitute, + loss, + product, ability, + revenue 10 0.29411765 0.17437 
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Document Distribution 

 

Cluster Document ID 
1 15,2,26,6,11,28,23,5,29,12,3,9,14,1,18,17,20 
2 13,32,16,24,7,8,22 
3 34,10,31,25,21,27,19,33,30,4 

 

 

Normal Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
+ customer, stock, competition, common, ability, 

attract, compete, consider, demand, + risk 18 0.52941176 
0.18061

6 

2 
value, + condition, financial, + result, economic, + 

affect, + factor, + business 8 0.23529412 
0.17748

2 

3 
products, + constitute, + loss, continue, significant, 

substantial, company, + result, + business 8 0.23529412 
0.18071

3 
 

Document Distribution 

 

Cluster Document ID 
1 13,10,31,32,16,2,6,24,7,28,5,3,21,1,19,33,22,20 
2 15,11,23,29,12,9,14,17 
3 34,26,8,25,27,18,30,4 

 

None Analysis 

 

ID Descriptive Terms Freq Percentage 
RMS 
STD 

1 
carefully, consider, set, value, + certain risk factor, + 

contain, + describe, + loss, + factor, financial 12 0.35294118 
0.17093

2 

2 
+ competitor, demand, + product, + revenue, 

significant, + industry 5 0.14705882 
0.17518

4 

3 
+ business, adversely, businesses, compete, effectively, 

financial condition, part, + affect, new, continue 17 0.5 0.17195 
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Document Distribution 

 

Cluster Document ID 
1 13,34,16,7,28,23,14,27,19,4,22,17 
2 10,26,21,33,20 
3 31,15,32,2,6,24,8,11,5,29,12,3,25,9,1,18,30 
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