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ABSTRACT (1)

Methods of iterative solution for the partial-differ-
ential equations that govern the transient flow of gases
In pipelines are obtained by using the method of character-
1stics and linear finite-difference technigues. Solutions
are developed for 1) a constant gas compressibility factor
throughout transient conditions, and 2) a variable gas
compresslibllity factor at constant temperature dependent
upon pressures encountered during transient flow. Theoret-
lcal studies are made to compare results using both ap-
proaches for plpelinecs operating at various constant flowing
temperatures. HResults show greater differences between the
two methods at lower values of flowing temperasture due to
the more rapidly changing compressibillity factor as a

function of variable pressure.

KibtY WORDS: compressibllity; gases; gas flow; plpe flow;

ipelines; temperature; unsteady flow
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ABSTRACT (2)

Equations are developed for transient gas pipe flow
using both a constant and variable gas compressibility
factor. Solution is by characteristics method using linear
finite-differences. Hesults are used to compare the effects
of compressibility factor at various constant flowing

temperatures.

KEY WORDS: compressibility; gases; gas flow; pipe flows

pipelines; temperature; unsteady flow
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CCrt HESSIBILITY BEFECTS OW TRANSIENT GAS LIFE FLOW

by Gerald r. souser, A. . ASCE

INTRODUCTICN

The partial-differential momentum and mass equations
that describe transient ¢as pipe flow have been solved by
various numerical methods (6,7,12). Among the technigues
frequently employed in recent studies are implicit finite-
differences and the method of characteristics (3,10,11).
while these studies have teen concerned with the numerical
technigques and stability criterla required in tresnsient
flow solutions, few investigations have examined the effect
of a variable gtc s compressibility factor on transient
behevior.

The purpose of this study i1s to cdevelop and ayvrly the
numerical equations of transient gss pipe flow hased on
1) a constant gmas compressibility factor evaluated at the
average of inlet and outlet Lressures at initizl time, end
2) a gas compressibility fzector completely dependent upon
the gas pressures encountered in the pipeline during steady
and unsteady-stzte flow. For both approaches, digital

computer solutions of the partial-differential ejuations



which describe sas pipe flow are made possible by agpplica-
tion of the charactericstics transformation and linear finite-~
difference approximations. The theoretical results, based

on both constant and variable gas compressibllity, are
compared graphically for various transient flow conditions

with particular emphasis placed upon temperature effects.



BASIC DEVZLOPMENT

Attractive forces existing between gas molecules cause
the actual volume of a gas to deviate from those volumes
predicted by the ideal gas law (8). To account for these
varlations in volume, the gas compressibility factor is
applied as a correction term to the ideal gas equation of

state. Thus, for methane and natural gas:
PV =anT.............'....'....0.(1)

where P = absolute pressure of the gasj; V = volume of the
gass; z = dimenslionless gas compressibility factor;y n =
number of moles of gas under consideration; R = universal
gas constant; and T = absolute temperature of the gas.

As the value of the compressibllity factor is essentilal
in gas metering, charts and tables have been devised (4) to
ald in 1ts determination; but this procedure usually requlres
a lengthy calculation involving gas composition, pressure,
and temperature. At constant flowing temperature, z has
been correlated as a function of pressure for a gas of

constant composition (12), that is

1 .
Z = m-.o......'oo.o.ooooc(d)

Te

R T _
where w = lh‘ﬂ Pcré9 G (0-533 T—' 0-257) 00.000.00.0(3)




In these equations P = mass censity of the gas; G = gas

i

specific egravity; I critical pressure of the zasj snd
Te = critical temperature of the gas. [hese relationshiycs
rrovide a good approximetion for z within the norms1l range
of operating pressures encountered in sas transusission
systems.

Numerous limiting sssumptions are reguired in the de-
velopment of any steady or unsteady-state flow egquations.
In this study, the following assumptions are made:

1) Elevation changes in the pipeline are negliginvle.

2) Flow is isothermal and single phase.

3) Gas composition remsins constant throurshout esch

transient flow investigation.

4) Friction factor is constant.

5) All variations in flow psrameters take place at

inlet and outlet.

6) ripeline is of constant cross-sectional srea.

The first three assumptions are essential for the egquation
development in this investigstion. While the remsinine
sscunptions could be neglected without debasing the integ-
rity of the development, they zre accepted here in order to

sinplify the numerical solution.

Variable Compressibility Factor. One-dizensional cacs pipe

flow may be descritbted by the following momentum balance:

« 2
g€, AR T ) 1 f N - :
296 (PR R v /0t ey T 0 et



in which &c = gravlitational conversion constant; 4 = cross-
sectional area of pipe; ¥ = mass flowrate of the gas (pounds
macs per second); f = loody friction factor; D = inside diam-
ceter of the pipe; snd thne subseripts X and t denote partisl
differentiation with respect to the Independent variables,
distance and time.

A continulty eguation (or mass balance) may also bte

written for the flowlng gzas, s follows:

Ot+—A.PlX = O conocoooooooo.o.oo.ooo.(E)

The momentum and mass equations shown above forr the
basic solution to transient flow problems. A direct solution
to this system of partizl-differential equations may be
accomplished by application of the method of charascteristics
and finite-difference technigues. Iister (5), Abbott (1),
and Streeter and uWylie (9) have presented the basic approaches
required for the methods, while others (10,11) have upplied
the charecterlistics transformation to various forms of the
transient gas flow equatlons.,

In order to incorporzte the changling compressibility
factor into the solution, Equatlion 2 was substituted for
the value of z in Equation 4. The resulting expression wes
simplified, end Equations 4 and 5 were non-dimensionalized
by defining the variables (h, Py t, and x) in dimensionless
form as ratios of the original varlables to constant or

known pipeline values. The characteristics transtormation



ond first-order finite-differences were then aprlied, which
resulted in the following set of Zrid-slope and character-

lstic egquations:

(xk - xA) = (7 + M/D)A (b, - tA) ceeeecceess(E)

(z = 1/0), (o, = o) + (s = k) + (KKo/0)(t, = t,) = 0
N 2
(XP - XE) = (- z + M/D)B (tp - tB) R €D

(- z = M/o)B (o oB) + (ME - MB) + (K N;/DB)(tP - t = 0

F - B

B 2.

All terms in the above equatlions are dimensionless, and the
constant K = fL/2L. The subscript P denotes unknown con-
ditions at the intersection of two grid-slope lines (defined
by the simultaneous solution of Equaticns 6 and 8), while

A and B denote known points on the positive and nesstive
characteristic lines.

BY using &n lterative procedure, transient flow ,.rop-
erties may be caslculated, as functions of elapsed time and
position in the pipeline, by the simultaneous solution of
Equations 6~9. For this development, the method of specified
time intervals (5,9) was used to provide for an orderly
arranzement of positlon and time increments. Thus, Mp and

Po are calculated at the same positlions along the pipeline

for each lncrease in the value of elapsed time.



Constant Compgressibility Factor. Hguations 6-Y were devel-

cped to include a varyine sas compressinility factor in the
solution. If, for all wvalues of pireline gosition during
the transient study, the value of 7 1s assumed to be a con-
stant evaluated at the average of inlet and outlet pressures
at initial time, (P z), = z P4 in Zquation 4L, If the method
of characteristics, and the other procedures outlined above,
are applied to Lquation 4 (rewritten for a constant z and
assuming the third term to be negligible) and kguation 5,

the following set of simultaneous egusztions results:

(xp - x,) = Jz (tp = t,) S G LoD
JZ(Pp = 0) 4 (M = M)+ (KR5/P)(tp = t) = 0 ....(11)
(xp = xg) = - e (b, = tg) R O VD
Sz (P =0l (- ) (K K2/P ) (6, = tg) = 0 ...(13)

Since the grid-slope relationships (Equations 10 and 12)
have constant equal slopes (z%), the iterstive simultaneous
solution of Equations 11 and 13 is based on a simple rec-
tangular 2rid system, rather than the method of specified
time intervals creviously discussed.

Boundary conditions for both developments are vrovided
by specifying one of the two flow properties (eilther pres-
sure or flowrate) at both pipe inlet and outlet as & func-
tion of elapsed time. The value of the unk¥nown flow con-

dition at the grid-boundary intersection is then determined



by sclution of the characteristic equatlon which correctly

relztes the distznce and time Intervals at the boundary.



COML UTkr TECHWNIQURS

The non-dimensionalized iterative equations, for both
a constant and variable gas compressitility factor, were
incorporated into separate FORTRAN proecrams for solution
on the IBM 360 lModel 50 digital computer. Although both
programs followed the same general format, the variable z
solution involved longer iterative equations, and required a
grour of interpolations for application of the method of
specified time intervals. Due to these lengthier calculas-
tions, the computer solution using a varying compressibility
factor required about rfifty percent more time than that of
the constant z, rectansular grid method of solution.

To correctly apply an iterative method that propagates
results from a set of initial and boundary conditions, sta-
bility must be maintained throughout the solution. 1In the
characteristics method, stability 1s besed on the inter-
related position and time increments (Ax and At). Frrelim-
inery numerical investigations for the gas pipelines con-
csidered in this study showed that an increment size equal to
one-fiftieth of total pipeline length allowed sufficlently
ctable Tesults at reasonable values of computer time.

For both coumputer solutions, initial steacy-state flow
properties throughout the pipe system were determined by

wWeymouth's Equation (4):
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5,2 21%
- o~ 22% D (Pl - P2)
Q h S e PS fLGTZ o.ttoooooo.o.(lu’)

Those terms not previously defined are: Q = flowrate of the
gas in standard cubic feet per hours TS = standard tempera-
ture (degrees Rankine); Pg = standard pressure (pounds per
square inch absolute); F1, P = inlet and outlet pressure,
respectively (psia); and L = total length of the pipeline in
miles. An average value of z, as calculated by Equetion 2,
was used in Weymouth's Equation; but, for all other calcu-
lations throughout the variable z solution, the gas cdmpres-
sibility factor was determined as a function of mass density
at each point and time in question.

If a high value of Heynolds number is assumed for the
flowing gas, the Moody friction factor, f, may be expressed

entirely as a function of pipe diameter. Thus, from the

work by Cullender and Smith (2)

0.225

0.0175/D D < U4u277 eeeeeeneeealls)

]
Ll

0.164

0.01603/D D> 4,277 teeerenesea(lb)

)
]

where D is the inside diameter of the pipe in inches. The
value of the friction factor, as calculated by elther Equa-
tion 15 or 16, was used in Weymouth's steady-~state equation

and in all transient flow calculations for both methods of

gsolution.
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1The transient flow calculations are gerformed hy using
the iterative characteristic equations previously developed,
Values of time and position, at ezch increment on the pilpe-
line, are related by the zrid-slope equations. In order to
assure that the interpgolations used in the method of speci-
fied time intervals are able to converge on a new incre-
mentsal pvoint in the x-t plane, the smallest value of At is
selected at each new time iteration as the ctep-time incre-
mnent for the variable z solution. The constant z solution
uses a constant step~-time increment for all iterztions.

As the transient pipe flow investigations for this
study begin at steady-state operating conditions, flowing
prorgerties of the gas throughout the plipe system may be
calculated from Weymouth's Equation. Transient behavior is
induced by manipulating conditions at one or both bouncdariles
of the system, and the resulting gas flow properties are
calculated at evenly spaced intervals along the piieline
for increasing vslues of elapsed time. These propertles ~re
calculated in dimensionless form by the iteratlive boundeary
equations, and are converted to field units for outjput.
Thus, the distribution of pressure and volum flowrate in
the pipeline is obtained as a function of elapsed time for
transient investisations performed with hoth a constant anc

variable gas compressibility factor.



DISCUSSION OF RESULTS

Three different transient gas pgipe flow situations were
devised to study the effect of the gas compressibility fsctor.
Each situation involved a constant diameter gas pipeline
initially operating under steady-state flow conditions, from
which transient conditlions were induced by regulating either
the flowrate or the pressure at the plpe outlet. Upstream
pressure was held constant for each investigation, thus
satisfying the 1nlet boundary condition.

Constant values of gas composition (critical properties
and gas gravity), pipeline length, and initial inlet and
outlet pressures were selected for each of the three studies.
(These values are presented in Table 1, along with other in-
formation pertaining to each investigation.) Two extreme
values of flowing temperature were chosen for each of the
three sets of pipe flow data, and transient outflow conditlons
were applied. The dynamic flow properties were then calcu-
lated, using both a constant and a variable gas compressi-
bility factor, and the results compared graphically.

The first study examined pipe flow conditions induced
by a sinusoidal varying outlet flowrate. Fressure and flow-
rate distributions in the pipeline were calculated for
flowing temperatures of - 40°F and + 80°F; and the results,
for both constant and variable gas compressibility, are

compared in Figures 1-4.
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Both methods of solution predict the same basic tran-
slent behavior for the investigations, but the graphical
results show more deviation between the constant and vari-
able z methods for properties predicted at the lower
temperature value (Figures 1 and 3). This difference may
be explained by noting that the gas compressiblility factor
changes more rapidly as a function of pressure for lower
temperature ranges. Thus, as the pressures throughout the
system fluctuate due to the varying outlet flowrate, the
cas compressibility factor deviates more from the initial
average value used in the constant z solution at the lower
tenperature range than at the higher temperature.

Fipeline shut-in conditions were simulated in the
second transient flow study (Figures 5-8) by shutting off
Zas flow at the downstream face of the pipe system. This
boundary condition causes a reduction of flowrates through-
out the system (Figures 5 and 6), initially more pronounced
at points near the outlet, hut eventually affecting flow at
the pipe inlet. As a result, pressures in the system in-
crease (Figures 7 and 8), demonstrating the gas storage
potential of the plpeline.

In the final study, transient pipe flow was induced by
increasing the outlet pressure to a new constant wvalue.
Under this condition, gas flow in the system should even-
tually stabilize at & new constant value, slightly less than

the original steady-state flowrate. The initial and final
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flowrates (as predicted by Wweymouth's Equation) are shown
on the graphs (Figures § and 10); and, during the elapsed
time presented, the calculated flowrates for both tempera-
ture studies show a tendency to approach the final theo-
retical flowrate value.

The results of the final two investigations again show
greater differences between the constant and variable gz
solutions at the lower tempersture value (Figures 5, 7 and 9).
In general, at normal operating temperatures (+ 6OOF and
+ 80°F) the results from both methods demonstrate satis-

factory agreement.
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TABLE l.-~DATA FOR THANSIENT FLOW INVASTIGATICMS
Study Number (1) (2) (3)
Inside diameter of
lpe, in inches 15.5 13.125 21.50
Gas gravity 0.654 0.615 0.622
Critical pressure of
gas, in pounds per 657.0 £50.0 670.0
square inch absolute
Initial upstrean
pressure, in pounds per 700.0 675.0 690.0
square inch absolute
Initial downstream
pressure, in pounds per 500.0 525.0 505.0
gsquare inch absolute
Standard p.ressure,
in pounds per square 4.7 14,7 14,7
inch absolute
Flowing temperatures L20.0 430.0 420.0
used for study, and and and
in degrees Hankine 540.0 520.0 540.0
Critical teirperature of ‘
ges, 1n degrees Hankine %51.6 350.0 350.0
Standard temperature,
in degrees Rankine 520.0 520.0 5£0.0
Length of pipeline,
in miles 100.0 100.0 100.0
Inlet
boundary Constant pressure, egual to
condition initizl inlet pressure
rressure
Outlet Sinusoidal | Flowrate increased
poundary varying decreased to new
condition flowrate to zero constant

value
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Flgure 1

Flowrates, Induced by Varyilng the Outlet Flowrate
as a Sine runction for a Temperature of = 4OOF,

Versus Time.
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Flgure 2

Flowrates, Induced by Varylng the Outlet Flowrate
as a Sine Function for a Temperature of + 80°F,

Versus Time,
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Plgure 3 Pressures, Induced by Varying the Cutlet Flowrate
as a Sine Function for a Temperature of = MOOP,

Versus Tine.
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Figure 4 Fressures, Induced by Varying the Outlet Ilowrate
as a Sine Function for a Temperature of 4 8OOE,

Versus Tine.
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Figure 5 Flowrates Versus Time for Fipeline Shut-In

Conditions at a Temperature of - BOOF.
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Figure 6 Flowrates Versus Time for ripeline Shut-In

Conditions st a Temperature of # 60°F.
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Figure 7

Fressures Versus Time for Plpeline Shut-In

Conditions 2t a Temperature of - BOOP.
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rigure 8 Frecsures Versus Time for Fipeline Shut-In

Conditions at a Temperature of + 60°F.
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Figure 9 Outlet Flowrate and Frressure Versus Time for
Flowrate Convergence Study at a Temperature

of - 40°p.



33

1807

170

160

150

140

Outlet Flowrate, mmscf/d

130

120

530
520
510

500

Outlet Pressure, psia

Figure 9

L} 1
Qsi=l85.lmmscfﬂj

-

Qg¢=176.5 mmscf/d)

-
-
-
-
-
-
-
-
-
-
-

Variable Z
Constant Z

- v - - - -

=-40° F

T

1T

—

]
1

1
30 40
Elapsed Time, Min.



34

Figure 10

Qutlet Flowrate mnd Pressure Versus Time for
Flowrate Convergence Study at a Tenmperature

of + 80°F.
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SUMMARY AND CONCLUSIONS

Solutions to the partial-differential equations which
govern transient gas plpe flow have been obtained by the
method of characteristics and linear finite-differences for
both a constant and variable gas compressibility factor.
Theoretical investigations were made of varlous constant
flowing temperatures snd transient conditions in order that
the results for both the cconstant and variable z solutlons
could be compared.

Marked differences occur in the prediction of flow
properties at extremely low flowing temperatures by the
two approaches. This 1s a result of the variation of the
compressibility factor with pressure changes in these
temperature ranges. Deviations between the two methods are
much less pronounced at normal pipeline operating temper-
atures.

Transient behavior in gas pipelines may readily be
approximated by using an average constant value of the gas

compressibility factor for most transmission conditions.
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AFPPENDIX II.--NOTATION (1)

The following symbols are used in this paper:

= cross-sectional area of plpe, polnt on x-t plane;
= polnt on x-t plane;
inside diameter of pipeline;

= Moody friction factor;

Q@ H O w »
f

= gas specific gravity;
&, = gravitational conversion constant;

dimensionless constant = 0.5fL/D;

™
|

=
1]

total length of plpeline;

M = mass flowrate of gas;

n = number of moles of gas;

P = absolute pressure of gas, point on x-t plane;

Pl, P, = pressure of gas at inlet and outlet, respec-

tivelys
Py, = critical pressure of gas;
Pg = standard pressure;
Q = volume flowrate of gas;

R = universal gas constant;

T = temperature of gas;

Tc = critical temperature of gas;
Ty = standard temperature;
t = times

V = volume of gas;



constant grouping of terms used in the
calculation of z;

distance along the pipeline;

gas compressibility factors

mass density of gas.

40
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APPENDIX II.--NOTATION (2)

(for thesis only)

The followlng symbols are used in this paper:

A' = point on x-t plane;
B' = point on x~t plane;

C = point on x-t plane;

F = forces acting during gas flow;
L, Ll, L2 = equatlion representation used in characteristics
transformation;
MPI = Inlet mass flowrate of the gas;

S4s S_ = representation for positive and negative
characteristic grid lines;
v = average velocity of the gas;
Vg = velocity of sound in the gas;

multiplier used in characteristic transformation;

I

P_ = initial inlet mass density of the gas;
pPI = inlet mass density of the gas;

T, = shear stress at pipe wall.
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APFENDIX III.--LITERATURE REVIEW

Numerical solutions to predict pipe flow conditions
during transient fluid flow have become feasible through
application of digital computer techniques. Studies of
unsteady-state compressible fluld flow have been limited
in number because transient gas flow is primarily a problem
of an industrial nature. Until the recent organization of
the Transient Flow Committee of the American Gas Assoclation,
few major research projects have dealt with the subject.

In 1951, 0Olds and Sage (7) presented a method which
graphically integrated the partial-differential force and
material balance equations describing gas flow. Thils
procedure was reported to have ylelded satisfactory results
for various transient flow conditions. The investigation
considered gas compressibility by using an equation of
state to determine the specific welght of the gas as a
function of temperature and pressure in the systemn.

A computer study of unsteady-state natural gas plpe
flow was reported by Nelson and Powers (6) in 1958. The
procedure involved a trial-and-error solution of the
fundamental mass and momentum equations for compressible
fluid flow. The gas compressibility factor was expressed
es a linear function of reduced pressure at constant tem-
perature conditions. Varilous plpeline storage and flow-

rate depletion studies were uade, but an excesslive amount



43

of computer time was required due to the lengthy equations
involved in the solution and the testing procedures required
to insure correct application of boundary conditions.

In 1962, Taylor, Wood, and Powers (11) presented details
of a computer program to simulate transient gas conditions.
A direct solution was provided by application of the method
of characteristics (1,5,9) and finite-difference techniques
to the differential equations of gas flow. An ldeal gas
(z = 1.0) was assumed, thus sinplifying the method consid-
erably. Although correlation between computed results and
field data were inconclusive, the investigation suggested
a possible method to obtain a direct solution to the tran-
sient flow equations for an ideal gas.

An analytical approach to transient gas flow was re-
ported in 1965 by Wilkinson, Holliday, and Batey (12). A
recurring power serles solution was applied to the equations
of continuity and momentum. Gas floﬁ properties at one end
of a pilpe section were determined, based on known flow
properties at the other end of the section. A very useful
equation was developed to calculate the gas compressibllity
factor as a function of mass density and critical gas
properties. A study was made comparing solutions obtained
by using a varying compressibility factor wlth those made
by assuming a constant compressibllity factor eveluated at

mean line pressure. The report stated that the use of a
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mean compressibility factor did not significantly degrade
the results.

In early 1971, Distenfano (3) introduced a general
digital-computer program designed to simulate the transient
flow of an entire gas pipeline network. The program, re-
ferred to as PIFETRAN IV, is completely flexible so that
pressure and flowrate changes for all phases of a2 pipeline
system (pipe segments, compressor stations, storuge facili-
ties, Junctions, etc.) may be incorporated into the solution.
The method applies finite-differences directly to the par-
tial-differential equations of mass and momentum conserva-
tion in order to determine the dynamic behavior of the
system. The gas compressibility factor is calculated by an
equation similar to that used by Wilkinson, Holliday, and
Batey (14), but its value 1s assuned to be constant for the
pipeline. PIFETRAN IV is reported to provide very speedy
solutions and appears to be a valuable tool in transient
ges flow investigations, provided temperature and pressure

changes in the pipe system permit only small variations in

the gas compressibllity factor.
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AFFENDIX IV.--THEORETICAL D:VELOFMENT OF SQUATIONS

A basic momentum balance to describe gas flow nay

be written by considering an element of flowing gas in the

pipeline.
M v
EF - gc -oooocunoo.--o...oooo.u-(l?)
Assuming one-dimensional flow, F = forces acting parallel

to gas flow; M = mass flowrate of the gas in pounds mass
per second; v = fluild velocity in feet per second; and By =
the gravitational converslon constant in foot-pounds mass
per pound force-second squared. The left side of this
equation can be expanded to include differential pressure
and shear forces acting in the direction of flow, while
momentum changes wlth respect to time and position are
included for the right hand term. Thus, for an lncremental

element of pipe
- g8, APy dx = g, ™D Ty dx = Mg dx + (M v)y dx ...(1B)

where P = pressure of the flowing gas (pounds per squere
foot absolute); A = cross-sectional area of the pipe in
square feet; Ty = shear stress in pounds per square feet;

D = inside diameter of the pipe (feet); and the subscripts

x and t denote partiasl differentiation with respect to the

independent variables, distance and time.



L6

In order to eliminate variables involving gas velocity,
shear stress, and pressure, the following relationships
based upon the equations of continuity, friction loss, and

gas state are substituted into Equation 18:

—

M
v - ITK ............o...o.......(lg)

-2
= _ f M
To = —E_IE:_ = mZ ..............-(20)

oooooo-n.--..-000.-000(21)

Pz R T
G

In these equations, P = mass density of the gas in pounds
mass per cublic footy f = Moody friction factor; z = gas
compressibility factor (dimensionless); R = universal gas
constant (foot-pounds force per degrees Rankine-pound moles);

T absolute temperature of the gas in degrees Rankine; and

G gas specific gravity (dimensionless). Ferforming these

substitutions and rearranging terms, the momentum equation

becomes
2
g&c A R T l 2 f M -
55— (P2l t Mg+ 5 WAy + T3 = 0 ...e(22)

A continuity equation may also be written to describe

one-dimensional gas flow:

- ( pv)X = pt ,....................(23)

Noting that P v = M/A, and rearranging terms, Equation 23
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may be rewritten as

1 r
p +AM - O0.....0.0..00....00000(84)

Equations 22 and 24 form the basic momentum and mass
balance relationships used in this study. In order to
provide simpler working equatlions, all terms will be defined
or rearranged in dimensionless form. Thus, the following

dimensionless ratios (11) are defined:

X' = X/L teeececsececsccccsenecsseal(25)
tY = ot vs/L tecessesesesecsenccnsas(26)
M' = M/(A pI vs) cecesesssessccsessl(27)
p' = p/pI oobooo‘ooocooocoocooooooo(28)
K = 0.5 F L/D eevesascccscnssoeasssl(29)

where, L = total length of the pipeline 1in feet; pI = initilel

mass density of the gas at pipe lnlet pressure; and Vg
%

(gc R T/29 G)® = the velocity of sound in a gas of given

composition and temperature.

If vg and the dimensionless quantities defined above
are substituted into Equations 22 and 24, and all prime

notation is removed, the dimensionless momentum and mass

equations of gas flow become

(pz) + M <+ (MZ/D) + K Mz/p = 0 teesesssl(30)
X t X
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and
Qt"'MX = O ..o.ooo00000000.00000(31)

An equation may be used to determine the gas compressi-
bllity factor as a function of mass density and the criticsal
gas properties (12). Thus

1.0
m -..........-...-..-...(32)

N
\

where both w and p are dimensionless gquantities, and

Te

R T
(0.533 T - 0.257)0I ceeeveoees(33)

w = II7 P 29 G

In Equation 33, P, = critical gas pressure (psia); and
Tc = critical gas temperature (degrees Rankine). If the
value of z from Equation 32 1s substituted into the momentum
balance (Egquation 30), all products differentiated, end the
terms regrouped; the following equation results:

2

2
1 M 2 N KN
("'————"_5'1 + W p 2 - QTJ px -+ Dit + p MX + p - O e e o s 0 e (314')

Egquations 31 and 34 form a system of guasi-linear
partial~-differential equations with two dependent variables
(p and M), and two independent variables (x and t). A
numerical solution to this set of equatlions requires a trans-

formation known as the method of characteristics (1,5,9).
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If Hquations 31 and 34 are written in the following

forms:
2 2
= 2 _ M 2 M K M
L]_ l:z -p—z-]px.*Mt.*—p—-Mx.*-—-b—l—.-t.oonoo(js)

L2 = pt + Mx ® 0 8 0 06 & 0P O OS¢ O OO OB ( 36 )
and combined by using an unknown multiplier, A, then
L = Ll + A L2 ® & 5 & 0 & ¢ 5 O 000 P 8P SO e e ( 3? )

The following equation results upon substituting end re-

grouping terms:

L = )\[22 - Mz/pz]p 2 M K M2

A a2 S VY,
x Pl ¢+ [ + 5 ] My + M|+ .

B s 1D

A

If P=P(x,t) and ¥ = M(x,t), then the total derivatives

of pand M with respect to time may be written as

g—-ﬁp- = px%%'+pt .....-........o....-(39)
%% = MX%%*.Mt ooo--ootoo.oo-oooo.O(uo)

By comparison of Equations 38, 39 and 40 it follows that

d;}E = ZZ-IJZZ/DZ = )\*-Z-—I—w‘-...............(ufl)
, 2 .
L = xdp*.@i*'g_—m—- = 0.............-.(“’4)

dt dt 0
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Bquations 41 are solved simultaneously for ), and the result

ls substituted into Equations 41 and 42. Thus

A = iz"M/p O...O.ocool.oootoo.l(“})
dX/dt = iZ"'M/p ..................(44)
(+ 2 = N/0) do + AN + (K M°/0) dbt = 0 vuvuun..(ls)

As polnted out by Lister (5), every solution of Equetions
b and 45 1s a solution to the original system, Equations
31 and 34,

Equatlion 44 is defined as the characteristic grid-
slope equation and may be elther positive or negative de-
pending upon the sign before z. A grarhical descriprtion of
the egquations in the x-t plane 1s shown in Filgure 11.
Foints A, B and P are related by the sloping grid lines
(s4 and s.).

A solution to Equations 44 and 45 can be accomplished
by using first-order finite-difference approximations defined

by the formula

X
f}f(X) dX ~ f(XA)(XP-XA) ootoooc-ocoo(}“l’b)
XA

Referring to the notation of Figure 11, and applying thils

linear approximation to Equations 44 and 45, there results:

(xp = x3) = (2 + Moy (tp = ta) covneeeaa(b?)
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(z - M/D)A (pP - 9A) + (MP - MA) + (K Mi/fh)(tP -ty =0

o.o.-.oo.......o.(u"B)
B) = (- z + MAw)B (tP - tB) ceeese(l9)

+ (Mp - My) + (K HE/0)) (b, - tg) = O

R I A 1D

(- z - M/D)B (pP - fy)

If the variables are known at points A and B, Equations 47~
50 represent a system of 4 equations with 4 unknowns (OP’
Mps Xp and ty). Thus as shown in Figure 12, from a set of

known values at initial time (t = t_ ), a solution can be

o)
marched out by using an iterative system of calculations

based upon Equations 47-50.

In order to arrive at a solution that will predict gas
properties at evenly spaced iIntervals along the pipeline for
the same elapsed time condition, the method of specified
time intervals (5,9) 1s used.

The pipeline is divided into any number of equally
spaced increments, and a constant time interval (At) is

chosen for each time iteration such that
(xP -x,) = Ax > (z + M/p)A AL ecoesosessesesssl(51)

Ax < (z-Mh)BAt cesecssscesas(52)

i

and (xP - xB)

are satisfied for every position increment along the plpe-

line. Thus, the smallest value of At 1s chosen as the step

time.
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Referring to Figure 13, if the flow conditions at
points A, B and C are known, an interpolation process can
te used to locate and determine the values at points 4' and
B*. Time and position are related by the grid-slope equa-
tions, and if a linear relationship 1s assumed to exist

between points, then

bxge = Lz o)t (2 4 W/0)g] il (53)
and AXB| = %—-kz - MAO)C + (Z - M/Q)é oooooooooooo(Su)
from which

MA' = MC - AXA' (MC - MA) 0‘0....0..0000..(55)
and MB' = MC - AXB' (MC - MB) oooooooooooo..oo(Sé)

Mass density and the gas compressibility factor are also

determined in like manner.
If Bquations 48 and 50 are written for these specified
time condltions and are each solved for theilr unknown guan-

tities (0 and MP)' the final palr of iterative equations

become

2
Ma My 5 o _ KAt Mg
| = + + ! - ¥

K At Mp 1 + 1
T op (zg + Mp/Pfg) Zp = Mp/og4 zp * Mp/og
N Y2,



_ 2 2

K At Mp . K At Mp

B- O + 01
A B

p = o-o..ooo(58)

[ZA - ”A/pA +zy + MB/p B]

A and B are now defined as the points calculated by the
specified time interpolations so that At is constant for all
1terations along the pipeline corresponding to a particular
value of elapsed tinme.

While the unknown flow properties may be calculated at
each intersection of two grid lines by using Equations 57
and 58, a slightly different situation exists at each grid-
boundary intersection. Only one grid-slope and character-
1stic equation is available at each boundary location (Fig-
ure 14), requiring that one of the two flow properties (mass
flowrate or density) be known at that point either as con-
stant or as some function of time. For instance, if pressure
(density) 1s to be the controlling boundary condition at the
rPipe inlet, Equation 50 may be solved for the unknown value
of mass flowrate (MPI) in terms of the known mass density
(°p1) and the flow properties at point B (determined by
applying specified time interval interpolations to the

results of the previous time iteration). Thus

2
M = M, + (0 -p )(zB + MB/pB) - (K At MB/QB) eeea(59)

FI B I B
If inlet flowrate were controlled, rguation 50 could te
solved for ‘%T’ and similarly the outlet boundary conditions

could be treated by various manipulations of Zguastion 48,
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The preceding development was requlired in order to in-
clude a changing gas compressibility factor (primarily es a
function of gas density) in all egquations. The resulting
lengthy iterative equations and thelr numerous linear inter-
Folations can be greatly simplified i1f gas compressibility
1s assumed constant throughout the pipe system during the
transient investigation.

Equations 30 and 31, describing the dimenslonless
momentum and mass equations of gas flow, may be modified

for a constant gas compressibility factor. Thus
Zh), + KMo = O (60)
z px + Mt + (I‘l O )x K M p - ® 65 000 000

pt+1le = O ..'..........'.........(bl)

Taylor, Wood, and Powers (11) have shown that the value of
(Mz/p)X is negligible in comparison with the other terms in
Equation 60. Thus, it 1s eliminated from this development.
(This term was included in the general derivation because
1ts reduced characteristic form, M/o, could easlly be han-
dled, along with the changing gas compressibility factor,
by means of the linear interpolations. It 1s omitted here
in order to avold any type of interpolation.)

Again, applying the characteristics transformation

Ly = 2z 0y + My # KHE/P ceieeiinnnniaenen(62)

L2 = pt+MX 0.000.0-.000-.0...0..0((:)3)
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L = Ll+ )\Lz .o-ooooooocoooctooo(é“’)

it follows that

t
1

Mz P/ A+ Q) + (AN, + M) + K N°/o = 0 ceee(65)

If en approach, similar to that used in Equations 38-45, is
followed here, the resulting characteristic and grid-slope

eguations become
dx/dt = iJE ...l......l......o...'(66)
+ Jz do + dm + (K MZ/D) At = 0 teeeeeecsecess(E7)

The arplication of filrst-order finlte-difference approx-
imations to Equations 66 and 67 results in the following

simplified grid-slope and charscteristic equatlons:

(XP - XA) = Jz (tP - tA) cececseacscseses(68)
VZ (B = B) 4 (Mp = hy) + (K M5/0,)(Ep = £4) = 0 .eu.(69)
(xP - xB) = = Jz (tP - tB) P (74D

- VZ (0 = 8) 4 (Mp - M) 4 (K ME/)(t, - tg) = 0 ...(71)

Since for this development an average constant value of z

is assumed, Equations 68 and 70 may be written as one grid-

slope equation

AX = NMZ AL i ieiirncecnnannnesees(?2)
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This slope equation applies to both the positive and neg-
ative sloping grid lines, depending upon the direction in
which the equally spaced pipeline increments (Ax) are
measured.

Thus, the time increment, At, i1s constant for each tran-
sient flow investigation, and a simple rectangular grid sys-
tem results as shown in Figure 15. No interpolations are
required as Equations 69 and 71 may be easily solved for
the unknown flow properties at each predetermined grid

intersection. Thus

2 2
KAt Ha KAt M
Mp = % My + Mp + 4z (Py - Pg) - (k‘ﬂ - QDB‘B

eee(73)

' 2 2

K At Mp + K At MpB
OA pB
.‘....‘........'.(?4)

N = 1 z J - -
P 2ﬁ'/z (0, +pg) + My - My

where At = Ax/Jz = constant.

Boundary conditions are again treated by solving the
original characteristic relationships, Equations 69 and 71,
for the unknown flow property in terms of a known boundary
value and the flow properties determined on the previous

time iteration. Thus, controlling the inlet density results

in

V ) 3 2
Moy = Mg ¥ Jz (0 =Py (KAt MED 3) weenn.o(75)

Other boundary equations follow by using the methods out-

lined previously.
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Figure 11 Graphical Description of the Sloping Grid Lines

in the x-t Flane.



Figure 11
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Figure 12 General Solution of Characteristic Equations in

the x-t Flane.
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Flgure 13

lMethod of Specified Time Intervals.
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Figure 14 C(Conditions at Grid-Boundary Intersections.
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Figure 15 Rectangular Grid Solution of Characteristic

Zguations Assuming Constant Gas Compressibility.
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