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ABSTRACT 

Two methods for serial-to-parallel transformation of 

linear feedback shift registers are briefly discussed. A 

third method for transformation is rigorously developed 

using a next-state and output equation representation of 

11 

the linear feedback shift register. An algorit~~ is 

developed for simplifying the parallel machine resulting 

from serial-to-parallel transforma tion, where simplification 

is defined as reduction in the required numbe~ of modulo 2 

adders. A computer program incorporating serial-to

parallel transformation and the simplification algorithm 

is provided. 
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I. INTRODUCTION 

The use of cyclic codes for error detection and 

correction is well known1 ' 2 • Cyclic codes are very useful 

because they are readily constructed using algebraic 

techniques and because coding and decoding are easi1y 

accomplished using linear feedback shift registers. In 

the past, encoding and decoding has been done serially by 

shifting messages through registers one bit at a time. 

This paper presents a method for decreasing the necessary 

message processing time by using parallel encoders and 

decoders. The remainder of this introductory section 

presents the basic ideas of cyclic codes and linear 

feedback shift registers and relates their characteristics 

to the serial-to-parallel transformation problem. 

A general representation for a binary messa ge of 

length k is 

M = a 0 a 1 ••• ak_ 1 where a 1 = 0 or 1. 

The binary digits in the mes s age can be thought of as 

coefficients of a polynomial m(x) as follows: 

m(x) = ao+a,x+ • • • 
k-1 

+ak-1x • 

The binary operations + and " tt are defined as follows: • 

+ 0 1 • 0 1 

0 0 1 0 0 0 

1 1 0 1 0 1 

It should be noted that "+" is the "modulo 2 addition .. 

opera tion ·and .. 11 
• is o r dinary mul tiplica tion . These 



polynomials are distributive, associative, and commutative 

under the two operations, and also the polynomials factor 

uniquely into irreducible factors. 

A second polynomial, g(x), is the generator polynomial 

for a cyclic code. The generator is of degree n-k where 

the information message is of length k and the coded 

message of length n. The generator polynomial g(x) is 

used to generate the code polynomial f(x) from the message 

polynomial m(x) as follows: 

1) Multiply m(x) by xn-k 

2) Divide xn-km(x) by g(x) to yield a 

quotient q(x) and remainder r(x). 

By the Euclidean Division Algorithm 

it must be true that 

_xn.;.km( x) = g( x) q ( x) +r ( x). 

Adding r(x) to both sides (modulo 2) 

yields 
n-k x m(x)+r(x) = g(x)q(x) 

where the code polynomial 

f(x) = ~-~(x)+r(x) = g(x)q(x) 

is of degree n-1. 

The code is systematic, that is, the encoding process 

does not change the !~ormation bits. Thus, the 

infcrmation bits are retained as the coefficients of 
n-1 n-2 n-k x , x ••• x and the check digits are the 

coefficients of xn-k- 1 ••• x 0 • Decoding is therefore a 

relatively simple task. The first k digits are the 

2 



information digits, provided that no errors have occurred. 

Error detecting or correcting ~s accomplished by dividing 

the coded polynomial f(x) by the generator polynomial g(x). 

If' 

f'(x) - g(x)q(x) 

then 

f'(x)/g(x) = q(x) 

provided that no errors have occurred. If a detectable 

number of errors has occurred, then division by g(x) will 

y1e1d a nonzero remainder. 

The error detection or correction capability of any 

cyclic code is determined by the generator polynomial for 

the code. For example, Peterson and Brown 1 prove that . 

the cyclic code generated by the polynomial 

g(x) = 1+x 

is a single-error-detecting code. In addition, of course, 

the code detects any odd number of errors. Peterson and 

Brown a1so develop generator polynomials for double-and 

triple-error-detecting codes and for burst-error-detecting 

codes. However, the best knovm cyclic codes are those 

for which the generator polynomial is constructed using 

techniques described by Bose and Chaudhuri. For thesa codes, 

given that the desired message length and error-detection 

capability have been selected, construction amounts to 

construction of the generator polynomial using the Bose-

Chaudhuri algorithm as describe'b y Peterson 2 • Encoding 

and decoding for the Bose-Chaudhuri codes, as for all cyclic 

3 



codes, amounts to division by the generator polynomial. 

If error correction is to be accomplished the remainder 

must be evaluated at the decoder. 

The capability of a cyclic code to detect errors, 

is shown by the following example which is an information 

channel for transmission of ·four binary digits (k = 4). 

The generator polynomial 

g(x) = x3+x+1 

w111 provide three check digits for the code. It can be 

sho~m that this code has minimum {Hamming} distance three 

so that it can detect any combination of tuo errors. If 

the message 1011 is to be encoded, then 

m(x) = 1+x2 +x3 

xn-~(x) = x3mx : X3+X5+X6 

xn-km(x) ~ g(x) = (x3+x5+x6 )+(1+x+x3) 
• 

= q(x)+r(x) (modulp 2) 

= (1+x+x2+x3 )+1. 

Therefore, the coded message polynomial is 

g(x)q{x) = xn-km(x)+r{x) = 1+x3+x5+x6 • 

Thus, the binary coded message to be transmitted is 

1001011. 

From this example it is obvious that encoding 

essentially consists of division of the message polynomial 

by the generator polynomial. At the decoder the coded 

message polynomial is again divided by the generator 

polynomial. Therefore it 1s desira ble to find a machine 

which 1dll efficiently accomplish this division. It is 

4 



well known that the linear feedback shift register (LFSR) 

is such a machine. 

The LFSR is constructed using the three building 

blocks described below: 

1 ) The modulo-p 13 
adder. ~ 

A ~ C = A+B modulo p 

2) The delay element. The 

output is the input 

delayed by one clock 

time. For p = .2 this 

v(t)-D-v(t-1) 

element might be a £11p-£lop. 

3) The constant multiplier 

element where D is an 

element from the residue 

class ring modulo p. For 

p = 2 this element is an open 

circuit for D = 0 and a ~re 

forD= 1. 

v-8--Dv 

Given a generator polynomial g(x) with coefficients 

from the GF [2] (i.e. the prime or Galois field having 

2 elements) such that 

g( x) = a xr+a xr- 1+a xr-2 + a x+a r r-1 r-2 • • • 1 0' 

the LFSR for dividing by g(x) is as shown in Figure 1. 

The register is initially set to 0. The (n-1) degree 

polynomial p(x) which is to be divided by g(x) is shifted, 

high order first, into the register from the left. After 

5 



FIGURE 1 

LFSR for Division by g(x) 

r-1 shifts, the first coefficient of the quotient appears 

at the output. After n-1 shifts, .- the entire quotient 

has appeared at the output and the shift register retains 

the remainder. 

Example: 

The (7,4) code, that is; n = 7, and k = 4, might have 

a generator polynomial 

g(x) = x3+x+1. 

The feedback shift register for accomplishing division by 

g(x) is as shown in Figure 2. If the 4 bit message to be 

FIGURE 2 

LFSR for Division by x 3 +x+1 

encoded is shifted into this register high order coefficient 

first, then after three shifts the coefficient will begin 

6 
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to appear at the output and after seven shifts the remainder 

w111 be in the register. Taking a specific example, 1f 

m = 1011, then 

and 

x 2m(x) = x3+x5+x6. 

This polynomial, divided by 

g(x) = 1+x+x3 

yields a quotient 

q(x) = 1+x+x2 +x3 

and a remainder r(x) = 1. The flow table below illustrates 

the operation of the register' 

t I 

0 1 

1 1 

2 0 

3 1 

4 0 

5 0 

6 0 

7 0 

The message to be sent is 

1+x3+x5+x6 

xo x1 x2 

0 0 0 

1 0 0 

1 1 0 

0 1 1 

0 1 1 

1 1 1 

1 0 1 

1 0 0 

---->~ 1 0 0 1 0 1 1. 

At the receiver an identical shift register will 

divide this coded message polynomial by g(x). After 7 



shifts the remainder (0 if no errors have occurred) vdll 

be in the shift register and an 11 0R" gate on the outputs of 

the delay elements must read 0 after the seven shifts if no 

error has occurred. Figure 3 shows the decoder. 

Input 

DECODER - - - - - - - - - - - - ~ - - - -
INFOfu•~TION MESSAGE REGISTER 

Enabled for infor 
mat1on bits only 

FIGURE 3 

Decoder for the (7,4) Code 

Error 
Alarm 

Cyclic codes, as has already been stated, are readily 

constructed using well defined algorithms the best known 

of which is the Bose-Chaudhuri algorithm. Also, the codes 

can be implemented quite simply using linear feedback shift 

registers. These shift registers were shown to be serial 

shift registers which required a total of n clock times 

to perform error checking (i.e. to calculate the remainder) 

of an n bit message. 

In applications where message processing time is a 

consideration it is desirable to decrease the encoding and 

8 



decoding times. Hence the problem of converting a serial 

feedback shi.ft register to an equivalent machine which is 

partially parallel presents itself. The serial machine 

~ght be described by the diagram of Figure 4a and the 

equivalent parallel machine by Figure 4b. Suppose for 

... ..... ... -
.... ... 

I • I 

i(t) -~ I I w{t) 
I I 

... 
1 

, 

(a) Serial (b) Parallel 
FIGURE 4 

Serial and Parallel Equivalent LFSR's 

the serial machine that the input sequence is In_ 1 In_2 ••• 

I 2 r
1 

10 and the output sequence is wn_ 1 wn_ 2 ••• w2 w1w0 • 

At time t = 0 the input is I 0 and the output w0 , at time 

t = 1 the input is r, and the output is w,, and so ~orth. 

The input is entered one bit per clock time and the output 

is provided one bit per clock time. In Figure 4b, the f 

channel parallel machine enters the input data f bits at a 

time and provides output data f bits at a time. Thus at 

time t = 0 the input is If-1' • • • I 1' 1
0 

and the output 

is wf'_ 1 , • • • w1' wo. At time t = 1 the input is 12f'-1' 

1f-1' If and the outputs are w2f_ 1 , • • • wf. The number 

• • • 

of clock times required for the para11el machine is q where 

q is the smallest integer such that 
n 
f 

9 



where q is a parameter which can be selected by the 

designer. The problem to be investigated may now be stated 

as: 

"Given a serial linear feedback shift register 

which requires n clock times to accomplish 

encoding or decoding, find a minimal or near 

minimal parallel machine which accomplishes 

the same function in q clock times." 

The decrease in message-processing time is, of course, 

not obtained witho~t a penalty. The penalty is, as is 

usual for digital machines, an increase in the complexity 

of the machine. In other words, the decrease in processing 

time is accompanied by an increase in the amount of 

hardware necessary to build the encoder and decoder. This 

~11 be evident from the example presented in the next 

section. Thus minimization of the hardware required to 

realize parallel encoders and decoders is desirable and will 

be part of the problem treated in this paper. 

10 



II. SERIAL-TO-PARALLEL TRANSFO~~TION METHODS 

This section presents three methods ~or transformation 

of serial LFSR's to f-channel paral1e1 analogs. The first 

two methods are presented essentially as they appear in a 

paper by Hsiao and Sih 3. The third method, which seems 

to be superior to the first two, is based on a method 

proposed by Hsiao and Sih and ~xtended by Gill4
• 

A. Trro Elementary Transformation I'iethods. 

Hsiao and Sih call their first method of serial-to

parallel transformation the "Engineering Approach". 

This method is readily explained by example with the serial 

LFSR shown in Figure 5. The case in which f = 2 requires 

FIGURE 5 

LFSR for the Generator g(x) = 1+x+x4 

that the input data be entered two bits at a time and the 

output data be provided two bits at a time. From the 

serial flow table o~ Table 1, the initial states of the 

storage elements are s1 (o). 

1 1 
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TABLE 

Flow Table for a Serial LFSR 

In- Out-
t put so s, 52 53 put 

0 Io 50 (0) 51 ( 0) . 52(0) s
3

(o) wo 
1 I1 I

0
+S3 (o) s0 (0)+S3 (o) 51 (0) s2 (o) w1 

2 I 1+S2 (o} I 0 +S3 (0)+S2 (0) s0 (0)+S
3

(o) s
1 

( o) 

If the inputs are taken in groups of two, then the 

parallel machine will make a transition from the state -at 

time t = 0 to the state at time t = 2. Therefore the entries 

in the table for t = 2 describe the feedb a ck connections 

for the device and the output column describes the output 

connections. By inspection o£ Table 1, the next-state 

equations for the parallel machine are 

The output 

so ( t+1) = 
s1 < t+1 ) = 
s2 (t+1) = 
5

3
(t+1) = 

equations i'or 

li { t) 
1 

I 1+S2 (t) 

I 0 +S2 (t)+S
3

(t) 

s
0

(t)+S
3
(t) 

s1 ( t) • 

the parallel machine are 

The machine to realize the above sets of equations is 

shown in Figure 6. Table 2 is a flow table demonstrating 

the division of x 8+x6 +x5 by g(x) = 1+x+x4 in the parallel 

machine. By long division, the quotient is x4+x2 +1 and the 

remainder is x3+x2 +x+1 and these results can be verified 



-£~ .. ~ so r' s2 ,~ ~ 
, 

,~ ~ 
, 

' 
,, 

~, 

r ~ 
~v 

,, 

' ~ ' s, 83 'J - -Io 

FIGURE 6 

Two-Channel Parallel LFSR 

in Table 2. The input to the parallel machine is 

0 0 0 0 0 1 1 0 1 

' , 

~ 

w 1 

which is 9 bits. Since 9 is not evenly divisible by two, 

a zero 1s affixed in .front of the rightmost coefficient to 

provide 

0 0 0 0 0 1 1 0 1 0 

where the two rightmost digits are the input at time t · = 0, 

the next two digits are the input at time t = 1, and so 

forth. This step may be justified by considering the 

message in polynomial form. Then the rightmost digit is the 

coefficient of xn- 1 and affixing the zero to the right of 

this coefficient amounts to adding (O)xn to the polynomial 

which obviously does not change the polynomial and 

therefore cannot change the remainder obtained after 

division by g(x). 

13 



TABLE 2 

Flow Table for a Parallel LFSR 

Time I1 Io so s, s2 s3 wo w1 

0 1 0 0 0 0 0 0 0 

1 1 0 1 0 0 0 0 0 

2 0 1 1 0 1 0 0 1 

3 0 0 1 0 1 0 0 1 

4 0 0 1 1 1 0 0 1 

5 1 1 1 1 1 

The remainder is in the register after the 5th clock 

time. The coefficients of x3 is s3 , x 2 is S2 , X is s1 , 

and x0 is s0 • The q~otient is provided as follows: 

At t - 2 the value of w
1 

is the coefficient of x4 • 

At t = 3 w0 and w1 are the coefficients of x3 and x2 

respectively. 

At t = 4 w0 and w1 are the coefficients of x and x0 

respectively. 

The method of serial-to-parallel transformation just 

described is straightforward and intuitively understandable. 

It does have the major disadvantage of being tedious and 

un~eldy if g(x) is large or if the desired value of f 

(the number of parallel channels) is large, because the 

14 

state of the machine at each clock time must be investigated. 



Hsiao and Sih present a second method for serial-to

parallel conversion which is described below. This technique 

provides the interconnection between memory elements for 

the parallel machines but provides neither in£ormat1on about 

the connection of inputs nor information about connections 

for providing outputs. 

The technique utilizes the property o£ linear feedback 

shift registers that, if the register is constructed 

according to a polynomial g(x) and if' o<.. is a root of g(x), 

then the register will give successive powers of o< as it 

is shifted. (This property is described in detail in 

Chapter 7 of reference 2). The LFSR described in the 

preceding section will be used here to demonstrate the 

procedure for obtaining the interconnection information for 

a two channel parallel machine. The generator polynomial 

for this machine is 

g(x) = 1+x+x4 . 

Therefore, if c< is a root of g(x), it must be true that 
4 

1+ o< + o<.. = 0 

or, beca.use the addition is modulo-2 
4 

o<. = 1+ c<. 

The contents of the four-stage shift register of this 

example can be described by the polynomial r(x) where 

r(x) = s0 +s
1
x+S2x 2+s3x3. 

Now if x is replaced by~ then it is true that 

( _.._/ ) s s . C" 2 s 3 r ~ = o+ 1 o<. "t"u2 o<. + 3 c::< • 

I£ a three channel parallel LFSR is to be equivalent 

to the serial LFSR, then successive shifts o£ the 

15 
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parallel register must yield successive powers of o<2 • 

Therefore, the contents of this register must be (as shown 

by Peterson) 

r( o<.2) = o<.2r( o<..) =Sao< 2+S1o<. 3+s2oc:.. 4+S3o<:5. 

But, from the preceding paragraph 
. 4 

0<:: = 1+cx: 

so that 

cx::5 = o<:: ( oC.4) = oC(1+ oe:) = oC +cx:.2. 

Therefore substitution of the values for c;IC. 4 and oc:. 5 into 

the equation for r( oC 2 ) yields 

r(oC 2 ) = S0 o<:. 2 +s1oe 3+s2 ( 1 + oC) +S3{cx:. + oe.2 ) 

2 3 2 = s0 c:><. +S1 o<. +S2 +s2 oe +S3 o<: ~s3 o<:. 

= 52+( S2+S3) 0(:: +( So+S3) o< 2+S1 o<: 3 • 

Now, r( oc 2 ) may be rewritten such that 

( 2) ' ' ' 2 2 3 r oC. = s0 +81 o<: +S2 oC +S3 oC • 

Then by inspection of coefficients 
I 

so = s2 
' s, = 82+83 

' s2 = So+83 
I 

s3 = s,. 
Now the above equations, if properly interpreted and if 

inputs are ignored, yield the interconnections described 

by the equations on page 12. 

The method described here has two major shortcomings. 

A very obvious problem is that no information about input 

or output connections is provided. A second problem is the 

complexity of solving for coefficients if the generator 



polynomial is large or if the desired number of parallel 

channels is large. 

B. A Matrix Method of Transformation 

The third technique described by Hsiao and Sih uses 

companion (connection) matrices for the serial-to-parallel 

transformation. The presentation in the following section 

was suggested by the work of Hsiao and Sih, but is more 

general and ultimately results in a method of ·transformation 

w~ch is concise and simple, and lends itself to 

simplification of the transformed circuit. 

1. Transformation of the general linear sequential machine. 

The description of the LFSR in terms o£ generalized 

linear-sequentlal-machin.e theory is desirable because the 

generalized theory permits a concise mathematical 

description of such machines which in turn provides a 

foundation for the theory of serial-to-parallel transfor

mation of LFSR's. 

Yau and Wang5 define a finite state sequential 

machine M as a system ~th a finite input space Y, a 

finite output space W, a finite internal-state spaceS and 

two functions f and g. The functions f and g, called the 

next-state and output functions respectively, are described 

by 

s(t+i > = f [s<t>,I'<t>] 

w(t) =· g [s<t> ,I"<t>] • 

where s(t), i(t), and w(t) are, r~spect1vely, the internal

state, i n p u t and output vectors of M and s(t+1) is tbe 

next inte rnal-state vector of M. Furthermore, the machine 

17 



~11 be assumed to be deterministic, synchronous, and 

completely specified. The machine is deterministic if 

f and g are single valued at every point in their domains, 

synchronous if every transition is clocked, and completely 

specified if f and g are de£ined at every point in their 

domain. If 1 , k, and m are the dimensions of the input 

space, internal-state space, and output space respectively, 

then s( t) 1 s k-di.mensional' I'( t) 1 s 1 -dimensional J and 

w(t) is m-dimensional. 

Let Sxi be the Cartesian product of S and Y so that, 

for a general sequential machine, the next-state function 

f and output function g are mappings among the vector 

spaces Y, S, W, and Sxi. Then, according to Yau and Wang, 

a machine M shall be called linear if and only if f is a 

linear trans~ormation from Sxi into S, and g is a linear 

transformation from Sxi onto w. 
Yau and Wang5 prove that a sequential machine M 

is linear if and only 1£ there exist transformations 

such that 

f' 1 : s~ s 
f2: r ·~r 

g1 : s~w 

g2: Y ----7 w 

f'(s,i> = r 1 <s>+r2 <1> 
s<s,i> = g 1(s)+g2 <1> 

for every s in ~ and every 1 in Y. Further, Birkhoff and 

MacLane6 prove that there is a one-to-one correspondence 

18 



between a ·linear transformation of the type 

f
1 
:s ""--)s 

and a kxk matrix A with elements from the field F, where 

S is a k-dimensional vector space over a scalar field F. 

The linear sequential machine M can therefore be 

described in terms of the equations 

. s ( t + 1 ) = Ts ( t ) + BI" ( t ) 

w< t>. = esc t)+nrc t> 
where T is a kxk matrix, B is a kx 1 matrix, C is . an 

mxk matrix, and D is an mxJ. matrix. · 

The serial-to-parallel transformation problem can 

now be considered in terms of general machine theory. 

Given a linear sequential machin·e X:1 w1 th 1 input terminals 

and m output terminals, find an f channel analog of M, 

called M', with (f)•(R) input terminals and (f)•(m) output 

terminals-. This means that machine ].f' must accept f of 

the i-dimensional input vectors simultaneously and must 

provide f m-dimensional output vectors simultaneously. 

If the state vectors for machine Mare s(t), s(t+1), •. 

then machine M' must transition from s(t) to s(t+f) in a 

single clock time. From this description it follows that 

M' ~11 operat~ f times as fast as M. 

The serial-to-parallel transformation of a linear 

sequential machine is described by the following theorem 
4 proved by Gill • The proof of the theorem presented 

. , 

in this paper is an alternate to Gill's proof and is 

included because it is more easily understood in terms of 

general linear-sequential-machine theory. 
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Theorem 

Given a linear sequential machine M described by 

the set of equations: 

s(t+1 > = Ts(t)+Bi<t> 
w(t+1) _ cs<t>+ni<t>, 

the f-channel analog of M, M', is described by the set 

of equations: 

Where: 

s'<t+1) = T's'{t)+B'i'<t> 

w'<t> = c's'<t>+n'I''<t> • . 

s'<t> = s<t> 
s'(t+1) = s(t+f) 

I''(t) = 

w' c t+1 > = 

T' = Tf 

i(t) 

i(t+1) 

• 
• 

1( i+f-1) 

w<t> 

w<t+1) 
• 
• 

w<t+f> 

B1 =[Tf-lB Tf-2B ••• TB BJ 

c 

CT 

0 1 = CT
2 

• 
• 
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D 0 0 • • 

CB D 0 

CTB CB D 
• • • 

D' = • • • 
• • • 

CT:f-2B CTf'-3B CTf-4B • • 

with each element of' D1 an mxl matrix. 

Proof: 

The next state equation :for M is 

s(t+1) = Ts(t)+Bi<t> 

0 ~l • 

• • 

• • 
D 0 

. CB D 

By successive substitution, the states at later times in 

terms of s(t) are 

s(t+2) = Ts(t+1 ) +B'f(t+1) 

s< t+2) = T {Ts( t ) +BI'( t >} +Bi( t+1) 

s< t+2 > = T2s(t)+TBi(t)+Bi(t+1) 

s< t+3> = Ts(t+2)+Bl(t+2) 

s(t+3) = T [T2
s( t) +TBi( t) ~Bi( t+1 )] +Bl(t+2) 

s< t+3) = T3s(t)+T2BT(t)+TB1(t+1 )+Bi(t+2) 

and, proceeding by induction 

s( t+:f) = Tf's.( t)+T:f-lBi{ t)+T:f-2B1{ t+l )+ 

Rewriting in mat r i x fo rm 

• • .+Bi( t +.f-1 ). 

1{ t) 

i(t+1) 
• 
• . 

I'( t+f'-1 ) 

Therefore, by inspection , the abov ~ equa tion c a n be 

r ewritten 
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s'<t+1) = T's'(t)+B'I''<t> 

and the proof is complete for the next state equation. 

The output equation for M is 

w<t> = cs<t>+ni<t>. 
Again, by successive substitution, the outputs at later 

times in terms of s(t) are 

w(t+1 > = Cs(t+1)+Dl{t+1) 

w<t•1> = C [Ts( t) +Bl{ t )} +Dl( t+1 ) 

w<t+1) = CTs(t)+CBi(t)+Di(t+1) 

w< t+2 > = Cs( t+2) +Di{ t+2) 

w<t+2) = 0 fT2s( t) +TBl( t) +Bl{ t+1 >} +Dl( t+2) 

w<t+2) = CT2s(t)+CTBi(t)+CBi(t+1)+Dl(t+2) 
• • 
• • 
• • 

w<t+r-1> = cs<t+i-1 >+ni<t+r> 
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w{t+f-1) = c{Tf-1s{t)+Tf-2Bi(t)+ ••• +Bi{t+f-2)}+Dl{t+f-1) 

w(t+f-1) = CTf- 1s(t)+CTf-2Bi{t)+ ••• +CBi(t+f-2)+Di(t+f-1). 

Thus, the output equations that have been developed are 

w<t> = cs<t>+ni<t> 
w(t+1) = CTs(t)+CBi(t)+Di(t+1) 

w{t+2) = CT2s(t)+CTBl(t)+CBi{t+1)+Di{t+2) 
• • 
• • 
• • 

w{t+f-1) = CTf- 1s{t)+CTf-2Bi{t)+ ••• +CBi(t+f-2)+Dl(t+f~1). 
Rewriting the above set of equations in matrix form yields 



w< t> c D 

w(t+1) CT CB 

w<t+2) = CT2 s< t)+ CTB 
• • • 
• • • 
• • 

w< t+f-1 > CT:f- 1 CTf'-2B 

Thus the above equations may be written 

w1 (t) = C's'(t)+D'i'(t) 

and the proof is complete. 

1( t) 

D i(t+1) 

CB i(t+2) 

• 
• 

f-3 CT B ••• D i(t+f-1) 

This theorem is applicable. to any linear sequential 

machine. For the case where the serial machine is an 

LFSR with only one input and one output the equations 

are quite simple. 

2. Transformation of linear f'eedback ·shift registers. 

A binary LFS~ with a one-dimensional input space and 

a one-dimensional output space is described by the 

equations 

s<t+1) = Ts(t)+BiCt> 

w<t> = cs(t)+nict ) 

If the shift r egiste r h a s k memory el ements, then 

the state vectors fo rm a k-dimen sional vector sp~ce. 

Thus s(t) is written as a column vector 

s< t) = 

s
0

( t) 

s 1 ( t) 

s
2
(t) 
• 
• 
• 

sk-1(t) 
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If the machine has a one dimensional input space the 

matrix B is a kx1 matrix . A "1" in the ith row of B 

indicates that the input is c~nnected to the ith memory · 

element. Natrix Tis a kxk matrix. A 11 1 11 in the ith row 

and jth column of T indicates a connection from the jth 

memory element to the ith. 

For example, a typical LFSR w~th three memory 

elements is described by the next-state equation 

s0 ( t+1) 0 1 s 0 {t) 1 

s, ( t+1 ) = 1 1 0 s, ( t) + 0 i(t) 

52 { t+1 ) 0 1 0 s { t) 1 
2 

or alternately 

s0 ( t+1) = s0 (t)+s2 (t)+i{t) 

s, ( t+1 ) = s0 { t) +s1 ( ~) 

s 2 (t+2) = s, { t ) +1 ( t) • 

Again as an example, the output equation for this machine 

might be 

w( t) = ~ 0 1] + [1] i{t) 

which yields 

w(t) = s0 (t)+s2 (t)+i(t). 

It is easily verified by inspection of Figure 7 that the 

LFSR shown in the figure corresponds to the next-state and 

output equations given above. It should be noted that 

the matrices T, B, C, and D contain all the information 

necessary to construct the LFSR if the matrices are 

properly interpreted. 
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,, 
~ 

C ~- so f ~ s1 f~ s2 { ~ {~ 
~ ~ ~~ r ~ ~r -~~ r~ 

1 

FIGURE 7 

A Three-Stage LFSR 

The serial LFSR for ~needing and · decoding is 

described by a generator polynomial such that each 

/ 
\ 

stage of the register except the last one feeds only 

--

the succeeding stage. The last stage is fed back to 

preceding stages according to coefficients of the 

generator polynomial. A comparison of the serial LFSR 

of Figure 7 with the serial LFSR sho1m in Figure 2 on 

25 
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page 6 clearly shows their differences. The connection 

matrix, T, for the serial LFSR which accomplishes division 

by a polynomial is formed by constructing the companion 

matrix of the generator polynomial. According to Birkhoff 

and MacLane6 the companion matrix for a polynomial 

is 

k 
g(x) = ao+alx+ ••• +akx 



0 0 0 • • . 0 -ao 
1 0 0 . . • 0 -a1 

Tc = 0 1 0 • • . 0 -a2 
• • . • . • • • . • • . • 

0 0 0 • . . 1 -ak-1 

For a binary machine the coefficients a 1 are elements 

from GF [2] so that 

-a1 - a 1 modulo 2 

and therefore each element in the last column of T
0 

is either one or zero. 

The input for the machine is connected only to the 

first memory element and the output is the output of the 

last memory element. Thus the equations describing a 

serial linear-feedback-shift-register which accomplishes 

division by the generator polynomial are 

s0 (t+1) s 0 (t) 1 

s 1 ( t+1 ) s 1 ( t) 0 
• = T + • i(t) 

c 
• • 
• • • 

sk_ 1 (t+1) sk_ 1 (t) 0 

s0 (t) 

w(t) = [o o ... o t] + [ oJ 1(t). 

Example: 

. The companion matrix to the generator polynomial 

g(x) = 1+x+x4 

is 
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0 0 0 1 

1 0 0 1 

Tc = • 
0 1 0 0 

0 0 1 0 

Therefore the next-state equation is 

s0 (t+1) 0 0 0 s 0 ( t) 1 

s 1 ( t+1 ) 1 0 0 1 s 1 ( t) 0 

= + 
s

2
( t+1) 0 1 0 0 s 2 (t) 0 

s
3

( t+1 ) 0 0 1 0 s
3
(t) 0 

and the output equation is 

[w<t~ = [o o o ~ 

s 0 (t) 

s, ( t) 
s

2
(t) 

s 3(t) 

+ [o J i(t) • 

From these equations 

s0 ( t+1) = s 3 (t)+i(t) 

s 1 ( t+1 ) = s 0 (t)+s3(t) 

s 2 (t+1) = s, ( t) 

s 3(t+1) = s 2 (t) 

and 

w(t) = s
3
(t). 

i(t) 

These equations completely describe the LFSR shown in 

Figure 2 on page 6. 
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The serial-to-parallel transformation for the general 

linear sequential machine applies of course to the LFSR. 

Thus, if the serial machine is to be transformed to an f

channel analog, the describing equations become 



s'(t+1) = T
0
's'(t)+B'i'(t) 

w'(t+1) = C's'(t)+D'i'(t) 

where T
0
', B', 0 1

, and D' are as described previously 

for linear sequential machines. Forming these matrices is 

quite simple as shown in the following example. 

Example: 

Given that a serial LFSR has a generator polynomial 

g(x) = 1+x+x4 

and that a two-channel analog of this machine is desired 

(i.e. f = 2), then 

therefore 

B' = 

T0 B 

I 

= T 2 = c 

(1B B] 
0 0 

1 0 

= 
0 

0 0 

0 

B = 
1 0 

0 0 

0 0 

0 

0 

0 

0 0 0 1 

1 0 0 1 

0 1 0 0 

0 0 0 

1 I 1 
1 

l: 0 

0 

0 

= 
0 

0 

0 0 0 0 0 0 

0 0 1 0 0 1 

= 
0 0 0 0 0 

0 0 1 0 0 0 0 

28 



29 

0 0 0 1l 
CT0 = [o 0 0 1] 

0 0 
=@ o 1 o] 

0 1 0 0 

0 0 1 0 

therefore 

I = [0 0 0 ~ c 
0 0 1 0 

I 

= GB n] D 

1 

CB = [o 0 0 ~ 
0 

[o J = 
0 

0 

therefore 

n' = [: :] • 

Thus, the equations .for the parallel analog are 

' -. s 0 ( t+1 ) 0 0 1 0 s0 ( t) 0 

' I 
s1 ( t+1 ) 0 0 s, ( t) 0 eo<tJ ' = ' 

+ 
s 2 ( t+1 ) 1 0 0 s 2 (t) 0 0 11(t) 

' s 3 (t+1 ~ 0 1 0 0 • ~3(t) 0 0 

where the input i 1 ( t ) i s the input which was described 

as 1 { t+1 ) in the serial machine, and 

s~( t)l 
[w0 (t~ =~ 0 0 :] s; ( t) 

w, ( t) 0 0 1 ' s 2 (t) 

s;( t) J 
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where the output w1 (t) is the output which was described as 

w(t+1) in the serial machine. It should ·be noted that the 

machine described by the above equations is identical to 

that shown in Figure 6 on page 13. 

The serial-to-parallel transformation of an LFSR, as 

shoun by the previous example, consists of manipulation of 

four matrices. The techniques for obtaining the matrices 

for the parallel machine are straightforward but can be 

tedious for large matrices. Because the transformations 

are expressed mathematically they may be readily programmed 

on a digital computer, as indicated by the simplicity of 

the program in Appendix A. In addition, inspection of· the 
I I 

Tc and B matrices reveals that the matrices Tc and B can 

be formed very easily. 

The £-channel analog of an LFSR having companion 

matrix T
0 

will have an interconnection matrix T~ = Tcf• 

Obviously T0 f can be found by repeatedly multiplying Tc 

by itself, but a simpler way of finding Tcf will now be 

developed. If Tc is a kxk companion ma trix -..ri th elenien ts 

t 13 and Q is any kxk matrix with elements qij' then the 

product matrix QT0 with elements (qt)
1

j has the following 

properties: 

1. (qt)ij = qi(j+1 ) for j = 1, 2, ••• k-1 

2 • (qt)ik = q11t1k+q12t2k+ ••• +qiktkh 

This can be demonstrated by multiplying the 

matrices: 



31 

q11 q12 • . • q1k 0 0 • . • 0 t1k 

q21 1 0 . • • 0 t2k 

QTC - 0 1 • • 
• 
• • • • 
qk1 • • qkk . • • • 

• • 0 

0 0 0 1 tkk 

It is important to note that 

tij = :for j = 1-1 and j~k 

= 0 for j~i-1 and j~k 

Thus property 1 becomes obvious upon multiplication of 

the two matrices. Elements of the kth. column of Tc are 

coefficients of the characteristic polynomial associated 

with the companion matrix. Therefore elements of the kth 

column of the product matrix are calculated using 

conventional matrix multiplication. 

Matrix Tc2 can be calculated by application of the 

two properties as follows: 

Tc2 = Tc • Tc = Q•Tc. 

Then the first k-1 columns of T0
2 are formed by shifting 

columns 2, 3, • • • k of Tc to the left one place according 

to property 1. The kth column of T
0

2 is formed by 

observing that t 1k, t 2k, ••• tkk are coefficients of the 

generator polynomial 

The t 1 's are either 0 or 1 depending upon the particular 

generator polynomial . Thus any element (qt)ik in the last 

column of Tc 2 is simply the sum of the elements in row 1 



of T
0 

which are in a column corresponding to a nonzero 

ti. To find Tc3 th~ process is repeated so that 

Tc3 = Tc 2Tc 

where now Tc2 = Q. To obtain Tf, this process must be 

repeated for Tc 4 , T
0

5 and so on for a total of f-1 

iterations. 

Example: 

If g(x) = 1+X+X3+x4 and f = 3, then 

0 0 0 1 

0 0 
Tc = • 

0 1 0 0 

0 0 1 1 
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Then Column 1 of Tc2 is column 2 of T
0

, column 2 of Tc 2 

2 is column 3 of Tc, and column 3 of T0 is column 4 of T0 • 

The 4th column of Tc indicates that the element in row 1 of 
2 the 4th column of Tc is to be a linear sum of the elements 

in ro-vr i and columns 1 ' 2, and 4 of Tc. Column 3 is 

ignored because element 3 in column 4 of Tc is o. Thus, 

T 2 
c is formed by shifting columns to the left., then adding 

the elements in each row ·modulo 2 to form each element in 

the 4th column to obtain 

0 0 

T 2 
0 0 1 0 

= c 
1 0 0 

0 1 1 1 

Then T 3 c is formed by iterating the process so that 



T 
3 = T 2 T c c c = 

0 1 1 

0 1 0 0 

0 0 1 0 

1 1 1 0 
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Investigation of properties of the B and B' matrices 

also reveals a simple method for forming B'. For serial 

LFSR's where the input is connected only to the first 

state the B matrix is 

1 

0 

0 
B - • 

• 
0 

0 

Therefore the product of a square matrix Q premultiplying 

B yields a column matrix which is the first column of Q. 

This statement can be verified by matrix multiplication. 

It has been shown that 

B1 = [Tf-lB Tf-2B . . . TB 
th ' th so that the f column of B is B, the (f-1) column is 

the 1st colQmn ofT, the (f-2)nd is the 1st column of T2 , 

and so ),p .r t Thus if the example used for the Tc 
m 

matrix, with 

g(x) = 1 +x+x3+x4 

' and f = 3, is used, the B matrix can be liTi tten by 

inspe c t i8:P the matrices Tc and T 2 as - c 



0 0 

I 0 1 0 
B = • 

1 0 0 

0 0 0 

The matrix method of transforming serial LFSR Is 

to equivalent parallel machines requires only a 

knowledge of the generator polynomial for the serial 

machine and the number of parallel channels desired in 

the parallel machine. A computer program, described in 

Appendix A, has been written such that, if g(x) and f 

are specified, the resulting T 1 and B' matrices are 

supplied. by the program. Thus transformation becomes 

completely automatic to the program user. 
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If the output equation were also desired, the 

program could be readily expanded to perform calculation 

of the c' and D1 matrices. It should also be noted here 

that, for a general linear sequential machine, the 

transformation program would not be very difficult. 

However, more computer time would be required because the 

simplification described earlier applies only to the very 

special class of LFSrt 's used for encoding and decoding 

polynomial codes. 



III. REDUCTION OF ~aCHINE COMPLEXITY 

The next-state and output equations for the parallel 

LFSR, as derived using the foregoing algorithm, do not 

necessarily specify t~e simplest machine. The simplest · 

machine shall be defined as the machine which requires 

the least number of modulo 2 adders under the following 

constraints: 

1) Only two-input adders are to be used 

2) No adders will be shared. 
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The first constraint was chosen because most manufacturers 

of integrated circuits list two-input exclusive-or gates 

(which are equivalent to modulo 2 adders) as one of their 

11off-the-shelf 11 items. There is no apparent pattern to the 

way in which the adders are shared so that the second 

constraint seems necessary if some criterion of machine 

complexity is to be established. It. should be noted that 

the second constraint is meant to imply that sharing of adders 

is permitted only after the simplest machine, in terms of 

the above constraints, is obtained. 

Under these constraints the number of adders required 

for realization of a machine can be determined by 

investigation of the T', B', c', and D' matrices. For 

example, in the next-state equation the first row of the 

T' and B' matrices indicate inputs to the first stage (s0 ). 

More specifically, the input to the first stage is the 

modulo 2 sum of all feedback connections indicated by "ones" 



entered in the T' and B' matrices. Clearly, then the 

number of two-input adders needed for the first stage is 

one less than the total number of ones in the first rows 

of matrices T' and B'. The number of adders required for 

succeeding stages is determined in a similar fashion. 

It follows that the total number of two-input adders 

required for realizing the state equation is the total 

number of ones in both matrices minus the number of rows 

( k) in the matrices. 
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From the above it is apparent that some method for 

reducing the number of ones in the T', B', c', and D' 

matrices is desirable. This section of the paper presents 

an algorithm which tends to reduce the number of ones in 

the T' and B' matrices. However, before a formal algorithm 

is developed it is necessary t~: 

1) prove that premultiplication of the next-state 

equation of a linear sequential machine M, by 

any nonsingular matrix Q, provides a new 

machine M' isomorphic to machine M, 

2) demonstrate the usefulness of machine M' as 

an encoder or decoder, or both, 

3) demonstrate that premultiplication of the 

next-state equation of M by matrix Q can 

result in circuit. simplification. 

After the three problems listed above have been solved 

the algorithm will be developed. 
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A. Isomorphism in Decoders 

It ha~ been shown earlier in this report that a 

linear sequential machine M is described by the vector 

spaces s, Y, and W and two linear functions f and g. The 

vector spaces S, I, and W are, respectively the next-state, 

input and output spaces and the functions f and g are, 

respectively, the input and output functions. Thus, for 

conciseness it can be said that 

M = (S, I, w, f, g) 

where the symbols are as described above. 

Given some linear sequential machine M, the next-state 

and output equations are 

f(s,r> = s(t+1 > = Ts(t)+Bi<t> 

g(s,r>· = w<t> = cs<t>+ni<t>. 

It will be assumed that the state space is k dimensional. 

Then if the next-state equation is premultiplied by . 

some nonsingular kxk matrix Q the result is 

Qs(t+1) = QTs(t)+QBi(t) 

which can also be written 

Qs(t+1) = QTQ-1Qs(t)+QBi(t). 

Then a new state vector ~{t) can be defined such that 

Qs < t > = a= c t > 

so that 

Qs(t+1) = cr<t+1). 

Then the next-state equation can be rewritten 

<J(t+1) = QTQ- 1 if (t)+QBI'(t). 

The output equation 

w(t) = cs<t>+ni<t> 



can be written 

But 

Qs(t) = cr- <t> 
so that the output equation becomes 

w(t) = CQ- 1 ~ (t)+Di(t). 
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Thus, as indicated by the next-state and output equations, 

a new machine M' has been described such that 

where 

M' = (s', Y', w•, :r•, g') 

f'(o- ,i) = cr<t+1 > = QTQ- 1 cr<t)+QBi(t) 

g•<o· ,I'>= w(t) = cQ- 1 cr<t)+Di(t). 

It is helpful at this point to consider the physical 

implications of · the process described above. A comparison 

of the next-state equation for machines M and M' shows thai 

the interconnections between memory elements are described 

by matrix T for machine M and by matrix QTQ- 1 _ for 

machine M'. Similarly, the connection o:f inputs to memory 

elements is described by matrix B for machine M and by 

matrix QB for machine M'. A comparison of the output 

equations reveals different interconnection matrices, C 

for machine M and CQ- 1 _for machine M', but identical 

input-connection {D) matrices. Obviously _then the two 

machines !-1 and M 1 "look different 11
, but 1 t will be shovm. 

that the machines are isomorphic. 

Two linear sequential machines are isomorphic if the 

two machines are identical except for a relabelling o~ 



the inputs, internal states and outputs. That is to 

say, two linear sequential machines M = (S, I, W, f, g) 

and M' = (s', Y', w', f', g'} are isomorphic if and only 

if there exist three one-to-one mappings 

h1 : s~ s' 

h2: Y----) Y' 

h3: w~w· 

such that 

h1 [fCs,T>] = f' [ h 1 Cs>, h2(i}] 

h3 [gCs,i>] = g' [ h 1 Cs>, h2(1)] 
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Thus to shovT tha.t machine N', obtained by multiplying the 

next-state equation of M by Q, is isomorphic to M, the 

mappings h 1 , h 2 , and h 3 must first be identified. It will 

be assumed that the correspondences 

h1 < )Q 

h2 ( )Ik 

h3 ( )Ik 

exist where Q is the nonsingular kxk matrix described 

earlier and Ik is the kxk identity matrix. Then the 

mappings must be tested to determine whether they satisfy 

the relationships 

h 1 [ f(s, r>] = f' [ h 1 Cs>, h2(i~ 
h 3 [ g(s,I">] = g' [ h 1 Cs>, h2 (I~. 

Investigation of the next state equation reveals that 

h1 [ f(s,I~ = Q [f <s, I>] = QTs(t)+QBi(t) 

and that 

:r' [h1(s),h2 <1>] = f' [Qs,i] = QTQ- 1 ·Qs(t)+QB1<t> 

= Q Ts ( t ) +QBi ( t ) • 



Inspection o£ the two equations above verifies that 

h 1 [£<6,1>] = f' [ h 1 <s>,h2 <T> J . 
Now, investigation of the output equation reveals that 

h3 [gCs,r>] = g{s,i> = cs<t>+ni<t> 
and that 

g' [ h 1 <s> ,h2 <r>J = g' [ Qs,r J = cQ- 1Qs<t>+ni<t> 
= Cs(t)+Di(t). 

Inspection of the above equations verifies that 

h 3 [ g < s, r >] = g ' [ h 1 < s > , h 2 < i > ] 
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Thus, it follows that machine M' is isomorphic to machine 

1-'1 and that the only difference bet1·;een M and M' is a 

relabelling of the internal states. 

At this point it has been shown that a linear 

sequential machine M' can be constructed which di~fers 

from a linear sequential machine M only in the labelling 

of its internal states. It remains to be shown that 

construction of such a machine can lead to realizations 

which are simpler than the original machine and that a 

communication system which uses cyclic error-detecting codes 

can be constructed using the simpler machines. 

A communication system in wr~ch a cyclic e~ror

detecting code - is used will now 'be de:fined. The encoder 

shall be an LFSR which provides a remainder in q clock-times, 

that is, a parallel LFSR. If the encoder is called machine 

M, then the decoder shall be denoted M', where M' is the 

machine obtained by multiplication of the next-state 

equation of M by a nonsingular matrix Q. Then for the 



system thus defined, attempts at simplifying the decoder 

are permitted; but the encoder must not be changed. 

Justification for defining the communication system in 

this way requires consideration of the functions of the 

decoder and encoder. 

First, the decoder receives a coded message which 

shall be called m~~(x). The decoder must divide m*(x) by 

g{x) and form a remainder r*(x). If r*(x) = o, then no 

detectable errors have occurred during transmission; .but 
-
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any nonzero remainder indicates error. It has previously 

been sho1m that the coefficients of the remainder are the 

eleme~ts of the state vector of the machine after q clock 

time.s. The states of machine M and M' are, ·respectively, 

s(q) and Qs(q) after q clock times (assuming the machines 

are initially in the zero state). Thus if state s(q) is 

the zero vector, then it follows that state Qs(q) is also 

the zero vector. This ensures that, if no errors have 

occurred, either machine will provide a zero remainder. On 

the other hand, if a detecta ble number o£ errors has 

occurred machine M would provide a nonzero remainder, but 

machine 1'"1 1 t-rould a lso have a nonzero remainder so that 1 t 

is clear that either machine can be used as a decoder. 

The function of the encoder is to divide the message 

polynomial by the generator polynomial and provide a 

remainder . The encoded message is of the form 

xn-~(x)+r(x) = g( :c)q(x). 

Suppose tha t machine M is in state s(q) after q clock 
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times and that the elements of s(q) are correct coefficients 

of r(x). Then a machine M' ~th states Qs(t) would be 

in state Qs(q) after q clock times. In general the elements 

of Qs(q) are not the correct coefficients of r(x) and 

therefore machine M' does not provide the desired encoding 

functions. Therefore, attempts at simplification are 

restricted to the decoder in the following development. 

B. Development of an Algorithm for Machine Simplification. 

It will now be shown by an example that multiplication 

of the next-state equation of a machine M by a nonsingular 

matrix Q can produce a simpler isomorphic machine M'. 

If the generator polynomial for a decoder is x 5+x4 +x2 +1, 

then the companion matrix is 

0 0 0 0 1 

1 0 0 0 0 

Tc = 0 1 0 0 1 

0 0 1 0 0 

0 0 0 

Given that the machine is to have 6 parallel channels, 

a computer program written for the serial-to-parallel 

transformation provides the :following: 

1 0 1 1 0 0 0 0 1 

1 1 0 1 0 0 0 0 0 
I 

T 6 Tc = = 0 0 1 . B' = 1 0 0 0 0 • c ' 
1 1 0 1 0 0 0 0 0 0 

1 0 1 1 0 0 0 0 0 



In this example the first state requires five adders, 

the second stage four adders, and so forth, for a total 

o:f 20 adders. 

Now a machine M' isomorphic to the above machine is 

to be specified. The nonsingular 5x5 matrix to be used 

for this example is 

1 0 0 0 

0 1 0 0 

Q = 0 0 0 0 

0 0 0 0 

0 0 0 0 1 

• 

In this particular case it happens that 

Q = Q-1 • 

Now the matrices for the next-state equation f' are 

0 1 0 0 

0 1 1 0 0 

QT
1
Q- 1 = 1 0 0 0 1 c 

1 1 0 1 0 

1 0 0 1 0 

0 0 0 0 0 

1 0 0 0 0 

; QB 1 = 1 0 0 1 0 0 

0 0 1 0 0 0 

1 1 0 0 0 0 

Inspection of the above matrices indicates that 16 

two-input modulo 2 adders are required. Therefore a 

reduction of four adders is realized. 

• 
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The above example has demonstrated that the Q matrix 

selected for the example did indeed reduce the number of 

adders necessary to implement the decoder. However the 

example does not show how to select the Q matrix which 

results in the simplest machine. For, although some 
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nonsingular matrices lead to simpler machine realizations, 

there are others which lead to more complex realizations. 

One method for finding the matrix or matrices which lead 

to the simplest realization of machine M' is simply to try 

every possible nonsingular matrix. 

Suppose every possible nonsingular kxk matrix is 

formed, the inverse calculated, and matrix multiplication 

performed as described in the example. Then inspection 

of each set of matrices QT~Q- 1 and QB' will yield a 

simplest realization. But the number of possible 

nonsingular kxk matrices with elements from the field of 

integers modulo 2 i.s very large. Birkhoff and MacLane6 

prove that a kxk matrix over some field is nonsingular 

if and only if its rows are linearly independent. Thus, 

if the rows are considered vectors in a k-dimensional 

space, then a nonsingular matrix must have no two rows alike, 

and no row which is a vector sum of two or more other rows 

of the matrix. 

These row properties can be used to construct all 

possible nonsingular matrices. Further, the requirement 

that the rows be linearly independent leads to a simple 

expression for the total possible number of different 

nonsingular kxk matrices, Nk, with elements from GF [2] • 

Thus it can be shown that 

or 

k k k k k-1 Nk = (2 -1){2 -2)(2 -4) •.• (2 -2 ). 

k-1 
Nk = IT 

i=O 
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From the above expression it is found that there exist 

168different nonsingular 3x3 matrices, about 20,000 

different nonslngular 4x4 matrices, and about 10 million 

different nonsingular 5x5 matrices. Obviously the total 

number of nonsingular matrices rises very rapidly with k. 

The process of finding all nonsingular 5x5 matrices with 

corresponding inverses would be a formidable task even 

with a computer. Clearly some method of selecting only a 

small number of matrices from the millions of possibilities 

is necessary. 

Because nonsingular matrices must be formed and 

because the inverse of the matrix must be found in each 

case, two meaningful criteria for selection of the Q 

matrices are; 1) ease in which the matrix is fo~med and 

2) the ease with which the matrix inverse is formed. 

Investigation of the properties of square matrices and 

identity matrices indicates some simple methods for 

forming nonsingular matrices and inverses. These methods 

will be developed in the following paragraphs. 
6 Birkhoff and MacLane prove that a kxk matrix has 

rank k if and only if it is row equivalent to the identity 

matrix Ik. By definition a matrix Q is row equivalent 

to matrix Ik if Q can be obtained from Ik by a finite 

succession of the following elementary row operations: 

1) The interchange of any two rows 

2) The addition of any row to any other row. 

Notice tha t a third operation, multiplication of any row 

by a nonzero scalar, is omitted because the operation 
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is trivial in GF [2] • Birkhoff and MacLane also prove 

that a kxk matrix has rank k and is nons1ngular if and only 

if its rows are linearly independent. 

From the above properties it follows that any kxk 

matrix formed by a finite succession of elementary row 

operations is a nonsingula.r matrix. Further, the k 

linearly independent rows of a nonsingular matrix form 

a basis for the vector space Vk(F) (where F is GF [2] ). 

Thus it follows that the set of kxk matrices generated by 

elementary row operations on Ik is the set of all possible 

nonsingular kxk matrices. 

To specify the set of nonsingular matrices to be 

tried for network simplification, some properties of the 

matrix inverse may be noted. Birkhoff and MacLane prove 

that if a kxk matrix is reduced to the identity by a 

sequence of row operations, the same sequence of operations 

applied to the ide·nti ty will give the inverse of the kxk 

matrix. Thus if a nonsingular matrix Q is formed by 

applying a sequence of elementary row operations on the 

identity matrix, the easiest method of finding its inverse 

1 s to ap:ply the same sequence of row operations 'to the 

matrix Q. Now the properties o~ vectors (or rows) with 

elements from GF [2] become important. If the identity 

matrix Ik is described in terms of the identity vectors 



e1 

e2 

Ik = 
• 
• 

ek 

where 

e1 = [1 0 0 • 

e2 = [o 1 0 • 

e3 = [o 0 1 • 

• 
• 

ek = [o o o . 
then the result of adding row 

e1 

e1 +e2 
• 

e3 . 
• 
• 

ek 

• • o] 
. • o] 
• • o] 

to row 2 is 

It should be noted that to obtain the identity matrix 
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from the above matrix the necessary row operation is 

addition of row 1 to row 2 because e1+e1 : 0 mod 2. Thus 

in this case the matrix is equal to its inverse. From this 

example it is clear that any matrix formed by adding row· 1 

of the identity matrix to any other rovr wlll be equal to 

its inverse. Further, if any row of the identity matrix 

is added to any other row, the resulting matrix will be 

equal to its inverse. From the above an algorithm can 



be developed for forming nonsingular matrices having 

the property that any matrix thus formed is equal to its 

inverse. The algorithm consists of the following steps: 

1 ) Add roli' to row 2 to obtain matrix 
-1 Q1 such that Q1 = Q1 • 

2) Add row. 1 to row 3 to obtain matrix Q2 , 

where 

e1 

Q2 = e1+e2 • 
e1+e3 

e4 

• 
• 

-1 It is apparent that Q2 = Q
2 

because 

the identity is obtained by adding 

row 1 to rows 2 and 3 of Q2 • 

3) Repeat the process by adding row 1 to 

rows 4, 5, • • • n. Clearly each of the 

k-1 matrices formed will be of the form 
-1 

Qj = Qj • It is apparent that 

e1 

e1+e2 

Qk-1 = e1+e3 • 

• 
• 
• 

el+ek 
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4) Reiterate the above process, again 

successively adding row 1 to each 

of the other rows. The first matrix 

formed by step 4 is ~ wh~re 

e1 

e2 
- -e1+e3 

Qk = e1+e4 • 

• 
• 
• 

e1+ek 

It is easily verified that the sequence of 

row operations applied to Ik to form 

Qk' when applied to Qk, reduces to the 
-1 

identity Ik. Thus Qk = Qk • Further 
.;.1 

Qk+l = Qk+l and so forth. 

5) At the end of step 4, when e 1 is added 

to ek, the resulting matrix is again the 

identity. Thus steps 1 through 4 can be 

reiterated for rows two through k to form 

a set of nonsingular matrices having the 

property that each matrix is its own 

inverse. 
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It is apparent that steps 1 through 4 of the algorithm 

provide 2(k-1) matrices. Thus, because the matrix has k 

rows, the algorithm provides k•2(k-1) different 

nonsingular matrices for which the inverse is identic a l 

to the matrix. Then for the case where k = 5 the 



algorithm provides 40 different nonsingular matrices out 

of a possible 10 million different nonsingular matrices. 
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The algorithm for simplification can be summarized as 

a technique for selecting a small sample of nonsingular 

matrices from a large population of such matrices followed 

by substitution of each matrix in the sample into the 

relationship 

where T* and B* are the interconnection matrices for a 
c 

machine isomorphic to the original machine. The simplest 

machine from this sample is determined by counting the 

number of ones in the T* and B* matrices. . c 

A computer program, given in Appendix A, has been 

written incorporating the serial-parallel transformation 

algorithm described earlier and the simplification 

algorithm described in this section. Required inputs to 

the program are: 

1) The coefficients of the generator polynomial 

2) The number of channels (f) desired in 

the parallel analog. 

The program provides the following information to tho 

user: 

1 ) 

2) 

T
1 = Tf and B

1 
matrices c c 

A listing of all Q matrices generated 

by the simplification algorithm along 
I -1 I 

with the ma trices QT
0

Q and QB 

corresponding to each Q. 
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Table 3 summarizes the outcomes of several computer 

runs using the program discussed a bove. Selection o.f the 

generator polynomials for these trials was arbitrary. The 

number of gates listed under column A is the number 
I 

required by the Tc and B' matrices as obtained by the 

serial-parallel transformation algorithm. Columns B and C 

indicate the best and worst cases respectively obtained in 

the simplification attempts with Q. 

TABLE 3 

Summary of Results of Computer Runs 

Number of Two Input 
Adders Required 

Generator Number of A B c 
Polynomial Parallel 

Channels (f) No Simpli- Best ~·Torst 
fication Case Case 

1 +x2+x4+x5 6 20 16 27 

8 26 22 31 

12 34 32 39 

1+x+x2 +x4+x5 6 18 1 5 22 

8 22 20 26 

12 34 31 39 

1+x+x2 +x4+x5+x7+x9 6 34 29 42 

The table indicates that some reduction in the required 

number of adders was achieved in every case. The reduction 

ranged from 6 percent to 20 percent 1dth an average for the 

seven trials of 13 percent. A comparison of the b2st and 
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worst cases indicates tha.t, depending upon the original 

' ' T and B matrices, reductions of up to 40 percept of the 

adders might be realized. 

One likely reason for the apparent success of this 

algorithm is that the matrices constructed all have a low 

density of -ones as elements. The desirability of this 

property can be demonstrated by looking at the B
1 

matrix 

for a parallel LFSR. • From the properties of the B matrix 

described on p a ge 33 it should be evident that the last 

column of T'l is always the identity column II 0 0 o] .D . 
Similarly, the second last column is @ 1 0 0 . o] T 

' and so forth so that if the B matrix has k or less columns 

(k is the size of matrix Tc), then all of its columns 

are identity vectors. 
I 

Also, if the B mat~ix has more 

T 

than k columns, then its last k columns are identity vectors. 

Investigation of a particular matrix 

• B = 

0 0 

0 0 

1 0 0 

0 0 0 

then shows the effect of the Q matrix on the B matrix. 

' The transformation of the B matrix by the algorithm 

amounts to calcu lation of the product 

q11 q12 q1~ ::> q14 0 0 

q21 q22 q23 q24 0 0 
QB = 

q31 q32 q33 q34 0 0 

q41 q42 q43 q44 0 0 ·o 



l'ri th the result 

q13 q12 q11 

' q23 q22 q21 QB = 
q33 q32 q31 

q43 q42 q41 

Now if the Q matrix has a high density of ones this means 

that many of the qij's are ones. Obviously the product 

' matrix QB will then have a large number of ones. But 

the goal of this simplification procedure is to decrease 

the number of ones in the B and T matrices. Therefore 
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the above result tends to conflict with the desired result. 

On the basis of the result of the computer runs and 

with the support of the argument just given it seems safe 

to conclude that the algorithm will provide simplification 

for a significant number of cases. Further, the computer 

program of Appendix A provides a useful and easy to use 

tool for the proce~s of simplification. 
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IV • SUr-llYIAR Y 

This paper presents three methods for serial-to

parallel transformation of linear feedback shift registers. 

· The best method appears to be a matrix method using the 

next-state and output equations of the machine based on 

a theorem presented by Gill. This matrix method is 

carefully developed, simplifications are indicated and 

examples for its use are provided. Next an algorithm is 

developed for simplifying the machines obtained by the 

above transformation. Ho1-rever it was shown that this 

algorithm may be used only at the decoder. The algorithm 

for the serial-to-parallel transformation and for circuit · 

simplification were programmed in Fortran IV. The results 

of a number of sample problems demonstrates the usefulness 

of the simplification algorithm. 
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APPENDIX A 

This appendix presents the computer program 

Yn~itten in Fortran IV £or the IBM 360 computer at the 

· University of Missouri at Rolla. 

Da.ta s1xpplied to the program shall include: 
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1. N which is the number of parallel channels 

desired {called f in the body of the report) 

2. L which is the size of the T matrix c 
(called k in the body of the report) 

3. MATRIX, which is the Tc matrix. 

The T0 matrix data shall be entered one row per program 

data card. 

DIMENSION ~ATRIX(20,20),MIN(20),LASr(~O), MATB(20,40) 
Dii-iENSIO :I:J l1L4..TQ ( 20, 20), I~~IAT ·r( 20, 20), ¥.LATU ( 20,20), }lA. TBB( 20,40) 
READ ( 1 , 1 00 ) N, 1 

1 00 FO ? .. NAT ( 2 1 2 ) 
DO 10 I=1 , L 

1 0 READ ( 1 , 1 01 ) ( l·iATRIX (I, J), J=1 , L) 
1 01 F0Rl;,;1A'1' ( 25I 1 ) 

DO 2 I=1 ,L 
2 1-II N ( I ) =i\IIA TRI X ( I , L ) 

N1 =N- '1 
DO 40 K=1 ,N1 
DO 20 I=1 , L 
MATB(I,N)=O 
LAST(I)=O 
K1=N-K 
~~TB(I,K1 )=~~TRIX(I,1) 
DO 20 J=1,L 

20 LAST( I )=LAST( I )+11....\.TRIX(I,J)*r<i:I N(J) 
DO 30 1=1, L 
L1=L-1 
DO 30 J=1 ,L1 
J1 =J+1 

30 HATRIX( I, J )=~~lATRIX( I, J ·l ) 
DO 40 I=1 ,L 

40 MATRIX(I,L)=LAST(I) 
HA TB ( 1 , N ) = 1 
\ffiiTE( 3,102) 
DO 60 I=1 ,L 
DO 50 J=1, L 

5o ~aTRIX(I,J)~~on(~L~TRIX U,J),2) 



DO 70 JJ=1 ,N 
70 1·1ATB( I, J J )=HOD(Y.LATB( I, J J), 2) 
60 \fRITE(3, 103) 0-J.ATRIX(I,J) ,J=1 ,L), (MATB(I,JJ) ,JJ=1 ,N) 

103 FORMAT (4X,60I1) 
102 FORMAT ( 4X, 'T!,IATRIX: Bi"lATRIX 1 ) 

DO 105 I=1 ,L 
105 M.ATQ( I, I )=1 

WRITE(3,153) 
L1=L-1 
DO 1 1 0 KK= 1 , L 
DO 110 l-'1=1, 2 
DO 11 0 K=1 , L 1 
K1=KK+K 
IF { L-K 1 ) 1 1 6 ~ 11 7', 1 1 7 

1 1 6 K 1 =I-10 D ( K 1 , L J 
1 1 7 DO 1 1 5 J = 1 , L 

YJATQ(K1 ,J)=1·L~TQ(KK,J)+MATQ(K1 ,J) 
1 1 5 1~1A TQ ( K 1 , J) =i-:OD ( £.1ATQ ( K 1 , J) , 2) 

DO 120 I=1 ,L 
DO 120 J=1, L 
f.IIA'l'T (I , J) =0 
DO 1 20 H 1 = 1 , L . 

1 20 l.ILA.TT (I, J )=~lATT( I, J) +.Y"iATQ (I ,111 ) *NATRIX( l-'11 , J) 
DO 130 I=1, L 
DO 1 30 J=1 ,L 
MATU{i,J)=O 
DO 1 3 5 1-'I 1 = l , L 

1 3 5 r•IA TU ( I , J ) =1J.LA TU ( I , J ) +MATT ( I , I·'i 1 ) *l-i.A. Ttl ( H 1 , J ) 
130 MATU(I,J)=MOD(MATU(I,J),2) . 

DO 140 I=1, L 
DO 140 J=1, N 
MATBB(I,J)=O . 
DO 1 4 5 I•I 1 = 1 , L 

1 4 5 lVIA TBB ( I , J ) =1·'IATBB ( I , J ) +!..:! TQ ( I , I"l 1 ) i~IU TB ( Ivl1 , J ) 
1 40 MATBB (I, J) =l~IOD{lvlATBB( I, J, 2) 

. ~TRITE ( 3 , 1 52 ) 
J)Q 1 1 0 I= 1 , L 

1 1 0 WRITE ( 3, 1 51 ) ( HA 'l'Q ( I , J ) , J = 1 , L) , ( l111A TU ( I , J ) t J = 1 , L) ~ 
(MATBB(I,J;,J=1,NJ 

1 51 FOR1-1AT( 4X, 80I 1) 
1 52 FOR1JiAT (I I) 
153 FORl\:lAT(//4X, 'Q T B l'-lATRICES') 

CALL EXI 'r 
END 
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