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ABSTRACT (1) 

Methods of iterative solution for the partial-differ­

ential equations that govern the transient flow of gases 

ii 

in pipelines are obtained by using the method of character­

istics and linear finite-difference techniques. Solutions 

are developed for 1) a constant gas compressibility factor 

throughout transient conditions, and 2) a variable gas 

compressibility factor at constant temperature dependent 

upon pressures encountered during transient flow. Theoret­

ical studies are made to compare results using both ap­

proaches for pipelines operating at various constant flowing 

temperatures. Results show greater differences between the 

two methods at lower values of flowing temperature due to 

the more rapidly changing compressibility factor as a 

function of variable pressure. 

KEY WORDS: compressibility; gases; gas flow; pipe flow; 

~ipelines; temperature; unsteady flow 
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ABSTRJ\C'r ( 2) 

Equations are developed for transient gas pipe flow 

using both a constant and variable gas compressibility 

factor. Solution is by characteristics method using linear 

finite-differences. Results are used to compare the effects 

of compressibility factor at various constant flowing 

temveratures. 

KEY WORDS: compressibility; gases; gas flow; Qipe flow; 

pipelines; temperature; unsteady flow 
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INTRODUCTION 

The partial-differential momentum and mass equations 

that describe transient ~as pipe flow have been solved by 

various numerical methods (6,7,12). Among the techniques 

frequently employed in recent studies are implicit finite­

differences and the method of characteristics (3,10,11). 

~hile these studies have teen concerned with the numerical 

techniques and stability criteria required in trsnsient 

flow solutions, few investigations have examined the effect 

of a variable gLs compressibility factor on transient 

be he vi or. 

The ~urpose of this study is to r~eveloiJ and ap~ly the 

numerical equations of transient gas pipe flow based on 

1) a constant ~as compressibility factor ev81uated At the 

average of inlet and outlet ~ressures at initial time, end 

2) a gas compressibility factor completely dependent upon 

the gas pres~ures encountered in the pipeline during steady 

and unsteady-stc. te flow. F'or both approaches, di~i tal 

computer solutions of the partial-differential e~uations 

1 
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which describe 7as pipe flow are mRde possible by ap~lica­

tion of the character\Ptics transformatio~ and linear fitlite­

difference approximations. The theoretical results, based 

on both constant and variable gas compressibility, are 

compared gra~~hically for various transient flow conditions 

with particular emphasis placed upon temperature effects. 



BASIC DEVELOPfilE:N'r 

Attractive forces existing between gas molecules cause 

the actual volume of a gas to deviate from those volumes 

predicted by the ideal gas law (8). To account for these 

variations in volume, the gas compressibility factor is 

applied as a correction term to the ideal gas equation of 

state. Thus, for methane and natural gas: 

J 

P V = z n R T ••••••••••••••••••••••••• (1) 

where P = absolute pressure of the gas; V = volume of the 

gas; z = dimensionless gas compressibility factor; n = 

number of moles of gas under consideration; R = universal 

gas constant; and T = absolute temperature of the gas. 

As the value of the compressibility factor is essential 

in gas metering, charts and tables have been devised (4) to 

aid in its determination; but this procedure usually requires 

a lengthy calculation involving gas composition, vressure, 

and temperature. At constant flowing temperature, z has 

been correlated as a function of pressure for a gas of 

constant composition (12), that is 

z = 
1 

•••••••••••••••••••• (2) 1 + w p 

where 
R T Tc 

w = 144 Pc 29 G (0.5JJ T - 0.257) .•••••••••. ()) 



In these e(iuations P =mass c~ensity of the gas; G =vas 

specific gravity; lc = critical presEure of the ~as; bnd 

Tc = critical temperature of the gas. lhese relationshi~s 

;;rovide a good approxin:Btion f'or z within the normel range 

of operating yres~ures encountered in ~as transmission 

systems. 

Numerous limi tir:g asf::umptions are required in the de-

velopment of any steady or unsteady-state flow equations. 

In this study, the following assumptions are made: 

1) Elevation changes in the pipeline are negligible. 

2) Flow is isothermal and sin~le phase. 

3) Gas composition remains constant throu;;rhout eF;ch 

transient flow investigation. 

4) Friction factor is constant. 

5) All variations in flow parameters take place at 

inlet and outlet. 

6) ~ipeline is of constELnt cross-sectional area. 

The first three assumptions are essential for the equation 

development in this investigation. While the reJnaining 

assumptions could be ne~lected without debasing the i~teg-

rity of the development, they are accepted here in order to 

si~plify the numerical solution. 

Variable Compressibility Factor. One-di~enHional ~as ~i~e 

flow may be descr1be6 by the following momentum balance: 

g A R T -c 
29 G 

4 
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in which gc = gr~vitbtional conversion constant; A = cross­

sectional area of pipe; M = mass flowrate of the gas (vounds 

mass per second); f = Eoody friction factor; D = inside diam­

eter of the pipe; &nd the subscripts x Hnd t denote partial 

dif'ferentiation with respect to the independent variables, 

distance and time. 

A continuity equation (or mass balance) may also be 

written for the flowing gas, as follows: 

1 
Pt + A rul·x 0 ( c:: ) 1. = • • • • • • • • • • • • • • • • • • • • • • • .../ 

I'he momentum and mass equ&tions shovm above form the 

basic solution to transient flow problems. A direct solution 

to this system of partial-differential equations may be 

accomplished by application of the method of characteristics 

and finite-difference techniques. Lister (5), Abbott (1), 

and Streeter and ·,.,;ylie ( 9) have 1jresented the t·asic approaches 

required for the methods, while others (10,11) have u~~lied 

the characteristics transformation to various forms of the 

transient gus flow equations. 

In order to incorporr~te the changing compressibility 

factor into the solution, Equation 2 was substituted for 

the value of z in Equation 4. The resulting expref,sion \>Jas 

sim{-llified, end Equations 4 and 5 were non-dimen~.ionalized 

by defining the Vbriables (i>1, P, t, and x) in dimensionless 

form as ratios of the original variables to constant or 

known pipeline values. The characteristics transformation 



ond first-order finite-difference~ were thefi apflied, which 

resulte~ in the f'ollowing Eet of grid-slope and character­

istic equations: 

6 

( X ..1:- - X;:. ) = ( ~ + iVj I 0 ) A ( t .!:' - t A ) • • • • • • • • • • • ( 6 ) 

( z - Ivi/ P) A ( o .t - o 
1

) + (i1;} - h A ) + ( K l'i: I o;. )( t 
1 

. - t A ) = 0 

. . . . . . . . . . . . . . . . . . ( 7 ) 

= ( - z + l''il p ) B ( tp - tB) •••••••••• ( 8 ) 

•••••••••••••••••• ( 9 ) 

All terms in the above equations are dimensionless, and the 

constant K = fLI2D. The subscript P denotes unknown con­

ditions at the intersection of two grid-slope lines (defined 

b;y the simultaneous solution of Equations 6 and 8), while 

A a.nd B denote 'h~1own points on the positive and nep;ative 

characteristic lines. 

By using 8n iterative procedure, transient flow ~rop­

erties may be calculated, as functions of elapsed time and 

position in the pipeline, by the sinrultaneous solution of 

EquRtions b-9. For this development, the method of specified 

time intervals (5,9) W8S used to p:rov:lde for an orderly 

o.:rran,;zement of position ~~nd time increments. Thus, r-T ~:md 

Pp are calculated at the same positions along the pi~eline 

for each increase in the value of elapsed time. 



C9nstant Compressibility Factor. Equations 6-~ were devel­

oped to include a varyin~ ~as compressi~ility factor in the 

solution. If, for all values of ~i;eline position during 

the tro_nsient study, the V8l ue of 7. is assumed to be a con-

stant evaluatert at the average of inlet and outlet pressures 

at initial time, ( P z)x = z Px in H;quation 4. If the method 

of ch&ra.cteristics, and the other procedures outlined above, 

are aprlied to Equation 4 (rewritten for a constt-mt z and 

assuming the third term to be negligible) and ~quation 5, 

the following set of simultaneous equations results: 

7 

(x 1~- xA) = ./z (t:f- tA) •••••••••••••••• (lO) 

.[Z (Pl-'- PA) + (Kl-- !"~A)+ (K M~/PA)(tf'- t 1.) = 0 •••• (11) 

(xl'-xB) = -,/7.(tl-'-tB) ••••••••••••••• (12) 

~ 2;p - Jz (Pp- P3 ) + (Mr- h 8 ) + (K ~ 3 B)(tp- t 8 ) = 0 •.. (lJ) 

Since the grid-slope relationships (Equations 10 and 12) 

have constant equal slopes (zi), the iterative si~ultaneous 

solution of Equations ll and 13 is basecl. on a si:np1e rec-

tangular ~rid system, rather than the method of specified 

time intervals fvreviously discussed. 

Boundary conditions for both clevelo;_::,ments are 1-'rovided 

by specifying one of the two flow properties (either pres-

sure or flowrate) at both pipe inlet and outlet as a func-

tion of elapsed time. The value of the unknown flow con-

dit1on at the grid-boundary intersection is then determined 



by solution of the charActeristic equation which correctly 

relates the distance &nd time intervals At the boundary. 

8 



COM1UT~h T~CHNIQU~b 

The non-dimensionetlized iterative equations, for both 

a constant and variable gas compressibility factor, were 

incorporated into separate }ORTRAN programs for solution 

on the IBM 360 Nodel 50 digital computer. Although both 

programs followed the same general format, the variable z 

solution involved longer iterative equations, and required a 

group of interpolations for application of the method of 

specified time intervals. Due to these lengthier calcula­

tions, the computer solution using a varying compressibility 

factor required about fifty percent more time than that of 

the constant z, rectangular grid method of solution. 

To correctly apply an iterative method that propagates 

results from a set of initial and boundary conditions, sta­

bility must be maintained throu~hout the solution. In the 

characteristics method, stability is based on the inter­

related position and time increments (t,.x and 6 t). 1-relim­

inary numerical investigations for the gas pipelines con­

sidered in this study showed that an increment Eize equal to 

one-fiftieth of total pipeline length allowed sufficiently 

stable results at reasonable values of computer time. 

For both com~uter solutions, initial steady-state flow 

properties throughout the pipe system were determined by 

Weymouth's Equation (4): 
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Q = ~ Ts D (Pl - P2) 
[

5 2 2~! 
--'" 22 Ps f L G T z • • • • • • • • • • • • • (l4) 

Those terms not previously definPd are: Q = flowrate of the 

gas in standard cubic feet per hour; Ts = standard tempera­

ture (degrees Rankine); Ps = standard pressure (pounds per 

square inch absolute); ~1' P2 =inlet and outlet pressure, 

respectively (psia); and L =total length of the pipeline in 

miles. An average value of z, as calculated by Equation 2, 

was used in Weymouth's Equation; but, for all other calcu-

lations throughout the variable z solution, the gas compres-

sibility factor was determined as a function of mass density 

at each point and time in question. 

If a high value of Reynolds number is assumed for the 

flowing gas, the Moody friction factor, f, may be expressed 

entirely as a function of pipe diameter. Thus, from the 

work by Cullender and Smith (2) 

f = O.Ol75/D0 "225 D < 4.277 ••••••••••• (15) 

f = O.Ol60J/D0 • 164 D > 4.277 ••••••••••• (16) 

where D is the inside diameter of the pipe in inches. The 

value of the friction factor, as calculated by either Equa-

tion 15 or 16, was used in Weymouth's steady-state equation 

and in all transient flow calculations for both methods of 

solution. 
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The transient flow calcul.::..tions are i;prformed by usin~ 

the iterative chAracteristic equations prcvious1y df'•velo~Pd. 

Values of time and position, at P&ch increment on the ~ire­

line, are relate~ by the ~rid-slope equations. In order to 

assure that the interpolations used in the method of speci­

fied time intervals are able to converge on a new incre­

mental f.)Oint in the x-t plane, the smallest VEdue of /1. t is 

selected at each new time iteration as the ~tep-time 1ncre­

rJent for the variable z solution. The constant z solution 

uses a constant step-time increment for all iter&tions. 

As the transient pipe flow investigations for this 

study begin ot steady-st&te operating conditions, flowing 

pro~erties of the ~as throu~hout the pipe system may be 

calculated from Weymouth's Equation. Transient behavior is 

induced by manipulating conditions at one or bott boundaries 

of the system, and the resulting- g;as flow proi-)erties are 

calculated at evenly spaced intervals along the pi~elinc 

for increasing values of elapsed time. These ~roperties ~re 

calculated in dimensionless form by the itera 1:.ive bound<<.ry 

equations, and are converted to field units for out~ut. 

Thus, the distribution of pressure and volume flowrate in 

the pipeline is obtained as a function of elapsed time for 

transient investip&tions performed with both a con8tant and 

variable gas compressibility factor. 
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DISCUSSION OF RESULTS 

Three different transient gas pipe flow situations were 

devised to study the effect of the gas compressibility factor. 

Each situation involved a constant diameter gas pipeline 

initially operating under steady-state flow conditions, from 

which transient conditions were induced by regulating either 

the flowrate or the pressure at the pipe outlet. Upstream 

pressure was held constant for each investigation, thus 

satisfying the 1.nlet boundary condition. 

Constant values of gas composition (critical properties 

and gas gravity), pipeline length, and initial inlet and 

outlet pressures were selected for each of the three studies. 

(These values are presented in Table 1, along with other in­

formation pertaining to each investigation.) Two extreme 

values of flowing temperature were chosen for each of the 

three sets of pipe flow data, and transient outflow conditions 

were applied. The dynamic flow properties were then calcu­

lated, using both a constant and a variable gas compressi­

bility factor, and the results compared graphically. 

The first study examined pipe flow conditions induced 

by a sinusoidal varying outlet flowrate. Pressure and flow­

rate distributions in the pipeline were calculated for 

flowing temperatures of - 40°F and + 80°F; and the results, 

for both constant and variable gas compressibility, are 

compared in Figures 1-4. 



Both methods of solution predict the same basic tran­

sient behavior for the investigations, but the graphical 

results show more deviation between the constant and vari­

able z methods for properties predicted at the lower 

temperature value (Figures 1 and J). This difference may 

be explained by noting that the ·gas compressibility factor 

changes more rapidly as a function of pressure for lower 

temperature ran~es. Thus, as the pressures throughout the 

system fluctuate due to the varying outlet flowrate, the 

~as compressibility factor deviates more from the initial 

average value used in the constant z solution at the lower 

temperature range than at the higher temperature. 

Pipeline shut-in conditions were simulated in the 

second transient flow study (Figures S-8) by shutting off 

gas flow at the downstream face of the pipe system. This 

boundary condition causes a reduction of flowrates through­

out the system (Figures Sand 6), initially more pronounced 

at points near the outlet, but eventually affecting flow at 

the pipe inlet. As a result, pressures in the system in­

crease (Figures 7 and 8), demonstrating the gas storage 

potential of the pipeline. 

13 

In the final study, transient pipe flow was induced by 

increasing the outlet pressure to a new constant value. 

Under this condition, gas flow in the system should even­

tually stabilize at a new constant value, slightly less than 

the original steady-state flowrate. The initial and final 
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flowrstes (as predicted by Weymouth's Equation) are shown 

on the graphs (Figures 9 and 10); and, during the elafsed 

time presented, the calculated flowrates for both tem~era-

ture studies show a tendency to approach the final theo-

retical flowrate value. 

The results of the final two investigations again show 

greater differences between the constant and variable z 

solutions at the lower temperature value (Figures 5, 7 and 9). 
0 

In general, at normal operating temperatures (+ 60 F and 

+ 80°F') the results from both methods demonstrate satis-

factory agreement. 
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Th.BLr~ 1. --DATA FOR TF1Al' 1SIENT FLOW INV .2:.5TIGATIOl':S 

Study Number ( 1) ( 2) ( J) 

I:'lside diameter of 
1-·i pe, in inches 15-.5 1].12.5 21.50 

Gas gravity 0.654 0.61.5 O.b22 

Critical pressure of 
gas, in f.;OUnds per 6.57.0 650.0 670.0 

square inch absolute 

Initial upstream 
pressure, in _t;ounds 1Jer 700.0 67.5.0 690.0 
square inch absolute 

Initial dovmstrearu 
pressure, in JJounds !)er 500.0 525.0 50.5.0 

square inch absolute 

Standard 1..~ressure, 

in pounds per square 14.7 14.7 lL~. 7 
ineh ubsolute 

Flowing temperatures 420.0 4JO.O 420.0 
used for study, and and and 

in degrees Rankine SLJ-O. 0 520.0 )40.0 

Critical telT~.tJera ture of 
g&.s, in degrees Hhnkine :3)1.6 350.0 350.0 

Standard tem(Jerature, 
in degrees Rt-1nkine 520.0 .520.0 5~·o. o 

Len~th of ~ipeline, 
in miles 100.0 100.0 100.0 

Inlet 
boundary Constant t)ressure, equal to 
condition initi.::l inlet pressure 

Pressure 

Outlet Sinusoiaal l''lowra te increased 

boundary varying decreE> sed to new 

condition flowrate to zero constant 
vnlue 



}igure 1 Flowrates, Induced by Varyin~ the Outlet Flowrate 

0 as a Sine }unction for a Tem~erature of - 40 F, 

Versus Time. 
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.r igure 2 F·lowrates, Induced by Varying the Outlet Flowra te 

as a Sine Function for a Temperature of + 80°F, 

Versus Time. 
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Figure 3 Pressures, Induced by Varying the Cutlet Flowrate 

as a Sine Function for a Tem~erature of - 40°t, 

Versus Time. 
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F'igure 4 Pressures, Induced by Varying the Outlet J.<lowrate 

as a Sine Function for a Temperature of+ 80°f, 

Versus Time. 
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Figure 5 Flowrates Versus Time for Fiveline Shut-In 

Conditions at a Temperature of - J0°F. 
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}igure 6 Flowrates Versus Time for Fi~eline Shut-In 

Conciitions bt a Temperature of + 60°F. 
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Figure 7 Pressures Versus Time for Pipeline Shut-In 

Conditions 2t a 'remperature of - J0°F. 
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~igure 8 ~reEsures Versus Time for Pipeline Shut-In 

Conditions at a Temperature of' ..,. 60°F. 
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I<igure 9 Outlet F'lowrate and 1-'ressure Versus Time for 

Flowrate Convergence Study at a 'rempera ture 

of - I+0°F'. 



180 

170 

~ -0 
f/) 

E 160 
E 
Q) -0 .... 150 
~ 
0 -

LL. -Q) 140 -~ 
0 

130 

120 

0 

~ 520 
f/) 

Q) 

~ 510 -Q) -~ 
0 

Q 

0 

Figure 9 

JJ 

· = 185.1 mmscf/ci 

Q
5

f = 176.5 mmscf Cl 

...... 
... -..... ,.. 

"' I "' 
,.. 

"' \ "' "' \ "' 
\ 

, , 
\ 

/ , 
\ 

, 
" \ " / 

\ / 
\ / 
\ , 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ Variable Z 

\ 
\ Constant Z -------------

IT=- 40° F 

10 20 30 40 50 60 

Elapsed Time, Min. 



J4 

F'igure 10 Outlet .Flowrate L4nd Pressure Versus Time for 

Flowrate Convergence Study at a Tem~erature 

of + 80°F. 
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SUl'iMARY AND CONCLUSIONS 

Solutions to the partial-differential equations which 

govern transient gas pipe flow have been obtained by the 

method of characteristics and linear finite-differences for 

both a constant and variable gas compressibility factor. 

Theoretical investigations were made of various constant 

flowing temperatures and transient conditions in order that 

the results for both the constant and variable z solutions 

could be compared. 

~arked differences occur in the prediction of flow 

properties at extremely low flowing temperatures by the 

two approaches. This is a result of the variation of the 

compressibility factor with pressure changes in these 

temperature ranges. Deviations between the two methods are 

much less pronounced at normal pipeline operating temper­

atures. 

Transient behavior in gas pipelines may readily be 

approximated by using an average constant value of the gas 

compressibility factor for most transmission conditions. 
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APPENDIX !I.--NOTATION (1) 

~he following symbols are used in this paper: 

A = cross-sectional area of pipe, point on x-t plane; 

B = point on x-t plane; 

D = inside diameter of pipeline; 

f = Moody friction factor; 

G = gas specific gravity; 

gc = gravitational conversion constant; 

K =dimensionless constant = 0.5fL/D; 

L = total length of pipeline; 

fti = mass flowrate of gas; 

n = number of moles of gas; 

P = absolute pressure of gas, point on x-t plane; 

P1 , F2 = pressure of gas at inlet and outlet, respec­

tively; 

Pc = critical pressure of gas; 

Ps = standard pressure; 

Q = volume flowrate of gas; 

R = universal gas constant; 

T = temperature of gas; 

Tc = critical temperature of gas; 

Ts = standard temperature; 

t = time; 

V = volume of gas; 



w = constant grouping or terms used in the 

calculation of z; 

x = distance along the pipeline; 

z = gas comvressib111ty factor; 

P = mass density of gas. 

40 



APi?ENDIX II. --NOTATION (2) 

(for thesis only) 

The following symbols are used in this paper: 

A' = point on x-t plane; 

B' = point on x-t plane; 

C = point on x-t plane; 

F = forces acting during gas flow; 

41 

L, L1 , L2 = equation representation used in characteristics 

transformation; 

NPI = inlet mass flowrate of the gas; 

s+, s_ = representation for positive and negative 

characteristic grid lines; 

v = average velocity of the gas; 

v 8 = velocity of sound in the gas; 

A = multiplier used in characteristic transformation; 

PI = initial inlet mass density of the gas; 

PPI = inlet mass density of the gas; 

T 0 = shear stress at pipe wall. 



APIENDIX III.--LITERATURE REVIEW 

Numerical solutions to predict pipe flow conditions 

during transient fluid flow have become feasible through 

application of digital computer techniques. Studies of 

unsteady-state compressible fluid flow have been limited 

42 

in number because transient gas flow is primarily a problem 

of an industrial nature. Until the recent organization of 

the Transient Flow Committee of the American Gas Association, 

few major research projects have dealt with the subject. 

In 1951, Olds and Sage (7) presented a method which 

graphically integrated the partial-differential force and 

material balance equations describing gas flow. This 

procedure was reported to have yielded satisfactory results 

for various transient flow conditions. The investigation 

considered gas compressibility by using an eq_uation of 

state to determine the specific weight of the gas as a 

function of temperature and pressure in the system. 

A computer study of unsteady-state natural gas pipe 

flow wEts reported by Nelson and Powers (6) in 1958. The 

procedure involved a trial-and-error solution of the 

fundamental mass and momentum equations for compressible 

fluid flow. The gas compressibility factor was expressed 

as a linear function of reduced pressure at constant tem­

perature conditions. Various pipeline storage and flow­

rate depletion studies were made, but an excessive amount 
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of computer time was required due to the lengthy equations 

involved in the solution nnd the testing procedures required 

to insure correct application of boundary conditions. 

In 1962, Taylor, Wood, and Powers (11) presented details 

of a computer program to simulate transient gas conditions. 

A direct solution was provided by application of the method 

of characteristics (1,5,9) and finite-difference techniques 

to the differential equations of gas flow. An ideal gas 

(z = 1.0) was assumed, thus simplifying the method consid­

erably. Although correlation between computed results and 

field data were inconclusive, the investigation suggested 

a possible method to obtain a direct solution to the tran­

sient flow equations for an ideal gas. 

An analytical approach to transient gas flow was re­

ported in 1965 by Wilkinson, Holliday, and Batey (12). A 

recurring power series solution was applied to the equations 

of continuity and momentum. Gas flow properties at one end 

of a pipe section were determined, based on known flow 

properties at the other end of the section. A very useful 

equation was developed to calculate the gas compressibility 

factor as a function of mass density and critical gas 

properties. A study was made comparing solutions obtained 

by using a varying compressibility factor with those made 

by assuming a constant compressibility factor evaluated at 

mean line pressure. The report stated that the use of a 



mean compressibility factor did not significantly degrade 

the results. 

Lj.4 

In early 1971, Distenfano (3) introduced a general 

di~ital-computer program designed to simulate the transient 

flow of an entire gas pipeline network. The program, re­

ferred to as PI~E~rlAN IV, ls completely flexible so that 

pressure and flowrate changes for all phases of a pipeline 

system (pipe segments, compressor stations, stor~ge facili­

ties, junctions, etc.) may be incorporated into the solution. 

The method applies finite-differences directly to the par­

tial-differential equations of mass and momentum conserva­

tion in order to determine the dynamic behavior of the 

system. The gas compressibility factor ls calculated by an 

equation similar to that used by Wilkinson, Holliday, and 

Batey (14), but its value is assumed to be constant for the 

pipeline. l'IPETRAN IV is reported to provide very speedy 

solutions and appears to be a valuable tool in transient 

gas flow investigations, provided temperature and pressure 

changes in the pipe system permit only small variations in 

the gas compressibility factor. 



APPENDIX IV. --'I'BEORETICAL D!~VELOfl\'iENT OF EQUA'l'IONS 

A basic momentum balance to describe gas flow Qay 

be written by considering an element of flowing gas in the 

pipeline. 

= • ••••••••••••••••••••••• ( 17) 

Assuming one-dimensional flow, F' = forces acting parallel 

to gas flow; M = mass flowrate of the gas in pounds mass 

per second; v = fluid velocity in feet per second; and gc = 

the gravitational conversion constant in foot-pounds mass 

per pound force-second. squared. The left side of this 

equation can be expanded to include differential pressure 

and shear forces acting in the direction of flow, while 

momentum changes with respect to time and position are 

included for the right hand term. Thus, for an incremental 

element of pipe 

gc n D T0 dx = Mt dx + (M v)x dx ••. (lb) 

where P = pressure of the flowing gas (pounds per square 

foot absolute); A= cross-sectional area of the pipe in 

square feet; T
0 

= shear stress in pounds per square feet; 

D = inside diameter of the pipe (feet); and the subscripts 

x and t denote partial differentiation with respect to the 

independent variables, distance and time. 
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In order to eliminate variables involving gas velocity, 

shear stress, and pressure, the following relationships 

based upon the equations of continuity, friction loss, and 

gas state are substituted into Equation 18: 

v = 

= 

p = 

..1L 
PA •••••••••••••••••••••••• ( 19) 

= f M2 
8 A2 •••••••••••••••(20) gc P 

P z R T ( 
29 G • • • • • • • • • •. • • • • • • • • • • • 21) 

In these equations, P = mass density of the gas in pounds 

mass per cubic foot; f = Moody friction factor; z = gas 

compressibility factor (dimensionless); R =universal gas 

constant (foot-pounds force per degrees Rankine-pound moles); 

T = absolute temperature of the gas in degrees Rankine; and 

G =gas specific gravity (dimensionless). Ferforming these 

substitutions and rearranging terms, the momentum equation 

becomes 

gc A R T 1 2 f M2 
2 9 G ( p Z ) x + M t + A ( lVl /P ) X + 2 D A P = 0 •••• (22) 

A continuity equation may also be written to describe 

one-dimensional gas flow: 

- ( pv)x = pt ••••••••••••••••••••• (23) 

Noting that P v = rvi/ A, and rearranging terms, Equation 2 3 



47 

may be rewritten as 

= 0 •••••••••••••••••••••• (24) 

.E:..quations 22 and 24 form the basic momentum tind mass 

balance relationships used in this study. In order to 

provide simpler working equations, all terms will be defined 

or rearranged in dimensionless form. Thus, the following 

dimensionless ratios (11) are defined: 

x' = x/L .......................... (25) 

t• = t vs/L ••••••.•••••••••••••••• (26) 

M' = M/(A p v ) •••••••••••••••••• (27) 
I s 

p = P/PI •••••••••••••••••••••••••(28) 

K = 0 • 5 f LID •••••••••••••••••••• ( 2 9 ) 

where, L = total length of the pipeline in feet; pi = initial 

mass density of the gas at pipe inlet pressure; and vs = 
( g

0 
R T/29 G) i = the velocity of sound in a ga.s of given 

com~osition and temperature. 

If vs and the dimensionless quantities defined above 

are substituted into Equations 22 and 24, and all prime 

notation is removed, the dimensionless momentum and mass 

equations of gas flow become 

(P z)x +f.\+ (M
2
/P)x + K J.Vt

2
/P = 0 •••••••• (30) 
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and 

= 0 ....•••.•••..••.••.•• ( 31) 

An equation may be used to determine the gas compressi­

bility factor as a function of mass density and the critical 

gas properties (12). Thus 

z = 1.0 ( ) l. 0 .... w p • • • • • • • • • • • • • • • • • • • • • • 32 

where both wand pare dimensionless quantities, and 

w = 
R T Tc 144 p 29 G (0.533 ~- 0.257)PI ••.•••••.• (33) 

c 

In Equation 33, Pc = critical gas pressure (psia); and 

Tc = critical gas temperature (degrees Rankine). If the 

value of z from Equation 32 is substituted into the momentum 

balance (Equation 30), all products differentiated, end the 

terms regrouped; the following equation results: 

= 0 •••••• ( 34) 

Equations 31 and 34 form a system of quasi-linear 

partial-differential equations with two dependent variables 

( p and .M.), and two independent variables (x and t). A 

numerical solution to this set of equations requires a trans-

formation known as the method of characteristics (1,5,9). 
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If Equations 31 and J4 are written in the follo~11ing 

forms: 

= 

= Pt + Mx • • • • • • • • • • • • • • • • • • • • ( 36) 

and combined by using an unkno~~ multiplier, A, then 

L = L1 + A L2 • • • • . • • • • • • • • • • . • • . • ( 3 7 ) 

The following equation results upon substituting and re-

grouping terms: 

L = + 2 M] M + M l + K Jt1
2 

p X tJ p 

................. ( 38 ) 

If P = P (x,t) and 1•1 = N(x,t), then the total derivatives 

of p and M with respect to time m&a.y be written as 

dP 
dt 

dM 
dt 

= 

= 

dx ) 
Px d t + P t · · · · · · · · · · · • · • • • · · • • ( 39 

Mx ~~ + Mt .•...•.....•.••••••. (40) 

By comparison of Equations J8, 39 and 40 it follows that 

dx z2 - !112 /P 2 A+ 2 M .......•....... ( 41) 
dt = = 

A p 

L = A dP + d.r-'1 + K M2 
= 0 •••••••••..•••• ( 42 ) 

dt -dt p 
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Equations 41 are solved simultaneously for ~' and the result 

is substituted into Equations 41 and 42. Thus 

~ = + z - M/ p •••••••••••••••••••• ( 4 3 ) 

dx/d t = .:!:.- z + M/ p •••••••••••••••••• ( 44) 

(+ z- M/p) dp + dM + (K M
2
/p) dt = 0 •••••••• (45) 

As pointed out by Lister (5), every solution of Equations 

44 and 45 is a solution to the original syste~, Equations 

Jl and 34. 

Equation 44 is defined as the characteristic grid-

slope equation and may be either positive or negative de-

pending upon the sign before z. A graphical descri:r-tion of 

the equations in the x-t plane is shown in Figure 11. 

Points A, B and P are related by the sloping grid lines 

(S+ and s_). 

A solution to Equations 44 and lJ-5 can be accomplished 

by using first-order finite-difference approximations defined 

by the formula 

Jxp f(x) dx ~ f(xA)(xp- xA) •••••••••••• (46) 
XA 

Referring to the notation of Figure 11, and apf-lying this 

linear approximation to Equations 44 and 45, therP results: 
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••••••••••••••••• ( 48 ) 

( xp - xB) = (- z + M/n ) B ( tp - tB) •••••• ( 49) 

(- z- N/P)B (Pp- PB) + (Mp- MB) + (K .M~/PB)(t.F- tB) = 0 

••••••••••••••••• (50) 

If the variables are known at points A and B, £quations 47-

50 represent a system of 4 equations with 4 unknowns (oF' 

I{lp, Xp and tp) • Thus as shown in Figure 12, from a set of 

known values at initial time (t = t
0

), a solution can be 

marched out by using an iterative system of calculations 

based upon Equations 47-50. 

In order to arrive at a solution that will predict gas 

properties at evenly SI-'aced intervals along the pipeline for 

the same elapsed time condition, the method of specified 

time intervals (5,9) is used. 

The pipeline is divided into any number of equally 

spaced increments, and a constant time interval (6t) is 

chosen for each time iteration such that 

(xP-xA) = 6x > (z+M/p)A/\t ••••••••••••• (51) 

and ( x F - x B ) = 6 x < ( z - M I o ) B 6 t • • • • • • • • • • • • • ( 52 ) 

are satisfied for every position increment along the pipe-

line. Thus, the smallest value of 6t io chosen as the step 

time. 



Referring to Figure 13, if the flow conditions at 

points A, B and C are known, an interpolation process can 

be used to locate and determine the values at points A' and 

B'. Time and position are related by the grid-slope equa-

tions, and if a linear relationship is assumed to exist 

between ~oints, then 
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~::, x A, = 
2
t::,t [ < z + M/p ) A + < z + fil/ o) c] ............ (53) 

and /::, xB, = ~ t [ ( z - M/o ) C + ( z - M/ o) BJ •••••••••••• (54) 

from which 

and 

Nass density and the gas compressibility factor are also 

determined in like manner. 

If Equations 48 and 50 are written for these specified 

time conditions and are each solved for their unknown quan-

titles (p 1 and Mp), the final pair of iterative equations 

become 

= 

K !::,t MB 
2 J 

••••••••••••••••• (57) 



5J 

= •.•.•••• (58 ) 

A and B are now defined as the points calculated by the 

specified time interpolations so that 6t is constant for all 

iterations along the pipeline corresponding to a particular 

value of elapsed time. 

While the unknown flow properties may be calculated at 

each intersection of two grid lines by using ~quations 57 

and 58, a slightly different situation exists at each grid-

boundary intersection. Only one grid-slope and character-

istic equation is available at each boundary location (Fig­

ure 14), requiring that one of the two flow pro~erties (mass 

flowrate or density) be known at that point either es con-

stant or as some function of time. For instance, if pressure 

(density) is to be the controlling boundary condition at the 

pipe inlet, Equation 50 may be solved for the unknown value 

of mass flowra te (Mpr) in terms of the k.no'tl.rn mass density 

(P~1 ) and the flow properties at point B (determined by 

applying specified time interval interpolations to the 

results of the previous time iteration). Thus 

If inlet flowrate were controlled, ~quation 50 could be 

solved for PPI' and similarly the outlet boundary conditions 

could be treated by various manipulations of ~qu&tion 48. 
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The preceding development was required in order to in­

clude a changing gas com~ressibility factor (primarily e.s a 

function of gas density) in all equations. The resultin~ 

lengthy iterative equations and their numerous linear inter-

~elations can be greatly simplified if gas compressibility 

is assumed constant throughout the pipe system during the 

transient investigation. 

Equations 30 and 31, describing the dimensionless 

momentum and mass equations of gas flow, may be modified 

for a constant gas compressibility factor. Thus 

2 2 
z p X + M t + ( l"l /p ) X + K M I p = 0 • • • • • • • • • • • • ( b 0 ) 

= 0 ••••••••••••••••••••••• (61) 

Taylor, Wood, and Powers (11) have shown that the value of 

(M2 /p)x is negli~ible in comparison with the other terms in 

Equation 60. Thus, it is eliminated from this development. 

(This term was included in the general derivation because 

its reduced characteristic form, M/p, could easily be han-

dled, along with the changing gas compressibility factor, 

by means of the linear interpolations. It is omitted here 

in order to avoid any type of interpolation.) 

Again, applying the characteristics transforQation 

= z Px + Mt + K M2 /P ••••••••••••••••• (62) 

= Pt + M:x: • • • • • • • • • • • • • • • • • • • • • • (f) 3 ) 
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L = L1 + A L 2 o o o • • • • • • • • • • • • • • • • ( 64 ) 

it follows that 

L = A ( z P xI A. + Pt ) + ( A l\1x + t-1 t ) + K N 
2 I p == o • 0 •• ( 6 5 ) 

If Bn approach, similar to that used in Equations J8-L}5, is 

followed here, the resulting characteristic and grid-slope 

equations become 

dxld t = + Jz •••••••••••••••••••••• ( 66) 

= 0 ••••••••••••. (67) 

The application of first-order finite-difference approx­

imations to Equations 66 and 67 results in the follo~Ting 

simplified grid-slope and chare.cteristic equations: 

= ,fZ (tp - tA) •• o ••••••••••••• (68) 

Since for this development an average constant value of z 

is assumed, Equations 68 and 70 may be written as one grid-

slope equation 

Ax = rz 11 t ••••••• 0 •••••••••••••••• < 72) 



This slope equation applies to both the positive and neg­

ative sloping grid lines, depending upon the direction in 

which the equelly spaced pipeline increments (~x) are 

measured. 

Thus, the time increment, At, is constant for each tran-

sient flow investig~tion, and a simple rectangular grid sys­

tem results as shown in F'igure 15. No interpolations are 

required as Equations 69 and 71 may be easily solved for 

the unknown flow properties at each predetermined grid 

intersection. Thus 

p 
p 

= 

= 

2 

M B + JZ ( P A - PB) - K /1. t H A 
OA 

K ~ t M~~ ( ) () • • • 73 
B 

+ K .1\t Jwl~ 
PB J 

••••••••••••••••• ( 74) 

where ~ t = 1\ x/ JZ = constant. 

Boundary conditions are again treated by solving the 

original characteristic relationships, Equations 69 and 71, 

for the unknown flow property in terms of a }{nown boundary 

value and the flow properties determined on the previous 

time iteration. Thus, controlling the inlet density results 

in 

Other boundary equations follow by using the methods out-

lined previously. 
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Figure 11 Graphical Description of the Sloping Grid Lines 

in the x-t Plane. 
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Figure 11 
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¥1gure 12 General Solution of Characteristic Equations in 

the x-t flane. 
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Figure 12 
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F·igure 13 f"iethod of St;ecified Time Intervals. 
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Figure lJ 
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l''igure 14 Conditions at Grid-Boundary Intersections. 
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Figure 15 Rectangular Grid Solution of Characteristic 

Equations Assuming Constant Gas Compressibility. 
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