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ABSTRACT 

This thesis reports a method to evaluate the stresses 

in a segment of a thick spherical shell. In the numerical 

examples loads due to thermal expansion as the shell is 

constrained at the free edge and a dead load acting verti

cally downward were considered for a shell assumed pinned 

but free to rotate and for a shell assumed completely fixed 

at the edge. A concrete shell was specifically studied 

but the method would also apply to a shell of any homogeneous, 

isotropic material. 
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I. INTRODUCTION 

Many companies in the United States design and build 

chemical furnaces. In the past these furnaces have been 

approximately eight feet in diameter. A drawing of a 

furnace, sufficient in detail for our discussion, is shown 

in Figure 1. In recent times the trend in industry has 

been to achieve maximum production and efficiency with a mini-

mum outlay of capital and equipment. With respect to the 

chemical application under consideration, this has been 

partially achieved by designing furnaces up to 24 feet in 

diameter, whereby the complexities in design have been in-

creased. In particular, additional factors must be considered 

for proper design of the spherical dome separating the solid 

charge from the flame. 

A method for determining the stresses in a thick 

spherical dome and hence a basis for making an engineering 

decision provides the subject for this thesis. Figure 2 

shows the assumed loading of the dome. The following cases 

are studied in the investigation: 

(A) p = o, Mcp= 0 (Pinned but free to rotate at edge). 

(B) p = o, Rotation = 0 (Fixed at edge). 

(c) p = Value of charge "dead load", M¢ = o. 

(D) p = Value of charge "dead load", Rotation = o. 

It should be noted that temp,era ture effects were 

included in all of the above cases. For cases (c) and (D) 

2 
involving the vertical load a value of p = 25,000 lbs./ft • 
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Now 8 Feet Diameter 

Proposed 24 Feet Diameter 

Figure 1 1 

.,---+---f- Char g e 

~--+-~Firebrick and 
mortar spherical 
dome. Now 5 feet 
radius and 1 foot L 
thick. 

:::::::===::41..._ __ F u e 1 In 1 e t 

Details of Chemical Furnace 



M 

H 

Figure 2. 

R 
s 

Loading of Dome 

3 

p(Load per square 
inch of projected 

area) 

7-H 
v 

H,V, and M act 
completely around 
the perimeter of 
dome. 

{173.6 psi.) was used which is the present design value of 

the eight foot diameter furnace. As will be shown later 

this value of vertical load only made a very small change 

from cases {A) and {B). 

Cases {A) and {B) do not specifically apply to the 

furnace problem under consideration but the usefulness of 

the solution to these cases could be of value in other 

situations. It should also be stated that only the pinned 

(M~ = 0) and fixed {rotation = 0) edge conditions have been 

studied whereas the actual construction will fall somewhere 

between these two cases. This should provide limiting 
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values for the loads and stresses. With this knowledge an 

estimate of the actual stresses could be made assuming some 

percentage of fixity. 
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II. REVIEW OF LITERATURE 

Many books and technical publications have been written 

concerning shells, considering various loadings and configura-

tions of such, examining various methods for exact and 

approximate solutions, and studying some physically realistic 

cases as ·well as some theoretically intriguing situations. 

Generally the literature very thoroughly covers the field 

of thin shells with only a brief discussion concerning thick 

shells. 

Several books on shells were reviewed and a rather 

comprehensive bibliography on shells was also compiled. 

The part appropriate for thick shells is rather small. 

Fluegge(l) spends by far the majority of his book in 

the consideration of thin shells but he does make a brief 

statement concerning thick shells. His statement is: 

"If the shell thickness is not very small 

compared with the radii of curvature, it may 

be worthwhile to take the trapezoidal shape of 

the cross-section into account; but then one 

should also make use of the basic ideas of bars 

of great curvature and consider the correspond-

ing non-linearity in the stress distribution". 

This suggestion was used as will be explained later. 



III. DISCUSSION 

A brief outline of the complete method will be pre

sented before all of the details are explained. 

6 

Part A. The thermal expansion of the spherical shell 

due to a temperature increase is determined. In cases (A) 

and (B) (Page 1), when the vertical load is zero, the 

restraint of the thermal expansion is what causes the loads 

(H only). If a horizontal load could be developed by some 

other means the discussion for cases (A) and (B) (Page 1) 

would still be appropriate. 

Part B. An element of the shell with all the internal 

forces acting on it was taken. By writing the equations 

of equilibrium, load-displacement relationships, and solving 

the resulting hypergeometric differential equation it is 

possible to obtain the expressions for the loads at any 

cross-section of the shell. 

of a hypergeometric series. 

The solution is in the form 

Up to this point everything is equally applicable to 

thick and thin shells. The next step for thin shells would 

be relatively easy. 

rather complicated. 

For thick shells the problem becomes 

Part C. An expression giving the stress distribution 

across the thickness of the shell is found. This expression 

is obtained by considering the loads that act on the faces 

of an element and the change in shape of the element due 

to these loads. It will be shown that the stress expressions 
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developed in Part C are also quite appropriate for thin 

shells as well as correct for thick shells. 

It should be stated that at all times the attempt was 

made to keep the resulting method as general as possible 

while realizing that it is already limited to a spherical 

shell of constant thickness loaded by an axially symmetric 

load. 

A. Thermal Expansion 

Completing the derivation of Timoshenko( 2 ) it is 

possible to obtain an expression for the radial expansion 

of a hollow spherical shell due to a temperature increase 

which is 

2 r dr 

where 

u = radial expansion. 

a = coefficient of thermal expansion. 

R outer radius. 
0 

R. = inner radius. 
1 

T(r) = temperature as a function of the radius. 

r = radius to any point of shell. 

( 1 ) 

The temperature across the thickness of the shell will be 

constant after the furnace has operated for some period of 

time. For T(r) = T = constant temperature then 

=a R T 
0 (2) 
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Thus the expression for the radial expansion due to a tempera-

ture increase, constant across the thickness, is rather simple. 

In cases (A) and (B) (Page 1 ) , for a shell restrained 

from expanding, a horizontal load H (See Figure 2.) is found 

that causes a deflection equal and opposite to the horizontal 

component of the thermal expansion. In cases (c) and (D) 

it is a combination of the thermal expansion and the outward 

deflection due to the vertical load p that the horizontal 

load H must overcome. And finally in cases (B) and (D), 

at the fixed edge, a moment M will cause the rotation to 

be zero. 

Timoshenko(J) determines, based on the equilibrium 

equations, stress-strain relationships, and the strain-

displacement relationships, an expression for the deflection 

of a spherical shell due to a horizontal load H (See Figure 2.). 

This equation is 

= 

where 

0 = Horizontal 

R = Radius to s 

R sin cf> 
s 

E t 

deflection at 

middle surface. 

angle 

cp = coordinate angle of spherical 

E = Modulus of elasticity of shell 

t = Thickness of shell. 

v = Poisson's ratio. 

cp • 

shell. 

material. 

N
8 

=Axial load in e(circumferential) direction. 

Net> =Axial load in cf>(meridional) direction. 

(J) 



9 

Equation (J) is applicable to the loading situation 

of all four cases considered (A), (B), (c) and (D). The 

expressions for N 6 and N~ derived later will differ between 

the first two and the latter. The differences take into 

account the vertical load in cases (c) and (D). 

In a problem involving both a temperature increase and 

other loads the usual stress-strain relationships must be 

modified to account for the strain in an element due to 

the temperature increase. (See Boresi( 4 ).) However when the 

temperature is constant throughout the body, the modification 

required for the thermal strain drops out and the standard 

stress-strain relations are valid. That is why it is correct 

to use equation (J) even though it was derived without being 

based on any temperature considerations. 

Equation (2) forms one boundary condition for the overall 

problem. When the horizontal component of the radial ex-

pansion is found it can be substituted into equation (3), 

providing a relationship between N8 and N~ at the free edge 

of the shell. If a gap is provided for a part of the thermal 

expansion then the "opposite" deflection of the restraining 

load will be reduced accordingly. The loads vary linearly 

with the thermal expansion, hence if a gap is provided for 

one-half of the thermal expansion the loads are only reduced 

by fifty percent and are not completely relieved. 
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B. Variation of Loads 

Consider an element of a shell as shown in Figure J. 

From Fluegge(l) ( d( ) 
de ( ) '= d ( ) 

d¢ 

Figure J. Loads on Element of Shell of Any Shape 

For a spherical shell with an axially symmetric load there 

will not be any variation of load with respect to 8 ; N 
ecp 

N cp e' M e cp ' 
M 

cp e ' 
and p e will all be zero; 

of curvature will be Rs' and r = Rs sincp • 

the radius 

It was found 

in a separate study (See Appendix 1.) that the stresses 

caused by the weight of the shell were very small compared 

to the stresses caused by the other loads. Therefore the 

body forces p and p will also be dropped. 
cp r 

This is 

true because of the sizes of shells that were considered. 
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For shells appreciably larger the shells own weight would 

have to be considered. 

Following the derivation of Fluegge( 1 ) (pages J12-J24) 

the equations of equilibrium and the load-displacement 

relationships lead to the following differential equation 

d2Q dQcp 2 
2im

2
Q <I> + cot¢ - Q¢ cot ¢ + = 0 (4) 

dcf> 
2 

d¢ ¢ 

where i = ~ 
R 

2 
2 

4 
3(1- \)2) s \) 

(5) m = 
t2 

- 4 

Equation (4) is a second-order differential equation 

with variable coefficients. Introducing the new variables 

and 

. 2 
X = Sln f 

transforms equation 

Q¢ = z' sin¢ 

(4) into 

4 
. 2 

-5x dz' 1-2lm 
+ 2x(1 - x) dx- 4x(1 x) z'= 0 

(6) 

( 7) 

(8) 

This is a hypergeometric differential equation (See refer-

ence (5) or any differential equations textbook.) which in 

its general form is 

y- (1 + a+f3)x 
x( 1 - x) 

dz' a. S 
dx - -x--,(-1---x~) z'= 0 (9) 

The solution to equation (9) is the following 

~' = l + ~x + ~(a+l)S(S+l) 2 + a.(a.+l)(a.+2)S(S+l)(S+2) 
a l %y 2!y(y+l) x 3!y(y+l)(y+2) 

3 
X 

+ ... (10) 
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From equations {8) and {9) it is possible to show that 

a = ~ (3- ~5 + 8im
2

) {11) 

S = ~ ( 3 + ~ 5 + 8im
2

) ( 12) 

y = 2 (13) 

Substituting equations {11), (12) and (13) into equation 

{ 10) g .ive s 

( 14) 

Equation (14) has a limi.tation that lxl < 1.0. Remember

ing that x = sin2
q> thi_s means we are restricted to <P angles 

less than ninety degrees. For shells hav~ng a <P angle 

greater than ninety degrees it is necessary to consider the 

shell in two parts and use both the solution shown by 

Fluegge( 1 ) and the solution developed here. Us~ng both 

solutj_ons, which are applicable for different regions of 

the shell, it would be possible to determine the loads in 

a shell for <P greater than ninety degrees. 

In equation {14) a fraction is multiplied on the nth 

term to form the (n + 1) term. The first part of the 

additional term of the numerator increases in the following 

manner: 1, 11, 29, 55, 89, • •• , each number increases by 

the difference between the preceding two numbers plus e~ght. 

The general expression for the denominator ~s 4n n!(n + 1)!. 

The real and ~maginary parts of equat~on (14) also 

form linear ~ndependent solutions to the d~fferential 
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equation (equation 8). These two solutions can be obtained 

in the following manner: 

Let z' = a 

z' = 2 

conjugate complex of 

i ( 
2 z~ ;-. ) 

a 

zt 
a (equation (13)) 

Then the solution of equation (4) becomes 

where c 1 and c 2 are constants to be determined from the 

(15) 

( 1 6) 

( 17) 

boundary conditions. Carrying out the steps suggested by 

equations (15) and ( 1 6) gives 

( 1 1 4m
4

) ( 319 
4 

1 2 - 4 - 164m ) 
z' = 1 + sin + sin cp + cf> 1 4 1 ! 2! 42 2! 3! 43 3! 4! 

and 

z' 
2 = 

. 6 A, Sln 't' + 
(17545 - 10456m

4 
+ 16m

8
) 

4
4 

4! 5! 

. 8rf, Sln 't' + • 

4 1!2! 
. 2 A, Sln 't' + 

. 4rf, Sln 't' + 
(718m

2 
- 8m

6
) 

43 3! 4! 

(40228m
2 

- 768m
6

) 

4
4 

4! 5! 

. SA, Sln 't' + • 

From Fluegge in reference 1 

N e = 
dQ<t> + 
d¢ 

p 

. 2n-
2n R s1n 't' 

s 

p 

2n R 
s 

. 2rf, Slll 't' 

( 1 8) 

. 6 
s J._ll cf> + 

( 1 9) 

(20) 

( 21) 
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M<f> 
K [ dX vX cot~] (22) = + R d<P s 

M 
K [x cot<P dX] (23) = + v-

e R d<P s 

where 

p = total vertical load at any angle <P 

K 
Et3 

(24) = 
12(1 - v 2) 

(2m
2

z2 - vz' ) C (2m 
2 z' + v z2)c 2 siniJ> -

X 
1 1 1 (25) = 

D( 1 - ~) 

D 
Et 

(26) = 2 
1 -v 

All loads are in appropriate units per unit width. 

The last part of equations (20) and (21), which only 

appears in these equations when there is a vertical load, 

are written in terms of the total vertical load P. In 

terms of the load per square inch (p = 173.6 psi.) 

P = n(R sin$) 2 p. At any value of <P the sin
2

<P terms cancel 
s 

out and the last part of the equations become constant 

values modifying the axial loads N <I> and N e • 

Hence, once the series z 1

1 
and z2 are obtained it is 

possible to calculate all the loads (Q , N , N , M and M ) 
<I> <I> e <I> e 

in terms of the constants c
1 

and c 2 • A computer program 

(See Appendix 2.) was written to p~rform the necessary 

calculations. The series were calculated until the differ-

ence between succeeding terms was 0.00001. Then the boundary 

conditions are considered and the constants c 1 and c 2 are 
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evaluated. Using the deflection boundary condition pre-

viously discussed and the load boundary conditions at the 

free edge of the shell, shown in Figure 4, it is possible 

to obtain c
1

, c
2 

and H. V can be determined, when applicable, 

by summing forces in the vertical direction. After the 

constants are evaluated it is possible to obtain the loads 

acting on any cross-section of the shell. 

C. Stress Distribution 

Knowing the loads at a cross-section from part B, the 

problem now is to find how the stresses are distributed 

across the thickness. 

A derivation similar to that used on an element of a 

curved beam is followed except that on a shell element it 

is necessary to consider loads and stresses in two directions 

along with the curvature in two directions. The derivation 

assumes that 

(1) Small deflections exist, 

(2) Plane sections remain plane, 

(3) Displacement of the neutral surface is zero, 

(4) Elastic limit not exceeded. 

The procedure followed is 

(1) Apply a moment to an element, 

(2) Obtain an expression for the strain as the 

element deforms by considering the curvature 

and the change in shape, 

(3) Use Hooke's Law to determine the stress-strain 

relationships, 



Figure 4. 

a) Case (A) 

b) Case (B) 

c) Case (C) 

Zero Vertical Load 
Boundary 
At <1>=<1> 

0 

At <1>=<1> 
0 

~on~i ~ions'} 

Q: = Hsin¢ 

Zero Vertical Load 
Boundary Conditions, 
At <1>=<1>

0 
Rotation = 0} 

At <1>=<1>
0 

Q<P = Hsin<P 

1 ~~ .6 psi. Vertical Load 
Boundary Conditions, 

1 6 

(27) 

(28) 

:: :::: ~: : ~sin¢ -Vcos¢}< 29 ~ 

173.6 psi. Vertical Load 
Boundary Conditions, 

At <1>=<1> 
0 

At <1>=<1> 
0 

Rotetmon = 0 l 
Q H · ,., -Vcos,., ( 3 0) 

<1> = s 1.n 't' 't' 

Load Conditions and Boundary Conditions 
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and (4) Use equations of equilibrium relating stresses on 

a cross-section to the load on the cross-section. 

Figure 5 shows an element and the change in shape 

caused by the applied moment. 

From the stresses acting on face CDGH of Figure 5c the 

following can be obtained 

I adA = 0 ( 31) 
area 

I M = 0Z dA area ( 32) 

A load (moment) is only shown on one face but there 

is also a moment acting on the face perpendicular to CDGH. 

Hence we have a biaxial stress state. Remembering Fluegge's 

statement copied earlier (See page 5), the following 

considers the change in shape of the element due to the 

load. Because of the spherical shape of the element it is 

possible that the neutral surface, the centroidal surface 

and the middle surface will all be different. We have 

assumed that plane sections remain plane after loading 

so that the deformations will be proportional to the 

distance from the neutral surface. Strains will not be 

proportional because of the different original length 

of each fiber. 

From Figure 5 

£ = strain in centroid element 
c 

£ = 
KK' 

c LK 

KK ' = £ LK = £ R d8 c c c 

(33) 

(J4) 
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Centroid Surface 
Middle Surface 
Neutral 

a) Element of Shell 

c 

Position of CD 
,T' after loading. 

/)M 
b) Assumed stress 

distribution for 
pure bending. 

c) Looking in at Face eD in a) 

Figure 5. Change in Shape of Element 

Due to Bending Mom e nt 

At some distance z from the centroid surface 

Let w 

TT' 
E(z)= UT 

TQ+QT' 
UT 

QT' 

UT 

E(z)= 

zlld8 

{R +z) d 8 
c 

E R d 8+z ll d 8 
c c 

(R +z)de 
c 

lld8 and simplify 
de 

KK'+QT' 
UT (35) 

(36) 

(37) 

(38) 



s(z) = E + 
c 

z(w-E ) 
c 

R +z 
c 

1 9 

(39) 

Equation (39) is due to the moment on one face of the 

element. Considering the moment on both faces gives 

gives 

08 

0¢ 

(31) 

f 
Area 

Me = 

and 

f Area 

M¢ + 

+ 
z(w-sc)e 

R +z 
c 

Relating stress and strain in a biaxial stress state 

l E ) £ + 
z(w-sc)e 

+ 
z(w-Ec)<PJ 

R +z + v [£ 
1-v 2 ce c<P R +z 

c c 

E 
+ 

z(w-sc)¢ 
+ v [£ + z(w-Ec)eJI 

E 
1-v 2 c<P R +z ce R +z 

c c 

Substituting equations (42) and (43) into equations 

and (32) gives the foihlowing 

E l z(w-Ec)e [ z ( w- £c) <PJ 
dA 0 2 E + + V E + R +z 

1-v ce Rc+z c<P c 

f E + 
z(w-sc)e 

+ 
[ z(w-Ec)<P] 

l 
zdA E \) E + · R+ 

1-v 2 ce R +z c<P c z Area c 

E z(w-Ec)¢ [ z(w-£ )6 Jl 
1 £ + + v Ece + Rc+zc dA = 0 

1-v 2 c<P R +z 
c 

f E 2~ £c 
z(w-Ec)¢ 

+ 
z(w-Ec)e] I 

zdA + + v [£ R +z ce R +z 
Area 1-v ¢ c c 

The aBo¥e fo6ti eq6atioms ((4~ through (47~ can be 

solved for s , Ec , (w-E ~ and (w-E ) 8 . These are then 
c<P 8 c ¢ c 

substituted back in. to equations (42) and (43~ which upon 

(40) 

( 41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 
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simplifying yield 

and 

where 

a 
8
( z) 

M cp and M 8 = Moment 

M 8[(Rc + z)Z + z] 

(R + z) Z R t 
c c 

z] 
(R + z) Z R t 

c c 

in in.-lbs./unit width. 

(48) 

(49) 

Z = Area factor due to curvature. 

z 

z 

R 
s 

z 
c 

= 

= 

1 
A 

t2 

12 R 

f 
area 

z 
c 

R + z 
c c 

dA • 

2 
for element of spherical shell 

s 

(See Appendix J.). 

= Radius to middle surface. 

= Distance measured outward from centroidal 
surface. 

In equations (48) and (49), due to our sign convention, 

a positive moment at a positive distance z gives a compression 

stress, so the minus signs are added to correspond to the 

usual sign convention on stresses. 

Rewriting equations (48) and (49) using the expressions 

in Appendix J for R and z gives 
c 

12 R [ 12 R 
2t2 + t4 + ( 12 R t2 + 144 

o
8
(z) M s 

144R: 
4 

s = 
24R 

2
t

2 t4 t2 8 tJ + + +(12R 
s s 

R 
3

)z J 
+

5

144R
5

3 )z 

(50) 



__ s;;;.. s 1 2R [1 2R 
2 

t 
2 

+ t 
4 

+ (12R t
2 + 144R 3 )z 

s s 

t 3 144R 4 
+ 24R 2

t
2 

s s 
4 2 

+ t + (12R t + 
s 
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An interesting point is to find the location of the 

neutral surface for pure bending. Taking the numerator 

of equation (50) or (51) and setting it equal to zero gives 

z = - (52) 

It was found in Appendix 3 that this is the distance 

between the centroid and middle surfaces. So the neutral 

surface coincides with the middle surface for pure bending. 

The maximum stress on the cross-section for pure bend-

ing will occur at the inner rad~us. With an accompanying 

axial load the maximum stress will occur at the inner or 

outer radius depending on the directions of the moment and 

axial load. Using the fact that 

t 
zouter = 2 

z. 1nner 

and substituting these equations in equations (50) and 

{51) yields 

0 e(zouter) 

12R 
= - M s 

e R t2 
0 

[

R t - 6R 
2 

0 s 

12R 
2 

+ 
s 

(53) 

(54) 

(55) 



oe(zinner) = - ~ 
12R

5 

R. t
2 

l 
[

R.t - 6R 
2

- R t] l s s 

12R 2 
+ t 2 

s 

A corresponding pair of equations will occur for 

o~(z t ) and a(z. ) with M~ substituted forM. 
~ ou er ~ 1nner ~ 8 
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{56) 

A check on the entire process is to see what happens 

to equations (50) and {51) as R approaches infinity. 
s 

When this is done 

( 1 2 
o 8\z) = - M 8 tJ z 

For a beam of unit width 

so equation {57) simplifies to 

M z 
o 8 {z)=-+ 

(57) 

(58) 

which is the expected answer for a beam with an infinite 

radius of curvature, i.e., a straight beam. 

Equations {50), {51), {55) and {56) give the stresses 

when an element is loaded only in bending. A rather 

standard assumption to make concerning the axial load is 

to consider the axial stress uniform over the cross-section. 

Fluegge{ 1
) does this for thin shells and Seely and Smith(

6 ) 

do 

and 

it for curved beams. 

= Ne 
t 

Hence 

~ = t 

(59) 

(6o) 



where 

2J 

N 8 =Circumferential axial load in pounds/unit width. 

N¢ =Meridional axial load in pounds/unit width. 

Therefore combining the stress equations for axial load 

and moment in the 8 and ¢ directions will give the total 

normal stress at any z distance from the centroid surface 

for a given axial load and moment. 
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IV. RESULTS 

A very brief review is perhaps in order. Remember that 

the original problem was to obtain the stress distribution 

in a thick spherical shell, where the shell specifically 

under consideration was a dome in a chemical furnace. 

Usually these domes are made of mortar and firebrick. So 

while trying to obtain the stress distribution for any thick 

shell it was also a goal to obtain the geometrical dimensions 

for the dome in the furnace such that tension stresses 

would not occur. Significant tension stresses could cause 

cracks to occur which would seriously limit the ability of 

the shell to carry any transverse shear. However, it is 

felt that the shell would probably not collapse even though 

some tension stresses did occur. 

The computer program, shown in Appendix 2, evaluates 

the required equations of section III of this thesis. 

From the practical design standpoint there is a limit 

to the height of the dome section. It is required that the 

dome be kept reasonably shallow for the best operating 

characteristics of the furnace. This helps out the desired 

goal of no significant tension stresses, because as the 

height is decreased the bending due to the applied loads 

will also decrease. 

Hence with the cylindrical diameter of the furnace 

given (See Figure 1.) and for various heights of the dome 

it is possible to obtain the corresponding spherical radius. 
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For various spherical radii and thicknesses the stress 

distributions across the cross-section were found. 

Shown in Figures 6 through 14 are the stress distribu-

tions across the thickness for a bending moment of 10,000 

in.-lbs. It should be noted that some of the figures are 

for the same R /t ratio and the stress distribut~on is 
s 

different. Referring back to equation (50), multiply and 

divide by 1/t 4 which gives 

1i:sr + 1 +[!2 
4 2 

(:s) +24(:s) + 1 

The same procedure could be applied to equation (51) and 

o~(z) would be obtained. It can be seen in equation (61) 

( 61 ) 

that all terms contain R /t or t. 
s 

Hence o(z) is a function 

of t and R /t, so even with the same R /t ratio the stress 
s s 

distribution will be different. Also in Figures 6 through 

14 the stress distribution assuming Mc/I (straight beam 

theory) for a section of unit width is shown. 

For other values of (R /t) the stress distribution 
s 

isn't shown. However, Figure 15 shows the maximum error 

that occurs using the conventional Me in a thick shell 
I 

rather than the stress equations developed in this thesis. 

It was found that the error in using Me was dependent on 
I 

the R /t ratio and only slightly affected by the thickness. 
s 

Comparing equations (58) and (61) and realizing that I/z 

is a function of t 2 , similar to the first constant in 
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equation (61), it can be seen that in calculating the error 

the first t
2 

terms would cancel. In the last part of 

equation (61) there are some 1/t terms in the numerator and 

the denominator. They only cause a very small change in 

cr(z) for any given R /t value. 
s 

Hence it was felt that once 

the error was determined it wasn't necessary to show the 

complete bending stress distribution for any other cases. 

Usually we are interested in the maximum stress, which 

occurs at the inside radius for bending of a spherical 

shell, rather than a smaller value at some interior point. 

Now after a rather thorough discussion of the stresses 

due to bending the next step is to calculate the loads and 

stresses that exist for an actual loading condition. 

Shells investigated included those with a rise of 

2.0, 3.0, 4.0, 5.0 and 10.0 feet and a R /t ratio of 2.5, 
s 

5.0, 10.0 and 20.0. In each case the computer program 

shown in Appendix 2 was used to calculate the loads N~ 

Ne, Q~, M¢ and Me at two degree intervals from the free 

edge to top ( ¢= o). Then the stresses ae and a¢were cal-

culated at the inner and outer radii at each cross-section 

where the loads were calculated. The program also will 

determine the stress-distribution across the thickness 

due to a bending moment of 10,000 in.-lbs. 

Figures 16 through 47 present the results of the 

study for a rise of J.O', for each of the loading con-

ditions and for each of the R /t ratios. 
s 

The figures 

should be considered in pairs, the first presents the 
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loads vs. ¢ and the second presents the stresses vs. ¢ . 

Figures 16 through 23 are for Case A (page 1 ) , the next 

eight figures for Case B, Figures 32 through 39 for Case C, 

and the last eight figures for Case D. 

The figures show that for a given loading condition 

and method of support the loads (Ne, N¢' Me and M¢) get 

smaller as the shell gets thinner (R /t increases). 
s 

This 

is an expected result. The thicker the shell the greater 

the horizontal load H to overcome the thermal expansion. 

Also as the loads decrease the accompanying figures of 

stress vs. ¢ show that the magnitude of the maximum stresses 

decreases even though the shell is becoming thinner. 

When the edge of the shell is fixed rather than just 

simply supported the maximum value of the loads (Ne, N~, 

Me and M¢) increase in magnitude for the same vertical 

load (p) and R /t ratio. In the fixed cases the maximum 
s 

loads (Ne, N¢' Me and M¢) occur at the edge while in the 

simply supported case the maximum moment (Me and M¢) is 

at the top ¢ = 0. Generally the fixed edge reduced the 

maximum value of the tension stresses, it reduced the 

area of shell in tension, and it reduced the amount of 

the shell thickness in tension at any value of¢. An 

exception to this is in the immediate area of the fixed 

edge whe re the tension bending stress due to M¢ always 

overcomes the compression stress due toN¢. 

The last comparison is made between the cases when 

the vertical load is zero and when it has a value. The 
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vertical load of 173.6 lb./in.
2 

has only a very slight effect 

(less than five per cent) on the values of the loads and 

stresses. It does increase the maximum value of the loads 

(N 8 , N~, M8 and M~) and stresses, which is the expected 

change for an added load of this type, but not significantly. 

The vertical load slightly increased the magnitude of the 

compression stresses and slightly decreased the tension 

stresses. 

Figures 16 through 47 show the data only for a rise 

of J.O feet. The loads and stresses were also obtained 

for rises of 2.0, 4.0, 5.0 and 10.0 feet. It doesn't 

appear to be of any value to show these results as the same 

statements made on the last few pages also apply to these 

other cases. The reason that a rise of three feet was 

chosen is that it had the lowest tension stresses of all 

the values of rise considered. 

One special item should be mentioned concerning the 

values of the loads as ~ approaches zero. Working with 

equations (17), (20) and (21) it turns out that for P equal 

zero (no vertical load) as~ approaches zero N~ equals N8 • 

When there is a vertical load on the shell N~ doesn't be-

come equal to N@ as ~ approaches zero. Re-writing equations 

(20) and (21) in a slightly different form 

N~ = 

cos ~-
dz' dz2 

(c1 d~1 + c2 ~) sin~ + 

(20a) 

p R 
s 

2 

(20b) 
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Equations (20a) and (20b), as ¢approaches zero, will 

differ by the sign on the last term. This will be observed 

by looking at the appropriate figures. 
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V. CONCLUSIONS 

This thesis has developed a method to determine the 

stresses in a thick spherical shell due to bending and 

due to a combination of bending and axial load. The method 

is based on the analogy of a curved beam and considers that 

in a shell stresses act in two directions. The method, 

which is based on a constant temperature across the thick-

ness, must be regarded as an approximation to a more exact 

solution because of the curved beam analogy that was used. 

It was found as shown in Figure 15 that for thin shells 

the elementary beam formula (~c) is a good approximation but 

it does give some error. At R /t equal to twenty the error 
s 

is three per cent. As the shell becomes thicker (R /t de
s 

creasing) the error increases. 

For the load conditions and boundary conditions con-

sidered a shell completely free of tension wasn't found. 

In comparing Figures 33 and 41 it is felt that if partial 

fixity were considered this configuration would be free 

of tension. 
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APPENDIX 1 

STRESSES IN SHELL DUE TO ITS OWN WEIGHT 

The following is from Fluegge( 1 ) for a spherical shell 

loaded by its own weight: 

Ncp = 1 + cos cp (I 1 ) 

= p w Rs ( 1 + COS cf> 
- cos cf>) (I2) 

where 

N Meridional axial load in pounds/unit width. 
cp 

N 8 =Circumferential axial load in pounds/unit width. 

pw = Weight per unit area of middle surface. 

R = Radius of middle surface. 
s 

cf> = Meridional angle. 

Follow~ng is a program to calculate the axial loads 

and the accompanying axial stresses based upon a uniform 

distribution of the stress across the cross-section. In 

order to use equations (I1) and (I2) it is necessary to 

assume that there exists a supporting ring to react the 

horizontal component of Ncp at the free edge. Because this 
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horizontal component of N¢ is relatively small compared to 

the loads calculated due to the thermal expansion and because 

the resulting stresses due to the shell weight are small 

this condition was not superimposed with the stresses due 

to the thermal expansion. 

In the stresses due to 

membrane solution was used. 

the weight of the shell only a 

Fluegge( 1 ) shows that using 

a membrane solution to this problem . rather than the more 

complex solution considering bending doesn't result in 

appreciable error. Since the stresses resulting from 

this approximation are so small it isn't felt that the more 

exact solution considering bending was warranted. 



C MEMBRANE LOADS DUE TO SHELL WEIGHT 
READ (1,10) THICK 
P=0.087*THICK 
READ (1,10) RISE 
RADUS=((144.0+RISE*RISE)/(2.0*RISE))*12.0 
WRITE (3,10) RADUS 
TAN=RISE/12.0 
ALPHA=ATAN(TAN) 
PHIN0=2.0*ALPHA*57.2958 
WRITE (3,10) PHINO 

120 PHIRD=PHIN0/57.2958 
COSF=COS(PHIRD) 
CSPL1=1.0+COSF 
CNPHI=-P*RADUS/CSPL1 
CNTHA=P*RADUS*(1.0/CSPL1-COSF) 
SNPHI=CNPHI/THICK 
SNTHA=CNTHA/THICK 
WRITE(3,10)PHINO,CNPHI,CNTHA,SNPHI,SNTHA 
PHINO=PHIN0-2.0 
IF(PHIN0)130,120,120 

130 STOP 
10 FORMAT(5E18.8) 

END 
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o.6869888JE 01 -0.50292505E OJ -0.49211841E OJ -0.10477605E 02 -0.10252466E 02 
o.4869888JE 01 -0.50202588E OJ -0.49659521E OJ -0.10458872E 02 -0.10J457J4E 02 
0.2869888JE 01 -0.5014J408E OJ -0.49954785E OJ -0.1044654JE 02 -0.10407247E 02 
o.869888J1E 00 -0.50114844E OJ -0.50097510E OJ -0.10440592E 02 -0.104J6981E 02 



APPENDIX 2 

COMPUTER PROGRAM 

DIMENSION RSE(_5) 
DIMENSION THCK(5) 
READ (1,14) (RSE(LMM),LMM=1,5) 
READ (1,10) TEMPI 
DO 400 M=1,5 
RISE=RSE(M) 
READ(1,14) (THCK(LMN),LMN=1,4) 
DO 400 L=1,4 
WRITE (3,13) RISE 
THICK=THCK(L) 
WRITE (3,15) THICK 
PRMU=0.25 
AIMPR=1.0-PRMU*PRMU 
RADUS=((144.0+RISE*RISE)/(2.0*RISE))*12.0 
WRITE (3,11) RADUS 
TAN=RISE/12.0 
ALPHA=ATAN(TAN) 
PHIN0=2.0*ALPHA*57.2958 
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WRITE (3,11) PHINO 
BLAM4=3. O*AIMPR*RADUS*RADUS/( THICK*THICK)-:PRMU*PRMU/4. 0 
D=2.0*SQRT(BLAM4) 
WRITE (3,11) D 
DWM=O.O 
N=200 
COEFT=0.0000042 
PHIRD = PHIN0/57.2958 
DELTA=-COEFT*RADUS*TEMPI*SIN(PHIRD) 
YOMOD=4200000.0 
PRMI1=1.0-PRMU 
PRPL1=1.0+PRMU 
AK=YOMOD*THICK*THICK*THICK/(12.0*AIMPR) 
DDD=YOMOD*THICK/AIMPR 
CMPC=AK/(RADUS*DDD*PRMI1) 
CMPS=AK/(RADUS*DDD*AIMPR) 
A=1.0/8.0 
AZ1=0.0 
AZ2=0.0 
ADZ1=0.0 
ADZ2=0.0 

105 B=D/8.0 
AB= 1. 0 
C=11.0 
PHIRD=PHIN0/57.2958 
SINF=SIN(PHIRD) 
SING=SINF*SINF 
SINK= SING 
COSF=COS(PHIRD) 
COSSN=COSF*SINF 



1 1 5 

120 

1 21 
122 
123 
124 

125 
so 
52 

51 

200 

Z1=1.0+SING/8.0 
Z2=D*SING/8.0 
DZ1=2.0*COSSN/8.0 
DZ2=D*2.0*COSSN/8.0 
DO 50 I=2,N 
DENOM=4.0*I*(I+1) 
RLPRT=(A*C-B*D)/DENOM 
AIMPT=(B*C+A*D)/DENOM 
SING=SING*SINK 
Z1=Z1+RLPRT*SING 
Z2=Z1+AIMPT*SING 
COSSN=COSSN*SINK 
ANUM=2.0*I*COSSN 
DZ1=DZ1+ANUM*RLPRT 
DZ2=DZ2+ANUM*AIMPT 
IF~ ABS(Z1-AZ1)-0.00001)121,121,124 
IF ABS~Z2-AZ2)-0.00001)122,122,124 
IF ABS DZ1-ADZ1)-0.00001)12J,12J,124 
IF ABS DZ2-ADZ2)-0.00001)52,124,124 
AZ1=Z1 
AZ2=Z2 
ADZ1=DZ1 
ADZ2=DZ2 
CB=C 
C=C+C-AB+8.0 
AB=CB 
A=RLPRT 
B=AIMPT 
CONTINUE 
WRITE (3,11) AB,Z1,Z2,DZ1,DZ2 
ZNUM1=D*Z2-PRMU*Z1 
ZNUM2=D*Z1+PRMU*Z2 
DZNM1=D*DZ2-PRMU*DZ1 
DZNM2=D*DZ1+PRMU*DZ2 
IF(DWM-1.0)51,JOO,JOO 
A11=COSF*Z1*PRMI1+SINF*DZ1 
A12=COSF*Z2*PRMI1+SINF*DZ2 
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B11= -DELTA*YOMOD*THICK/(RADUS*SINF)+PRPL1*86.805* 
RADUS ~USED WITH VERTICAL LOADJ 

B11= -DELTAJYOMOD*THICK/(RADUS*SINF) {USED WITH 
VERTICAL LOAP=O} 

A2l=ZNUMI } {USED WITH FIXED EDGE} 
A22=-ANUM2 
A21=(ZNUM1*COSF+DZNM1*SINF/PRPL1)} {USED WITH SIMPLY} 
A22=-(ZNUM2*COSF+DZNM2*SINF/PRPL1) SUPPORTED EDQE 
B22=0.0 
IF(A21-A11)200,200,210 
A221=-(A21/A11)*A12+A22 
B221=-(A21/A11)*B11 
C2=B221/A221 
C1=(B11-A12*C2)/A11 
GO TO 220 



210 

,220 
c 

JOO 

A121=-(A11/A21)*A22+A12 
B 1 1 1 =B 1 1 
c 2=B 1 1 1 I A 1 21 
C1=-(A22*C2)/A21 
WRITE (J,11)C1,C2 
FROM B.C. GET PLOAD 
PLOAD=61*Z1+C2*Z2 {USED WITH VERTICAL LOAD = o} 
PLOAD=((C1*Z1+C2*Z2)*SINF+12500.0*COSF)/SINF 

. {USED WITH VERTICAL LOAD} 
WRITE (3,11} PLOAD 
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BNUM=C1*Z1+C2*Z2 
ANPHI=-COSF*BNUM=86.805*RADUS} 
ANTHA=-COSF*BNffi.'I- SINF* ( C J *DZ 1 +C 2*DZ 2) + 

. 86.805*RADUS} 
QPHI=BNilli*SINF 
FTERM=CMPC*COSF*(ZNUM1*C1-ZNUM2*C2) 

lLAST TERM LEFT 
OFF WHEN VERTICAL 
LOAD = 0 

c 

. STERM=CMPS*SINF*(DZNM1*C1-DZNM2*C2) 
AMPHI=FTERM+STERM 
AMTHA=FTERM+PRMU*STERM 
WRITE (3,12) PHINO, ANPHI,ANTHA,QPHI,AMPHI,AMTHA 
PROGRAM MODIFICATION TO GET STRESS AT INNER AND 
OUTER RADUS 
RADS2=RADUS*RADUS 
THCK2=THICK*THICK 
RADOT=RADUS+THICK/2.0 
RADIN=RADUS-THICK/2.0 
SOTNM=RADOT*THICK+6 . . 0*RADS2-RADUS*THICK 
SOTDM=12.0*RADS2+THCK2 
SOTCN=12.0*RADUS/(RADOT*THCK2) 
SOTFR=SOTCN*SOTNM/SOTDM 
SOTHA=ANTHA/THICK-AMTHA*SOTFR 
SOPHI=ANPHI/THICK-AMPHI7(·SOTFR 
SINNM=RADIN*THICK-6.0*RADS2-RADUS*THICK 
SINCN=12.0*RADUS/(RADIN*THCK2) 
SINFR=SINCN*SINNM/SOTDM 
SITHA=ANTHA/THICK-AMTHA*SINFR 
SIPHI=ANPHI/THICK-AMPHI*SINFR 
WRITE (3,11) SOTHA,SOPHI,SITHA,SIPHI 
PHINO=PHIN0-2.0 
DWM=D\-iM+ 2. 0 
IF(PHIN0)600,600,350 

350 GO TO 1 
C PROGRAM MODIFICATION TO GET STRESS DISTRIBUTION 

' 600 CNTRD=THICK*THICK/(12.0*RADUS) 
ZZA=-(THICK/2.0+CNTRD) 
ZOUT=THICK+ZZA 
SGNM1=12.0*RADUS*RADUS*THICK*THICK 
SGNM2=THICK**4~0 
SPNM3=12.0*RADUS*THICK*THICK 
SPNM4=144.0*RADUS**J.O 
SGCON=12.0*RADUS/*THICK**J.O) 
SGPDM=SPNM4*RADUS+2.0*SGNM1+SGNM2 
SGPNM=SPNMJ+SPNM4 
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SGTNM=SGNM1+SGNM2+SGPNM*ZZA 
SGTDM=SGPDM+SGPNM*ZZA 
SGFRA=SGCON*SGTNM/SGTDM 
SGTHB=-10000.0*SGFRA 
WRITE (3.11) ZZA,SGTHB 
ZZA=ZZA+0.05*THICK 
IF(ZZA-ZOUT)533,533,400 
CONTINUE 
STOP 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
END 

(9H THICK = ,E18.8) 
(5F10.5) 
(1H1, 7HRISE = ,E18.8) 

~
6E18.8) 
5E18.8) 
F18.4) 
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APPENDIX J 

The following shows the derivation for the location 

of the centroid and the "area factor due to curvature" 

for an element of a spherical shell. 

1) Centroid 

Middle surface 

Note: Here z is measured 
from the middle 
surface. 

ds= R de 
s 

z centroid relative 
to middle surface 

= 

+t 

+t 
2 

= 

+t 

l z[e::z)ds] 
2 
+t 

Je~:z~s dz 

-t 
2 

I e~:z)Rsd e dz 
-t 

2 

dz 



= 

z centroid relative = 
to middle surface 

Therefore R 
c = R s + 12 R 

s 

R 
s 

t d8 

12 R 
s 

2) "Area factor due to curvature" 

z 1 f z = - A R + c 
area 

Centroid surface 
Middle surface 

dA 

f 1 z = A 

area 

= d8 (R 
c 

zd8(R + c 
(R + c 

dA 
z 

+ z) dz 

z) dz 

z) 
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Here z Measured 
from the 
centroid survace. 
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t t2 t t2 

2 12R 2 12R 
s s 

ct e f ct8 
2 

~dz 
z 

= A = A 2 

-(; + 
t2 ) 

12R
5 

-(; + 
t2 ) 

12R
5 

z ct etJ 
= 12R A 

s 

But A = R tct e 
s 

z 
t2 

so = 2 
12R 

s 



84 

BIBLIOGRAPHY 

1. Stresses in Shells; W. Flugge- Springer-Verlag Co., 
Germany, 1960, pages 7, 312-329. 

2. Theory of Elasticity; S. Timoshenko and J. N. Goodier -
McGraw-Hill Book Company, Inc., 1951, pages 416-421. 

3. Theory of Plates and Shells; S. Timoshenko and 
S. Woinowsky-Krieger- McGraw-Hill Book Company, Inc., 
1959, pages 533-543. 

4. Elasticity in Engineering Mechanics; A. P. Boresi -
Prentice-Hall, Inc., 1965, pages 224-228. 

5. Differential Eguations; L. R. Ford - McGraw-Hill Book 
Company, Inc., 1955, pages 155-157. 

6. Advanced Mechanics of Materials; F. B. Seely and 
J. 0. Smith- John Wiley and Sons, Inc., 1952, 
pages 137-144. 



85 

VITA 

David Wayne Moore was born July J, 1938 in St. Louis, 

Missouri. He was educated in the Ferguson, Missouri 

elementary schools and graduated from the Hazelwood High 

School, St. Louis, Missouri in June, 1956. He received 

a B.S.M.E. Degree from Washington University in St. Louis 

in June, 1960. 

Immediately thereafter he was employed by McDonnell 

Aircraft Corporation (now McDonnell Douglas Company) 

in the Strength Department of the Enginee r ing Technology 

Division. He attained the position of Senior Engineer -

Strength before leaving McDonnell in September, 1966. 

In September, 1964 the author enrolled at the Graduate 

Resident Center in St. Louis. Since September, 1966 he 

has been employed as a graduate assistant in the Engineer

ing Mechanics Department of the University of Missouri at 

Rolla. 


	Stresses in a thick spherical shell
	Recommended Citation

	Page001
	Page002
	Page003
	Page004
	Page005
	Page006
	Page007
	Page008
	Page009
	Page010
	Page011
	Page012
	Page013
	Page014
	Page015
	Page016
	Page017
	Page018
	Page019
	Page020
	Page021
	Page022
	Page023
	Page024
	Page025
	Page026
	Page027
	Page028
	Page029
	Page030
	Page031
	Page032
	Page033
	Page034
	Page035
	Page036
	Page037
	Page038
	Page039
	Page040
	Page041
	Page042
	Page043
	Page044
	Page045
	Page046
	Page047
	Page048
	Page049
	Page050
	Page051
	Page052
	Page053
	Page054
	Page055
	Page056
	Page057
	Page058
	Page059
	Page060
	Page061
	Page062
	Page063
	Page064
	Page065
	Page066
	Page067
	Page068
	Page069
	Page070
	Page071
	Page072
	Page073
	Page074
	Page075
	Page076
	Page077
	Page078
	Page079
	Page080
	Page081
	Page082
	Page083
	Page084
	Page085
	Page086
	Page087
	Page088
	Page089
	Page090
	Page091
	Page092
	Page093
	Page094

