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NOTATIONS

Depth of beam,
Width of beam,
Central load.
Fringe order.
Length-depth ratio.
Bending moment.
Moment of inertia,
Unit stress.

Distance from neutral axis to outer-
most fiber.

Section modulus.

Rectangular coordinates.

Direction cosines of the outer normal.
Cross-sectional area.

Gravitational acceleration.

Density.

Components of a body force per unit
volume.

Components of a distributed surface
force per unit area.

Normal components of stress parallel
to x-, y-, and z- axes,

Shearing stress.

Shearing stress components in rect-
angular coordinates.,

Components of displacements.
Unit elongation.

Unit elongations in x-, y-, and z-
directions.

Unit shear.
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NOTATIONS

(Continued)

Shearing strain components in rect-
angular coordinates.

Modulus of elasticity in tension and
compression,

Modulus of elasticity in shear.
Poisson's ratio.

Stress function.



PREFACE
In this investigation the author used beams made of
Bakelite. They were of rectangular cross-section and cen-
trally loaded. These beams were viewed in polarized light
and the maximum fiber stresses observed in that manner
were compared with those computed from the flexure formula.
The purpose was to determine the minimum length-depth ratio

for which the latter gave fairly accurate results,
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PART 1

A DISCUSSION OF THE OPTICS INVOLVED IN PHOTOELASTIC
ANALYSIS



The strength and properties of materials under load
play a very important part in engineering structures of every
kind, Modern needs demand a more accurate solution to dif-
ficult problems in engineering and design. These solutions
must be found by one means or another. Mathematicians are
finding it impossible to keep pace with the ever increasing
demand for solutions to these problems, so the engineer has .
resorted to laboratory methods. One of the most useful of
these methods is the examination of the properties exhibited
by a model of the proposed structure, in the same material
or in different material, under loads bearing a proper scale
relation to the loads to be carried by the full sized struc=-
ture. Another method is that of viewing a model, made of a
transparent material, under polarized light, and determining
the stresses optically.

The starting point of all photo-elastic research was
the discovery by Sir David Brewster, in 1816, that when a
piece of glass is loaded and viewed under polarized light
it shows brilliant color effects due to the internal stresses
produced in the material.

Since his discovery, many materials possessing the same
optical properties as glass have been discovered. Among these
are Beakelite, Marbellette, and celluloid. These materials
are isotropic and exhibit no sign of double refraction. When
subjected to great strain, however, they become double re-
fracting., If one of these materials is subjected to a strain

and viewed between two crossed Polaroids, two beams of light



are transmitted, and the strains are rendered evident by the
interference of the light, resulting in color bands,

An ordinary beam of light may be considered as consist-
ing of vibrations in the ether in all directions perpendicular
to the direction of the ray. If a transparent material under
load 1is viewed in such a light, there are no visible effects
of the stress in the material. A more simple type of light
vibration must be employed to reveal these stresses. If from
the ordinary beam all vibrations are destroyed except those
that vibrate in one plane, the resultant ray is uni-direction-
al as regards its transverse vibrations, or, as it is common-
ly termed, is plane polarized.

There are many methods used to obtain polarized light.
Two methods which are most generally used in the photo-elastic
apparatus are (1) the use of the prism invented by Nicol and
composed of two wedges of Iceland spar cemented together by
Canada balsam, and (2) the use of Polaroid, a material which
polarizes light by simple absorption of all vibrations except
the ones parallel to its axis.

An ordinary beam of light, after passing through a Pola-
roid, emerges as a uni-directional ray. This ray then is
passed through a transparent material under load. The latter
causes the beam to break up into two systems of transverse
waves, both of which have been retarded. These two waves ex=
ecute their vibrations in planes at right angles to one an-
other. As they leave the stressed specimen, they are out of

phase an amount depending on the stress distribution within
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the specimen. Then they are passed through a second Polaroid
whose axis is at right angles to the axis of the first Pola-
roid. This second Polaroid allows only those components to
go through which are parallel to its optic plane. Two waves
emerge, which are out of phase, and vibrate in planes paral-
lel to one another. Because they are out of phase, they give
interference effects which show brilliant color patterns
when white light is used.

When a stressed specimen is placed between two Polaroids
whose principal planes are at right angles to one another,
there is, in addition to the color effects, a system of
black bands known as iso-clinic bands. They only appear when
the specimen is loaded, and change their shape when the type
of loading is changed. These bands are useful in determining
the directions of the principal stresses. They connect all
the points at which one of the principal stress directions
coincides with the axis of the second Polaroid,

After the directions of the principal stresses have been
obtained, the iso-clinic bands can be removed by passing the
polarized beam through a quarter wave plate. The latter,
which is generally made of Mica, takes the plane polarized
beam of light from the polarizer and breaks it up into two
constituent rays. If the axis and the thickness of this
plate are properly adjusted, two similar simple harmonic
waves at right angles to one another and a quarter wave out
of phase will emerge. The result will be a circularly polar-

ized beam of 1light, This beam of light then 1s passed through



L.

the stressed specimen like a corkscrew and when it emerges,
it is still circularly polarized but the two waves consti-
tuting this circular motion are retarded differently. How-
ever, the same amount of retardation is produced as for
plane polarized light. The circularly polarized light is
converted back to plane polarized light by passing it through
a second quarter wave plete whose principal axis maskes an
angle of 90 degrees with the principal axis of the first
plate. Then the analyzer picks out only those components
which are parallel to its principal plane and again, two
waves emerge out of phase but with their planes of vibration
parallel to one another, thereby producing the interference
patterns on the screen.

The interference patterns obtained are proportional to
the difference in the principal stresses and therefore pro-
portional to the shear.

It has been shown that stress can be made visible by the
use of polarized light. Some of the facts pertaining to
stress distribution in plates, for which the photo-elastic

methods are suitable, will next be considered,



PART 2

THE DIFFERENTIAL EQUATIONS
FOR TWO DIMENSIONAL STRESS PROBLEMS
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Plane stresses are stresses that are parallel to one
plane. This type of stress can always be obtained by sub-
Jecting a thin plate to the action of forces applied at the
boundary, parallel to the plane of the plate and uniformly
distributed over its thickness.

If a body is loaded with forces perpendicular to the
longitudinal elements, plane deformation is obtained on parts
at a considerable distance from the ends. The dimension
perpendicular to the X-Y plane must be very large, and the
forces applied must not vary along the length of the body.

In discussing the deformation of an elastic body, it
will be assumed that the body does not move and that there
are no displacements of particles of the body without a
deformation of it. Only small deformations such as occur
in engineering structures will be used. The small displace-
ments of particles of a deformed body will be resolved into
components, u, v and w parallel to the coordinate axes, X,
Y and Z respectively. It will be assumed that these com=-
ponents are very small quantities varying continuously over
the volume of the body.

Lets consider a small element dx dy dz of an elastic
body as shown in Fig., 1. If the body undergoes a defor-
mation and u, v, and w are the components of the displace~
ment of point O, the displacement in the X- direction of an
ad jacent point A on the X- axis is u ¥ g_;. dx, due to the
increase ?-)-% dx of the function u with increase of the coor-

dinate X. The increase in length of the elsment OA due to
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ou -
deformation is therefore 9% dx. Hence the unit elongation

Qu
at point O in the X~ direction is 5‘;.

z
Jy
dx o
8 7
Ao T od
-
P s
il
A "
X
Fig., 1

In the same manner it can be shown that the unit elong-

ations in the Y-
OW

ov
atives 5;; and 5—7:.

and Z- directions are given by the deriv-

We will now consider the distortion of the angle be-

tween the elements QA and 0B in Fig. 2.
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Fig. 2
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If u and v are the components of the displacements of
the point O in the X« and Y- directions, the displacements
of the point A in the Y- direction and of the point B in

Q) d

the X~ direction are v +‘§§dx and u.+-5§dy, respectively.

Due to these displaecements, the new direction O'A' of the
element OA is inclined to the initial direction by the small
angle indicated in the figure equal toi%%. In the same
manner the direction 0'B' is inclined to 0B by the small

angle %.‘_1. It can be seen from the figure that the right

¥
angle AOB between the two elements QA and OB is diminished
by the angle‘ig +<Dv. This is the shearing strain between

the planes XZ and YZ. The shearing strains between the

planes XY and X7 and the planes YX and YZ can be obtained
in the same manner.
Using € for unit elongation and Y for unit shearing

strain, the following equations are obtained from the above

discussion.
ex c_)xr v a > Z C-)Z’
(1)
du 9V Ju QW Qv JW
Yiy "oy *ox’ 'xz =z *ox Vyz <oz * vy

The relations between the components of stress and the
components of strain have been established experimentally
and are known as Hooke's Law, Imagine an elemental rect-
angular parallelopiped with the sides parallel to the coor-
dinate axes and subjected to the action of normal stresses
Ox uniformly distributed over two opposite sides. The mag-

nitude of the unit elongation of this element is given by
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the equation
fx =0-% (a)

where E is the modulus of elasticity in tension. The unit

lateral contractions are given by the equations

e’y="_%v’ (b)
€z =22 (c)
B

in which 9 is a constant called Poisson's ratio.

If the element is subjected to the action of normal
stresses Jig‘fy, and 9 z, the resultant components of strain
can be obtained from the equations (a), (b), and (c¢). In
order to get these strain components we have to superpose

the strain components produced by each of the three stresses.

= B E

g 0x gz

€y -9 _yX _g92
v  E E E
€Z =U;Z.—V§— ﬁ
. B B E

These reduce to
€X5%
1 o
€y =5 [?? -V (ox +Crﬁi} (2)
€z-_-%j. J%-V(d'i+0'yﬂ

If the stress components 0x, Oy, and )xy are known for
any point of a plate in a condition of plane stress, the
stress acting on any plane through this point, perpendicular

to the plate, and inclined to the X- and Y- axes can be cal-
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culated from the equations of statics.
Let O be the point (Fig. 3), and let the stress com-

ponents Jx, 9y, and Txy be known. To find the stress for

)La;
v 71(
@) & b4 X
B
(ﬁﬁh
> X

¢ ¥

Fig. 3

any plane through the Z~- axis and inclined to the X- and
Y- axes, we take a plane BC parallel to it at a small dis-
tance from 0, so that this plane BC, together with the co-
ordinate planes, cuts out from the plate a very small tri-
angular prism O0BC. Since the stresses vary continuously
over the volume of the body, the stress acting on the plane
BC will approach the stress on the parallel plane through
o) és the element 1s made smaller.

Let A be the area of the side BC,

then Al is the area of the side 0C, (1 = cose)

and Am is the area of the side 0B, (m = cos (90 -o(ﬂ

X and Y are the components of stress on the side BC.

4Fx = 0
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AX =Txy (A sinX) + 9x (4 cosd)
fFy =0
AY = 9y (A sinos) +cﬁcy (A cos«)

These reduce down to:

nTxy + 19x

moy + 1Txy

X

(3)

[ 1

b4

Thus thé components of stress on any plane defined by
the direction cosines 1 and m can easily be calculated from
equations (3), provided the three components of stress, 0x,
Jy, and Txy, at the point O are known,

The shearing and normal components of stress on the
plane BC are:

O=X cosKk + Y sin

T =Y cosk + X sin £

but X= 10% + mTxy = 9% cosL + 1xy sin
=m0y + 17xy = Oy sink+7 xy cos X

o = E’i cosAL + Txy sina(_‘[ cosek +E§ sink + Txy cosaf} sinX

z ' z
cos 4 +Txy sinhcos« + OF sin«L + 7Txy sin& cose

QS

cosed +07 sinK + 2T xy sind cosef (4)
sink + T xy cosi()coso( - [Zfi cos X + Txy sina(] ginX
=0y sink cosX + T xy cosA =% sinckcos< - Txy sin X

';1
i‘:ﬁ\

= (¢F - 9%) sink coss +Txy (cosx - sin) (4)
Angle JAcan be chosen in such a manner that the shearing stress
T becomes 0.

For this case we have:

’;/xy (cosz}< - sin‘;() + (9y = J9x) sinLcosd =0
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T = "
I xy = sine<cos =< = sin=<cos =<
X -9y cos“K = sin*ot. 1 - 1
sec Tl CSC *ac,

(sin=<cos =) (seco« cse <)
CSC*x = SEC e

Sine< cos =<

= COS <sin *o< = 1
CSC =< = Set *=< COS48ine - COSe<Sine<

8inSo< COS %<

= T = ah

COotbot = tane< 1l - tan*x<

tan =<

= ten =< = % tan 2 =< (5)

I e tana(.

From the preceding equations we see that two perpen-
dicular directions can be found for which the shearing stress
is zero. These directions are cslled principal directions,
and the corresponding normal stresses are called principal
stresses.

If the X- and Y~ axes are taken as the principal direct-
ions, 7xy is equal to zero and the equations used to obtain
the normal and shearing components of stress along the plane
BC become

T = 0% cosot + 9y sin o< '
7 = % sin 2@4(0”3? - Ox) ey

Now we will consider the variation of the stress com-
ponents ¢x, 9y, and 7 xy as we change the position of the
point. A small rectangular parallelopiped (Fig. 4) with

sides dx and dy will be used for this discussion. Here we

take into consideration the small changes of the components
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of stress due to the small increases dx and dy of the coor-
dinates. The stresses acting at the centers of the sides of
the small rectangular parallelopiped are shown along with

their positive directions.

&=
A b
Txy
e —— X
‘T;(j X
O 0x
O ax
0% 4 ST
Lo 5 OB e
3 X
S i
oY
1Ira"'-,l— ")d;q_/},
oy
Fig. 4

In this discussion we must also consider the body force
acting on the element because it is of the same order of mag-
nitude as the terms due to the variation of the stress com~-
ponents., If X and Y denote the components of this force per
unit volume of the element, then the equations of equilibrium
obtained by summing forces in the X- and Y- directions be-

come:

ﬁFx =

N

0
,—.’
(0x + 99X4x)dy - Ox dy + (Txy +<)_(’;%'Xdy) dx - 7xy &x

(¥
M

+ X dx dy = 0
SFy = 0 |
(9y +€E?§dy)dx - 0y dx + (Txy J%?%de)dy -Txy dy
| " | +Y dx dy = 0
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These equatidhs reduce to:
—
cxdy +§f_§dx dy = ox dy + 7xy dx +Q:3L3§Idy dx - 7xy dx
<) .
+ Xdx dy =0

and dividing by dx dy

—
ad-i_+afxy+x=0
SX SN

p—
o ydx +3§%dy dx -~ 9y dx +7 xy dy +a..é"_§.1dx dy - 7xy dy
+Ydx dy =0

and dividing by dx dy

—
=R X .
In practical applications the weight of the body is usually

the only body force. Let (7 = the mass per unit volume and
taking the Y- axis downward as positive, the preceding

equations becomne:

Q9%x ,QTxy _ 0

ox "3y <

- _ (6)
>

5v +GE + e = 0

These are the differential equations of equilibrium for
two dimensional problems.

The equations just derived must be satisfied at all points
throughout the volume of the body. The stress components
vary over the volume of the plate, and when they arrive at the
boundary they must be such as to be in equilibrium with the
external forces on the boundary of the plate, so that exter-
nal forces may be regarded as a continuation of the internal
stress distribution. These conditions of equilibrium at the

boundary can be obtained from equations (3). Taking the small
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triangular prism 0BC (Fig. 3) so that the side BC coincides
with the boundery of the plate as shown in Fig. 5, and letting
X and ¥ be the components of the surface forces per unit aresa

at this point of the boundary, equations (3) become:

X
X
N
Y ¥
Fig. S
X = 10X + m 7xy
_ ,__. (7)
y = mdy + 17 xy

In which 1 and-m are the direction cosin®s of the normal N
to the boundary.

- In the case of a rectangular plate the coordinate axes
are usually taken parallel to the sides of the plate and the
boundary conditions (7) can be simplified. Taking a side of
the plate parallel to the X- axis, the normal N becomes par-
allel to the Y- axis. Hence 1 = 0, and m = ¥ 1. Then
equations (7) becomse:

T=27xy,and =20y
The positive sign is taken if the normal N has the pos-
itive direction of the Y- axis and the negative sign should

be taken if the normal N has the opposite direction.
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In the case of a two dimensional problem it is neces-
sary to solve the differential equations of eguilibrium and
the solution must be such as to satisfy the boundary con-
ditions., These equations were all derived by application of
the equations of statics for rigid bodies, and containing
three stress components, 9%, °y, and 7xy. The problem is a
statically indeterminate one and in order to obtain a solution,
the elastic deformation of the body must be considered.

The mathematical formulation of the compatilibity of
stress distribution with the existence of continuous functions
u, v, and w defining the deformation will be obtained from
equations (1). In the case of two dimensional problems only

three strain components need be considered:

€ ou _9V yﬁ QU 4 oV 1t
an,Ey 3y ' VoY Tax 114

Differentiating the first of the equations listed above twice
with respect to y, the second twice with respect to x, and

the third once with respect to x and once with respect to y:

c_)z‘é'x= O (2« _o'u
AVE  D9" 9IX OYOX

OX* cnra T9xX Yy

with respect to x

I7Xy - (24 4+ jl_(QEJ _9u _ 9%V
X ax 0y X

D X IXJYy OX(*

v

with respect to y

Q7Txyy - 2 (2
ay >x oV

2.

Seay) oy (axz)

0

or

2 3 F]
Q7xy -°u 'V
A XJy IXIy* 9oX*Iy
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and from the preceding we obtain:
C)z{X + aléy - al'WE (8)
AV * oKX * dXAY
This differential equation is called the condition of

compatibility and must be satisfied by the strain components
to secure the existence of functions u and v connected with
the strain components by equations (1'). By using Hooke's
law the condition (8) can be transformed into a relation
between the components of stress.,

In the case of plane stress distribution equations (2)
can be reduced to:

€X=%(°’5f-""'y) ) €y=%("?—°"&)

substituting in eguetion (8), we find:

AV *
By using the equations of equilibrium this equation can

D O ¥ E)z 07 = T3 ’:az"}';(), . (Ve
(9x =¥ 9y) + == (97 5} =g AL V] {9

be written in a different form. Differentiating the first of
equations (6) with respect to x and the second with respect

to y and adding them, we obtain:

kX k3
Q9% ,  27xy and " a‘Txy
9X* JXoy aY“ﬂaxay
and adding
z A
d7xy . 29X _277
Oaxay _ 2X* Ay*

substituting in equation (9), the compatability equation in

terms of stress components become:

TX = + _____ - O \va -a...—d}._.-..i -—-——--z
ay( y) a( x) = (1 +9v)( SxT ay*-)
2% « OV 9§ a*as? Qv IX 20F v ox 297

+ - = - - - - oy
Iy * a¥*  ax* 3ax* AXx+ 9XxX* OV * %;;;

a?.d_i_ ald..f a‘l.d-—i al.o__}}.
oy Y ax= Tt gx ¢ 57:-°
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or
D, 2" Ty = |
(axt+ 3§4(Ji +9y) =0 (10)
And in the same manner with the general equations of equi-
librium;
D, 3% (o - % .3
S+ SRTE +77) = =L+ (55 + 20 (11)

It has been shown that a éolution of two dimensional
problems reduces to the intergration of the differential
equations of equilibrium together with the compatability
equation and the boundary conditions. In the case where the
weight of the body is the only body force, the equations to

be satisfied are:

QIX , 3Txy _ 0

33X 3y (6)
acfi QDT Xy

5y " 3x *Ceg=0

( 9 A B

S BLIFR 9] = 0 (16)

and the boundary conditions (7). The usual method of solv-
ing these eguations is by introducing a new function called
the stress function. ZEquations (6) are satisfied by taking
any function d’of x and y and putting the following express-

ions for the stress components:

2 2 T
0x =2P oy 2% Ty - 29 _peyx 12
x=S=% » TV =5 T =z -8 (12)
In this manner we can get a variety of solutions of the

equations of equilibrium (6). The true solution is that which
satisfies the compatability equation (11l) also. Substituting
expressions (12) for the stress components in equation (11)

we find that the stress function ¢:must satisfy the equation:



(2 )7 +77) = 0
(254 25 (22, 2 .o

éncL+ A *
Yy« 2V oX

4
> +aﬂ¢+a14’+ 2%
EX: 2% L 3% -0 (13)

Sy+ ¥ & X oy* IX*

=0

Thus the solution of a two dimensional problem, when
the weight of the body is the only bedy force, reduces to
finding a solution of equation (13) which satisfies the bound-

ary conditions (7) of the prcklem,
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Standard photoelastic apparatus wes used in this ine
vestigation. It consisted of two Polaroids, four lenses,
a source of monochromatic light, two quarter wave plates,
a loading frame, and a camera arrangement, The monochro-
matic light was obtained by using a mercury vapor bulb
and passing the light through a green filter.

The beams used were made of Bakelite. The optical
constant, which is the value of unit stress répresented by
each fringe, was determined from a pure tension member and
then checked with a long beam on end supports with a con-
centrated load at the center.

The photographs shown on plates 6-4i, 7=A, =----- 15-A
were made with safety process films requiring eight minute
exposures. The reader will notice the center line and the
short horizontal lines spaced equal distances apart on the
photographs. The lines were put in 1/10 inch apart for
the purpose of determining the magnification and to facil-
itate the plotting of the curves shown on plates 6 to 15
inclusive, These curves were used to determine the fringe
order on the edge of the beams., The fringe order was
plotted against the distance from the edge of the beam and
the curve extended out to the edge, thereby obtaining a
fairly accurate value of the fringe order at that point.
Curve 1 on plate 6 was plotted from fig. 1 on plate 6-A,
curve 2 from fig. 2, ete. The curves on plate 7 were
plotted from the corresponding photographs on plate 7-4,

8 from 8«=A, ====-==-- 15 from 15-A.
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Four tests were made in this investigation. For the
first test the author used a beam 0,286 inches wide, 1,702
inches deep, and 11,15 inches long. The first observation
on this first test was made with the supports spaced 11l
inches apart. The supports were moved in one inch closer
after each observation, The final observation was made with
the supports one inch apart. In the second test the same
beam was used with no overhanging ends. That is, the beam
was cut down to the proper length after each observation.
The third test was similar to the first except for the new
dimensions of the beam. For this test the beam had the
same width and length but a new depth of 1.141 inches. The
same beam was used in the fourth test, and, like the second
test, the beam was cut down to the proper length after each

observation.,
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DATA SHEET FOR FIRST TEST

0.286 inches

3
T =28 - 0,118 inches4

5
= 1,702 Z = I/c = 0.139 inches®
S ng;_ = 3% - .2:1;4
0.C. = 315 psi.
TABLE I
L P S L/D ___ F.0. s’ st/s
k. 151.1 3005 6.45 9.58 3018 1.010
10 205.8 3718 5,87 11.70 3680 .990
9 212.2 3450 5429 10.70 3440 . 996
8 212.2 3065 4,70 9.60 3022 . 986
7 2l2.2 2660 4,11 8.40 2650 « 996
6 226,11 2450 3.52 7.65 2410 .984
5 226.1 2040 2.94 6e25 1970 «965
4 267.0 1930 2.35 5.84 1840 .954
3 335.2 1815 1.76 5.50 1730 +953
2 335.2 1210 1.18 3490 1230 1.015
1 286.1 517 .59 2.12 668 1.290
L = Length between supports in inches
P = Load at center in pounds
= Stress from flexure formula
L/D = Length-depth ratio
F.,0. = Fringe order on edge of bean
S' = Stress from photoelastic analysis

S'/S = Stress concentration factor

0.Cse = Optical constant in pounds per square inch
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DATA SHEET FOR SECOND TEST

W = 0.286 inches I = 58% _ 5,118 inchest
¥ . —1-—2--— . incnes
D =1.702 Z = I/c = 0.139 inches®

S“—‘EE-T-PI‘C-.:PL
1 41 004

O.C. = 515 pSi.

TABLE II
¥ P S L/D _ F.O. s’ S'/s
10 202.2 3650 5.87 11,52 3630 .994
9 229,3 3725 5.29 11,77 3710 .995
8 256.8 5710 4,70 11.66 3680 .994
7 284.0 3590 4,11 11,60 3660 1.017
& 311.0 3379 .52 10,90 3440 1.020
5 325.0 2930 2,94  8.85 2790 .952
4 325.0 2345 2435 6,81 2145 .914
3 33545 1820 1.76 5,58 1760 .968
2 535.5 1211 1.18  4.40 1384 1.140
1 335.5 606 .59  5.22 1645 2,710

L = Length of beam in inches

P = Load at center in pounds

n .

S Stress from flexure formula

L/D = Length-depth ratio

F.0. = Fringe order on edge of beam

S' = Stress from photoelastic analysis

S'/S = Stress concentration factor

0,C. = Optical constant in pounds per square inch



DATA SHEET FOR THIRD
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. bh® ca s 4

W = 0.286 inches I = 43 = 0.0354 inches
D = 1,141 " Z = I/c = 0,0625 inches®

g = Mc _ PLc _ PL
I 4T . 20
0.C. = 315 psi.
TABLE III

L B S L/D F.OQ. St st/s
11 87 .86 3860 9,64 12,1 3810 . 987
9 102,30 3690 7.89 11.95 3770 1.020
7 123,96 3465 6.14 10.70 3370 .974
5] 160,06 3210 4,38 9.88 3110 .970
4 181.72 2910 3.51 8.80 2770 .953
3 210.62 2530 263 7 « 30 2300 .910
2 239.48 1915 1.75 0.950 1735 . 905
1 282.80 1130 .88 3,55 1118 .990

L/D
F.O0.
St =
s'/s
0.Ce

Length between supports in inches

Load at center in pounds

Stress from flexure formula

= Length-depth ratio

= Fringe order on edge of beam

Stress from photoelastic analysis

Stress concentration factor

Optical constant in pounds per square inch



DATA SHEET FOR FOURTH TEST

ph® 4
W = 0,286 inches X = =z = 0.0354 inches
D=1.141 ® Z = I/e = 0.0625 inches®

S Mc _ PLc . pj,

E e = —

I 4 =33
OCC. = 515 p510

TABLE IV
L B S L/D F.0. S! sSt/s
11 87 .86 3860 9,64 12,46 3920 1.015
9 102,30 3680 7.89 11.70 3680 1.000
7 131.18 3680 6.14 11,70 5680 1.000
5 174,50 3480 4,38 11.31 3560 1.021
4 217.82 3480 3.51 10.60 5340 . 960
3 261,14 3140 2063 9.30 2930 932
2 304,46 2440 1.75 7.60 2390 . 980
A g 335,34 1330 .88 6440 2015 1,515

L = Length of beam in inches

P = Load at center in pounds

S . Stress from flexure formula

L/D = Length-depth ratio

F.O.'= Fringe order on edge of beam

S' = Stress from photoelastic analysis
S'/S = Stress concentration factor

0.C. = Optical constant in pounds per square inch
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The curve on plate 1 was obtained by plotting the
distance between supports against the stress concentration
factor for the first test. DPlates 2, 3, and 4 were ob~
teined in the same manner for the second, third, and fourth
tests respectively. Plate 5 shows the length-depth ratio
plotted against the stress concentration factor for each

of the four tests. The following is a description of plate

S
o = First test
R = Second test
A = Third test
X = Fourth test
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PART ©

CONCILUSIONS



Most engineering formulae are accurate to within
two or three per cent. Bearing this in mind, the author
arrived at the following conclusions: (1) The flexure
formula may be used down to a length-depth ratio of 4,
(2) for & length-depth ratio above 6 the formula gives
results to within one per cent, (3) a higher stress
concentration factor was obtained for short beams with
no overhang than for the short beams with overhang, and
(4) a stress concentration factor less than unity was

obtained at a length-depth ratio of approximately 2%,
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PLATE 6-A

L == 1.000 in. - 2,000 in,
D -- 1.702 1.702 "
W —- 0.286 ™ - O.286 ™
P -= 2864100 1lb. -= 335.200 1lb.

Fig. 3 Fig. 4

WEgH
]
l

L == 3,000 in. L -- 4,000 in.
D == 1,702 ™ D == 1,702 "
W =- O.286 ™ W = 0.286 ™
P =« 335,200 lb. P -- 267.000 lb.
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PLATE 7-A

Fig. 1 Fig. 2
I.l - 5.000 inq L e 6.000 111.
D _— lc 702 " D i 10702 L
W o~ 0.286 " W = 0.286 "
P == 226,100 1lb. P == 226,100 lb.

”./
I Q

Fig. 3 Fig. 4
D »= l1.702 " D = 1.702 ™
W - 0.286 ™ W o= 0.286 "
P == 212,200 1lb. P -- 212.200 lb,
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PLATE 8-A

=0 H

Fig., 1

9,000 in.
1708 ™
0.286 "
212,200 lb.

H=EJdH

11.000 in.
1,702 "
0.286 "

151,100 1b.

Fig, 2@

10,000 in,
1,702 "
0.286 "

205,800 lb.

Fig. 4

1,000 in.

1,702 ™

0.286 ™
335,500 1lb.




[ B

uEEA

Pt

IFT i

PSS

EmE &
IR

EES NS
-
- T
maREEEARNEE
T 1]
EuEuE e =
s
T E
1
1 1
dnnsasnn
Ea
T
1
FET un
—t b
1T T
1
1
! =
L

A B i AR AR ST 2S Dl




46

PLATE 9-A

Fig. 1 Fig., 2
L - 2.000 11’!.. - 3.000 ino
D == 1,702 - 1,702 "
N = 0.286 " - 0.286 "
P —— 535.500 lbo - 3550500 lbo

E.é'.g.'__??. FiE- &
L == 4,000 in, L -- 5,000 in.
D =~ 1,708 ¢ D == ls702 *
W == O.286 " W - 0.286 "
P -- 325,000 1b. P =~ 325,000 lb.






R =Rl

Fig. 1

6,000 in.
1.702 "
O0.286 "
311,000 1b.

u)/'

Fig. 9

8,000 in.
l.708 ™
0.286 "
256,800 1lb,.

PLATE 10-A

H=oH

rig. 4

9.000 in.

l.702 "
0.286 "

229.300 1lb.
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W=EOH

Fig. 1
10,000 in.
1.702 ™
0.286 "

202,000 1b.

Fig. 3
2,000 in.
1.141 "
0.286 *

239.480 1b.

Ko

el

W

Fig. 2

1.000 in.
l.141 "
c.286 "
282,800 1b.

Fig. &
3.000 in.
1l.141 *
O.286 "

210.620 1lb.







H = -

H=EoH

Fig. 1
4.000 iIl-
l.,141 ™
0.286 ™

181.720 1b.

Fig. 3
7.000 in.
1,141 *
0.286

123,960 1lb.

PLATE 1l&-

-

HsoH

Fig. 2

5,000 in,
l.141 ¢
0.286 "
160.060 1b.

9.000 1in.
1.141 v
0.286 "
102,300 1lb.
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H=lgpH

1
1

Fig. 1
11.000 in.
1,141
0.286 ™
87.860 1b.

Fig, &
2,000 in.
1,141 *»
0.286 "

304,460 1b,

o4

PLATE 13-A

Fig. 2

- 1.000 in,
- 1,141 =
0.286
-— 535.%40 1b.

H=HoH
1
i

Fig., 4

3.000 in,
iy lc 141 L
-- 0.286 "
261,140 1b,

(ol o
i
{

g =
{
1
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PLATE 1l4-A

Fig., 1 Fig. 2
L e 4:. 000 ino L —— 5;000 inn
D -- 1.141 ® D =~ l.141
W == 0.286 " W == 0.286 "

174.500 1b.

P -- 217.820 1b. P -

Fig. 3 Fig. 4
L == 7.000 in. L -- 9,000 in.
D =- 1,141 ¢ D -- 1,141 ™
W —-= 0.286 ¢ W o= 0.286 "
P =~ 131.180 1lb. P == 102.300 1lb.
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PLATE 15-4A

Fig, 1
~- 11,000 in.
-- l.141 "

- 0.,286 "
-~ 87,860 1lb.
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