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ABSTRACT 

The correlation potential of the compaction properties and the 

consolidated drained shear strength parameters of plastic fine-grained 

soils with index properties was investigated in this study. The inter-

relationships of these properties were derived through graphical and 

multilinear regression analysis. 

The compaction properties, optimum moisture content, and maximum 

dry density were found to be related to many of the index properties. 

The most important relationships were with the plasticity indices and 

the percentage of particles smaller than two microns; the highest degree 

of simple correlation was achieved with the liquid limit. 

The consolidated drained shear parameters, cohesion, and the angle 

of internal friction were correlated with many of the index properties; 

however, the magnitude of the computed correlation coefficients were 

. . 
not indicative of a high degree of correlation. The correlation of the 

shear parameters with the plasticity index was the most significant. 

Many useful equations and graphical procedures for rapidly pre-

dieting the compaction and shear parameters from index properties have 

been developed. The accuracy of these equations and graphical procedures 

has been evaluated herein and found to be sufficiently accurate for 

most prediction situations. 

Through varied data considerations, it was determined that the best 

approach to accurate correlation would be to restrict the analyses to 

soils of similar ·origin or to those of a limited geographic area, in 

lieu of focusing upon soils of varied origin as a unit. The investi-

gator is hopeful that this fact and other facts brought out herein will 

prove useful to those attempting similar studies in the future. 
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Preface 

Soil has been used as an embankment and foundation material since 

early times. The procedures followed in identifying and evaluating 

these materials both during design and construction have changed radi­

cally from the rather crude empirical procedures of early times to the 

more refined procedures employed by the engineer today. Today's soil 

and construction engineers have. at their disposal a variety of labora­

tory classification tests which they can use to determine the index 

properties of the various soils which may be encountered. Numerous 

laboratory tests for the evaluation of the engineering properties of 

soils are also available. 

Past studies have revealed a close interrelationship between many 

of the engineering and index properties of soils. Establishing these 

relationships through analysis of laboratory test data will not only 

increase our basic understanding of soils, but will offer several other 

distinct advantages to those working in soil mechanics and other allied 

fields. The primary purpose of this dissertation is to investigate the 

relationships between the optimum moisture content, maximum dry density, 

consolidated drained shear strength, and index properties, and to 

develop through mathematical and graphical analyses equations and graph­

ical procedures which can be used to accurately predict these engineer­

ing properties. 

Important contributions to the content of this dissertation were 

made by so many friends and colleagues that it would be impossible to 

mention them all here. I would, however, like to acknowledge the 

assistance of and to express my sincere appreciation to my advisor, 
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Dr. T. Fry. I would also like to acknowledge with thanks the 

cooperation of Dr. Joseph W. Senne and Mr. Bruce H. Moore; my gratitude 

to Miss Neale Zinser for typing this dissertation. And finally, I owe 

my greatest debt to my wife and two sons for their forbearance. 
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I. INTRODUCTION 

A. Purpose of Investigation. 

Engineers in design and construction, as well as laboratory 

technicians, have long recognized the potential of accurately corre-

lating the engineering properties of soild with their_index properties. 

They have also recognized the advantages afforded by the development 

of accurate prediction procedures which could be derived from these 

correlations. The purpose of this dissertation is twofold: (1) to 

investigate the interrelationships and correlation potential of three 

engineering properties, optimum moisture content, maximum dry density, 

and the consolidated drained shear strength, with their index proper-

ties; (2) to develop equations and graphical procedures which can be 

used to predict these engineering properties. The investigator's choice 

to investigate these three properties was based upon the consideration 

of those properties from which the most benefit could be derived if 

accurately correlated, upon his needs as a civil engineer involved in 

embankment design, and the availability of laboratory test data. The 

development of accurate prediction procedures will provide the following 

distinct advantages to the engineer in the office, field, and laboratory. 

1. These procedures will provide a means of ·rapidly approximating 

these properti-es when time is of the essence. 

2. Considerable cost reduction in laboratory test programs can be 

derived if sufficiently accurate prediction procedures can be developed. 

The option exists of using these procedures in lieu of performing the 

costly and time consuming laboratory test. It is not intended to 

develop prediction procedures which will eliminate completely the need 
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for these tests; however, through the use of such procedures, the number 

of tests required for design and construction control purposes can be 

greatly reduced. A reduction in required testing will undoubtedly re-

sult in economy both during design and construction. 

3. A means of rapidly checking the validity of laboratory test 

results will be provided. Office and field engineers often find them-

selves at a disadvantage when trying to establish the validity of test 

results, which for some reason may appear to be in error. These engi-

neers may be far displaced from the laboratory where the testing was 

performed, and may therefore have no means of rapidly verifying the 

accuracy of the results. However, if good correlation can be estab-

lished for the soild in a given geographical location, it will be a 

simple matter to detect erroneous test results and thereby form the 

basis for the engineer's request for check test. 

4. Accurate prediction procedures will be very useful to the 

laboratory technician who must perform these tests. He often has to 

estimate the range of moisture contents in compacting specimens for the 

standard Proctor test. The moisture range selected is often in error, 

and may necessitate the preparation and compaction of additional speci-

. 
mens at either higher or lower moisture contents in order to fully 

develop the Proctor curve. The availability of accurate prediction 

procedures will preclude such additional testing, and will ultimately 

result in savings in both time and cost. 

5. These procedures will provide a means of detecting soils 

differing substantially from those previously encountered. Often during 

construction, materials are encountered which have entirely different 

properties from those which were evaluated during.design. The 
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importance of detecting and evaluating these soils prior to incorporating 

them in the structure cannot be overemphasized. Such materials when 

placed inadvertently in the past have resulted in problematic conditions 

both during and after construction. If correlation procedures can be 

derived prior to construction, the field engineer and inspector will 

·have an excellent tool which will enable them to rapidly detect these 

troublemakers. 

B. Scope. 

This investigation will be limited to the fine-grain soils of the 

primary soil divisions, including residual, loessial, glacial, waterlaid 

soils of the coastal plains, soils of the filled valleys, and recent 

alluvium. The investigator has elected to concentrate his efforts on 

the plastic fine-grain soils of these divisions because they are more 

frequently encountered during the construction of embankments than the 

nonplastic fine-grain soils. For the above reason and for the lack of 

sufficient test data on nonplastic fine-grain soils, no consideration 

will be given to the nonplastic variety in this study. 

Initially, an attempt will be made to establish correlation, 

prediction equations, and graphical procedures, using test data on 

samples representing all major ~oil divisions to ascertain the predic­

tion accuracy which can be achieved when soils of different origin are 

considered together. Then attention will be focused upon the soils of 

the individual groups, i.e., residual, glacial, loessial, etc., toes­

tablish if a much higher degree of correlation can be achieved by limit­

ing the analysis to soils of similar origin. Then, finally, the soils 

of one geographic area will be analyzed to determine the correlation 

potential of the soils within a very small geographic or project area. 
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C. Methods of Analysis. 

Plotting procedures, correlation methods, and multiple linear 

regression analyses will be used in this study to examine the inter-

relationships which exist between the ~ngineering properties and soil 

index properties. Arithmetic and logarithm plots will be used in con-

junction with correlation methods to determine how strongly these proper-

ties are related. Multiple linear regression analyses will then be used 

to develop useful prediction equations. Multiple linear regression 

analysis is a mathematical procedure for obtaining an equation for esti-

mating a dependent variable by means of several independent variables. 

This analysis is based upon the assumption that an approximately linear 

relationship exists between the dependent and independent variables. 

The analysis will provide the linear equation that best fits the data. 

Several combinations of independent variables (index properties) will 

be studied for each dependent variable (engineering properties) under 

consideration. Graphical prediction procedures will then be developed 

from the results of the regression analysis. The tools of error analy-

sis will be used to evaluate the accuracy of both the prediction equa-

tions and graphical procedures. 

D. Test Data. 

"The laboratory test data used in this study were obtained from 
, 

two U. S. Army Corps of Engineer installations, the Waterways Experi-

ment Station located in Vicksburg, Mississippi, and the South Atlantic 

Division located in Atlanta, Georgia. These data were carefully ex-

tracted from the soils portion of design memoranda for past and present 

Corps of Engineer projects, which were on file at these installations. 

These memoranda dealt with the embankment design for large reservoir 
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projects located within the continental United States. Data were 

collected on 317 soil samples from 20 states. Sampling locations are 

shown on figure 1. The data included the mechanical analysis, specific 

gravity, Atterberg limits, standard Proctor compaction, and direct 

shear test results. The data have been tabulated and are presented in 

table V. All testing was performed at either the Waterways Experiment 

Station or at Corps of Engineer Division laboratories located through­

out the country. The procedures followed in performing these tests 

were standard, and were in accordance with procedures outlined in the 

laboratory testing manual of the Corps of Engineers, which is entitled 

Laboratory Soils Testing and is designated Engineering Manual 1110-2-

1906. 

The investigator is cognizant of the innate error which may be 

present in laboratory results collected from several different sources. 

A recent report(])* published by the U. S. Army Corps of Engineer Water­

ways Experiment Station, entitled "Prel~minary Analysis of Results of 

Division Laboratory Tests on Standard Soils Samples", explored the 

variation of test results obtained from different Division laboratories. 

Standard samples were prepared at the Waterways Experiment Station and 

then shipped to all Corps of Engineer Division laboratories. These 

laboratories were instructed to perform the Atterberg limits, grain 

size analysis, standard effort compaction, and the triaxial compression 

R test, utilizing standard Corps of Engineer procedures. The results 

of these tests indicated a wide variation in the measured properties, 

especially for values of the optimum 11oisture content, maximum dry 

*Numbers in parentheses refer to listings in Bibliography. 
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density, and shear strength. The results of such studies can be used 

to develop correction factors, based upon deviations from test averages, 

for data used in correlation studies, especially those considering test 

results from several sources. It was the initial intention of this in­

vestigation to employ correction factors to the raw data collected based 

upon the results of the above discussed report; however, information 

regarding the laboratories performing these tests has been temporarily 

withheld by the Office of the Chief of Engineers in Washington. For 

this reason, no attempt can be made in this investigation to apply correc­

tion factors to the raw data. This does appear to be an area of con­

sideration that should be explored in future correlation studies. 
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II. REVIEW OF THE LITERATURE 

A. Early Attempts of Correlation. 

Engineers and laboratory technicians have made numerous attempts to 

correlate the engineering properties of soils with their index proper­

ties since the early 1900's. Early attempts at correlation consisted of 

rather crude field methods developed for construction control. For ex~ 

ample, R. R. Proctor(2) in 1933 developed a field method of correlating 

the optimum moisture content and maximum dry density with a crude mea­

sure of plasticity by means of a plasticity needle penetration resis­

tance test. This method was based upon the variation of soil plasticity 

with moisture content. The penetration resistance was defined as the 

pressure required to force a rod with a slightly enlarged bearing sur­

f~ce, to penetrate the soil at a rate of about one-half-inch per second. 

These readings were made for each compacted specimen used in developing 

the Proctor curve. From these data, convenient plots such as shown on 

figure 2 could be made. These plots were then utilized in conjunction 

with plasticity needle readings made in the newly placed fill to relate 

field moisture and density to the Proctor optimums. This method of re­

lating'the optimum moisture and density to what is essentially a mea­

sure of plasticity was used quite extensively during the early 30's for 

field control. 

B. Ohio State Engineering Experiment Station Report(3). 

In July 1938, the Engineering Experiment Station of Ohio State 

University published a report which established the general relation­

ships between the optimum moisture and.maximum density, and their rela­

tionships to plasticity characteristics. Plots similar to those 
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developed in this study, which included data on Ohio soil samples 

numbering over one thousand, are shown on figure 3. These plots re-

vealed very strikingly the increase in optimum moisture content with 

increase in the plasticity characteristics and a decrease in the maxi-

mum dry density with increase in the plasticity characteristics. The 

relationship between maximum density and optimum moisture was also 

brought out in this study. As can be seen from the examination of graph 

C of figure 3, there is a very definite increase in the maximum density 

with decrease in the optimum moisture content. 

C. Vanderbilt University Study(4). 

In a report published by Vanderbilt University in July 1948 en-

titled "Proper Compaction Eliminates Curing Period in Constructing Fills,n 

two equations were developed which can be used to closely approximate the 

optimum moisture content and maximum dry density: 

Maximum dry density in pounds = 

Optimum moisture contents (in %) = 

where: 

D 
CA =-
B 

A = % passing No. 4 sieve 

B = % passing No. 40 sieve 

Gs = Specific gravity 

SL = Shrinkage limit 

c = 62.5xR (Shrinkage ratio) , pcf 

These equations are based upon the assumption 

D 

l + D-C 
62.5Gs 

SL(B/A) 

that the maximum dry den-

sity and optimum moisture content are equivalent to the density that can 



be achieved by compacting a specimen at the shrinkage limit, where the 

available water just fills the voids of the soil mass. To verify the 

accuracy of these equations, standard density tests were performed on 

10 soil samples with widely varying index properties. The greatest dif-

ference between the predicted and test maximum was about 5%; the optimum 

moisture contents predicted were slightly higher, from about 1 to 5 

points. 

The report recommended a reduction of three moisture points in the 

predicted value of the optimum moisture content, in order to more closely 

approximate the optimum as defined by the standard 25-blow Proctor test. 

D. Davidson and Gardiner(5). 

Davidson and Gardiner, recognizing the advantages of the two equa-

tions developed in the Vanderbilt study, decided to more thoroughly 

evaluate the accuracy of the predicted results. They felt that the 

amount of supporting data did not warrant unqualified use of these equa-

tions, especially since only 10 samples were used in the report to 

establish their validity. 

Two hundred and ten soil samples from widespread geographical 
\ 

localities in the United States were selected to verify the accuracy of 

the optimum moisture and maximum dry density preduction equations. 

Davidson and Gardiner found that the calculated and laboratory values 

did not reflect the high degree of correlation as was reported by 

Vanderbilt. As a whole, the results were so inconsistent and often so 

much in error that the validity of the formulas was questioned. 

Davidson and Gardiner found that the magnitude of the error both in the 

case of the optimum moisture and the maximum dry density was related 

to the plasticity index. Plots of error versus the plasticity index 
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were made for both properties. These plots, shown on figure 4, revealed 

a near linear relationship between the error and the plasticity index. 

Davidson and Gardiner decided to correct the original Vanderbilt equa-

tions in accordance with their findings. The modified equations re-

sulting from the application of correction factors were written: 

Maximum dry density = 
S(B -l) + 100 

A R 

Optimum moisture = S(B/A) + K2 

where: 

Kl 
312-2X 

300 

K2 = X/3-4 

X = Plasticity Index 

These results are considered sufficiently accurate to warrant their use 
-, 

for prediction purposes where a high degree of accuracy is not necessary. 

Davidson and Gardiner point out that the greatest limitation of these 

modified formulas is that they cannot be used with accuracy for soils 

having a high organic content. Organic matter is highly absorptive, 

which makes it extremely difficult to make precise determination of the 

shri?kage and plasticity indexes involved. Use of these equations was 

not recommended where rigid control or specification work is under 

cons;i.deration. 

E. Turnbull(6). 

At the Second International Conference on Soil Mechanics and 

Foundation Engineering, Turnbull, of Austrailia, presented a paper in 

which he correlated the optimum moisture content with a gradation 

characteristic which he designated as the classification area. The 
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classification area was defined as the area above the graph of the 

grain size distribution curve when plotted on a special chart devised 

by Turnbull to facilitate area determinations. One hundred and eighty 

compaction tests on 101 soils were used to establish the relationship 

between the optimum moisture content and the classification area. 

Compaction was performed utilizing 25 and 40 blows per 2-inch layer of 

a 5.5-pound hammer freely falling a height of 18 inches. Two plots were 

made to show the relationship of the optimum moisture content to the 

classification area for the 25 and 40 blow efforts; these plots are 

presented on figure 5. This chart was found to fit the test data very 

closely; 72 percent of the predicted optimum moisture contents was 

within ±1.0 percentage point of the actual test result and 91 percent 

of the value falls within a range of ±1.5. It was concluded that grain 

size distribution alone could be used to effectively predict the optimum 

moisture content. 

F. Kawano and Holmes(7). 

Y. Kawano and W. E. Holmes reported the results of their attempt 

to correlate optimum moisture with the Atterberg limits of 30 soil 

samples from the Island of Oahu, Hawaii. These soils were taken from 

the surface horizons and subsoils at 15 sampling sites and represented 

13 soil types. The procedures described by Lambe(S) were used for the 

standard Proctor compaction test and limit tests. Throughout these 

investigations, the plastic limit was found to approximate the Proctor 

optimum moisture by not more than a few moisture points. There were 

exceptions, however, which deviated considerably. For this reason, 

Kawano and Holmes decided to investigate the potential of correlating 

the optimum moisture content with limit data. Correlation coefficients 
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were developed for the plastic limit, liquid limit, and plasticity 

index with optimum moisture. These coefficients were .854, .437, and 

.300, respectively. These values indicated that the correlation with 

the plastic limit to be highly significant and the correlation with the 

liquid limit to be only slightly significant. The correlation with the 

plasticity index was nonsignificant. Since the plastic limit was found 

to be most signifiyant of the indexes considered, a regression analysis 

was made utilizing the plastic limit and optimum moisture data. The 

following equation resulted: 

Optimum moisture = 11.2 + 0.672 plastic limit 

This equation was found to be very useful in predicting the optimum 

moisture for the soil types considered; however, since the regression 

analysis was based upon a very limited number of observations, this 

equation should be used with caution even for soils within the very 

small geographic area of Oahu. 

G. Jumikis(9). 

In 1958, A. R. Jumikis, professor of Civil Engineering at Rutger's 

University, _published a paper entitled "Geology and Soils of the Newark 
•< 

(N. J.) Metropolitan Area". Professor Jumikis reported on the major 

soil types encountered and mapped in the glaciated Newark metropolitan 

area. Jumikis explored the relationships between optimum moisture con-

tent, maximum dry density, gradation characteristics, and plasticity. 

Jumikis concluded the following: 

1. A very definite maximum dry density exists for each soil type 

encountered. 

2. There is a general trend of increasing maximum dry density 

with increasing percentage fines. 
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3. Decreasing opturum moisture content occurs with increasing 

maximum dry density. 

4. There is an increase in optimum moisture content with sn in-

crease in plasticity. 

·A graph was presented in this paper correlating the optimum moisture 

content (standard Proctor) with the liquid limit and plasticity index. 

This graph has been found to be very useful in predicting the optimum 

moisture content of the glacial soils found in the Neward area and other 

glacial soil area. This graph is shown on figure 6. 

H. Bureau of Public Roads Studies(lO). 

The physical Research Division of the Bureau of Public Roads has 

conducted two major studies to correlate the results of laboratory com-

paction tests with the results of classification tests. The correla-

tions established in these studies have been proven useful, and have 

found much application in the office, laboratory, and field. The first 

study, in 1958, consisted mainly of plotting maximum dry density and 

optimum moisture contents against the plastic and liquid limits to the 

arithmetic scale. This study was based upon test data of 972 soil 

samples from 31 states. The most fruitful result of this study was the 

development of a chart by Yemington(ll), which is used quite extensively 

today for prediction purposes. This chart is shown on figure 7. The 

accuracy of this chart was verified by using it to estimate the optimum 

moisture contents for 510 additional soil samples from a number of 

states. The comparison of these results with the actual test data is 

presented on figure 8. This chart shows that 81 percent of the pre-

dieted values was within two moisture content percentage points of the 

actual laboratory optimum moisture content. The correlation was best 
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for soils east of the Mississippi River and least for soils from non-

soil areas west of the Mississippi River. The accuracy of the maximum 

dry density from the chart was investigated by making estimates of the 

density for 532 laboratory samples including the original 510 verifi-

cation samples. Sixty-three percent was within 4 psf of the correspond-

ing test results, which means that this chart is sufficiently accurate 

for most prediction situations. 

(10) . In 1961, the Bureau made a second study to Lmprove the method 

of predicting optimum moisture content and maximum dry density using 

multiple linear regression analysis. This method was selected because 

it permitted the consideration of several variables to be used jointly 

for predicting the optimum moisture and maximum dry density. Six hundred 

soil samples were selected from the files of the Bureau based upon geo-

graphical and geologic origins of the samples. The independent variables 

used in the analysis included plastic limit, liquid limit, plasticity 

index, and several measures of gradation. The simple relationships 

were investigated by making arithmetic plots, which revealed good corre-

lation potential of optimum moisture content with liquid limit and 

plasti~ limit, and good correlation of maximum dry density with optimum 

moisture content and plastic limit. Five regression analyses for the 

optimum moisture and four for the maximum dry density were made to 

determine prediction equations. Several types of operators were applied 

to the raw data including logarithmic transformation, and the addition 

of constants to some of the independent variables to achieve linearity. 

The most accurate equations developed for predicting the optimum 

moisture and the maximum dry density were as follow: 
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(1) Log O.MC == 0.784 logPL + 1.378 log(FA*+lOO) - 6.586 

(2) Log(Maximum Dry Density)== 7.247-0.567 log(PL+20)-0.110 log icA* 

*FA was defined as one-sixth of the summation of the percentage of parti-

cles by weight finer than the following listed sizes in millimeters: 

2.0 (No. 10), 0.42 (No. 40), 0.074 (No. 200), 0.020, 0.005, and 0.001. 

These relationships are also shown on graphs presented on figure 7. 

The standard errors of estimate for the optimum moisture and maximum 

dry density equations above were ±2.17 and ±4.32, respectively. (The 

standard error of estimate as defined by Hoel(l2) is a measure of the 

scatter of points--test results--frotn the regression line represented 

by the prediction equation.) The normal distribution of error was found 

to hold so that it can be assumed that 67 percent of the predicted opti-

mum moisture contents and maximum dry densities will be within one 

standard error, or ±2.17 percent moisture and ±4.32 pounds, respectively. 

ijinety-fice percent of the predicted values will be within two standard 

errors, ozv±4.3~ percent moisture and ±8.64 pounds. Comparison of the 

prediction results based upon Yemington's chart and the results utiliz­

ing the equation developed in the second study revealed that predictions 

based upon the plastic limit and fineness average were slightly better 

than those obt~ined from the chart. It was concluded that the formulas 

developed during the second study, incorporating the various factors 

for estimating compaction test results, were considerably more re­

liable for a wide variety of soils than any previously published. 

I. Bjerrum and Simons(l3). 

At the American Society of Civil Engineering Research Conference 

on Shear Strength of Cohesion Soils, Bjerrum and Simons presented a 

paper entitled "Comparison of Shear Strength Characteristics of 



16 

Normally Consolidated Claysn. In this paper, the authors presented 

the results of their attempt to correlate the consolidated drained 

angle of shearing resistance with the plasticity index. Bjerrum and 

Simons report that their experience indicates that the friction angle 

for any given clay varies with so many different factors that a close 

correlation with any one characteristic describing a clay cannot be 

expected. However, they were able to establish a rough correlation 

with the plasticity index by plotting friction values for the consoli-

dated drained strength against the plasticity index and then deriving 

a mean curve. A plot similar to the Bjerrum and Simon's curve is pre-

sented on figure 9. It should be noticed that the displacement from 

the mean curve is appreciable, and therefore use of this curve to 

approximate the consolidated drained strength should be limited to only 

those situations where a high degree of accu~acy is not required. 

J. Corps of Engineers Studies(l4). 

In 1962, the U. S. Army Waterways Experiment Station published a 

technical report entitled "The Engineering Properties of Fine-Grained 

Mississippi Valley Alluvial Soils Meander Belt and Backswamp Deposits" • 
. 

Data used in this study were obtained from U. S. Army Engineer Districts, 

St. Louis, Memphis, Vicksburg, and New Orleans. This report established 

the relationships of pertinent engineering properties of two of the 

fine-grained alluvial deposits of the Mississippi Valley and correla-

tion of these properties with simple index properties. It also estab-

lished useful information regarding the relationships between the index 

properties themselves. The following conclusions were warranted as a 

result of this study: 
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1. The relationship between liquid limit and plasticity index 

was found to be fairly constant for the deposits studied. 

2. Useful correlations were developed between the following: 

a. Plasticity and grain size characteristics. 

b. Specific gravity and plasticity index. 

c. Compression index and~ liquid limit. 

d. Compression index and natural water content. 

e. Compaction characteristics and plasticity index. 

3. This report also attempted to correlate the unconsolidated 

undrained (Q) and consolidated drained (S) shear strengths with index 

properties; the following conclusions were drawn: 

a. The results of the attempts to correlate the unconsoli-

dated undrained shear strength with natural water content and plasti-

city characteristics by plotting procedure did not indicate any corre-

lations or trends of practical value. 

b. The consolidated drained shear strength as determined in 

the direct shear test was found to be related to the plasticity index. 

Values of both shear parameters, ~ and c, were plotted against the 

plasticity index. Values of ~ ranged generally between 30 and 17 degrees, 

. 
and tended to decrease w·ith increasing values of plasticity index. 

Values of the cohesion parameter, c, ranged generally between 0 and 0.1 

ton per square foot, and tended to inc~ease with increasing values of 

plasticity index. The relationship between c in tons per square foot 

and plasticity index was approximately linear, and is given by the 

following equation: c "" 0.0015 PI. Plots taken from this report 

showing the relationships between these shear parameters and plasticity 

are presented on figure 10. It should be noted that the accuracy of 
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these charts has been verified for only a limited number of soils and 

therefore should be used with caution. The report strongly recommended 

that the established correlations be corroborated and refined by con­

tinuing application of data obtained in future soils investigations. 

The studies reviewed above represent only a small percentage of the 

total number of studies which have been made to investigate the inter­

relationships between the engineering properties of soils and their 

index properties. However, the studies reviewed here are considered to 

reflect the most significant developments which have been made up to 

this time. 

The importance of publishing the results of correlation studies 

cannot be overemphasized, for it is onlv through the channels of com­

munication that we can hope to obtain a well-informed profession. 

Although much useful information has been developed relative to these 

relationships, there is still a need for additional research to supple­

ment our present knowledge and to establish more precise methods of 

prediction. 
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III. DISCUSSION 

A. General. 

The discussion which follows covers in detail the graphical pro­

cedures, multilinear regression analysis, error analysis, and a complete 

·evaluation of the results of this study. The discussion will be pre­

sented in three segments to facilitate review. First, the graphical 

procedures employed to investigate the simple relationships btotween the 

engineering properties and their index properties will be discussed. 

Secondly~ the procedures employed in the regression analysis and the 

results of this analysis will be presented. The final segment will con­

sist of a complete evaluation of the results based upon error analysis. 

B. Graphical Analysis. 

Initially, arithmetic graphs of the optimum moisture content, maxi­

mum dry density, and both shear parameters versus the index properties 

were made to investigate the simple relationships between these proper­

ties. Graphs of the compaction properties versus the liquid limit, 

plastic limit, plasticity index, percentage of fines (passing the #200 

sieve), percentage of clay (less than .001mm), percentage of sand (per­

cent passing #4 sieve minus percent passing on #200 sieve), and the 

activity coefficient (PI/% clay) were made. The consolidated drained 

shear parameters, ~ and c, were plotted against the optimum moisture 

content, maximum dry density, liquid limit, plastic limit, plasticity 

index, average sample water content (direct shear test), and percentage 

of fines. A graph of ~ versus c and optimum moisture v~rsus the maxi­

mum dry density was also made to determine the relatLonship between 

the engineering properties themselves. 
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The first series of graphs was made utilizing all the test data 

in one graph without regard to soil origin, then the scope of consider-

ation was narrowed to the data on soils of the individual soil groups, 

and finally to the data on soils of one small geographic area. The 

second scope of consideration, individual soil groups, was limited to 

the data on residual and glacial soils because of data limitation. 

Those arithmetic graphs which indicated a high degree of correlation 

were also plotted to the logarithmic scale. These logarithmic graphs 

' 
were then compared with the arithmetic graphs to determine whether in-

creased linearity could be achieved. A linear relationship was desired 

in lieu of a curvilinear relationship because of the investigator's 

choice of linear regression analysis as a means of developing the de-

sired prediction equations. These arithmetic and logarithmic graphs 

are presented to reflect the strong mathematical relationships between 

the independent variables (index properties) and the dependent variable 

(e_ngineering properties), others to reflect the insignificance of the 

relationship. Note, many graphs which were deemed insignificant were 

omitted from this presentation. 

1. Compaction Properties. 

a. Optimum Moisture Content. The graphs which were developed 

using all the test data without regard to soil origin indicated the 

optimum moisture to be strongly related to the liquid limit, plasti~ity 

index, and the plastic limit, and slightly related to the activity 

coefficient, percentage fines, and percentage clay. The optimum moisture 

content versus liquid limit relationship was found to be the strongest 

of those index properties considered. However, the most direct re-

lationship was obtained from the graph of optimum moisture content 
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versus maximum dry density, figure 22. Graphs based upon data on soils 

from residual soils areas also indicated a strong relationship between 

the optimum moisture content and plasticity characteristics. The linear­

ity of these graphs was somewhat greater than the graphs that utilized 

data from all soil groups, i.e., residual, loessial, glacial, etc. 

The liquid limit relationship with the optimum moisture content again 

appeared to be the strongest of those investigated. Graphs of the 

activity coefficient, percentage fines, and percentage clay versus the 

optimum moisture content revealed only a slight relationship. The least 

significant graphs were those relating percentage sand and specific 

gravity to the optimum moisture content. 

Graphs based upon data on soils from glacial areas revealed a some­

what different picture. The most significant graphs were those con­

sidering the optimum moisture content relationship with gradation char­

acteristics, percentage sand, and percentage fines. The degree of 

linearity of the plasticity characteristics versus optimum moisture 

content graphs for glacial soils was slightly less than the graphs with 

gradation characteristics; however, the relationships revealed were 

significant. 

The data from the Meramec Park Reservoir Project, presented in 

table V, were also plotted. These graphs were made to investigate the 

correlation potential of the soils within a very limited geographic 

area. These graphs show the optimum moisture content to be strongly 

related to activity coefficient, percentage sand, and percentage clay. 

The graph of optimum moisture content versus the specific gravity was 

of little importance. The most significant graphs are shown on figures 

58 thru ~· 
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b. Maximum Dry Density. The graphs of maximum dry density versus 

the index properties considering all soil groups on one ·graph indicated 

good correlation with the plasticity indexes and only slight correlation 

·with the percentage clay, percentage fines, and activity coefficient, 

The best correlation was with liquid limit, as can be seen by exami-

nation of figure 24. The least significant ~raph was with specific 

gravity. The graphs relating maximum dry density of residual soils 'tdth 

the plasticity indexes also revealed a strong linear relationship. The 

strength of the relationship appeared to be slightly better than the 

graphs utilizing data from all the primary soil groups. Agai~, the most 

direct relationship was maximum dry density with liquid limit. Those 

residual soil graphs of maximum dry density versus gradation character-

istics, percentage sand, and percentage fines were only slightly signi-

ficant. Graphs of maximum dry density versus gradation characteristics 

for glacial soils again revealed the gradation characteristics to be 

more prominent than the maximum density versus plasticity relationships. 

The most direct relationships were found with percentage fines, per-

centage sand, and liquid limit. The plastic limit and plasticity index 

graphs indicated only a slight relationsh~p. The specific gravity and 
. 

activity coefficient exhibited no tendency toward linearity. 

Graphs of the Meramec Park data revealed good correlation of the 

maximum dry density with the plasticity indexes and less significant 

correlation with the gradation characteristics. The most important 

relationship was established with the liquid limit. 

2. Shear Strength Parameters. Graphs of the consolidated drained 

shear strength parameters, ~ and c, versus the index properties were 

not at all encouraging. The cohesion graphs with.liquid limit, plastic 
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limit, plasticity index, optimum moisture content, maximum dry density, 

average water content, and percentage fines were found to be insignifi­

cant, except those graphs considering only glacial soil data. Examina­

tion of the glacial soil graphs revealed that the liquid limit, plasti­

city index, and the optimum moisture content graphs to be slightly 

significant. The cohesion versus plasticity index relationship was the 

strongest of those investigated. These graphs are presented on figures 

2:2 thru B_. 

The graph of the friction angle, ~. versus index properties was 

somewhat more promising. The relationship between the angle of friction 

and the plasticity index, liquid limit, optimum moisture content, maxi­

mum dry density, average sample water content, and activity coefficient 

was found to be significant. Surprisingly, the plastic limit graph 

was among the least significant of those made. As in the case of the 

cohesion graphs, the relationship of ~ appeared to be strongest with 

the plasticity index. 

The graphs of friction angle versus the gradation characteristics, 

percentage fine, percentage sand, and percentage clay for glacial soils 

were slightly more linear than the plasticity graphs. Although the 

gradation graphs were more significant, the degree of linearity of the 

graphs was not indicative of high prediction potential. 

The information gained as a result of the graphical analyses proved 

to be very useful in focusing attention on those index properties of 

greatest importance. This knowledge was of great value in guiding the 

author's selection of variable combinations in the regression analysis 

which follows. The results of the graphical analysis have been tabu­

lated in rating charts I, II, and III in order to facilitate review. 
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C. Regression Analysis. 

1. General. Multiple linear regression analysis was used in this 

study to develop a variety of prediction equations which would relate 

the compaction and strength properties to their index properties. Many 

combinations of independent variables (index properties) were considered. 

Selection of the_independent variables for each equation was made to 

achiev~ maximum prediction accuracy from the least amount of input data. 

Consideration was also given to the probable availability of test data 

in the office, field, and laboratory. 

~e regression analysis was performed on the UMR 360-50 IBM com­

puter. A computer program entitled "Step-Wise Multiple Regression with 

Variable Transformations" was used to develop the desired equations. 

The Step-Wise Multiple Regression analysis is a computer procedure used 

to develop an equation for estimating one dependent variable by means 

of a linear combination of functions of several independent variables. 

The Step-Wise computer program operates on a batch of data to determine 

~he ~inear parameters that best fit the data. The program has a built­

in transformation system which can be employed by the programmer to 

transform the data into logarithmic, square, cubic, reciprocal, and 

many other forms. The pure data~ along with the logarithm transforma­

tion, were used in this study to develop a series of arithmetic and 

logarithmic prediction equations. The investigator's choice of only the 

logarithm transformation was based upon consideration of both time and 

the broad scope of investigation. Consideration of some of the other 

transformations may prove fruitful in future correlation studies. 

The Step-Wise program computes simple correlation coefficients for 

each dependent and independent variable in the analysis. Each variable, 
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independent or dependent, is related to all other variables under 

consideration. This coefficient is a measure of the strength of the 

linear relationship between two variables. It should be understood 

that this is only a mathematical interpretation, and in no way reflects 

any cause or effect implication. The fact that two variables may be 

found to increase or decrease together does not necessarily imply that 

one has a direct effect on the other; however, such mathematical re-

lationships can be utilized very effectively for prediction purposes. 

The Step-Wise program will also compute the standard error of 

estimates for each equation developed. The standard error of estimate 

is a measure of the accuracy of the prediction equation. It can be used 

to make approximate probability statements about the error of prediction, 

provided the assumption that the normal distribution of error is found 

to hold. If this assumption is valid for a given error distribution, 

one can predict that 68% of the predicted results will be within one 

standard error and 95% of the results will fall within two standard 

errors of the actual values. 

A total of 85 computer programs were utilized in this study. 

Fifty-three of these programs utilized the raw data without modification 
. 

to develop a series of arithmetic equations. The other 32 programs em-

ployed the logarithm transformation (log10) to modify the data in order 

to obtain logarithmic equations. The analysis was conducted in stages 

so that the combination of independent variables (index properties) 

could be improved upon as the analysis proceeded. The correlation 

coefficients and standard error results proved to be very useful in 

establishing the combination of independent variables which offered 

the greatest prediction potential. 
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The final regression equations developed in the Step-Wise Regression 

Analysis are presented for both the arithmetic and logarithmic analyses 

on table VII. The correlation coefficients, standard errors, and scope 

considerations for each equation are also presented in table VII. 

Simple correlation coefficients between pairs of variables are presented 

for the most significant analyses on tables I thru IV. These results 

will be treated in detail in the discussion which follows. 

2. Shear Parameters. 

a. Cohesion. Nine programs were developed utilizing the 

cohesion parameters as the dependent variable and the index properties 

as the independent variables. The results of this analysis, as expected, 

based upon the cohesion graphs, were of little or no significance. This 

can readily be concluded by examining equations 1 thru 9 and their 

associated data in table VII. The correlation coefficients were found 

to r~t exceed .30 for all singular and multiple correlations considered 

except for those which focused only upon the soils of glacial origin. 

This was a direct indication of the poor mathemati.cal relationship 

existing between this shear parameter and the index properties. The 

data on soils from glacial areas, when considered separately, were found 

to yield the greatest correlation coefficients for the cohesion versus 

index property relationships; however, the strength of the relation­

ships as reflected by the correlation coefficients was not indicative 

of high prediction potential. The index properties which appeared to 

be most closely related to the cohesion parameter in all analyses, 

although not significantly, were the plastic limit, plasticity index, 

and average water content of the consolidated drained specimens. The 

correlation coefficients for analyses 1, 2, 8, and 9 are presented in 



table III to reflect the lack of significance of the relationship of 

the cohension parameter with the index properties and to show the in­

creased strength of the correlation when the scope was limited to the 

data on samples taken from glacial soil areas. 

Examination of the computed standard errors revealed that the 

accuracy of the prediction equation would be extremely limited. The 

probable errors in most cases would far exceed the allowable errors 

even in situations where rough approximations were desired. However, 
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the standard error of the equation (equation 1) developed for the glacial 

soils was considerably less than the errors or equations developed from 

all soil or residual soil considerations. This equation, c =.010 + 

.005 - .003 Opt. + .OOlPL, could therefore be used to estimate the 

cohesion parameter of glacial soils. Since the standard error of the 

partial equation, c = -.025 + .OOSPI, developed in this analysis, does 

not exceed the error of the final glacial equation, prediction can be 

justifiably based upon the plasticity index alone. This equation has 

been plotted on the graph of cohesion versus plasticity for glacial 

soils, figure 50. The use of this equation should be limited to glacial 

soils and to those situations where precise estimates are not required. 

Sixty-eight percent of the results based upon this equation may be 

expected to have errors not exceeding .06 TSF or 120 PSF. 

b. Angle of Internal Friction. The angle of internal friction 

was found to be more closely related to the index properties than the 

cohesion shear parameter. Nine arithmetic and nine logarithmic regres­

sion analyses were performed to investigate the various data categories. 

Fourteen of these programs utilized the data as a whole, while the 

remaining four considered the residual and glacial soil data separately. 
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These analyses revealed that the scope of consideration was of little 

importance in determining the relationships of the friction angle and 

the index properties. All analyses yielded results which were very 

consistent. The all soil, residual, and glacial considerations indi­

cated that the r ,lationship of the angle of friction with the plasticity 

index, liquid limit, activity coefficient, optimum moisture content, 

maximum dry density, and the average water content of the direct shear 

specimens were all significant. Although the relationships with these 

variables were determined to be significant, it must be pointed out 

that the magnitude of the correlation coefficient was not indicative 

of a high degree of correlation. The best correlation in all cases was 

achieved with the plasticity index. The correlation of ~ with the 

activity coefficient and the plastic limit was far below the signifi­

cance level. 

The arithmetic and logarithmic equations developed in this series 

of analyses are presented on table VII, equations 26 thru 34 and 26A 

thru 34A. Note the combinations of independent variables considered in 

these equations. The standard error and correlation coefficients are 

also presented on table VII. These results show that several procedures 

can be employed to predict the angle of friction within a reasonable 

degree of accuracy. The simplest procedure would be to utilize equa­

tion 31, 

~ = 34.5- .37(PI) + .04(W.C.), 

for all soils except those of glacial origin. Assuming the error dis­

tribution to be normal, one could expect approximately 70% of the pre­

dictions based upon this equation to be within 4 degrees of the actual 

values. This accuracy would be acceptable for all but the most precise 
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determinations. The regression equations developed for glacial soils 

was found to be somewhat more accurate than the equations developed for 

either the all soil or residual soil considerations. These equations, 

26 and 26A, would permit prediction of the friction angle of glacial 

soils within an accuracy of about 3 degrees. 

Complex equations involving more than one independent variable were 

also developed to increase the prediction accuracy. Of this type, equa-

tions 28, 33, 28A, and 33A were the most efficiently developed. Exami-

nation of the computer output data revealed that the standard error was 

only slightly reduced as additional index properties were incorporated 

in the regression equation. In all cases the plasticity index was the 

first independent variable to enter .the multiple regression equation; 

the standard error reduction beyond this point was not significant. 

Therefore, it appears reasonable to make estimates to ~ based solely 

upon the plasticity index in lieu of the more complex equations which 

require several index properties. Therefore, it is recommended that 

equations 26, 28, 33, 26A, 28A, and 33A be modified by eliminating all 

terms except the constant and plasticity index terms in order to simplify 

the prediction requirements without greatly sacrificing the prediction 

accuracy. These equations would then be written: 

(26)$ = 34.04 - .58 (PI) 
(28)~ = 26.8 - .31 (PI) 
(33)$ = 25.1 + .03 (PI) 

(26A) log ~ = 1.88 + .14 log (PI) 
(28A) log ~ = .59 - .21 log (PI) 
(33A) log ~ = 1.61 - .04 log (PI) 

Use of the above simplified forms should not result in more than four 

degrees error in approximately 68% of the predictions. 
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3. Compaction Properties. 

a. Optimum Moisture Content. The optimum moisture content was 

found to be related to many of the index properties. The most important 

relationships were with the plasticity indices, percentage of clay, and 

the maximum dry density. Less significant relationships were estab­

lished between the optimum moisture content and the activity coefficient, 

percentage of sand, and percentage of fines. The only index considered 

which did not appear to be slightly related to the optimum moisture con­

tent was the specific gravity. The equations developed in the regres­

sion analysis which express these relationships are equations 35 thru 

52 and 35A thru 51A. Simple correlation coefficients for analyses 35, 

36, 48, 49, and 51 are shown in table IV. 

When all soils were considered in the regression analysis, it was 

determined that the highest degree of simple correlation with the opti­

mum moisture content could be achieved with the liquid limit and maximum 

dry density. The correlation coefficient computed for both of these 

properties was about .90, which was indicative of a nearly linear rela­

tionship. The standard error for the developed maximum density and 

liquid limit equations was about ±1.20 an4 ±2.00 respectively in both 

the arithmetic and logarithmic regression analyses. These equations, 

41, 41A, 42, and 42A, could therefore be used to estimate the optimum 

moisture content with a high degree of accuracy. Equations 41 and 42 

have been constructed on figures 11 and~' respectively. These con­

structions shown on these figures can be used in combination to effect­

ively predict the Proctor moisture and density. For example, if limit 

data are available, one can utilize the liquid limit in conjunction with 

the graph on Plate 11 to evaluate the optimum moisture content; and then 

use this value in the determination of the maximum density from figure 22. 



The other plasticity indices can also be used to predict the 

optimum moisture content, although with a lesser degree of accuracy. 

The error resulting from the regression equations 44 and 44A, which 

included only the plasticity index, waa slightly greater than that of 
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the liquid limit equations 41 and 41A. Use of plasticity equations 44 

and 44A would increase the range of possible error approximately five­

tenths of a moisture point. Although somewhat accurate estimates of 

the optimum moisture content can be made by using the plasticity index 

in this equation, its use will probably be limited due to the increased 

error of prediction and its intimate relationship with the liquid limit. 

The optimum moisture content versus plastic limit relationship was found 

to be least significant of those relationships developed from the plasti­

city indices. Equation 43, which employs only the plastic limit to pre­

dict the optimum moisture content, can be used to predict within an 

accuracy of ±3.4 moisture points approximately 70% of the time; however, 

for many prediction situations, this accuracy would not be sufficient. 

The gradation characteristics, percentages of clay, fines, and sand, 

were all found to be related to the optimum moisture content in the all 

soil analysis; however, the correlation coefficients, presented in 

tables I thru IV, revealed a very low level of significance for all but 

the percentage of clay. The pe~centage of clay regression equations 

46 and 46A can be used to predict the optimum moisture content in cases 

where the required accuracy is not great. Consider the laboratory 

·technician who must perform the standard compaction tests with no guid­

ance as to what moisture to prepare the compaction specimen other than 

the results of the mechanical analysis. Here is a situation where pre­

cise prediction is not required, and equations 46·and 46A could prove 
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to be very useful tools. In order to make use of the other gradation 

characteristics, percentage of fines and percentage of sand, complex 

equations employing many variables would be required to minimize the 

error of prediction. 

Regression analyses were also performed to develop a series of 

complex equations to better the optimum moisture content prediction 

accuracy. Many combinations of index properties were employed in these 

analyses as can be seen from examination of the resulting equations 35 

thru 40 and 35A thru 40A. The standard error of these equations was 

considerable less than that of the simple equations discussed above. 

Equations 35, 36, 38, and 40 are the most accurate of the equations 

developed. The choice of the equation to be used in predicting the 

optimum moisture content will largely be dependent upon the availability 

of test data because the difference in the standard error of estimates 

of these equations is not great. Equations 35, 36, 38, and 40 can be 

used to predict the optimum moisture content within an accuracy of about 
I 

±2 moisture points, which would be well within the range of allowable 

error of most prediction situations. A convenient three variable graph 

has been developed based upon equation 52 relating the optimum moisture 

content to the liquid limit and plasticity index. This graph is pre-

sented on figure 67. The choice of equation 52 was based upon error 

considerations and the advantage of developing these relationships on 

the Casagrande plasticity chart. This graph has an added advantage over 

graphs similar to the Yemington graph, figure 7, in that it ties in 

graphically the optimum moisture content relationship with the other 

well established facts regarding the plasticity chart, especially those 

facts regarding compressibility, permeability, rate of volume change, 
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and dry strength. One can now readily see the increase and decrease 

in the optimum moisture content with corresponding increases and de-

creases in the plasticity index and liquid limit .. It would appear that 

graphs of this type will greatly facilitate the engineer's understanding 

of facts regarding the plasticity chart. 

When the computer analysis was limited to soils of a particular 

area or to those of similar origin, the optimum moisture content-index 

property relationships were found to be very similar to the optimum 

moisture content-index property relationships when all the soils data 

were utilized in a single analysis. However, other importance findings 

did result from these analyses. Five categories of data were considered 

in these computer analyses: 

(1) Residual soils. 

(2) Glacial soils. 

(3) Coastal plains soils. 

(4) Soils encountered on the projects of the St. Louis 

District Corps of Engineers. 

(5) Soils encountered on the Meramec Park Project. 
~ 

The soils encountered on projects of the St. Louis District in-

eluded glacial, residual, and recent alluvium deposits. The data on 

soils from the Meramec Park Project included residual soils and alluvial 

flood-plain deposits. 

The results of the regression analyses considering residual soils, 

St. Louis District soils, and the Meramec Park soils separately were 

almost identical to the results of the analysis reported above, which 

utilized all test data; however, the correlation coefficient and 

standard error were both indicative of a much stronger relationship 



between the optimum moisture content and index properties. This 

conclusion was drawn from the examination of the correlation coeffi­

cients and standard error of estimates of equations 47, 48, 50, 47A, 
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and 50A. A number of factors including the data categories under con­

sideration both with respect to origin and geographic area and the 

difference in the number of observations used in these analyses may have 

contributed to this slightly higher degree of correlation. It should 

be noted that the residual, St. Louis District, and Meramec Park regres­

sion analyses were based upon 120, 59, and 20 data observations; whereas, 

the analyses utilizing all the test data in a single regression analysis 

were based upon observations numbering over 300. 

The regression analyses on soils of glacial origin and soils of the 

coastal plains revealed the gradatio~ characteristics to be just as prom­

inent in predicting the optimum moisture content as the plasticity 

characteristics. Analyses 49, 49A, and 51 indicated the percentage of 

fines and percentage of sand to have very significant correlation coeffi­

cients, especially in the case of the soils of the coastal plains. The 

standard error of these equations 49, 49A, and 51 was indicative of a 

very high ~egree of accuracy. The standard error in these analyses was 

approximately ±1.4, which meant that about 70% of the predicted values 

of the optimum moisture content would not deviate more than ±1.4 moisture 

points from the actual optimum moisture content, and that about 95% of 

the results would not deviate more than ~2.6 moisture points. Although 

these equations reflect a high potential for accurate prediction, their 

use should be limited to the soils of glacial origin and to soils of the 

coastal plains. In no case should these equations be used without 

establishing their validity for the soils of a pa~ticular area. 
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b. Haximum Dry Density. Twenty-seven regression analyses were 

performed to determine a series of arithmetic and logarithmic equations 

which could be used to estimate the Proctor maximum dry density. The 

results of these analyses were very consistent with the results of the 

optimum moisture content regression analyses. The correlation of the 

maximum density with the plasticity indices and the percentage of clay 

was again found to be most prominent. The activity coefficient, per­

centage of fines and the percentage of sand based upon computed correla­

tion coefficients were only slightly related to the maximum density. 

The results of the maximum density versus specific gravity analysis were 

the least significant of those considered. The correlation coefficients, 

standard error, and the equations developed in these analyses are pre­

sented on table VII. 

Initially, 10 equations were developed using one independent 

variable (index property) per equation to approximate the maximum density. 

Thepe analyses considered all the soil data without regard to origin or 

geographic area. The developed equations are numbered 14 thru 19 and 

14A thru 19A, on figure 70. Simple correlation coefficients for the 

most significant analyses are presented in table II. The most precise 

arithmetic and logarithmic equations were 14 and 14A, respectively, 

which related the maximum density and liquid limit. Equation 14 has 

been constructed on the graph of maximum density versus liquid limit, 

figure 55. Based upon this equation, the maximum density could be 

predicted with an accuracy of about ~4.0 pounds, one standard error. 

This accuracy would be tolerable for most prediction situations; how­

ever, many field situations would require even greater accuracy. 



Several complex equations employing more than one variable were 

developed to increase the maximum dry density prediction accuracy. 

Many combinations of index properties were considered in the analysis 
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in order to derive the most efficient relationships. Equations 10 thru 

13, 15, 15A, 25, and 25A resulted from this series of regression analyses. 

In only two of these equations, 10 and 11, was the standard error re­

duced significantly. One could expect about 70% of the predictions 

based upon equations 10 and 11 to be within 3.6 pounds of the actual 

maximum dry density. 

Equation 15 was used to develop a graph of maximum dry density 

versus the liquid limit ar:d the plasticity index. This graph was made 

on a chart similar to the conventionar plasticity chart. The advantages 

of charts of this type have been reflected earlier in the discussion 

covering the optimum moisture content. The standard error which may 

result from use of this chart as a predicting aid should not exceed 

±4.1 pounds for 70% of the density predictions. 

In addition to analyses considering all soil data, five other data 

categories were investigated to determine the correlation potential of 

soils of similar origin and those within a limited geographical area 

with the maximum dry density. The geographic and origin considerations 

were the same as those investigated in the optimum moisture content 

analysis. The results of the regression analysis on the St. Louis 

District soils, Meraroec Park soils, and the residual soils were, as be­

fore consistent with the results of the all soil analysis. The liqu~d 

limit again was the roost significant relationship, as can be seen by 

examining equations 20, 21, 23, 20A, and 23A in the regression summary. 

The correlation coefficients and the standard error of the developed 
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regression equ<..t io. s vier~ indicative of a more linear relationship 

between the maximum dry density and liquid limit than in the regression 

analysis utilizing all data collectively. These equations can be used 

to predict the maximum density with accuracy that exceeds that of any 

equation developed in the previous analysis which considered all data 

collectively; however, the index data required to evaluate these equa­

tions may limit their use. Examination of the computer output data 

revealed that significant changes in the standard error resulted as each 

index property entered the partial regression equation; therefore these 

equations could not be modified without greatly sacrificing the predic.­

ti.on accuracy. 

The regression analysis on soils of the coastal plains and soils of 

glacial areas indicated the gradation ,Ch<tracteristics to be slight_ly 

more prominent than the plasticity characteristics in predicting the 

maximum dry density. The correlation coefficients for the percentage 

of sand and percentage of fines were slightly greater than those of the 

plasticity indices. The standard error of the resulting regression 

equations, 22, 24, 22A, and 24A, was approximately ±3.5 pounds. This 

error would be allowable for most prediction situations. 

Again, it must be emphasized that use of the equations developed 

in this study should be limited to the areas of consideration for which 

they were developed, and only then after the validity of the equations 

has been established through check procedures. 
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IV. ERROR ANALYSIS 

Two of the prediction equations developed in this study were tested 

with data taken from the second Bureau of Public Roads Report(lO) which 

was discussed in Section II. The data 'consisted of Atterberg limits 

and standard Proctor compaction results on 100 soil samples from widely 

separated areas througho~t the United States. Selection of the data 

was based upon complete coverage of the soils of the major soil groups; 

i.e., residual, glacial~ loessial, coastal plains, and soils of the 

filled valleys. The data have been tabulated in tables V and VI. 

Examination of these tables will reveal the wide variation in plasticity 

and compaction ch:1racteristics of those samples considered. 

The equations selected for this investigation were developed in 

regression analyses 52 and 53. These equations, 

Maximum Density = 128.4 - .58LL + .13PI 
and 

Optimum Moisture Content = 6.228 + .3411LL -.1062PI 

were seler:t:ed for this analysis because they are considered to be among 

the most prominent equations developed in this study. They could 

rapidly be evaluated from available data; and, because they were used 

in the,development of the plasticity versus compaction relationships 

presented on figures 65 and fL, the lack of sufficient data and the 

complexity of some of the more accurate equations precluded their use 

in this investigation of error. 

Two equations were. evaluated for each of the 100 data observations 

presented in tables VI and VII. The predicted values of the optimum 

moisture content and dry density, along with the deviation from the 

actual laboratory results, are also presented in tables VI and VII. 
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The optimum moisture results (evaluation of equation 52) show that 

the predicted values of 85 percent of the observations did not exceed ±2 

moisture points, and that 67 percent of the predicted values did not 

exceed the actual laboratory result by more than ±1.5 moisture points. 

The standard error of estimate for the 100 deviations was ±1.67 moisture 

points. This means that if the normal distribution of error holds--and 

if the 100 soil samples used were entirely representative--that 68 per­

cent of the results should be within 1.67 moisture points of the actual 

values. 

Examination of the predicted evaluation of equation 53, and the 

actual laboratory densities revealed that 55 percent of the results 

deviated less than ±3 pounds and that 71 percent deviated not more than 

±4 pounds. The standard error for this analysis was ±3.9 pounds. 

To relate the error in the maximum dry density with the error in 

the optimum moisture content, percentage error computations were made. 

These computations were based upon the average of the optimum moisture 

content, percentage error computations were made. These computations 

were based upon the average of the optimum moisture and maximum dry 

density of the 100 observations. The ratio of the respective standard 

errors'to these averages revealed that the percentage error of the 

optimum moisture was about 9 percent, whereas the error in the dry density 

amounted to only 3.6 percent of the average dry density. So it would 

appear that the accuracy of dry density equation, equation 53, was some­

what better than that of the optimum moisture equation, equation 52. 

In order to verify that the standard error of estimate was a reason­

able measure of the error in these pre~iction equations, and to validate 

the probability statements regarding the error of .Prediction that have 
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been made throughout Section III, the deviations (actual-predicted) were 

plotted to establish the distribution of error. The distribution plot 

of the optimum moisture deviations revealed an approximately normal dis­

tribution, as can be seen by examining'figure'68. The typical normal 

distribution of the deviations from the maximum dry density is shown on 

figure 69. This double peaked distribution deviated considerably from 

the normal distribution; however, this does not void the probability 

statements made earlier regarding the error of the dry density predic­

tion equations. The double peaked distribution may be the result of 

several factors including the effect of two competing normal distribu­

tions and nonrepresentative data. Even though the exact cause of this 

distribution cannot be readily determined, the author has concluded that 

the standard error of estimate is a reasonable measure of the accuracy 

of both the optimum moisture content and dry density equations. This 

conclusion is based upon a comparison of the actual deviations in table 

V with the computed standard error of estimate. This comparison revealed 

that about 70 percent of the predicted values was less than the standard 

error, which is a very close approximation of the 68 percent boundary 

defined by the standard error of estimate. 

The error of the developed cohesion and friction angle equation was 

not investigated here because of inadequate data. It is therefore recom­

mended that use of the shear equations developed herein be limited to 

situations where only rough approximations are required or where suffi­

cient data are available to validate the equations and associated 

statements of probable error. 
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V. CONCLUSIONS 

This study has served to substantiate many of the known relation-

ships between the engineering properties and their index properties, 

and to more accurately define these relationships. The data furnished 

in Section III are conclusive evidence of the existing interrelation-

ships between the compaction properties, consolidated drained shear 

parameters and their index properties. The more significant findings 

are summarized below: 

(1) Only a slight correlation of the cohesion drained shear 

parameter with index properties could be achieved. 

(2) The angle of internal friction for drained shear could 

be significantly correlated with all index properties except the plastic 

limit and activity coefficient. 

(3) The best correlation of both shear parameters was achieved 

with the plasticity index. 

(4) The maximum dry density and optimum moisture content were 

found to be strongly related to the plasticity characteristics and only 

slightly related to the gradation characteristics, except for glacial 

soils •. The most direct relationship was generally determined to be 

with the liquid limit. 

(5) The shear parameters and compaction properties of glacial 
' 

soils appeared to be more significantly related to the gradation 

characteristics than the plasticity characteristics, as evidenced by 

the computed correlation coefficients. 

This study has also provided useful information regarding the 

importance of scope considerations in relating engineering properties 
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to their index properties. It appears that considerably better corre­

lation can be achieved by limiting the scope of consideration to soils 

of similar origin or to soils of a limited geographic area. This study 

revealed a much greater prediction accuracy for all analyses where the 

scope was so limited. It is therefore concluded that future efforts 

in this area should be concentrated on the soils of the individual soil 

groups or those within a very limited geographic area, if maximum 

correlation is to be achieved. 

Useful equations and prediction procedures have been developed 

in this study. These equations have been tested and found to be suf­

ficiently accurate to warrant their use in many prediction situations. 

The author is confident that these developments will prove to be use­

ful tools to those working in the field of soil mechanics and other 

allied fields. 
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VI. APPENDICES 
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to the Plasticity Index and Liquid Limit 
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APPENDIX B 

TABLES AND MISCELLANEOUS CHARTS 



114 

TABLE I 
Simple Correlation Coefficients 

Angle of Intenal Friction 
Analysis 28 (All Soils) 

f/J % F ,AC PI Opt. Max D. we 

0 1.0 

% F .22 1.0 

AC • 54 . 06 1.0 

PI .78 • 28 .57 1.0 

Opt. • 61 .52 .38 .81 1.0 

Max D. .60 .58 .39 .79 .96 1.0 

we .50 .46 .21 .68 .90 .85 1.0 

Analysis 33 (All Soils) 

0 LL PL PI Opt. Max D. we 

0 1.0 
~ 

LL .65 1.0 

PL .10 • 61 1.{) 

PI .73 • 94 .30 1.0 

Opt. . .50 .76 ~54 .68 1.0 

Max D. .56 .85 .57 .77 .86 1.0 

we .48 .76 .56 .67 .82 .86 1.0 
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TABLE I (CONTINUED) 

Angle of Friction 
Analysis 27 (Residual Soils)_ 

0 LL PL PI Opt. Max D. HC 

0 1.0 

LL .59 1.0 

PL .09 .67 1.0 

PI .70 .93 .37 1.0 

Opt. .61 .88 .55 .83 1.0 

Hax D. .61 .88 .58 .82 .95 1.0 

we .55 .82 .53 .76 .92 .89 1.0 

Analysis 26 (Glacial Soils) 

0 LL PL PI Opt. 

(/; 1.0 

LL .70 1.0 

PL .01 .34 1.0 

PI .75 • 94 .03 ).0 

Opt. .42 .75 .50 . 65 1.0 
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T;\fiLJ: II 
Simple Correlation Coefficients 

Maximum Dry Density 
Equation #10 (All Soils) 

Max d. % s % F LL PL PI 

Hax d. 1.0 

% s .41 1.0 

% F .46 .97 1.0 

"LL .85 .32 .33 1.0 

PL .59 .09 ;09 .58 1.0 

PI .76 .34 .36 .94 .28 1.0 

Equation {fll (All Soils) 

Max d. % s % F S.G. LL 

Max d. 1.0 

% s .41 1.0 

% F .46 • 97 1.0 

S .G. .14 .06 .01 1.0 

LL .86 .32 .34 .04 1.0 

Simple Correlation Coefficients 
Maximum Dry Density 

Equation 4/:21 (Residual Soils) 

Max d. % s % F LL PL PI 

Hax d. 1.0 

% s .39 1.0 

% F ~ 39·,.., .. .99 1.0 

LL .89 .33 .32 1.0 

PL .60 .06 .06 .63 1.0 

PI .82 .41 .41 • 94 .34 1.0 
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TABLE II ( CONTINUl·:D) 

. Equation 4f22 (Glacial Soils) 

Max d. % s % F LL PL PI 

Hax d. 1.0 

% s .66 1.0 

% F .76 .89 1.0 

LL .60 .56 .46 1.0 

PL .43 .39 .21 .54 1.0 

PI .46 .44 .41 .88 .07 1.0 

Maximum Dry Density 
Equation #24 (Coastal Plains Soils) 

Max d. % s % F LL PI 

Max d. 1.0 

% s .76 1.0 

% F .76 .98 1.0 

LL .81 .76 .76 1.0 

PI .57 .60 .59 .91 1.0 
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T.\BLE Ill 
Simple Correlation Coefficients 

Cohesion 
Analysis 2 (All Soils) 

c % F AC PI Opt. Nax d. H.C. 

c 1.0 

% F .01 1.0 

AC .22 . 04 1.0 

PI .26 .30 .57 1.0 

Opt. ~13 • 53 .36 .81 1.0 

Max D. .15 .59 .38 .79 • 96 1.0 

H.C. .07 .46 .21 .• 68 .90 .85 1.0 

Analysis .8 (All Soils) 

c LL PL PI Opt. Max D. w.c. 

c 1.0 

LL • 05 1.0 

PL .22 • 61 1.0 

PI .02 • 94 • 30 1.0 

Opt. .08 .86 .57 .79 1.0 

Max D. .08 .85 .57 .77 .95 1.0 

w.c. .16 .76 .56 .67 . 90 .86 1.0 
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TABLE III (CONTINUED) 

Cohesion 
Analysis 1tl (Glac i::tl Soils) 

c LL PL PI Opt. 

c 1.0 

LL .56 1.0 

PL • 01 .33 1.0 

PI .59 .95 ·• 03 1.0 

Opt. .34 .76 .so .65 1.0 

Analysi~ 1?9 (Residua 1 Soils) 

c LL PL PI Opt. Max D. w.c. 

c LO 

LL .18 1.0 

PL • 2 7 . .67 1.0 

PI .10 • 93 .36 1.0 

Opt. .16 .88 .55 .83 1,0 

Max D. .21 ,86 ;58 .81 .95 1.0 

w.c. .25 .82 .53 .76 .92 .89 1.0 
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TABLE IV 

Simple Correlation Coefficients 
Optimum Hoisture Content 
Annlysis 35 (All Soils) 

Opt. AC LL PL PI 

Opt. 1.0 

AC .42 1.0 

LL .90 .53 1.0 

PL .66 .08 . 59 1.0 

PI .83 .60 .97 .38 1.0 

Analysis 36 (All Soils) 

Opt. % s % F LL PL PI 

Opt. LO 

% s .40 . 1.0 

% F .43 .97 l.O 

LL .89 .• 32 .33 1.0 

PL .62 .09 .09 .09 1.0 

PI .80 .34 .35 .94 .28 1.0 

Optimum Moisture Content 
Analysis 48 (Residual Soils) 

Opt. % s % F LL PL PI 

Opt. 1.0 

% s .36 1.0 

% F .36 1.0 1.0 

LL .92 .32 .32 1.0 

PL .59 .06 .06 • 63 1.0 

PI .87 .41 .40 ~ 94 • 34 1.0 
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TABLE IV (CONTINUED) 

Analysis 49 (Gbcia1) 

Opt. % s % F LL PL PI 

Opt. 1.0 

% s .66 1.0 

fo F .71 .89 1.0 

LL • 64 .56 .46 1.0 

PL .58 . 39 .21 .21 1.0 

PI .43 .44 .41 .88 .07 1.0 

Analysis 51 (Coastal Plains Soils) 

Opt. % s % F LL PL 

Opt 1.0 

% s .81 1.0 

% F .so .98 1.0 

LL .81 .76 .76 1.0 

PL .85 .85 . 61 . .81 1.0 



TABLE V - SUMMARY OF SOIL TEST DATA 

Primary Loboratory Con:Qaction Data Shear - Data 
Observation Soil Cl&ssification Mechanical Analiais sp. Act. Opt. Max. Dry Type 
No, Division (Unified Soil) Gravel Sapd Fines 7£lay Gr. Coeff, LL PL PI "!ofatcr Density Te5t tiC c D Project 

1 Ii-1 Glacial Sandy Clay CL 3 30 67 - 2.74 - 24 14 10 11.2 124.5 DS 8.1 .03 31 Shelbyville 
2 BA-2 Glacial Sandy Clay CL 2 29 69 - 2.71 - 35 15 20 14.2 114.9 DS - - - Shelbyville 
3 BA-3 Glacial Gra, Clay (CL) 3 26 71 - 2.73 - 32 17 15 13.5 117.7 DS 9.7 0 29 Shelb}>'Ville 
4 BB·i Glacial S. Clay (CL) 10 16 74 - 2,73 - 40 17 23 10.0 112.4 DS 12.7 ,03 29 Shelbyville 
5 BB-1 Glacial S~ Clay (CL) 1 25 74 - 2.70 - 34 16 18 15.5 114.0 DS - - - Shelbyville 
6 BC-3 Glacial S, Clay (CL) 3 28 69 - 2.74 - 34 15 14 15.0 117 .o DS - - - Shelbyville 
7 :BC-1 Glacial S, Clay CL-ML 0 47 53 - 2.72 - 17 13 4 10,5 125.4 DS 6.8 0 32 Shelbyville 
8 29-1 Residual Cby (CL) 0 0 94 31 2.66 .so 43 18 25 19.1 102.7 DS 21.1 0.1 28 P.crPw.ec 
9 20-2 Residual Clay (CH) 0 7 93 45 2.68 .• 98 62 18 44 23.9 95.1 DS 25.2 0.14 20 1-'.eramec 

10 26-1 Res!.duol Sandy Clay CR 0 27 73 58 2,71 1.38 111 31 80 36.6 so.o ~ 39.0 0.19 21 Meremec 
11 33-1 Ruidual S11ndy Clay CL 0 26 74 20 2.66 .55 27 16 11 14.8 ll3.5 DS 17.5 0.18 30 Mera:nec 
12 9C-1 Residual Sandy Clay CL 0 44 56 16 2.65 .50 24 16 8 13.0 115.4 DS 15.0 0,18 34 Mcramec 
13 56-1 Residual Clay CL 0 2 98 25 2,60 .64 36 20 16 17.5 106.7 :00 20.6 0 34 Hersm.cc 
14 29-J ltesidual Clay CR 0 12 88 42 2.74 1.73 99 26 73 41.0 76.5 DS - - - Mcra:nec 
15 41-1 Residual Clay CR 0 24 76 33 2.66 .98 56 19 37 22.0 99.4 :OS - - - ¥~ra:nec 

16 167-2 R..::osidca 1 Clay CL 0 26 74 35 2.68 .89 48 17 31 18.8 106.4 DS 21.7 0 24 Mcrar.~ec 

17 27-1 D'..esidusl s. Clay CL 0 33 77 26 2.66 .69 30 12 18 14.0 115.6 DS - - - Merarncc 
18 31-1 R.aaidual Clay CL 0 8 92 14 2.66 .64 29 20 9 16,4. 106.5 DS - - - Meramec 
19 179-1 Residual Clay CL 0 10 90 29 2.66 .45 31 18 13 15.7 110,5 DS 18.0 .04 32 Meramec 
20 167-1 Residual Cla:; CL 0 8 92 31 2.68 .61 36 17 19 17.1 108.3 DS - - - Mcrernec 
21 174-3 Reaidua1 S. Cl&y CL 0 28 72 32 2.66 ,81 43 17 26 16.7 100,3 DS - - - Mcrar.>ec 
22 23·2 F~~d.tlual Cllly CL 0 14 86 27 2.68 ,96 45 19 26 20.1 101;,7 DS - P. - He ranee 
23 215-1 Residual S. Clay (CL-ML) 0 32 68 6 2.74 .83 17 12 5 9.5 124.2 DS - - - Heramcc 
24 :n-2 Residual S, Clay CL 0 3 97 23 2.66 .74 35 18 17 15.3 109.8 DS - - - Mer a :nee 
25 142-1 Residual Cl!!y CL 0 24 76 24 2.66 .46 29 18 11 16.2 108.9 DS - - - Meramec 
26 71-1 Residual S. Clay (CL-ML) 0 45 55 14 2,64 .43 20 14 6 10.5 118.7 DS 13,5 0 35 :1-lerat:tec 

. 27 72-2 Reaidual Clay CL 0 18 82 30 2.68 .70 39 18 21 16.3 109.7 DS 19.2 0 32 Meramec 
2S P-42 Glacial Clay CH - - - - 2.72 - 69 16 53 21.3 101.6 DS 24.5 0.25 11 Cannon 
29 r-41 Glacial Clay CL - - - - 2,69 . - 42 16 26 18.7 105.2 DS 21,0 0.16 24 Cannon 
30 P-3 Glscial Silty Clay CL - - - - 2.69 - 40 14 26 17.6 107.5 DS 19.7 .05 21 Cannon 
31 P~2 'Glacial Clay CL . - - - 2.72 . - 46 16 30 18.8 104,6 DS 20,7 .10 25 Cannon 
32 555-Bl Glacial S, Clay CL 0 12 88 - 2,68 - 36 15 21 16.3 108,0 DS 17,8 0,12 28 Cannon 
33 555-B2 Glecial S. Clay CL 0 13 87 - 2.68 - 36 15 21 17.1 106,7 DS 17.4 .12 29 Cannon 
34 560-El Glacial Silty Clay CL 0 8 92 - 2,66 - 40 18 22 17.6 105.7 DS - - - Cannon 
35 561-Bl Glacial s. Clay CL 0 22 78 - 2.68 - 32 10 16 16.3 103.8 DS 18.0 .02 32 Cannon 
:36 567 Glacial S. Clay CL 0 16 84 - 2.67 - 23 13 10 12.8 116,5 DS 14.5 .02 34 Cannon 

...... ·, 
N 
N 



TABLE V - SUMMARY OF SOIL TEST DATA 

Pri:::1ary Laboratory ComEaction Data Shear - Data 
QC,servation Soil Classification Mechanical Anal~sis Sp. Act. Opt. Nax.Dry Type 
No. Division (Unified Soil) Gravel Sand Fines %Clay Gr. Coeff. LL PL PI Water Density Test we c (J Project 

37 ~74 Glacial Clayey Silt ML 0 29 71 22 2.67 .22 19 14 5 13.5 114.9 DS 15.5 0 36 Canr:on 
38 574-2 Glacial s. Cl.:~y CL 0 22 78 25 2.67 .64 30 14 16 15.4 111.4 DS - - - C.:~nnon 

39 . 575-B2 Glacial Clay CL 0 9 91 31 2.67 .55 32 15 17 16.1 108.8 DS - - - Cannon 
40 576-Bl Glacial S. Clay CL 0 39 61 18 2,67 .72 26 13 13 15.3 110.6 DS - - - Cannon 
41 577 -Bl Glacial s. Clay CL 0 13 87 27 2.66 .59 32 16 16 14.8 110.7 DS - - - Cannon 
42 577-B2 Glacial Clay CL 0 7 93 29 2,66 .62 32 14 18 12.4 107,9 DS - - - Cnnnon 
43 579-132 Glacial S. Clay CL 0 11 89 25 2.66 .52 29 16 13 15.2 110.1 DS - - - Cannon 
44 539-IH Glacial Silty Clay CL 0 0 94 31 2.68 .61 34 15 19 17 .o 107 .3 DS - - - Caii.r.on 
45 573-Bl Glacial S, Clay CL 0 36 64 17 2,66 .41 22 15 7 12.1 118.7 DS 14 0 35 Cannon 
46 575-B1 Glacia 1 S,Clay, Silt (CL-ML)O 26 74 23 2.67 .26 20 14 6 14.0 113.7 DS 15.2 0 32 Cannon 
47 578-B1 Glacial S.ClayCL 0 15 85 27 2.67 .48 30 17 13 16.2 109.1 DS 18.5 0 32 Cannon 
48 578-32 Glacial S. Clay CL 0 9 91 23 2,69 .64 34 16 13 16.5 108.0 DS 19 .o 0 28 Cannon 
49 579-Bl Glacial Silty Clay CL 0 9 91 27 2.66 .52 29 15 14 16.0 104.0 DS 17.8 0 36 Can0on 
50 l:f-1750 Residual S. Clay CL - - - - 2.69 - 22 14 8 12.2 119.9 DS - - - Dc~..;een 

51 1752 Rcsidu::~l S. Clay CL - - - - 2.69 - 22 13 9 11.8 121.3 DS - - - DcQueen 
52 1753 Residual S. Clay CL - - - - 2.64 - 22 l3 9 11.9 121.7 DS - - - De Queen 
53 17 51 Residual S. Clny CL 0 50 50 13 2.64 .64 23 13 9 11.9 122.4 DS 12.2 .2 33.1 DeQuecn 
54 3754 Residual S. Clay CL - - - - 2.69 - 23 18 10 14.0 111.8 DS - - - D.; Queen 
55 17 SG Residual S.ClayCL - - - - 2.68 - 26 13 13 12.5 120.0 DS 12.3 .4 32.6 De Queen 
56 9825 Residual Silt Sandy (CL-ML) 0 56 44 15 2.67 .13 18 14 4 12.2 118.2 DS - - - DcQueen 
57 9328 Residua 1 S. Clay CL 0 47 53 14 2.64 .71 24 14 10 14.1 116.1 DS - - - DeQueen 
58 17 923 Residual S. Clay CL 0 20 80 21 2.64 .43 22 13 9 13.2 116.3 DS 15.2 0 35.9 DeQueer. 
59 . 17924 Residual Clay, S (CL-NL) 0 47 53 20 2.72 .35 19 12 7 11.9 119.6 DS 14.0 0 35.5 DcQueen 
60 17%0 Rcsidunl Clay, S (CL) 0 32 68 20 ·2.69 .55 23 12 11 13.0 117 .o DS 15.1 0 24.9 DeQueen 
61 17943 Resid:Jul Clay, S (CL-ML) 0 40 60 14 2.68 .so 20 13 7 13.5 117 .o DS 15.6 .1 36.3 lft1Queen 
62 17449 R£si.du31 Clay, S, (CL) 0 42 53 18 2.70 .44 '· 22 14 8 13.9 115.0 DS 16,1 .1 35.7 DcQuee!l 
63 17 Glacial Clay, S. (CL) 0 3 97 23 2.69 .83 39 20 19 16.8 106.5 DS - - Saylorville 
64 14 Glacial S. Clay (CL) 0 40 60 25 2.71 .84 35 14 21 12.8 116.3 DS - - - Seylorvi11e 
65 173 Glacial Clay CH - - - - 2.69 - 55 21 34 20.2 103.1 DS - - - ear lyle 
66 33-1 Glacial Clay CH - - - - 2.69 - 53 21 32 21.9 100.1 DS - - - Carlyle 
67 33-2 Glacial Clay CL - - - - 2.67 - 35 17 18 16 .o 111.7 DS - - - Cnrlyle 
68 34-1 Glacial Clay CL - - - - 2.67 - 38 20 18 18.4 • 103.4 DS 18 .o .18 25 .o Carlyle 
69 50-1 Glacial Silty Clay - - - - 2.63 - 34 17 17 16.4 109.5 DS 22 0 33 Carlyle 
70 50-2 Glacial Clay CL - - ~ - 2.68 - 36 17 19 16.2 109.9 DS - - - Carlyle 
71 62-1 Glacial Clay CL - - - - 2.6!! - 40 20 20 18.8 104.4 DS 18.1 .08 27 Carlyle 
-') 
~~ 157-1 Glncial Clay CL - - - - 2.70 - l•2 18 2l• 17 .2 107.8 DS 23.0 .02 29 Carl::le 

t-:"' 
N 
w 



TABLE V ~ SUMMARY OF SOIL TEST DATA 

Primary Laboratory Com2action Data Shear - Data 
Observation Soil Classification Mechanical Analysis Sp. Act, Opt, Nax.Dry Test 
!.;o' Division (Unified Soil) Gravel Sand Fines %Clay Gr. Coef£. LL PL PI Water Density Type lVC c tJ Project 

73 177·2 Glacial Clay CL - - - - 2.69 - 37 20 17 16,6 109,0 DS 19,4 0 34 Carlyle 
74 mf'-1 Glacial Clay CH - - - - 2,71 - 64 21 43 22,6 97.3 DS 23,0 .02 29 Carlyle 
75 160-1 Glacial Clay CL - - - - 2.69 - 37 18 19 17 .o 107.2 DS 19,0 .08 23,8 Carlyle 
76 175-1 Glacial Clay CL - - - - 2.68 - 40 20 20 17.2 107.9 DS - - - Carlyle 
77 6 Gbcial Clay CL - - - - 2.68 - 46 19 27 17.5 103.7 DS 16 .13 27.5 Carlyle 
78 22 Glacial Clay CL - - - - 2.69 - 42 17 25 16.5 108,2 DS 16 ,24 25.1 Carlyle 
79 34 Glacial Clay CL - - - - 2.67 - 38 20 18 18.4 103,4 DS 18 ,18 25 Carlyle 
60 53 Glacial Clay CL . - - - 2.70 - 42 16 26 17.6 106.3 D3 21 0 25.6 Carlyle 
81 66 Glacial Clay CL - - - - 2.72 - 39 18 21 19.0 103.0 DS 24 0 30.9 Carlyle 
82 7 Glacial Clay CL 0 6 94 18 2.67 .55 30 20 10 18.5 105.2 DS 28.2 0 32.4 Rend Lake 
83 1 Glacial Clay CL - - - - 2,67 - 26 15 11 14.0 114.0 DS 18.6 0 31.5 r..end L.:!ke 
54 7 Glacial Clay CL - - - - 2.70 - 38 16 22 15.7 110.6 DS 19.8 .06 25.3 Rend Lake 
85 11 Glncial Clay CL - - - - 2.69 - 40 20 20 21.0 99.9 DS 27.9 .01 26.1 Rencl L"lke 
86 3 Glacial S. Clay CL 0 19 81 23 2.69 .70 33 17 16 14.5 114.9 DS 14.4 0 34 !l.e:nd Lake 
87 29 Glacial Clay CL 0 13 87 24 2,66 ,71 38 31 17 16.3 .109.3 DS 19.1 .15 33 Rend L:!kc 
88 31 Glacial Clay CL 0 8 92 27 2.68 .56 33 18 15 18.8 105.1 DS 21.4 .11 32 Rend Lake 
89 572 Glacial Clay CL 0 4 96 35 2,66 .74 49 23 26 21.6 100,1 DS 24.1 ,13 24 Rend T~1":2 

90 573 Glacial S. Silt (ML) 0 33 67 18 2.64 ,06 17 16 1 12.8 118.4 DS 16.5 .05 3-'1- Rend I.oke 
91 611 Glacial Clay CL 0 13 87 28 2.66 .64 40 22 18 17.4 105.2 DS 23.0 .05 34 Rend L'lke 
92 613 Glacial s. Clay CL 0 28 72 15 2.70 .54 26 18 8 13.5 116,1 DS 16.3 ,08 35 Rend I.Nke 
93 60 Glacial S, Clay CL 0 22 78 20 2.69 .65 24 16 13 13.5 116.3 DS 16.4 ,06 33 Rend Lake 
94 42 Glacial S. Clay CL 0 ' 26 74 23 2.70 .87 38 18 20 16.4 115.4 DS 19.8 .10 30 Rend Lake 
95 11 Residual S. Clay CL 0 23 77 - 2.70 - 33 22 11 18.4 103,3 DS 19.5 0 29,6 Carr Fork Res, 
S6 . 17 ".esidual S. Clay CL 0 38 62 15 2.70 .75 29 19 10 15.2 112.7 DS 17 0 30,7 Carr Fork Res, 
97 35 Residual S. ClayCL 0 26 74 15 2.67 .60 29 20 9 16.4 108.2 DS 18 0 31 Carr Fork Rea, 
93 C-A Residual S. Clay CL 15 24 61 - 2.74 - 30 20 10 14.2 118,0 DS 17 0 28 Carr Fork Res. 
99 11765 Residual Clay CL 7 40 53 19 2.68 1.42 38 11 27 llf.O 113.2 DS 14 0 25 Proctor Res. 

lCO 11763 Residual Clay CL 0 7 93 30 2.68 1.00 43 18 30 18.5 101,9 DS 19 0 23.6 Proctor Re:J. 
101 11746 Residual Clay CH 0 22 78 17 2.72 2.30 52 13 39 18.5 105.9 DS 18 .15 16.2 Proctor Res. 
102 117E4 "!~ Clay CH 0 12 88 25 2.66 1.56 54 15 39 20.8 100.2 DS 21.5 ,30 16.3 Proctor Res. 
103 911 * S. Clay CH 0 20 80 20 2,74 1.40 47 19 28 23.2 100.0 DS - - - Optima Res. 
104 T?-1 * S. Clay CL 0 49 51 - 2.65 - 37 17 . 26 14.8 110.0 ns 14.6 0 35 Optima Res.· 
105 1 Residual Clay CH - - - - - - 84 41 43 19.5 99.0 DS 14.0 0 17 Clinton Res. 
IG5 2 Residual Clay CL - - - - - - 32 18 14 15.5 112.0 DS 16 0 27 Clinton Res. 
107 3 Residual Clay CH - - - - - - 82 42 40 20.0 99.0 D3 19 0 17 Clinton Res. 
108 4 Residual Clay CH - - - - - - 61 23 38 21.0 98.0 DS 21.5 0 21 Clinton Res, 

* Soils of the filled valleys and Great Plains outwash mantles 

. 
1-' 
N 
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TABLE V - SUMMARY OF SOIL TEST DATA 

Primary Laboratory Comeaction Data Shear - Data 
Observation Soil Classification Mechanical Arutl)!eiiJ Sp. Act. Opt, Hax.Dry Type 
~o. Division (Unified Soil) Gravel Sand Fines~Clay Gr. Coe£f. LL PL PI Water Density Test we c (J Project 

109 s Residual Clay CH - - - - - - 58 26 32 23.5 94.5 DS 30 0 23.3 Clinton Res. 
110 7 Residual Clay CH - - - - - - 58 21 37 25.0 97.0 DS 25.5 0 24 Clinton Res. 
111 8 i\csidual Clay CH - - - - - - 61 21 40 21.5 90,5 DS 24.0 Q 21.5 Clinton Res. 
112 10 :1\.esidual Clay CL - - - - - - 40 19 21 17.5 106.5 DS 20.5 0 28 Clinton Res. 
113 ll Residual Clay en - . - - - - 63 23 40 24.5 94.0 DS 28.5 0 21 Clinton Res. 
114 13 Residual Clay CL . - . . - - 41 23 18 18.5 101,0 DS 20.5 0 24 Clinton Res, 
115 15 Residual Clay CH - - - - - - 51 19 32 24.0 97,5 DS 27 0 23 Clinton Res. 
116 16 Residual Clay CH - - - - - - 55 20 35 20.0 99.5 DS 23.5 0 23.3 Clinton Res. 
117 17 Residual Clay CL - - - - - - 48 21 27 21.0 98.0 DS 21 0 26 Clinton Res. 
118 18 Residual Clay CL - - - - - - 43 19 24 20.0 101,0 DS 23 0 24.7 Clinton Res. 
119 20 Residual Clay CL - - - - - - 39 21 18 18.5 104.5 DS 21.5 0 24 Clinton ;-~es. 
120 21 Residual Cl;:.y CL - - - - - - 44 17 27 20.0 103.0 DS 22.5 0 26 Clinton Res, 
121 22 Residual Clay CL - - - - - - 49 22 27 22.5 97.5 DS 26.5 .20 24 Clinto::: Res, 
1"" ~ ... 23 Residual Clay CL - - - - - - 37 18 19 17.5 107.5 DS 18.5 0 30 Clinton Res. 
123 24 Residual Clay CH - - - - ~ - 42 16 26 20,0 102.0 DS 22 0 25.0 Clinton Res. 
124 26 Residual Clay CH - - - - - - 40 15 25 20.0 lOlf.o DS 22.5 0 26 Clinton Res, 
125 33 Residual Clay CL - - - - - - 44 16 28 21.0 101,0 DS 23.5 0 25 Clinton Res. 
126 35 Residual Clay CH - - - - - ·- 54 15 39 21.5 ·99.5 DS 24 0 21 Clinton Res. 
127 64C Residual Clay CL 0 28 72 15 2.69 ,60 26 13 9 12.1 118.7 DS 12.5 0 36.3 Canyon Dam 
l~Q '-- sse Residual Clay CL 0 33 67 15 2.68 .80 25 13 12 13.8 115.7 DS 13.8 0 35.3 Canyon Dam 
129 71C Residual Clay CL 0 , 17 83 25 2.70 .96 35 11 24 15.6 112.6 DS 15.8 0 21 Car.yon Dam 
130 61C Residual Clay CL 0 20 80 25 2.66 .so 33 13 20 16.1 108,4 DS 16.0 0 31.2 Canyon r.:m 

.131 66C Residual Clay CH 0 11 89 30 2,63 1.30 55 16 39 24.2 96.5 DS 24.2 .4 15.9 Canyon D:.m 
132 4443 * Clay CL 0 12 88 35 2.67 1.06 49 14 35 16.4 109,7 DS 17.1 0 22 Bnrdwell 
133 4434 * Clay CH 0 19 81 18 2.67 2.34 62 20 42 23.6 95.4 DS 23.6 0 21.5 Jmrdwell 
134 4440 * Clay CH 0 28 72 - 2.65 - 58 16 42 19.5 102.6 DS 19.9 0 22 Bardwell 
135 441+1 * Clay CH 0 2lf 76 24 2.66 1.74 57 14 43 15.8 109.8 DS 16.4 0 17.1 Eardwell 
135" 4442 * Clay CH 0 7 93 40 2.66 1.30 72 20 52 24.4 95.6 DS 24.0 0 16.4 Bard...-ell 
137 4444 ** Clay CL 0 27 73 23 2.67 1.09 37 12 25 14.9 113.2 D3 15.7 0 27.2 Bardwell 
133 B39 ** Clay CL 0 40 60 - 2.69 - 26 13 13 12.3 118.0 DS 12.0 .24 34 AbiQuiu 
139 32 ** Clay CL 0 29 71 - 2,72 - 31 15 16 15.1 113.0 DS 14.9 .06 31.2 AbiQuiu 
ll>O B-2-3 ** Cla;i CL 0 30 70 - 2.74 - 29 13 16 13.7 117.2 DS lt: .o .27 28,4 AbiQuiu 
141 B-1-4 ** Cl;:y CL 0 35 65 7 2.70 2.57 32 14 18 15.4 111.9 D~ 

, (~. ,, .... .. :. .20 25.7 AbiQuiu 
142 1-5 ** Clay CL 2 38 60 10 2.71 1.90 33 14 19 15.0 113.4 D3 !.:J. 5 .20 29.6 AbiQuiu 
1'·3 1~6 .... "=* Clay CL 1 29 70 23 2,71 .78 34 16 18 14.1 114.3 f;S :..· .. 0 .21 29.6 AbiQuiu 
144 1-7 ** Clay CL 7 21 72 32 " ~"! t...l- ,88 48 20 28 16.0 110.7 DS lu.l .53 27 .6 AbiQuiu 

* Soils cf the Coastal Plains; ** Soils of the Filled Valleys and Great Plains outwash mantles 
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166 15 Residual Clay en 0 15 85 - 2.77 - 17 29 48 31 
167 16 Residual Clay CL 0 20 80 - 2.64 - 30 .20 10 16 

'168 .A-20 Rcsidunl Clay CL 0 9 91 - 2,68 - 42 18 24 17.5 
169 A-30 Residua 1 S, Clay CL 0 35 65 - 2.69 - 23,6 13.1 10.5 12.2 
170 36-1 Residual S, Clay CL 0 37 63 - 2.68 - 23.9 13.2 10.7 12.4 
171 36-2 Residual S, Clay CL 0 42 58 14 2.68 .85 24.9 13.0 11.9 12.7 
172 B-5 Residual Clay CL 0 7 93 21 2.65 .48 39.6 19.5 10.1 18.2 
173 10 Residual S, Clay CL 0 22 78 - 2.67 - 26,2 15.1 11.1 12.5 
174 20 Residual s. Clay CL 0 24 76 - 2.67 - 24.6 14.3 10.3 v •• o 
175 13 Residual S. Clay CL 0 37 63 - 2.68 - . 23.2 12,0 10.3 12.0 
176 33 Residual S, Clay CL 0 26 74 - 2.68 - 39.3 15.5 23.8 16.0 
177 17 Residu~l S, Clay CL 0 24 76 23 2,67 .so 32.2 13.8 18.4 14.6 
178 32 Residual S, Clay CL 0 s 95 - 2.65 - 35.3 16,6 18.7 15.6 
179 41 Residual S, Clay CL 0 45 55 - 2.66 - 22,1 14,3 7.8 12.0 
180 62 Residual S, Clay CL 0 40 60 - 2.67 - 23.3 13.6 9.7 11.9 

* Soils of the Coastal Plain 
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TABLE V - SUMMARY OF SOIL TEST DATA 

Primary Laboratory ·comEaction Data 
Observ!l tion Soil Classification Mechanical Analysis Sp, Act, Opt, 11ax.Dry 
l\c. Division (Unified Soil) Gravel Sand Fines %Clay Gr, Coeff, LL PL PI Water Density 

181 36 Residual S. Clay CL 0 15 85 - 2.68 - 28.4 14.9 13.5 13.5 116.7 
182 1 Residual Clay CH - - - - - - 51 22 29 21 102.0 
133 2 Residual Clay CL - - - - - - 37 14 23 16.3 106 .o 
184 3 Residunl Clay CL - - - - - - 41 19 22 17.5 108.0 
185 4 Residua:!. Clay CL - - - - - - 49 19 30 16.5 104.0 
186 5 Residual Clay CL - - - - - - 40 20 20 18.0 104.0 
187 6 Residual Clay CH - - - - - - 63 24 39 24.0 96.5 
138 7 Residual Clay CI, - - - - - - 36 11 15 16.0 107.0 
189 s Residual Clay CL - - - - - - 44 20 24 21.0 102.4 
190 9 Residual Clay CL - - - - - - 49 19 30 22.0 100.5 
191 10 Residual Clay CH - - - - - - 42 22 20 17.5 104.0 
192 11 Residual Clay CL - - - - - - 55 24 31 21.0 99.5 
193 12 Residual Cl.:ly CL - - - - - - 42 20 22 19.0 103.0 
194 13 Residual Clay CL - - - - - - 44 21 23 16.0 106.5 
195 14 Residual Clay CH - - - - - - 65 24 41 25 94.5 
196 15 Rc!lidual Clay CL - - . - - - 37 20 17 17 105.5 
197 16 Residual Clay CL - - - .. - - 36 19 17 17.7 103.0 
1'18 17 Residual Clay Cll " - - - - - 59 23 36 28.0 98.5 
E'9 18 Residual Clay CH - - - - - - 47 23 24 22.0 100.5 
200 20 Residual Clay CL - - - - - - 39 20 19 17.2 108 .o 
201 21 Residual Clay CL - - - - - - 40 27 19 20.3 105.0 
202 22 Residual Clay CL - - - - - - 46 20 26 19 103.5 
203 23 Residual Clay CL - - - - - - 46 20 26 20 101.0 
20'• 24 Residual Clay CL - - - - - - 49 32 17 20,5 102.5 
205 25 Residual Clay CL - " - - - - 55 25 30 22 100.5 
206 26 Residual Clay CL - - - - - - 59 24 35 20.1 105 .o 
207 1 Resid'lal }lL 0 43 57 - 2.57 - 41 26 15 18,2 106 .o 
203 3 Rasidual HL 0 49 51 - 2.64 - 42 28 14 18.2 106 .o 
;,::.~g 5 Residual HL 0 46 54 - 2.66 - 37 15 22 20.0 104.1 
210 c-8 Residual CH 0 45 55 - 2.65 - 52 27 25 19 .s 103.1 
211 C-9 Residual l1L 0 62 38 - 2,67 - 41 32 9 16.4 108.3 
212 C-15 Residual CL 0 48 52 - 2.68 - 38 26 12 18,4 104.3 
213 C-16 Residual HL 0 55 45 - 2.70 - 34 29 5 16.4 105 ,8. 
214 C-21 Residual l1L 0 60 40 - 2.72 - 26 27 5 16,2. . 111,8 
215 BB Residual Clay CL 0 25 75 - - - 47 20 27 19.0 106.0 
216 BA Residual Clay CL 0 31 69 - - - 35 18 17 15.6 113,2 

Shear - Data 
Test 
Type we c 

DS 13.2 ,60 
DS 23 0 
DS 19 0 
DS 21 0 
DS 15 0 
DS 22 0 
DS 29 0 
DS 19 0 
DS 23 0 
DS 24 0 
DS 21 0 
DS 26 0 
DS 23 0 
DS 20 0 
DS 27 0 
DS 15 0 
DS 21 0 
DS 25 0 
DS 25 0 
DS 19 0 
DS 23 0 
DS 22 0 
DS 23 0 
DS 23 0 
DS 25 0 
DS - 0 
DS 13 .11 
DS 19 ,10 
DS 21 .49 
DS 22 .13 
DS 16 0 
DS 20 0 
DS 16 0 
DS 16 0 
DS 16 0 
DS - -

(; 

33.5 
21 
29,5 
27 .s 
26.5 
26.5 
18.5 
31,5 
25.6 
27.5 
27.5 
19.3 
23.8 
23.4 
21 
27.5 
31.5 
22.5 
26.5 
31.0 
25.5 
27.5 
28.5 
26.5 
25.5 
31 
2t, 
35 
17 
3S .. ~: 
37.5 
35 
41.5 
35.5 
35.5 
-

Project 

Table Rock Dam 
Melvern 
Nclvern 
Ne.lvern 
Y.elvern 
Y~lvt:rn 

Helvern 
Mclvc::n 
1-f.elvern 
Hclvcrn 
Hclvern 
Melvern 
Mclv~rn 
Melvern 
Melvern 
MclvE!rn 
Helvcrn 
Hclvcrn 
l-ielvern 
Hclvcrn 
Helvern 
~lvcrn 

Hclvern 
Hclvern 
Melvern 
Melvern 
l:!artwe 11 Res, 
Har~·ell Res, 
Hartwell Res. 
Ha rtwe 11 Res • 
Hartwell Res. 
Hartwell Res. 
Hartwell Res. 
Hartwell Res. 
Bruce-Eddie Dam 
Bi:uce-Eddie Dam 
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TABLE V - SUMMARY OF SOIL TEST DATA 

Primary Laboratory . ComEaction Data 
Cbserva tion Soil Classification Mechanical Analxsis Sp. Act. Opt, Max. Dry 
1'\0, Division (Unified Soil) Gravel Sand rines %Clay Gr. Coeff. LL PL PI Water Density 

217 A-26 Residual Silt ML 0 22 78 - - - 32 24 8 16.7 111.7 
218 AP·l9 Residual Silt (CL-ML) 0 35 65 - - - 26 21 5 14,0 117,6 
219 AP-5 Residual Clay CL 0 45 55 - - - 38 22 16 15.0 117.2 
220 AP-l. Rcsidt•al Clay CL 0 38 62 - - - 37 23 14 15.0 114.3 
221 AP-76 Rcs:!.dual Clay CL 0 22 78 - - - 36 19 17 14.6 114.0. 
222 AP-70 Residual Clay CL 0 8 92 - 2.73 - 39 18 21 19.3 107 .o 
223 73 Residual Clay CL 0 7 93 25 2.71 ,88 41 19 22 20.3 103.0 
Z24 B-63 * Clay CH 0 3 97 - 2.60 - 58 27 31 27.8 89,5 
225 7-1 * Clay CL 0 14 86 - 2.61 - 46 26 20 22.0 100.5 
226 7-2 * Clay CH 0 8 9Z - 2.67 - 56 26 30 24.0 96.4 
227 12-1 ';'f. Clay CL 0 44 56 - 2.62 - 37 20 17 17.0 108.0 
223 27-l * clay en 0 22 78 - 2.58 - 45 22 23 21.2 101.0 
229 7-3 * Clay CH 0 5 95 - 2.62 - 62 26 36 24,8 94.9 
230 C-2 * Clay cr. 0 20 80 - 2.64 - 1,8 22 26 19.8 104.2 
231 32820 Residual Clay Cl! 0 17 83 34. 2.59 1.03 59 24 35 27.5 90.8 
232 32319 Residual Clay CL 0 42 58 18 2.66 1.28 '•4 21. 23 22.3 101.0 
233 ::j076 Residual Clay CL 0 32 68 - 2.65 - 52 26 26 25.5 94.8 
234 103 ** C!ay CL - - - - - - 29 7 22 15,2 114.0 
235 105 ** Clay CL - - - - - 28 16 12 14.6 116.0 
23& 242 ** Clay CL 0 23 77 - 2.69 - 43 18 25 17.9 109.0 
23f> 254 ** Clay CL 0 2 98 - 2.73 - 48 25 23 19.2 107 .o 
239 B9 ** Clay CL 0 4 96 - 2.72 - 42 17 25 16.7 110.6 
240 C-A Residual Clay CL 0 '• 96 25 2,67 ,86 43.5 22 21.5 18 .o 106.8 
241 C-B Residual Clay CH 0 5 95 48 2.74 .76 61.1 24.7 36.4 26.5 95.5 
2!12 c-c Residual Clay CH 0 17 83 42 2.74 1.06 68,7 24.0 44.7 22.7 100.0 
2lt3 C-D Residual Clay CL 0 11 89 32 2.76 .71 40.4 17.6 22.8 16.4 110.5 
2L.4 C·A Glncial Clay CL 15 22 63 22 2.75 .57 32.1 19.5 12.6 12.8 122.6 
.245 c-c Glacial S. Clay CL 23 24 53 13 2.74 .82 30.1 19.4 10.7 12.6 123.0 
246 e-x Glacial S, Silty Clay CL 6 13 81 8 2.69 1.00 30,3 22.1 8.2 16.6 108,0 
2!,7 C-Y Clacia 1 S Cr Clay CL 26 16 58 - 2.73 - 29.2 19,1 10.1 lQ,g 125.5 
:..:..,o c-z Gleci~l Gr S, Clay CL 13 24 63 - 2.75 - 28 17.3 10.7 11.4 124.8 
249 C-A Glaci~l S. Clay CL 3 22 75 16 2.66 1.25 38.3 18.2 20.1 15.5 112.0 
250 C•B Glacial G't'. S. Clay 13 32 55 14 2,66 1.24 35,4 18.0 17.4 13,9 114.3 
251 C·F Glacial Silty Clay 0 10 90 20 Z.69 ,38 30.5 22.9 7 ,lj l7 ,6 108,0 
252 C-G Glacial Cr. S. Clay 13 24 63 25 2.71 ,69 41.7 24.5 17.2 17 .s 10.5.8 

* Soils of the Coastal Plains; ** Soils of the Filled Valleys and Great Plains outwash mantles 

__2hear - Data 
Type 
Test we c 

DS - -
DS - -
DS - -
DS - -
DS - -
·ns 22 0 
DS 18 0 
DS - -
DS - -
OS - -
DS - -
DS - -
DS 25.5 0 
DS 20.3 0 
DS 27.2 0 
DS 21.5 0 
DS 23.4 0 
DS - .03 
DS - 0· 
DS - .12 
DS - 0 
DS 12.5 0 
DS - -
DS 31.3 .18 
DS 27.2 .17 
DS 21.4 .09 
DS 18.1 0 
DS 17.6 0 
DS 17.9 0 
DS 13.9 0 
DS - -
DS 18,7 ,25 
DS 18,9 .15 
00 20,6 .05 
DS 25 0 

(J 

-
-
--
-
30 
27 
-
--
-
22 
24.5 
22 
30 
32 
25 
29 
19 
23 
23 
-
18,1 
23 
26 
23.2 
28.4 
:n.5 
31.3 
-
18.4 
23.5 
:n.4 
.31.4 

Project 

Bruce-Eduie Da:n 
Bruce-Eddie Dam 
Bruce-Eddie Da:n 
Bruce-Eddie Dam 
Bruce-Eddie Da:n 
Bruce-Eddie Dat:1 
Bruce-Eddie Dam 
Okstibbcc Crc~k 
Ok.atibbec Creek 
Okatibbec Creek 
O~tibbec Creek 
Ok:ltibbec Creek 
Okatibbec Creek 
Okatibbec Creek 
Hartis Creek 
Martis Creek 
Martis Creek 
Coyote Valley 
Coyote Valley 

. Coyote Valley 
Coyote Valh:y 
Coyote Valley 
~nnroe Reservoir 
Honroe Reservoir 
Monroe Reservoir 
Monroe Reservoir 
Union City 
Union City 
Union City 
Union City 
Union City 
Green River 
Green River 
Green River 
Grean River 
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TABLE V - SUMMARY OF SOIL TEST DATA 

Primary Laboratory Co!!!!!action Data Shear - Data 
Observation Soil Classification Mechanical Analzsis Sp. Act, Opt. Max.Dry Type 
No. Division (Unified Soil) Gravel Sand Fines 7.Clay Gr. Coeff. LL PL PI Water Density Test 'IVC c ~ Project 

253 C·l Glacial S. Clay CL 0 15 85 15 2.67 .70 32,6 22.1 10.5 20.0 104.6 DS 22.5 0 29.5 Green River 
254 C-2 Glacial Clay CL 0 15 85 24 2.69 .51 33.1 20.9 12.2 18,6 108.2 DS 21.6 0 30.6 Green River 
255 C-3 Glacial clay ct 13 12 25 18 2.69 .75 36 22.5 13.5 18.6 107.8 DS 20.7 0 31.0 Green River 
256 A Residual s. Clay CL 0 31 69 24 2.70 .55 30.9 12.7 13.1 16.4 111.4 DS 17.6 0 32 Cpue Run 
257 c Residual S. Clay CL 0 30 70 15 2.68 .77 28 16.5 11.5 15.7 112.3 D3 17 0 31 Cpue Run 
258 D Residual S. Clay CL 0 8 92 35 2.73 .59 .41.7 21 20.7 17 109.8 DS 19.2 0 23 Cpue Run 
259 64487 wcssis1 S. Silt ML 2 46 52 10 2.68 ,69 30.3 23.4 6.9 17.3 106.2 DS - - - Eau Gnlleau 
260 634176 Loessial S. Clay CL 0 36 64 25 2.73 .57 29.7 15.5 14.2 15.5 114.2 DS 15.5 0 18.8 Eou Gallc:lU 
261 634175 Loessial S. H Clay (CL-ML) 0 10 90 13 2.72 .45 26 20.2 5,8 15.5 113.2 DS 15.6 0 31.8 Esu Galle$lu 
262 64489 Loessia1 S. H Clay (CL•ML) 0 5 95 15 2.70 .43 26.8 20.3 6.5 16.0 111.5 DS 15.9 0 36.2 Eau Gallcau 
263 64400 Loessial C. Clay CL 3 28 69 28 2.73 .37 37.2 16.9 10.3 16.0 112.8 DS 16.1 0 26.3 Eau Gallcau 
264 10634 Residual Clay CL 1 17 82 - 2.71 - 28 13 15 13.8 114.5 DS 14 .1 29.8 Waco 
255 10637 Residual Clay CL 7 25 68 - 2.69 - 29 13 16 12.7 118.3 DS 13 .1 28.5 Waco 
266 10626 Residual Clay CL 4 32 64 - 2.62 - 30 12 18 16.0 110.2 DS 16 0 25.7 Waco 
267 10636 Residual Clay CL 2 23 75 - 2.64 - 37 15 22 15.2 110.2 DS 15 .1 23.8 'ibco 
268 10630 Residual Clay CL 0 14 86 - 2.67 - 43 13 30 16.4 109.5 DS 17 0 23 Waco 
269 10630 Residual Clay CL 0 7 93 - 2.64 - 46 15 31 18.7 102.7 DS 19 .1 26.7 Waco 
270 10631 Residual Clay CL 0 7 93 - 2.64 - 46 15 31 22.4 96.6 DS 22 .2 27 Waco 
271 10632 Residual Clay CL 0 14 86 - 2.67 - 43 13 30 19.3 101.3 DS 20 0 23 Waco 
272 A-ll ** Clay CL 0 26 74 18 2.69 .78 25 11 14 13.0 116.2 DS 11.2 .2 33.4 Hugo 
273 A-18 ** Clay CH 0 6 94 59 2.71 .78 66 20 46 22.2 98.4 DS 20.4 .3 22.3 l!.ugo 
274 C-12 ** Clay CL 0 32 68 34 2.69 .77 39 13 26 15,8 110.0 DS - - - Hugo 
275 D-14 ** Clay CL 12 26 62 28 2.72 1.00 42 14 28 16.4 110.1 DS - - - Hugo 
276 "B-3 Glacial Clay CL 9 35 56 - 2.74 - 30 15 15 14.3 110.0 - - - - Weatville 
277 U-9 Residual Clay CH 0 0 100 - 2.69 - 54 28 26 *22 100.0 DS 30 .61 12 Tuttle Creek 
278 U-10 Residual Clay CL 0 2 98 - 2.69 - 40 23 17 *18 108.0 DS 37 .23 15 Tuttle Creek 
279 U-10 Residual Clay CH 0 0 100 - 2.72 - 63 24 39 *23 102.0 DS 30 .27 10 Tuttle Creek 
280 Tl'19 Residual Clay CL 0 2 98 - 2.65 - 36 14 22 *14 118,0 DS 12 0 30 Tuttle Creek 
281 C-53 Residual Clay CL 0 0 100 - 2.68 - 37 15 2~ 21 100.0 DS 16 .40 11 Tuttle Creek 
Z82 C-33 Residual Clay CL 0 0 100 - 2.68 - 37 15 22 21 100.0 DS 20 .40 13 Tuttle Creek 
283 D·li7 Residual Clay CL 0 4 96 - 2.69 - 41 23 18" 20 102.8 DS 26 .40 23.3 Tuttle Creek 
284 D~l77 Residual Clay CL 0 4 96 - 2.69 - 41 23 18 20 102.8 DS 25 .20 19.3 Tuttle Creek 
2!!5 D-347 Residual Clay CL 0 5 95 - 2.68 - 33 18 15 19 101.0 DS 24 .12 22 Tuttle Creek 
286 D-199 Residual Clay CL 0 10 90 - 2.66 - 32 23 9 19 103.5 DS 18.8 .18 28 Tuttle Creek 
287 D-199 ~sidual Clay CL 0 10 90 - 2.66 - 32 23 9 19 103,5 DS 24 .07 28 Tuttle Creek 
288 A Glacial S, Clay CL 0 37 63 12 2.71 .99 26.6 14.7 11.9 12.6 121.0 DS 14.9 0 30 Buck Creek 

** Soils of the Coastal Plains 
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TABLE V - SUMMARY OF SOIL TEST DATA 

Primary Laboratory Comeaction Data 
ObMt'Vation sou c las df:l.es t:l.on Mechanical Anali•i• Sp. Act, Opt. 'Hax.Ih:y 
Nc. Division (Unified Soil) Gravel Sand Fi~es %Clay Gr, Coef£. LL PL PI Water Density 

289 B . Glacial S Silt. C1ay_(CL·ML) 9 43 48 9 2.74 .79 19.7 12.6 7.1 8.9 130.1 
290 c Glacial S Silt Clay(CL·ML) 2 38 60 7 2.66 1.00 24.1 17.1 7 .o 14.7 113.3 
291 644 Loessial Clay CL - - - - 2,70 - 35.3 20.8 14.5 19.8 104.9 
292 644 IDessia1 Clay CL 0 2 98 18 2.74 .62 30.6 19.5 11.1 16.5 110.7 
293 Y-36 IDessia1 Clay CL 0 0 100 - 2.69 - .38.9 20.4 18.5 20.9 104.3 
294 Y-37 Loessia1 Clay CL 0 0 100 5 2.70 2.04 30.5 20.3 10,2 16.5 109.5 
295 Y-38 Loessial Clay CL 0 0 100 18 2.73 .64 32 20.5 11.5 17,6 108.8 
296 Y-304 Loessial Clay CL 0 2 98 24 2.73 1.01 43.2 19.1 24.1 21.4 102.6 
297 Y-305 U:lessia1 Clay CL 0 2 98 10 2.73 1.07 24.9 19.2 10.7 17.2 109.0 
29S I.B-3 Residual Clay CL 3 32 65 13 2.69 .69 28 19 9 12.2 117.4 
299 p Residual Clay CL - - - - 2.70 - 28 19 9 14.4 116.2 
~·)0 366 Residual Clay CL 0 39 61 17 2.69 .65 30 19 11 12.6 117.4 
301 3 Residual Silt ML 0 49 51 - 2.64 - lf2 28 14 18.2 106.0 
302 5 Residual Silt }1L 0 46 54 - 2.66 - 37 15 22 22,0 104.1 
303 6 Residual Silt ML 0 46 54 - 2.68 - 44 32. 17 16.8 105.3 
304 7 Residual Silt ML 0 45 55 - 2.65 - 49 27 22 19.5 103.1 
305 8 Residual Silt ML 0 62 38 - 2.67 - 41 32 9 16.4 109.3 
306 9 Residual Silt ML 0 48 52 - 2.68 - 38 26 12 18,4 104.3 
307 10 Residual Silt ML - - - - 2.70 - 34 24 5 16.4 105.8 
30$ 96 Residual Clay CL 0 25 75 28 2.75 .72 41 21 20 17.6 113.0 
309 30 Residual Clay CL - - - - 2.69 - 47 25 22 20.8 102.6 
310 21 Residual Clay CH 0 16 84 40 2.69 1.22 80 31 49 25.4 96.8 
311 15 Residual Clay CH 0 28 72 25 2.79 .44 31 20 11 14.4 115.0 
312 ·1o Residual Clay CH - - - - 2.69 - 75 30 45 26.8 90.1 
313 102 Residual Clay CH 0 21 79 44 2.69 1.02 75 30 45 26.6 91.8 
314 15 Residual Clay CL - - - - 2.79 - 31 20 11 14.4 115.0 
315 90 Residual Clay CL - - - - 2.75 - 41 21 20 17.6 113.0 
316 91 Residual Clay CL - - - - 2.68 - 42 25 22 20.8 102.5 
317 92 Residual Clay CL - - - - 2.73 - 75 30 45 26.8 90.1 

Shear - Data 
Type 
Test vi'C c 

DS 11.0 0 
DS 17.2 0 
DS 14.9 0 
DS 16.6 0 
DS 20.9 0 
DS 16.6 0 
DS 17.6 0 
DS 21.4 0 
DS 17.3 0 
DS 12.5 0 
DS 14.7 0 
DS 17.2 0 
DS 19.0 .10 
DS 21 .44 
DS 18 0 
DS 22 .13 
DS 16 0 
DS 20 0 
DS 16 o· 
DS 17.7 0 
DS 23.3 0 
DS 32.8 0 
DS 14.9 0 
DS - -
DS 21.3 0 
DS • 0 
DS 17.7 0 
DS 21.4 0 
DS 27.3 0 

~ 

31 
32 
32 
35 . 
30 
32 
30 
29.6 
33.6 
31 
31 
35 
35 
17 
41 
38.5 
37.5 
35 
41.5 
24.5 
28.5 
23 
29.3 
-
17.5 
29.5 
24.5 
30.5 
16 

Project 

Buck Creek 
Buck Creek 
La Farce 
La Farce 
La Farce 
La Farce 
La Farce 
La Farce 
La Farce 
Roysto1m 
Roysto~m 

Roystov.'tl 
Hs rtwc 11 Dam 
Hartwell Dam 
Hartwe 11 Dam 
&rt"lo.-ell Dam 
lfurtwell Dam 
Hartwell D::m 
Eartwell Dam 
New llope 
New Hope 
New Hope 
New Hope 
New Hope 
New Hope 
Carters 
Carters 
Carters 
Carters 

1-' 
w 
0 



SUMMARY OF BUREAU OF PUBLIC ROADS DATA AND 
DEVIATIONS OF ACTUAL VALUES FROM PREDICTED VALUES 

TABLE VI 

Actual-
Predicted 

Location Soil BPR Actual Predicted }Lax. Devi-
Sampled ~ Samele No, LL PL n Opt. ~· Max. _ __!i_e_nsity at ion 

l. Alabama Allen loam 27799 20 16 4 11 122 117.3 -4.7 

2. Alabama Atkins S. loam 27803 26 19 7 14 112 114.5 +2.5 

3. Alabama Capshaw silt loam 27804 21 17 4 12 116 116.8 +0.8 

4. Alabama Capshaw silt loam 27805 25 15 10 12 121 115.3 -5.7 

s. Alabama Capshaw silt loam 27806 32 20 12 15 116 111.5 -4.5 

6. Alabama Capshaw silt loau 27807 32 19 13 15 115 111.7 -3.3 

7. Alabama Capshaw silt loam 27808 37 20 17 16 113 109,3 -2.4 

8. Alabama Capshaw silt loam 27809 64 30 34 24 99 95.9 -3.3 

9. Alabama Colbert silt loam 27810 23 18 5 13 117 115.7 -1.3 

10. Alabama Colbert silt loam 27812 55 28 27 21 102 lOO.p -2.0 

ll. Alabama Clarksville silt 27813 27 23 4 17 113 113.3 +0.3 
loam 

12. Alabama Clarksville silt 27814 24 20 4 14 113 115.2 +2.2 
loam 

13. Alabama Crossville silt 27816 36 25 11 19 106 109.0 +3.0 
loam 

14. Alabama Crossville silt 27817 37 26 11 18 105 108.5 +3.5 
loam 

15. Alabama Apison silt loam 27821 21 17 4 13 112 116.7 +4.7 

16. Alabama Apison silt loam 27823 35 24 11 18 108 109.8 +1.8 
I-' 
w 
I-' 



Actual-
Predicted 

Location Soil BPR Actual Predicted P.ax. Devi-
Sampled ~ SamEle No, 11 .E.1 n Opt. ~. Max, density at ion 

,-

17. Alabama Greendale silt 27830 29 22 7 13 114 '· 112.5 -1.5 
loam 

18. Alabama Johnsburg loam 27838 25 18 7 13 117 115.0 -2.0 

19. Alabama Johnsburg loam 27839 43 24 19 19 108 107.8 -0.2 

20, Arizona Showlow loam 31799 26 19 7 14 112 114.5 +2.5 

21. Arizona Showlow loam 31801 38 19 19 12 116 109.0 -7.0 

22. Arizona Showlow loam 31802 30 19 11 15 110 112.5 +2.5 

- 23. Arizoi18 Springerville clay 31807 65 32 33 29 90 95.0 +5.0 

24. Arkansas Boswell sandy loam 33162 62 29 33 27 95 96.8 +1,8 

25, Arkansas Boswell sandy loam 33163 47 23 24 21 105 104.2 -0.8 

26. Arkansas Boswell sandy loam 33165 70 33 37 25 94 92.6 -1.4 

27. Arkansas Boswell sandy loam 33169 71 36 35 27 91 91.8 +0.8 

28. Connecticut Walpole sandy loam 31686 31 25 6 17 108 111.3 +2. 7 

29. Connecticut Walpole sandy loam 31687 24 20 4 13 117 115.4 -1.6 

30. Connecticut Cheshire sandy 32092 20 17 3 11 122 117.3 -4.7 
loam 

31. Connecticut Cheshire sandy 32097 24 21 3 15 111 115.2 . +4.2 
loam 

32. Florida Manatee sandy loam 28103 28 15 13 13 118 114.1 -3.9 

33. Florida Manatee sandy loam 28104 26 12 14 11 124 115.2 -8.8 

34. Florida Manatee sandy loam 28122 20 16 4 12 119 117.2 -1.8 

35. Florida Manatee sandy loam 28125 20 18 2 14 114 117.0 +3.0 
1-' 
w 
N 



Actual-
Predicted 

Location Soil BPR Actual Predicted Hax. Devi-
Sampled Name Sa111pkNo. 1.!;, E.1 l'.l Opt. ~· Max. density at ion 

36, Illinois Fayette silt loam 32971 28 22 6 15 108 113.1 +5.1 

-37. Illinois Fayette silt loam 32972 44 23 21 19 106 105.7 -0.3 

38. Illinois Fayette silt loam 32975 46 23 23 19 107 104.8 -2.2 

39. Illinois Fayette silt loam 32977 27 21 6 15 111 113.9 +2. 9 

40. Illinois Fayette silt loam .32980 36 26 10 18 103 108.8 +5.8 

41. Illinois Herrick silt loam 32982 39 22 17 17 110 103.1 -1.9 

42. Illinois Herrick silt loam 32984 69 32 37 24 96 93.2 -2.8 

43. Illinois Hickory loam 32986 27 21 6 14 110 113.8 +3.8 

44. Illinois Hickory loam 32987 40 19 21 17 110 108.0 -2.0 

45. Kentucky Tilsit silt loam 31445 29 23 6 17 lOS 112.5 +7 .5 

46. Kentucky Tilsit silt loam 31447 46 23 23 19 102 104.4 +2.4 

47. Kentucky Tilsit silt loam 31448 38 20 18 17 108 108.5 +0.5 

48, Kentucky Russell silt loam 31451 39 24 15 18 106 107.9 +1.9 

49. Kentucky Pembroke silt 31453 25 22 3 15 105 114.6 +9.6 
loam 

so. Kentucky Pembroke silt 31455 60 24 36 22 100 98.0 -2.0 
loam 

51. Kentucky Bewleyville silt 31457 46 25 21 19 105 104.5 -0.5 
loam 

52. Kentucky Bewleyville silt 31458 37 23 14 17 109 110,3 +1.3 
loam 

53. Kentucky Bewleyville silt 31459 43 20 23 21 103 106.5 +3.5 
loam 

1-' 
w 
w 



Actual-
Predicted 

Location Soil BPR Actual Predicted Max. Devi· 
Sampled Name SamEle No. bb !'.1 IT Opt. ~· Max. density at ion 

54. Minnesota Hayden silt loal'r. 31213 32 16 16 14 114 112.0 -2.0 

55. Minnesota Hayden loam 31215 22 19 3 12 114 116.1 +2.1 

56. Minnesota Hayden loam 31216 34 17 17 14 113 111.2 -1.8 . 

57. Minnesota Webster silty 31219 36 20 16 18 104 109.8 +5.8 
clay loam 

58. Minnesota Webster silty 31223 58 20 38 22 99 99.2 +0.2 
clay loam 

59. Minnesota Lester silt loam 31228 43 21 22 19 104 106.3 +2.3 

60. Minnesota Lester silt loam 31230 38 23 15 19 104 108.6 +4.6 

61. Minnesota Lester silt loam 31231 35 20 15 16 109 110.1 +1.1 

62. Nebraska A1tvan loam 32353 30 22 6 15 109 112.2 +3.2 

63. Nebraska Rosebud loam 32359 29 19 10 16 109 113.1 +4.1 

64. Nebraska Rosebud loam 32363 33 21 12 19 105 110.8 +5.8 

65. Nebraska Rosebud loam 32366 40 21 19 19 104 107.4 +3.4 

66. Nebraska Rosebud loam 32369 52 24 20 23 96 100.9 +4.9 

67. Nebraska Rosebud loam 32373 21 16 5 12 119 116.9 -2.1 

68. N, Carolina Georgeville silt 31332 71 37 34 29 90 91.8 +1.8 
loam 

69. N, Carolina Georgeville silt 31333 70 37 33 29 90 92.1 +2.1 
loam 

70. N. Carolina Orange silt loam 31334 24 20 4 14 112 115.3 +3.3 

I-' w 
.j::--



Actual-
Predicted 

Location Soil BPR Actual Predicted Max. Devi-
~amp led Nama S!,!!!Ele No. ~ l1 PI Opt. ~· Max. density ation 

71. N, Carolina Orange silt loam 31335 46 18 28 17 111 105.5 -5.5 

72. N. Carolina Iredell loam 31338 66 24 38 21 102 97.2 -4.8 

73. N. Carolina Davidson clay loam 31341 70 38 32 27 93 92.0 -1.0 

74. N, Carolina Davidson clay loam 31342 84 44 40 31 87 84-:9 -2.1 

75. N. Carolina Lloyd loam 31343 47 35 12 24 91 102.8 +11.8 

76. N. Carolina Lloyd loam 31344 80 44 36 29 90 86.7 -3.3 

77. Oregon Gemstony loam 32462 39 22 17 18 109 108.2 -0.8 

78. Texas Lufkin sandy loam 29075 64 25 39 20 102 96.4 -5.6 

79. Texas Lufkin sandy loam 29077 53 22 31 20 101 102.0 +2.8 

80. Texas Lufkin sandy loam 29082 61 26 35 23 98 97.5 +0.2 

81. Texas Abilene clay loam 32127 46 21 25 21 104 • 105.2 +1.2 

82. Texas Abilene clay loam 32129 32 16 16 13 118 112.0 -6.0 

83. Texas Abilene clay loam 32130 28 17 11 18 108 113.9 +5.9 

84. Texas Abilene clay loam 32133 43 16 27 15 113 106.8 -6.2 

85. Texas Abilene clay loam 32134 30 18 12 17 107 112.7 +5.7 

86. Texas Abilene clay loam 32137 34 17 17 17 111 110.9 -0.1 

87. Texas Covington silty 31544 43 31 17 23 95 105.8 +10.8 
loam 

88. Texas Covington silty 31546 80 34 46 32 87 88.0 +1.0 
loam . 

1-' w 
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Location Soil BPR 
Sampled ~ Sam2le No. LL 

89. Texas Covington silty . 31548 24 
loam 

90. Texas Covington silty 31549 27 
loam 

91. Ohio Paulding clay 31540 77 

92. Ohio Paulding clay 31542 63 

93. Alabama Litz silty loam 27840 32 

94. Alabama Linker silty loam 27844 41 

95. Alabama Melvin silt loam 27846 24 

96, Alabama Hinvale silt loam 27847 27 

97. Alabama Minvale silt loam 27848 29 

98. Alabama Talbot silty 27852 26 
clay loam 

99. Alabama Muskingum sandy 27851 22 
loam 

100. Alabama Muskingum sandy 27850 24 
loam 

Actual 
PL n 0Et· ~. 

20 4 14 117 

19 8 14 117 

32 45 26 95 

28 35 23 101 

24 8 17 107 

28 13 19 106 

18 6 12 106 

20 7 13 112 

18 11 13 117 

16 10 13 116 

16 6 12 119 

19 5 14 110 

Predicted 
Max. density 

115.2 

113.8 

90.7 

96.4 

111.0 

106.4 

115.3 

113.9 

113.2 

114.8 

116.3 

115.3 

Actual-
Predicted 
Max. Devi-
at ion 

-1.8 

-3.2 

-4.3 

-4.6 

+5,0 

.+0.4 

-0.7 

+1.9 

-3.8 

-1.2 

-2.7 

+5.3 

I-' 
w 
0'\ 



S~~RY OF BUREAU OF PUBLIC ROADS DATA AND 
DEVIATIONS OF ACTUAL VALUES FROM PREDICTED VALUES 

TABLE VII 
Opt. Devi-
at ion 

Location Soil BPR Actual Predicted Actual-
Sampled Name SamEle No, !:!! !!! ll OEt• ~· Op.t. Predicted 

1. Alabama Allen loam 27799 20 16 4 11 .122 12.5 +1.5 

2. Alabama Atkins S. loam 27803 26 19 7 14 112 14.2 +0.2 

3. -Alabama Capshaw silt loam 2.7804 21 17 4 12. 116 12.8 +0.8 

4. Alabama Capshaw silt loam 27805 25 15 10 12 121 13.6 +1.5 

5, Alabama Capshaw silt loam 27806 32 20 12 15 116 15.8 +0.8 

6. Alabama Capshaw silt lo~~ 27807 32 19 13 15 ll5 15.8 +0.8 

7. Alabama Capshaw silt loam 27808 37 20 17 16 113 17.1 +1.1 

8. Alabama Capshaw silt loam 27809 64 30 34 24 99 25.3 H.3 

9. Alabama Colbert silt loam 27810 23 18 5 13 117 13.5 +0.5 

10. Alabama Colbert silt loam 27812 55 28 27 21 102 22.2 +1.2 

11. Alabama Clarksville silt 27813 27 23 4 17 113 14.9 -2.9 
loam 

12. Alabama Clarksville silt 27814 24 20 4 14 113 18.8 -0.2 
loam 

13. Alabama Crossville silt 27816 36 25 11 19 106 17.3 -1.7 
loam 

14. Alabama Crossville silt 27817 37 26 11 18 105 17.8 -0.2 
loam 

15~ Alabama Apison silt loam 27821 21 17 4 13 112 13,1 +0,1 
. 

16. Alabama Apison silt loam 27823 35 24 11 18 108 17.0 +1.0 
1-' 
w 
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SUMMARY OF BUREAU OF PUBLIC ROADS ~TA AND 
DEVIATIONS OF ACTUAL VALUES FROM PREDICTED VALUES 

TABLE VII 
Opt. Devi-
atio'1 

Location Soil BPR Actual Predicted Actual-
Sampled ~ Sam2le No, bh PL PI Opt. Nax. d, Op.t. Predicted 

1. Alabama Allen loam 27799 20 16 4 11 122 12.5 +1.3 

2. Alabama Atkins S, loam 27803 26 19 7 14 112 14.2 +0.2 

3, . Alabama Capshaw silt loam 27804 21 17 4 12 116 12,8 +0.8 

4. Alabama Capshaw silt loam 27805 25 15 10 12 121 13.6 +1.5 

5. Alabama Capshaw silt loam 27806 32 20 12 15 116 15.8 +0.8 

6. Alabama Capshaw silt loam 27807 32 19 13 15 115 15.8 +0.8 

7. Alabama Capshaw silt loam 27808 37 20 17 16 113 17.1 +1.1 

8. Alabama Capshaw silt loam 27809 64 30 34 24 99 25.3 +1.3 

9. Alabama Colbert silt loam 27810 23 18 5 13 117 13.5 +0.5 

10. Alabama Colbert silt loam 27812 55 28 27 21 102 22,2 +1.2 

11. Alabama Clarksville silt 27813 27 23 4 17 113 14.9 -2.9 
loam 

12. Alabama Clarksville silt 27814 24 20 4 14 113 18.8 -0.2 
loam 

13. Alabama Crossville silt 27816 36 25 11 19 106 17.3 -1.7 
loam 

14. Alabama Crossville silt 27817 37 26 11 18 105 17.8 -0.2 
loam 

15. Alabama Apison silt loam 27821 21 17 4 13 112 13.1 +0,1 

16, Alabama Apison silt loam 27823 35 24 11 18 108 17,0 +1.0 
....... 
w 
00 



Opt. Devi-
-at ion 

•w Location Soil l3PR Actual Predicted Actual- . 
Sampled ~ SamEle No. 1h PL PI OEt. Max. d, 0Et• Predicted 

17. Alabama Greendale silt 27830 29 22 7 13 114 15.3 +2.3 
loam 

18. Alabama Johnsburg loam 27838 25 18 7 13 117 13.9 "-0.9 

19. Alabama Johnsburg loam 27839 43 24 19 19 108 18.8 +0.2 

20. Arizona Showlow loam 31799 26 19 7 14 112 14.3 +0.3 

21, Arizona Showlow loam 31801 38 19 19 12 116 17.2 +5.2 

22. Arizona Showlow loam 31802 30 19 11 15 110 15.2 +0,2 

23. Arizona Springerville clay 31807 65 32 33 29 90 24.8 -4.2 

24. Arkansas Boswell sandy loam 33162 62 29 33 27 95 23.9 -3.1 

25. Arkansas Boswell sandy loam 33163 47 23 24 21 105 20.0 -1.0 
. 
26. Arkansas Boswell sandy loam 33165 70 33 37 25 94 26.1 +1.1 

27. Arkansas Boswell sandy loam 33169 71 36 35 27 91 26.7 -0.3 

28. Connecticut Walpole sandy loam 31686 31 25 6 17 108 16.1 -0.9 

29. Connecticut Walpole sandy loam 31687 24 20 4 13 117 '13. 9 +0.9 

30. Connecticut Cheshire sandy 32092 20 17 3 11 122 12.7 +1.7 
loam 

31. Connecticut Cheshire sandy 32097 24 21 3 15 111 13.9 -1.1 
loam 

32. Florida Manatee sandy loam 28103 28 15 13 13 118 14.3 +1.3 

33. Florida Manatee sandy loam 28104 26 12 14 11 124 13.6 +2.6 

34. Florida Manatee sandy loam 28122 20 16 4 12 119 12.5 +0.5 

35. Florida 'Manatee sand)' !oe.::1 1912.: 20 18 2 '14 114 12.8 -,1. 2 ,_. 
w 
1.0 



Opt. Devi· 
ation 

Location Soil BPR Actual Predicted Actual· 
Sampled ~ Sam2le No. LL PL !'1. M· Max. d. QQ.!:_. Predicted 

36. Illinois Fayette silt loam 32971 28 22 6 15 108 15.1 +0.1 

37. Illinois Fayette silt loam 32972 44 23 21 19 106 19.0 o.o 

38. Illinois Fayette silt loam 32975 46 23 23 19 107 19.7 +0.7 

39. Illinois Fayette silt loam 32977 27 21 6 15 111 14.8 -0.2 

40, Illinois Fayette silt loam 32980 36 26 10 18 103 17.4 -0.6 

41, Illinois tlerrick silt loam 32982 39 22 17 17 110 17.7 +0.7 

42. Illinois Herrick silt loam 32984 69 32 37 24 96 25.8 +1.8 

43. Illinois Hickory loam 32986 27 21 6 14 110 14.8 +0.8 

44. Illinois Hickory loam 32987 40 19 21 17 110 17.8 +0.8 

45. Kentucky Tilsit silt loam 31445 29 23 6. 17 105 15.4 -1.6 

46, Kentucky Tilsit silt loam 31447 46 23 23 19 102 19.4 +0.4 

47. Kentucky Tilsit silt loam 31448 38 20 18 17 108 17.5 +0.5 

48. Kentucky Russell silt loam 31451 39 24 15 18 106 18.0 0.0 

49. Kentucky Pembroke silt 31453 25 22 3 15 105 14.2 -0.8 
loam 

50. Kentucky Pembroke silt 31455 60. 24 36 22 100 23.9 +1.9 
loam 

51. Kentucky Bewleyville silt 31457 46 25 21 19 105 19.7 +0.7 
loam 

52. Kentucky Bewleyville silt 31458 37 23 14 17 109 17.3 +0.3 
loam 

53. Kentucky Bewleyville silt 31459 43 20 23 21 103 18.4 -2.6 
loam ....... ..,.. 

0 



Opt. Dev~-
at ion 

Location Soil BPR Actual Predicted Actual-
Sampled ~ SamEle No, 1:1 E1 ll ~· ~· Opt. Predicted 

54. Minnesota Hayden silt loam 31213 32 16 16 14 114 15.5 +1.5 

55. Minnesota Hayden loam 31215 22 19 3 12 114 13.2 +1.2 

56. Minnesota Hayden loam 31216 34 17 17 14 113 16.0 +2.0 

57. Minnesota Webster silty 31219 36 20 16 18 104 16.8 -1.2 
clay loam 

58. Minnesota Webster silty 31223 58 20 38 22 99 22.0 o.o 
clay loam 

I 
59. Minnesota Lester silt loam 31228 43 21 22 19 104 18.7 -0.3 

60, Minnesota Lester silt loam 31230 38 23 15 19 194 17.6 -1.4 

61. Minnesota Lester silt loam 31231 35 20 15 16 109 16.6 +0.6 

62. Nebraska Altvan loam 32353 30 22 6 15 109 15,6 +0.6 

63. Nebraska Rosebud loam 32359 29 19 10 16 109 15,0 -1.0 

64, Nebraska Rosebud loam 32363 33 21 12 19 105 16.2 -2.8 

65. Nebraska Rosebud loam 32366 40 21 19 19 104 ·17.9 -1.1 

66. Nebraska Rosebud loam 32369 52 24 20 23 96 21.8 -1.2 

67. Nebraska Rosebud loam 32373 21 ' 16 5 12 119 12,8 +0.8 

68. N. Carolina Georgeville silt 31332 71 37 34 29 90 26.8 -2.2 
loam 

69. N. Carolina . Georgeville silt 31333 70 37 33 29 90 26.7 -2.3 
loam 

70. N. Carolina Orange silt loam 31334 24 20 4 14 112 13.8 -0.2 

I-' 
.1::--
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Opt. Devi-
at ion 

Location Soil BPR Actual Predicted Actual-
Samnled ~ SamEle No, LL PL f!.. OEt• ~- Opt. Predicted 

71. N, Carolina Orange silt loam 31335 46 18 28 17 111 18.8 +1.8 

72. N. Carolina Iredell loam 31338 66 24 38 21 102 23.3 +2.3 

73. N. Carolina Davidson clay loam 31341 70 38 32 27 93 26.8 -0.2 

74. N. Carolina Davidson clay loam 31342 84 44 40 31 87 30.7 -0.3 

75. N, Carolina Lloyd loam 31343 47 35 12 24 91 21.0 . -3.0 

76. N. Carolina Lloyd loam 31344 80 44 36 29 90 29.7 +0.7 

77. Oregon Gemstony loam 32462 39 22 17 18 109 17.8 +0.2 

78. Texas Lufkin sandy loam 29075 64 25 39 20 102 23.9 +3.9 

79. Texas Lufkin sandy loam 29077 53 22 31 20 101 21.0 +1.0 

80. Texas Lufkin sandy loam 29082 61 26 35 23 98 23.5 +0.5 

81. Texas Abilene clay loam 32127 46 21 25 21 104 19.2 -1.8 

82. Texas Abilene clay loam 32129 32 16 16 13 118 15.4 +2.4 

83. Texas Abilene clay loam 32130 28 17 11 18 108 14.5 -3.5 

84. Texas Abilene clay loam 32133 43 16 27 15 113 . 18.0 +3.0 

85. Texas Abilene clay loam 32134 ·3o 18 12 17 107 15.2 -1.8 

86. Texas Abilene clay loam 32137 34 17 17 17 111 16.0 ·1.0 

87. Texas Covington silty 31544 43 31 17 23 95 19.0 -4.0 
loam 

88. Texas Covington silty 31546 80 34 46 32 87 28.6 -3.4 
loam 

,_. 
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Location Soil BPR 
Sa .. ;p led_ ~ Sample No, :0.! 

89, Texas Covington silty 31548 24 
loam 

90, Texas Covington silty 31549 27 
loam 

91. Ohio Paulding clay 31540 77 

92. Ohio Paulding clay 31542 63 

93. Alabama Litz silty loam 27840 32 

94. Alabama Linker silty loam 27844 41 

95. Alabama Melvin silt loam 27846 24 

96. Alabama Minvale silt loam 27847 27 

97. Alabama Minvale silt loam 27848 29 

98. Alabama Talbot silty 27852 26 
clay loam 

99. Alabama Muskingum sandy 27851 22 
loam 

100, Alabama Muskingum sandy 27850 24 
loam 

Actual 
f1 PI Opt. ~· 
20 4 14 117 

19 8 14 117 

32 45 26 95 

28 35 23 101 

24 8 17 107 

28 13 19 106 

18 6 12 106 

20 7 13 112 

18 11 13 117 

16 10 13 116 

16 6 12 119 

19 5 14 110 

Predicted 
Opt. 

13.8 

14.5 
. 

27.8 

24.0 

16.2 

18.8 

13.7 

14.7 

14.9 

13.9 

13,1 

13.7 

Opt. De~i-
ation 
Actual-
Predicted 

-0.2 

+0.5 

+1.8 

+1.0 

-0.8 

-0.2 

+1.7 

+1.7 

+1.9 

+0.9 

+1.1 

-0.3 

f-' 
+o­
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Table VIII 
Suumary of Rsgrension Analysis (Arithnetic Equation3) 

Analyo"is No. Developed Equation 

1 C • - .010 + .005 PI - .003 Opt. + .001 PL 

2 ( c * .875 + .00) PI - .002 (~.C.) + .016 (A,C.) 

3 

4 

.5 

6 

7 

8 

9 

10 

11 

12 

- .012 (Opt.) ~ .005 Xnx. d. - .001% F) 

C • .18- .008 (~.C.)+ .002 (t.L.) 

c •• 21- .oo6 (f.~> - .001 <~.c.) 

c • .22 - .01 (~.C.) + .003 (Pl) 

c • .13 - .015 <w.c.) + .013 <o~t.) 

c • ·73- .011 (W.C.) - .oo4 Hax. d. 

( c ~ .19 - .013 {Pt) + .oo8 (t.L.) - .012 (~C) 
+ .01 (Opt.)- .006 (P.I.) ) 

C ~ - .95- .002 (PL) - .02 (W.C.) + .03 (Opt) 
+ .009 :Msx. a.)+ .017 (L.L.) • .015 (P.I.) 

(Max. d. a 112.3- e36 (L.L.) - .45 (~l) - •35 (PL) 
- .36 (%S)- .03 (~.I.) ) 

(~ax. d. a ?6.6- .47 (LL)- .33 (~F)+ 30.2 (S.G.) 
- .25 (~) ) 

Kax. d. "" 78.6 - .94 (PL) - .32 (~F) + 28.2 (s.a.) 
- .13 (%$) ) 

Multiple Seopo of 
Std. :r;rror Corrlillation Conaidor-
o! Esti~at• Coefficient Rtion 

.06 .59 Glacial 

.12 .31 All soile 

.14 

.14 

.14 

.14 

.14 

.13 

.41 

3.66 

3.68 

5·49 

.19 

.23 

.26 

.23 

.20 

·30 

.15 

.90 

.898 

·75 

All c.oila 

All roils 

If 11 

" " 
11 II 

fl tt 

Hc5idual 

All soils 

H II 

" " 

I-' ..,.. ..,.. 



Table VIII 
Summar,r o! Regression Analysis (Arithmetic Equations) 

Analrsis No. n.veloped Equation 

13 ( Max. d. • 87.3 - .4? (PI) - .39 (~) - .29 ~S) 

14 

15 

16 

l? 

18 

19 

20 

21 

22 

2.3 

+ 25.08 (S.G.) ) 

Max. d. • 12?.4- .~9 (L.L.) 

Max. d. • 128.8 - .53 (L.L.) + .0? (~I) - .53 (P.L.) 

Max. d. • 125.5- .95 (P.L.) 

Max. d. • 119.0- .54 (P.I.) 

Max. d. • 116.0 - 8.06 (A.C.) 

Max. d. • 122.3 - ·55 (~) 

_( Max. d. • 171t.3 - ·37 <L.L.) - .48 (~) - .42 (PL) 
- .29 (~) ) 

( Max. d. • 159.1 - .44 (L.I .• ) - .33 (%F) - .19 (PL) 
- .24 (~) + .01 (P.I.) ) 

( Max. d. • 178.2 - .52 (%F) - .86 (LL) - ·.3.3 (~S) 
+ .57 (PI) ) 

( Jbx. d.'" 12.5.9- .77 {Ll) + .17 O~S) + .38 {H) 
+ .03 (%P) + .29 (A.C.) ) 

Std. Error 
of Eati;ttah 

,.29 

4 .. 1? 

4.15 

6.,4 

!).04 

7.,.6 

6.16 

2.87 

3-91 

3·43 

2.73 

l~ultiph 
Correlation 
Coefficient 

.?? 

.85 

.86 

·58 

-78 

.42 

-.66 

·9'* 

.90 

.86 

.98 

Scope o! 
ConnidGr­

ation 

All soils 

" " 
II II 

II " 
" " 
II II 

" t1 

St. Louis 
Diestrict 

Residual 

Glacial 

Meraraec Park 

..... 

.p.. 
IJ1 



Table VIII 
Hu:n:11ary of j~e.;ression ,\nalysie (A.rit1.ntetic E.:tuationa) 

Aaalyais No. Developed .!4uat.ion 

24 ( ihx. d. "' 140.93 - 1.0 (LL) ..- .71 (:H) - .12 (%F) 
- .. 0,5 ()OS) 

25 ( Max. d. ~ 130.3 - .,9 (LL) - ·35 (PL) - .02 (~I) 
+ .04 (A.G) 

26 ( ~ • 34.04 - .58 (PI) + .,3 (Opt.) - .26 (PL) 
+ .12 (L.t.) ) 

27 ( ~ • - 6.?6 - .16 (PI) + .41 (PL) + .31 (Max. d.) 
+ .09 (W.C.) - .08 (tL) - .07 (Opt.) ) 

28 ( ~ a 26.8 - .31 (PI) - 1.86 (AC) + .25 (Opt.) 

29 

30 

31 

32 

33 

34 

+ .07 (Max. d.) - .QG (WC) - .01 (%r) ) 

¢ ~ 37•5 • .28 (LL) + .06 (WC) 

¢ ~ 36.3 - .?0 (WC) + .25 (PL) 

¢ • .}4.5 - .37 (PI) + .04 (WC) 

¢ = 19.4 + .43 {Max. d. i + .o, (WC) 

( ~ ~ 25.1 + .03 (~I) + ·57 (eL) - .36 (LL) 
+ .07 (Max. d.) - 07 (Opt.) + .Cl (WC) ) 

¢ • 41.~ - 1.0 (Opt.) + .10 (WC) 

:>td. Brror 
of Estbate 

3.30 

4.02 

3-07 

lt.l7 

3·69 

4.69 

5.18 

4.20 

4.99 

3-87 

4.93 

:4ul tiplo 
Correlation 
Coefficient 

.92 

.88 

·77 

.74 

·79 

.62 

.49 

.n 

.:,)4 

·75 

.54 

Scop~ of 
C::>neider­

ation 

Coastal 
l·lnins 

All roils 

Glacial 

.Re-sidual 

ill ooila 

II II 

II II 

II II 

II " 

fl " 
II " 

1-' 
.t:::-
0\ 



Table VIII 
SUQ&ary of Hogresaion Analysis (Arithmetic ~uations) 

Std. Error 
.A.nal;raia t:o. Devolopcd Equation ot ~;stiaate 

35 ( Opt • 4.51 + .2 (LL) + .25 (PL) - .23 (AO) 
+ .0.3 (PI) ) 1.94 

36 ( Opt a 8.to + .22 (lL) + .15 (~) + .18 (PL) 
+ .11 (%6) + .01 (PI) ) 1-75 

3? ( Opt • 8.60 + .26 (PI) + .16 (%.~) + .12 (%S) 
+ .16 (%!') ) 2.94 

38 ( Opt c - 2.92 + .27 (LL) + .14 (~) + .10 (%S) 
- 1.0} (S.G.) ) . 1.89 

39 ( O~t • - 22.8 + .~~ (PL) + .22 (%F) + .13 (%8) 
+ 3 .. 6:~ (SO) J.O;) 

J;.o opt x 6.55 + .~9 (LL) - .16 ce1> - .07 (PL) 1.99 

~l Opt • 7.12 + .26 (l.L) 2.02 

42 Opt • ?1.09 - .5 Vnax• d.) 1.28 

43 Opt • 8.27 + •5 (FL) 3·39 
4\ Opt c 11.45 + .29 (PI) 2.5{> 

4-.5 Opt • 1).3 t 4.25 (A.C.) 3·90 
.IJ6 Opt • 9.67 + .31 (96-C) 3.~2 

Multiple 
Carr· elation 
Co~tfi'icient 

.')l 

·92 

.?6 

.91 

·73 

.88 

.87 

·95 

·59 

.80 

.42 

.66 

8copo o! 
Concider-

at ion 

All ROilS· 

II " 

" " 

" It 

It " 
II " 
II " 
II t1 

" II 

II II 

" " 
If " 

...... 

.t:­
'-J 



Ana.l ylli 15 

~7 

48 

~9 

50 

51 

52 

.53 

Table VIII 
S~ary o! Rogr•a2ion Analysis (Arithmetic Equations) 

DeY~lope~ Equation 

( Opt • - 3·55 + .33 (LL) + .12 ($F) - .12 (PI) 
+ .04 (%S) ) 

( Opt • - 7.87 + .23 (LL) + .15 (%F) + .12 (~S) 
+ .08 (PL) + .04 (PI) ) 

( Opt • - 12.08 + .19 (%F) + .39 (PL) + .12 (%S) 
+ .11 (LL) ) 

( Opt • -5•77 + .~9 (LL) + .03 (%S) + 4.34 (A.C) 
- .2n (PI) + .07 (%7) 

Opt • 6.50 + .~5 (PL) + .13 (LL) - .07 (~S) 

Opt • 6.23 + .)4 (LL) - .11 (PI) 

Max. d. E 128.4 - .58 (LL) + .13 (PI) 

Std. Error 
of Eati11ah 

1.94 

1.91 

1~34 

1.71 

1.30 

2 

lt-.1,5 

Multiple 
Correlation 
Coefficient 

.91 

·93 

.88 

.98 

·95 

.88 

.86 

Scope o! 
Con.eid&r­

&Uo:! 

St. Loui~ 

Residu.U.. 

l:l.acilll 

Korc.:.:ac Park 

eo .. stnJ. 

All Soils 

" " 

r-> 
-~"­
():) 



Table VIII 
Sl!ll'.lml~ of Rep;uuion A.nalJ'Gia ( Logarit.h:dc Equations) 

Std. Error 
.A.n:U.;yraio lo. DeYelopcd Equations ot Estimate 

l~A log Max. •· • 2.35 - .20 log {LL) \.03 

1,5-.A ( lo' M~. 4. • 2.4o - .28 loc (LL) + .05 log (PI) 
+ .01 lo~ (P.L) ) 3.98 

16-A los ~u .. c1. • 2.26 - .18 lefl (LL) 6.32 

1?-A los Max. •· • 2.15 - .10 lee (P.I.) 5 .. 2:; 

18 ... ! le1 ~ax. 4.· • 2.0) ~ .07 Io, (A.C) 7o39 

19-A leg ~ax. d. • 2.17 - .57 lsa {%0) 6.,2 

2Q-A ( 1&£ tiax. 4. • 2.6J - .3~ ~, (LL) + .o8 lo' (P.I) 
... 10 log (~) + .02 a 1 (PL) + 00 (~ ) 2.94 

22•.1. ( log ~ax. d. • 2.67 - .zz los (%F) - .11 log (LL) 
+ .02 los (PI) - .01 lc~ (~) - .03 log (P.L) ) :;.61 

23-A { log ~ax. d. • 2.8o - .58 los (tL) + .23 log (A.C) 
- .o8 log (%F) - .o1 (%S) ) 2.77 

z.e.-A ( lei Max. d. x 2.}0 + ,03 log (~S) - .35 log (LL) 
+ .16 los {~I) + .01 log (%F) ) }.36 

2.:;-A. ( loe Max. d. • 2.40 - .24 log (LL) + .03 log (PI) 
- .03 log (PL) + .01 log (A.C) ) 3.98 

Multiple 
Corrola tion 
Co(t!!ici.cnt 

.86 

.87 

·59 

·72 

.4} 

·57 

.91 

.8,3 

.98 

.91 

.87 

se,pe of 
ConGid<s:r-

ation 

..Ul z:::>ila 

I! N 

tf If 

.. " 
~ M 

" " 

St. LoU!fS Di.:Bt. 

Glacial 

Mer~ec Pl!U'k. 

Coastal Plains 

All lilOila 

1--' 
~ 
1.0 



.Al:!Al)'sia M&. 

26-A 

27-A 

28-J. 

2?-A 

):,D-A 

.31-A 

Table VIII 
SmM&r7 of Regrullion Ana.l.J"Sio ( Logar.ith!aic Equations) 

Std. Error 
Developed £quations of Eat~ate 

( loJ 9 •1.88 - .92 log {LL) + •55 lo3 (PL) + .14 log (PI) 
+ ·~5 lo' (Opt) ) }.}1 

( lo1 ~ • 1.01 - .16 l~a (PI) - .48 log (Opt) + .22 lo~ {VL) 
+ .16 log (I.C) + .~~ l&g (K~x. d.} - .06 log (LL) ) 4.22 

( log - • ·5' • Zl log (PI) + .~6 log {Max. d.) + .15 10~ (%F) 
- 10 10~ (O.P.f) + .01 lo' t B.C) + .01 lo~ (W.C) ) }.88 

131 ~ • z.os - ·'' ~~ <LL> + .o6 ~G <~.c) 

1·~8 C$ a 1.8!t - .50 15§1 (~C) + .17 ag (.PL) 

lo~ ~ • 1.80 - .2, l$a {PI) - .0\ leg (I.C) 

a..78 

5·37 

4.~8 

Hultiplo 
Corrct~lc.tion 

Coeffici~t 

·73 

.'{4 

.76 

.w 

.4~ 

.. 66 

~2-A l~g ¢ • - 2.~4 + 2.02 los (Rax. d.) + .l} leg (W.C) 

})•A 

J~A 

35-A 

A!-0-A 

( ~~ ¢ • 1.61 + .o4 log (fl) + .17 log (MAx. t.) 
+ .43 J~~ (P.L) - .22 log (L.L) - .13 lGg (Opt) 
+ .02 1es (~.c) > 3.92 

log ¢ • 2.12 - .76 log (OPT) + .19 log (W.C) 5·13 

( log OPT = .o8 + .561o1 (LL} + .19 log (PL) - .05 log (A.C) 
- .02 log (P.I) ) 2.06 

log OPT • .~7 + •71 log (LL) - .09 (PI} + .04 (PL} 2.01 

.74 

·53 

.89 

.88 

Seope of 
Connidc:or­

ation 

Gla.ebl. 

Re.!I!Hl.u:U 

All mila 

.. u 

.. .. 
" .. 

lll D:lillll 

" II 

II " 
11 II 

t-' 
VI 
0 



Table VIII 
Sum•ary of iogreasion Anal7da ( Lo~itllalie Equation•) 

Multiple 
Std. Error Correlation 

Anal,. sis Ko • DeYeloped Equation of Eatillate Coe!!ieient 

41-A loa on • .29 + .6o loa (LL) 2.07 .e7 
42-.A. lDt~ OPT • 6.89 ... 2.77 log (Max. d.) 1.21 ·96 

-'l3-.A. log OPT • ·55 + .54 log (R.L) 3·17 .Gl 

~~A lo~ OPT • .88 + .28 log (PI) 2.79 ·13 

Jt-5-.A. loa OPT • 1.2\ + .9 log (A.C) . 3·85 .... 3 

it-6-A Iog on • .eo + .;)2 log <~> }.69 ·59 

\7-A ( log OPT • -.Jt-5 + .78 log (L.L) + ·3? lBc (~) 
- al5 log (P.I) + .ol log (P.L) + 00 %5 ) l.Ba. ·93 

49 .. .A. ( log 0~ • • 1.17 + .76 log (%f) + .27 log (PL) 
+ .37 log (L.L) + .08 log (%5) - .05 log (r.I) ) 1.41. .87 

so-A ( log OPf • - 1.37 + 1.34 log (LL) • .41 log (P.I) 
+ .49 log (~) + .06 log (~S) - .03 log (A.C) ) 1.59 ·99 

51-A ( log OPT • .17 + .42 log (PL) + .27 log (LL) 
~ .0.5 log (%S) + .11 log (%F) ) 1.23 ·96 

·---·-'--

Scop& of 
Conzider-

ation 

All ooils 

" If 

II tt 

" n 

u n 

n .. 

st. I.ouia 

G1a.cia.l 

Kauec 

Co a a tal Plain a. 

J--1 
l..n 
J--1 



Correlation 

Haximum Dry 
Densitv 

LL 
PL 
PI 
%8 
'Y.F 
/',C 
A. C. 

Opt, H.C. 
S.G. 

Optimum 
Water 
Content 

LL 
PL 
PI 
i.S 
'Y.F 
%C 
A.C. 
S.G. 

Angle of 
Internal 
Friction 
Max. d. 
Opt. w.c. 

LL 
PL 
PI 
%F 
1.,S 

Sample W.C. 
A.C. 

Cohesion 
Max. d. 
Opt, w.c. 

LL 
PL 
PI 
i.F 
%S 

Sanmle W .c. 
A.C. 
S.G. 

Chart I - Rating Chart of Graphical Plots 
(Glacial Soils) 

LINEAR RATING-ARITHMETIC LINEAR RATING-LOGIO 

Slightly · Slightly 
Signif- Signif- Insir.- Sign if- Signif- Insig-
icant icant nificant icunt icant nificant 

X 
X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 
X 

X 
X 

X 

X 

X 
X 

X 
X 

X < 

X 
X 
X 

-
X 
X 

X 
X 

X -· 
X ·-
X 

X 
X 
X 
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Chart II - Rating Chart of Graphical Plots 
(Residual Soils) 

LINEAR RATING-ARITIU1ETIC LINEAR RATING-LOGIO 

Correlation Slightly Slightly 
Signif- Signif- Insig- Signif- Signif- Inslg-
icant icant nificar.t icant icant. nificant 

Haximum Dry 
Densitv 

LL X 
PL X 
PI X 
i:.s X 
%F X 
'i:.c X 
A,C. X 

Oot. w.c. X 
S.G. X 

Optimum 
Water 
Content . 

LL X 
PL X 
PI X 
%S X 
%F X 
%C X 
A.C. X 
S.G. X 

Angle of 
Internal 
Friction 

lL X 
PL X 
PI X 
%S X 
%F X 
%C X 
A.c. X 

Samole W.C. X 
Oot. W.C. X 
Max. d. 

S.G. X 

Cohesion 
Ll -x 
PL X 
PI X 
%S X 
%F X 
%C X 

f---~.c. X 
Oot. w.c. X 

S.G. X 



l'•ll"TC ln tion 

···ia;:i:nt1·:& Dry 
''••ns)tv 

I.J 
T'J. 
PI -i',S 
•;..F 
'/.C 
A.t. 

Opt, ~\,- c C a -s. c:. 
Optimum 
:·loisture 
Content 

LL 
PL 
PI 
~'S 

'J.F 
'/C 
A.c. 
s. (,~ 

.',ngle of 
Internal 
rricti0:1 

Max. d. 
LL 

Opt, w.c. 
/..F 
Pl. 
PI 
%S 

Sample 1-J,C, 
A.C. 

Cohesion 
Hax. d. 

LL 
Oot. \.J. c. 

'i'oF 
PL 
PI 
i'oS 

~le 1~.c. 
AC 

Chart III - Rating Chart of Graphical Plots 
All $oils 

LINEAR 1\ATlliG-ARITlti-l.ETIC LI1JEMI RATil\G-LOGIO 

:->lightly Sli1•htly 

Si:;ni f- Si?:nif- Insig- Signi f .. Si!:nif- In;;ig-

icrJ.nt :i.c:nnt nificant ·i rrlnt j (!fl :1 f nificnnt 

X 
X 
:X 

X 
X 

X 
X 

X ---
X 

X )\ -
X X 
X . X 

X 
X 

X 
X . 

X 

~X 

X X 
X X 

X 
X 

X X 
X 

X -X 

X 
X 
X 
X ··-X 
X 
X --·-X ·-· X 
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LEGEND OF ABBREVIATIONS AND SYMBOLS 

LL = Liquid Limit 

PL = Plastic Limit 

PI = Plasticity Index 

Opt. = Optimum Moisture Content 

Max. d. = Maximum Dry Density 

c = Cohesion (T.S.F.) 

~ = Angle of Lnternal Friction Degrees 

w.c. = Average Water Content of Direct Shear Specimens 

A. C. = Activity Coefficient 

% F = Percent Fines 

% s = Percent Sand 

% c = Percent Clay 

S .G. = Specific Gravity 
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