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ABSTRACT 

Design efforts concerning the problem of detecting moving ground 

targets from an airborne platform with a noncoherent radar have been 

concentrated in the area of video filter design. The filter formula­

tion generally follows an emperical path with no generally acceptable 

criterion for an optimum processor. This Thesis considers several 

problem formulations which are based on a Ne,yman-Pearson detection 

criteria. A square-law second detector is assumed and the resulting 

likelihood ratio shown to be too complex for closed form solution. 

The problem is reformulated in terms of sequences using complex random 

variable representations and the likelihood ratio is investigated. A 

test statistic is derived and discussed in terms of a practical imple­

mentation. A suboptimum receiver is implemented in the video frequency 

region and compared with existing MTI processors by using computer 

simulation programs. A clutter rejection video filter shaped in 

accordance with the optimum receiver derivation is shown to have some 

advantage over conventional shaping with which it is compared. 
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CHAPTER I 

INTRODUCTION 

1 

A frequently occurring problem in the areas of both radar and sonar 

is the detection of a slowly moving target in the presence of strong, 

highly correlated noise arising from the target surroundings. A broad 

range of approaches have been investigated relative to defining 11 optimum11 

techniques. Generally, the investigations presented in the literature 

have been concerned with coherent systems. However, for the more simply 

implemented class of noncoherent systems, a need exists to examine the 

problem from the aspect of deriving maximum performance within the 

operational constraints. 

The purpose of this Thesis is to explore the problem of moving 

target detection in a clutter background from an airborne platform. 

The radar system is assumed noncoherent and initially constrained by 

existing operating characteristics of fixed transmitted signal form, 

antenna parameters, and receiver class. A summary of signal conditions 

and general discussion of the processing techniques previously studied 

are presented. A basic system is outlined and the signal and clutter 

statistics formulated through a square-law device. A general likelihood 

ratio is then developed for consideration in the search for a processing 

technique and detector statistic. 

The mathematical complexity of the likelihood ratio at the output 

of a square-law device, even for a short processing sequence, is shown 

to preclude a closed form solution and alternate formulations are derived 

in the system prior to second detection. Complex variables are used in 

the development of the likelihood ratio for a sequence of signals in 

colored noise, and a closed form solution is proposed. A receiver test 
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statistic is derived and shown, under certain assumptions, to be similar 

to the optimum receiver for multiple observations of a single pulse 

in colored noise. 

Due to the complexity of the optimum receiver implementation, a 

suboptimum form is suggested for use in the video section of the radar 

system. A filter is formulated directly from the optimum receiver and 

is evaluated in comparison with existing conventional video processing 

techniques. A previously developed computer simulation is used in 

generating the input signals for the processor operation, and the sub­

optimum form is shown in some cases to be superior to either of the con­

ventional processors with which it is compared. 
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CHAPTER II 

SUMMARY OF SIGNAL CONDITIONS 

The basic problem is the extraction and detection of a weak desired 

11target 11 from a generally strong noise signal. The noise, in this case, 

will be considered to be the energy reflected from a multitude of 

scatters located at random in the target area. Such noise will be 

designated 11 clutter11 to differentiate it from the thermally generated 

noise originating in the radar receiver. 

The most challenging circumstances are those in which the clutter 

power at the output of the radar receiver is many times greater than 

the signal power. It will be the heavy clutter problem considered in 

this Thesis. Furthermore, the clutter power will be assumed much 

greater than the 11thermal11 noise of the system, though the signal will 

not be so constrained. 

As indicated above, the source of the clutter is chaotic reflec­

tions from randomly located scatters in the target area. Typical of the 

clutter source is a foliage-covered stretch of terrain, generally large 

in extent compared with the expected site of the desired target. The 

clutter voltage obtained in the radar receiver results from the super­

position of a large number of terms originating from the fields of a 

large number of individual elemental scattering objects. The clutter 

can therefore be regarded as a random process at the receiver input. 

Due to the number of scattering elements, the Central ~~t Theo~m 

allows th~t it may be modeled as a Gaussian process. However, due to the 

periodic and finite duration of the illuminating radar signal, as well 

as the localized characteristics of the clutter elements, the process is 
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nonstationary. The difficulty of nonstationarity of the process is 

avoided by consideration of the problem being investigated. Attention 

is restricted to a single target located in a resolution cell of the 

radar system. The range resolution cell is periodically illuminated, 

the return containing the desired target as well as the clutter or noise. 

If a processor is sought to detect the target in that specific range 

resolution cell, then the characteristics of the clutter outside that 

target area will not change the detection problem. If the clutter 

characteristics outside the target area are assumed to be identical to 

those in the target area, the statistical properties of the clutter are 

continued throughout the repetition period and can then be considered 

stationary. More extensive discussions are contained in the literature, 

specirically (1). 

Inasmuch as the desired signal originates from a target moving with 

respect to the background generating the clutter, the frequency domain 

separation of the desired signal from the clutter spectrum based on the 

target doppler frequency "shift" suggests standard filtering techniques. 

As stated in Chapter I, substantial literature exists on investigations 

of processing techniques. The work on statistical decision theoretic 

optimality criteria contained in (1), which considers two element sequence 

length processings, and the interesting approach discussed in (2), are 

generally representative. Also pointed out, these works deal with 

coherent systems and predict optimum receivers consisting of predetection 

filters in the presence of correlated noise. 

A somewhat more comprehensive investigation of the target detection 

in correlated noise background includes not only the design of an "optimum" 
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processor but the unified consideration of an optimum transmitted sig­

nal waveform. Works which have considered the problem from such a 

viewpoint are represented by (3), (4), and (5). 

The detection of a ground moving target from an airborne platform 

is substantially more complicated, particularly for a high performance 

aircraft. The problem has been carefully presented in such works as (6), 

(7), and (8). As discussed therein, the clutter spectrum in the 

receiver is spread due to the platform motion and the finite radar beam­

width, as well as various system instabilities. A significant considera­

tion is the fact that the spread of the clutter spectrum is a function 

of the scanning antenna pointing angle relative to the aircraft ground 

track or velocity vector. This fact generally calls for some adaptive 

techniques in processing, in that a target at a given doppler frequency, 

perhaps detectable with the antenna near ground track, may be completely 

submerged in the clutter spectrum as the antenna scans in the azimuth 

plane. 

This Thesis, however, is concerned with investigating the clutter 

rejection or moving target detection in a noncoherent reception system 

to differentiate it from the attempts at systems called coherent-on­

reception using a noncoherent transmission device. The noncoherent 

reception system generally utilizes processing in the video section, or 

after second detection. At the second detector output, the desired 

signal is the intermodulation or interference term between the clutter 

and the target returns. Hereafter, when desired signal is mentioned 

after the second detector, it shall be taken to refer to that intermodu­

lation term which has acquired the moving target doppler shift. 
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For the noncoherent system a variety of filtering techniques have 

been investigated in the literature including analog mechanization (7), 

digital cancellers (6), and fast Fourier transform filtering techniques 

(9), each of which attempts to reject the clutter spectrum while passing 

the desired signals. The second detector input for the system in which 

such processors are utilized is the signal train, as shown in Figure 1, 

where the pulses represent a pulse modulated carrier of frequency gen­

erally in the region 9000 MHz to 20 GHz. The pulse duration may be on 

the order of 0.1 to 1.0 microseconds. The spectrum, prior to detec­

tion, for such a signal train is shown in Figure 2 a. for a coherent 

system. The spectral lines are spread due to the finite observation 

time of any target area, as determined by physical parameters of the 

beamwidth and scan rate. Figure 2 b. shows a typical video spectrum for 

the problem to illustrate the processing techniques presently used. 

The clutter spectrum, as mentioned earlier, is spread depending upon 

the system characteristics and antenna pointing angle. Figure 3 shows 

the application of the range-gated filter, and delay line frequency 

responses on the video spectrum. Figure 4 shows block diagrams of two 

types of video processing. The general technique has been to shape the 

filter response to obtain a maximum ratio of peak signal power to 

average clutter plus noise power at the filter output. Also in the 

general case, some threshold level is set which the signal plus clutter 

plus noise must exceed to obtain detection. The threshold level is 

determined by some false alarm number and the clutter plus noise power 

at the output. Investigations have also been made in the area of utiliz­

ing adaptive thresholds based on mean clutter plus noise at the filter 

o~p~. 
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However, in all cases the filter (processor) output provides a 

composite signal plus clutter plus noise waveform which, for some 

clutter and target velocity conditions, results in a peak signal power 

to clutter plus noise power ratio on the order of unity. At the filter 

output the problem is still one in which the signal must be detected 

in the presence of a highly correlated clutter residue whose auto­

correlation function extends substantially beyond a single interpulse 

period. 

The general scope of this effort is to examine the use of statis­

tical detection theory to improve the signal processor in detecting the 

presence of a moving target. In Chapter III the statistics of the 

clutter and signal will be investigated to illustrate the difficulty in 

defining the second detector output distributions. It will be shown 

that in the simple case of processing a sequence of only two pulses 

that the joint probability density functions needed are difficult to 

characterize and the resulting likelihood ratio is considered. In 

Chapter IV the likelihood ratio is reformulated prior to second detection. 
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CHAPTER III 

SUMMARY OF SYSTEM DETECTOR FORMULATION 

AND STATISTICS 

Prior to proceeding to the presentation of system statistics, a 

brief discussion of the detection problem is provided. Detection is 

used in this section to mean the decision or testing device. In this 

Thesis the detection problem represents one in which the area of sta-

tistical inference concerning hypotheses testing is utilized to imple-

ment a binary decision rule. The hypotheses for test will be to determine 

whether the received data consists of the noise alone, the null hypothesis, 

or consists of signal plus noise, the alternate hypothesis. The 

detectors considered in this work will be of the class where some 

functional of the received data is compared with a detection threshold, 

initially assumed rixed, and the result of the comparison utilized in 

the decision rule. For example, the hypotheses may be written as 

H (signal absent) : received data= noise 
0 

H1 (signal present): received data = signal + noise 

If T1 is defined as some fixed threshold, the decision rule would be 

written as 

If T ~ T1 decide signal present (accept H1, reject H0 ) 

If T < T1 decide noise alone (accept H0 , reject H1) 

where T is some function of the received data. 

A detector operating in the manner described above can make 

basically two types of errors which in the context of the radar or 
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communication problems can be expressed as:· 

TYPE I - The detector decides signal is present when in reality 

it is absent. 

TYPE II - The detector decides signal is absent when in reality 

it is present. 

The TYPE I error is commonly referred to as a false alarm, the probability 

of such an error being designated ~ and referred to as the Probability 

of False Alarm. Similarly, the probability of a TYPE II error is 

referred to as the Probability of False Dismissal. The problem con­

straints will generally establish limits on the formulation of the final 

decision rule. The various aspects of selecting decision rules are 

discussed at length in most texts on the theory of statistics--for 

example, Chapter 12 of (12). The optimality criteria investigated 

initially in this paper is that of Neyman-Pearson. 

The Neyman-Pearson criterion is based on maintaining a fixed pro­

bability of false alarm ( ~ ) while maximizing the probability of 

detection. The probability of detection corresponds to the power of 

the test or to 1 - (probability of TYPE II error). The Neyman-Pearson 

approach relies on knowledge of the exact nature of the probability 

functions and furthermore, the selection of the threshold level depends 

upon a parameter (s) of the distribution functions. Such a detector is 

generally called parametric in nature. The Neyman-Pearson type detector 

forms for Gaussian noise with various known parameters and signal 

characteristics are discussed in (12), and more briefly in (13). How­

ever, the likelihood ratio formulation under conditions where the 

individual observations are not independent or non-Gaussian is very 

difficult to calculate for the general case and may be even more com-

plicated to implement. For this reason, the likelihood formulation 
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following the second detector is limited to a processing sequence 

length of "two", and it is shown that even for such basic constraints 

the expressions for the colored noise environment are intractable. 

A. SUMMARY OF LIKELIHOOD RATIO DEVELOPMENT 

The purpose of this section is to develop the likelihood ratio 

formulation and terminology which will be used throughout the remainder 

of this work. For this purpose, let f(t) be the received waveform for 

which the processing is to be designed. Let f(t) be represented as 

f(t) = m(t) + nc(t) 

where m(t) and nc(t) are defined as follows: 

m(t) = desired signal for detection 

nc(t) = colored noise 

In formulating the likelihood ratio, the following definitions 

are utilized: 

Pf(m) = a posteriori probability density function of 

signal (m) being present given that (f) has 

been received 

p (f) = conditional probability density function on m 

receiving (f) given (m) is present 

p (f) = conditional probability density function of (f) 
0 

given that signal is absent 
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The likelihood ratio is defined by (1) as 

]\ = Pm(f) 
• Po(f) 

The likelihood ratio is used in the decision process. However, 

the amplitude of the signal may be described as a statistical quantity 

and not a 11 sure signal11 • The likelihood function must then be modified 

from the simple detection case as follows. Let p [ m(g) J = the pro­

bability density function of the signal envelope having the value (g). 
,.. 

Then the new likelihood ratio A can be expressed as 

A = J P [ m( g)] A dg • 

Then the derivation of a suitable likelihood ratio can proceed by first 

" developing A and modifying to the form of A shown. 

In the following development of a likelihood ratio, the input wave-

form is expressed as a sequence where the elements of the sequence are 

samples from processes described by the appropriate univariate p.d.f. 

The samples are taken at times t 1 = t 1 + (l-1) ~ t where ~ t is 

taken to be the radar interpulse period, T • The length of the sequence 

shall be (l = 1,2,----L), and various values of L would be examined 

depending upon processing techniques evaluated. 

Let the received function f(t) be designated fl and be given by: 

where the n1 are sequence elements taken from a colored noise process.· 

The probability density for the colored noise sample values n1, n2, n3 , 

-----n1 is written as: 
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where p(n) is the joint probability density function of dimension equal 

to the length of the sequence. In a similar manner, the p.d.f. of 

signal could be formed. For preliminary development, the factor A 

will be formulated for a "sure signal~' case and then modified as required 

/!.. 
to provide the necessary function A . 

Rewriting 

the function p0 (f) can be written directly since f 1 = n1 and p 0 (f) is 

where the superscript n is used to signify the p.d.f. is the form of 

that for the noise component. The function pm(f) can likewise be written 

directly assuming the sure signal form since n1 = f 1-m1 and is 

n 
P (f) = p(f -m f -m ------f -m...) 

m 1 1' 2 2' 1 L 

and the desired quantity A is written as 

A = np(f1-m f2-m.... -----f -m. ) 
a 1' ~' L I. 

But the signal m1 has parameters known only in the statistical sense. 

These parameters may be amplitude (g) and phase ( cf>). The desired 

likelihood ratio is A (g, cf>) = Pm(g, </>) A and the function Pm(g, cf>) = 

p [ m(g, cf> )] is the p.d.f. that signal will have amplitude in the inter­

val g to g + dg and random phase in the interval cf> to cf> +d cf> • 
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Rewriting the function I\ (g, c/> ) where m has the amplitude g and 

phase cP , 

1\ 
The desired likelihood ratio I\ is expressed as 

A = 

In order to proceed with the representation of a useful likelihood 

ratio, the joint probability density functions for the colored noise 

and the desired signal must be derived. The derivation is presented in 

the following sections. 

B. RECEIVED DATA STATISTICS AT THE OUTPUT OF A QUADRATIC DETECTOR 

As a preliminary step in the investigation of moving target indi-

cation (MTI) in a noncoherent system, the statistics of the received 

data will be considered for a system as represented in Figure 5. The 

resulting probability distribution functions will be utilized in 

attempting to define some processor and detector optimized for the 

specific output statistics. 
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r(t) Quadratic y(t) Ideal f(t) 
Second Low Pass Processor 
Detector Filter 

FIGURE 5. SYSTEM DESCRIPTION 

In Figure 5 the input or received data is represented by r(t) 

where 

r(t) = s(t) + c(t) + n0 (t) (3.1) 

The term s(t) is the signal whose presence is to be detected, resulting 

from a point target moving with respect to the background clutter. To be 

more general in the problem formulation and to more nearly equate to the 

physical circumstances, the assumption of a point target should be relaxed. 

This results in a complex target reflection characteristic similar in 

origin to that postulated for clutter. A complex shape would result in a 

reflected signal due to superposition of fields from a large number of 

11 specular points 11 distributed over the surface of the target in a manner 

which may be assumed random with respect to the illuminating radar. With 

very minor alterations in the aspect angle of the target relative to the 

radar location, the reflected signal may undergo wide variation as dis-

cussed in (7). This 11 scintillating target 11 model would demand the use 

amplitude fluctuation statistics. However, the point target assumption 

is retained for this work. Let s(t) be represented as: 

(3.2) 



where f = the center or carrier frequency of the radar system 
c 

fd = target doppler frequency shift 
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S = amplitude of return calculated from radar equation (target 

reflectivity is not assumed to be a fluctuating quantity) 

8 = random phase term arising from illumination by a nonco-

herent radar and uniformly distributed over 0 5 fJ 5 27T 

Because of the origin of clutter echo in the system, it may be 

considered a Gaussian random process. Furthermore, assuming the clutter 

originates from a waveform illuminating a uniformly distributed reflec-

ting background and that the spectral width is narrow compared to the 

center frequency fc, the random process may be considered a narrow-band 

random process. It is known that the envelope and phase probability 

distributions of such a process can be represented as (11): 

vt [ -v 2 J 
p(Vt' <l>t) = 2.1Ta:2. exp z.~z for vt ~ 0 (3 .3) 

,.,.. 

0 ~<I> ~Z.7T 

0 otherwise 

p(Vt) 
vt [ ~v;; J for vt ~ 0 (3.4) = -;;r exp 

')C. 

0 otherwise 

where O"~ = variance of the input process and where Vt and <l>t are 

represented in polar coordinates according to 

c ( t ) = v ( t ) cos [ w c t + <I> ( t ) J . (3 .5) 
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In Equation (3.1), n0 (t) represents the noise component of the 

input originating from thermal noise considerations. The noise n0 (t) 

is assumed to be a sample function from a Gaussian random process 

having a "white" spectral density. The noise will be assumed described 

by the following univariate probability density function having zero 

mean and variance <T~ : 

e.xp [ -n2 a. lJ 
2. <Tn 

(3.6) 
1 

The variance or mean squared value of n(t) is determined for the system 

from Nyquist theorem. However, in the initial formulation of this 

problem the contribution to the received waveform from n(t) is assumed 

negligible and the received function is represented as 

r(t) = s(t) + c(t). (3.7) 

For the initial formulation, a likelihood ratio at the output of 

the second detector will be sought for optimum processing in the presence 

of colored noise. The likelihood ratio and resulting decision statistic 

will then be considered relative to some more common processing devices. 

The first step in likelihood ratio definition will be to determine pro-

bability density functions at the second detector output. From Equation 

(3.7), the received waveform is r(t) = s(t) + c(t) and at the output of 

the square law device is 

(3.8) 
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The problem being considered in this Thesis is specifically one 

where the terms of r(t) representing clutter are much stronger than the 

signal term, c(t)>> s(t). Therefore, the term s2(t) in Equation (3.8), 

since it only adds slightly to clutter components around DC, will be 

neglected. At the output of the detector (i.e. filter output) the 

terms will be reidentified in terms of "desired signal" and 11 colored 

noise 11 • 

The term c2(t) represents the noise background in which it is 

necessary to detect the moving target. The c2(t), after passing through 

the ideal lowpass filter, essentially represents the spectrum of the 

narrow-band Gaussian process translated to DC. This spectrum at the 

filter output is defined as resulting from colored noise process sample 

function nc ( t): 

where the subscript LF indicates the low frequency portion of the 

components following lowpass filtering. 

(3 .9) 

The term of f(t), represented by 2 [s(t)c(t~F , is essentially 

the input signal modulated by the random process representing c(t) and 

will result in a new spectrum displaced from DC by the target doppler. 

The shifted spectrum or component represented by [s(t)c(t)] LF will be 

defined as the desired signal, m(t), at the square law detector output, 

m(t) = 2 [s(t)c(t)] LF • 
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First, evaluating the clutter components in Equation (3.8) using 

Equation (3. 5) 

v2(t) 

2 
v2(t) ( ) 

+ 2 cos [ 2 w c t + 2 <t>(t)] • 

But the output from the filter due to clutter is 

(fc =component of f due to clutter) 

where the filter utilized is an ideal filter. The assumption of the 

(3.10) 

ideal filter is considered justified because the spectral width of the 

low frequency components is much less than the input center frequency. 

But from Equations (3.3) and (3.4), the probability density function 

(p.d.f.) at the clutter input is known. Since the filter output is 

given by Equation (3.9), a transformation of variables yields the 

detector p.d.f. at the output in the presence of clutter only as follows: 

p [ fc(t)] = p(Vt) 

d(f ) 
~v t 

p [ f (t)] = p.d.f. 
c 

of the clutter component at the filter output 

p [fc(t)] 
1 2 

(3.11) = exp ( -fc / <7 x ) J f 0 ~ o 
u2 

X 

Next, evaluate the desired signal component in f(t). From Equa-

tions (3.2) and (3.5) 
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The random phase 0 is identical in the cross product inasmuch as both 

signal and clutter are within an interval illuminated by a given pulse. 

The desired signal m(t) then reduces to 

m(t) = SV(t) cos [ wdt + <l>(t) J 

where only the low frequency portion has been retained and the terms 

V(t) and ~(t) are the random variables of amplitude and phase of the 

narrow-band Gaussian noise process which represents the colored noise 

(clutter). Letting g = SV(t) then m(t) = g cos [ wdt + <l>(t) J . 
The probability density function of the desired signal must be found. 

It is known for the input narrow-band Gaussian process that the amplitude 

and phase are independent random variables (11). The square-law device 

input amplitude p.d.f. has been expressed by Equation (3.4) to be 

CT2 
X 

0 

e.xp r- Vt2 ] for Vit ~ 0. 
2 (T 2 

X 

otherwise 

By a simple transformation of variable using g = SVt as noted above, 

the p.d.f. can be expressed at the output of the square-law second detector 

to be 

for g > 0 - . 
p(g) = (3 .12) 

0 otherwise. 



The p.d.f. of the phase term $ (t) can be expressed as the 

following 

= 
_1_ 
21T if 0 < $ < 2 7T 

- t-

0 otherwise 
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(3.13) 

In this section, the received data has been considered and defined 

in terms of the input and output of an ideal square-law detector. The 

univariate p.d.f.'s for the desired signal and noise at the detector 

input and output were defined. In the following section, the joint 

probability density functions will be formulated and used in conjunction 

with the likelihood ratio equations of Section A to attempt definition 

of the optimum processor. Due to the complexity of the higher order 

joint p.d.f., the processing sequence length will be limited to two 

pulses. 

C. LIKELIHOOD RATIO BASED ON SEQUENCE LENGTH OF TWO 

Let it be assumed that the sequence length available for processing 

at the square-law detector output is L = 2. Therefore, only the second-

order joint probability density functions are required for the quanti-

ties Pm (g, <t>), p0 (f), and Prn (f) where the functions are as described 

in Section A. 

Evaluate first the joint probability density function for prn(g, <t> ). 

The quantity p (g) was expressed by Equation (3.12). Therefore, rn 

g exp 
= 
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2 2 
where u = ux S and the quantity S is determined from the radar 

system parameters and the target range. The second order joint density 

function of the envelope can be written as in (1), where 

g1g2 

pm (g1,g2 ) = Zu4(1-r2 ) (3 .14) 

where r is the normalized correlation coefficient and I is the zero 
0 

order modified Bessel function of the first kind. 

Next, the joint density function (L = 2) for the quantity p0 (f) 

will be completed and the variables transformed to provide Pm(f). 

But p0 (f) has been identified as equal to p(n) or the probability densi~y 

function of the colored noise (clutter) at the second detector output. 

The quantity p(n) has been written in Equation (3.6). Examine the 

general joint probability function. As discussed herein, the clutter 

at the input to the second detector can be represented as a narrow-

band Gaussian random process. The general form of the multivariate 

Gaussian distribution, (11), is 

1 

where ~ is the inverse of the covariance matrix li and IRI is the deter­

minate of the matrix g. But from Equation (3.5), we can write en as: 

V (tn) [cos {w ctn + <I> (tn)}] and since the square law detector output 

variable is expressed as 
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a transformation of variables will be attempted to represent the 

output joint probability density function as: 

p(Vt) • 

It is known that the density function of the envelope at the input 

has been derived as being (11) 

The joint density functions can therefore be expressed as follows: 

p (V1,v2---Vn) =Joint probability density function at the 
I 

quadratic device input. 

Pf(f1,f2,----fn) =Joint probability density function at the 

filter output. 

The system thus described is symbolized as 

Quadratic Second Detector 
Vt --+- With Ideal Filter ~ f 

(3.15) 
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2 
The device output can be expressed as f = 1/2 Vt and where f and Vt 

2 
are related by a one-to-one mapping due to (3.15) above; i.e., f = 1/2 Vt 

and Vt = + V2f where the negative root is not allowed under the n n 

requirements of Equation (3.15) above. For this reason, each point in 

the input variable space corresponds to one, and only one, point in the 

output variable space. Then the functional relation between input and 

output variable can be expressed as: 

but 

~-----~ pt (Vt1•-----Vtn) dVt1-----dVtn 

Input 

where J is the Jacobian of the transformation. In this problem, the 

Jacobian is expressed as a diagonal matrix with factors ~-l as 

elements, and therefore IJI = (determinate of J), 
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Rewriting the joint density transformed to the filter output 

f---fp (V ---V )dV --dV =f-1 p ( v2f: --v'2f ) IJI df --df I t1 tn t1 tn I 1 n 1 n 
(3 .16) 

where from (1) the bivariate joint probability density function is 

expressed as 

exp (3 .17) 

where p is the correlation coefficient and the integration has been 

carried out over the random phase. Then, using Equation (3.17) and 

substituting from Equation (3.16) 

(3 .18) 

Re-identifying in terms of the noise output 

] (3.19) 

where p (n 1~2 ) =the bivariate joint p.d.f. of the colored noise at the 

filter output. 
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In summary, p(n) is expressed as shown in Equation (3.19); but, 

p (f) is equivalent to p(n). Therefore, in deriving the likelihood 
0 

ratio, Equations from Section A can be used directly for the sequence 

length of two to express the interim ratio as 

n 
p (f) 

A = __ m __ 
n 
Po(f) 

= 
(3.20) 

But from Section A, the expression for A is a function of the 

random variable <t> (t) and time where 

m1 = sv1 cos [ wdt 1 + <t>1] 

m2= sv2 cos [wdt2+ <t>2] 

For the problem being considered, the sampling interval t 2 - t 1 is fixed. 

The ratio A must be integrated over the phase random variable inasmuch 

as the phase is not useful in the noncoherent detection problem. 

Rewriting the likelihood ratio 

[ w t 
d 1 

X 
A (g, <t>) =exp 



I 
0 

cos [w t + <t>J~f -g d 1 1 2 2 

2 2 
U"x (1-p ) 

P~vtr;] 
(]"~ ( 1-p2) 
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cos [w t + <t>J 
d 2 2 

(3 .21) 

Equation (3.21) could not be integrated to provide a closed form 

solution. One remark is worthy of note. The complication of the ran-

dom phase component is generally avoided in the problem when formulated 

in the frequency domain. The random phase component is usually ignored 

by arguing that its impact is a spreading of the clutter spectrum which 

can result in no more than an error of 1/2 in a filter signal to noise 

ratio at the output. An alternate formulation will now be undertaken 

to determine the characteristics of the optimum receiver under more 

general conditions than those utilized in this Chapter. 
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CHAPTER IV 

FORMULATION OF THE LIKELIHOOD RATIO PRIOR TO "SECOND DETECTION" 

The preceeding Chapter demonstrates the mathematical complexity in 

dealing with even low order statistics after nonlinear detection and 

did not yield a satisfactory formulation of a test statistic on which to 

base a processor design. In this Chapter, a specific demodulation 

technique will not be assumed, and the investigation of optimum pro­

cessing will be conducted in more general terms. In order to accomplish 

this goal, the noncoherent system characteristics must be reformulated. 

In selecting a model for the problem, several factors must be con­

sidered. In the noncoherent system, there is no correlation between 

successive pulses due to the random starting phase of the carrier within 

each pulse. However, it is known that the amplitudes of successive 

pulses are statistically related. As suggested earlier, the clutter 

noise process can be assumed to be a narrow-band Gaussian random process. 

This model is also used by Van Trees, (18), and Helstrom, (19). It has 

further been shown (1) that by representing the Gaussian process in 

terms of complex random variables with suitably defined covariance 

functions, the expected statistical relations between envelope and phase 

of the narrow-band process can be derived. The general model for the 

received data will now be derived in terms of complex random variables. 

A. PROCESS FORMULATION IN COMPLEX VARIABLES 

Let the narrow-band process be represented by the following set of 

equations as proposed by ( 18) where Re (.] indicates the "real part of": 

n ( t ) = Re ~ ( t ) exp [ j w c t J (4.0) 
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(4.1) 

where we is the carrier radian frequency, and the symbol - indicates a 

complex function. If the covariance function is used as defined by 

Helstrom (19), and Van Trees (18), the following relations result 

- [- ~ J K(t,u) = E n(t) n (u) (4.2) 

and 

E [~(t )~(u)J = 0 (4.3) 

where E[•J is the expected value of the quantity in brackets and* 

-indicates the conjugate. The complex covariance function K(t,u) has 

the desired properties for the model. For completeness, if ~(t) = X(t 1) 

+ jY(t1), the relation between the quadrature components is expressed as 

E (X(t 1)X(t2 )) = E (Y(t1)Y(t2 )] = Re {K(t 1,t2 )} 

E (Y(t 1)X(t2 )] = -E (X(t 1)Y(t2 )] = Im {K(t 1,t2 )} 
(4.4) 

The multivariate Gaussian density function for the process can 

then be represented by 

1 exp {~ L Q .. ~.;;.* 1 
(47T )N det '[(T) ij lj I J J 

- -where det K(T) is the determinant of the covariance matrix! for a 
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-stationary process and the q .. 
I J 

-are clements of the matrix ~ which is 

the inverse of RCr). The density function may also be expressed in vector-

matrix form as 

p [n(t 1 ),rf(t 1 )-----n(tN~n~~(tN)l = 1 exp 
J (47TPdet f(T) 

-~ !l ~ !l { 1 ~- } (4.5) 

where the lower case letters with underbar indicate a column vector, and 

the * superscript by a vector or matrix indicates conjugate transpose. 

Representing the problem by f(t) as received data, s(t) as desired 

signal, and noise as n(t), the basic system hypotheses can be written 

Hypothesis H1 corresponds to f(t) = s(t) + n(t) 

Hypothesis H corresponds to f(t) = n(t) 
0 

In order to write the likelihood ratio, the received data and desired 

signal must be represented as narrow-band signals by 

f(t) = R [ret) exp (jwct )] e 

[?ct) (jwct )] s ( t) =R exp e 

where 

s(t. > = 1-scti)l exp ( j 8 i ) 
l 

and the (J. represents the random phase for each signal pulse. 
l 

(4.6) 

(4.7) 
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B. UKELIHOOD RATIO REPRESENTATION BY TD1E SAMPLES 

In this investigation of the noncoherent detection problem, the 

received data will be treated as a sequence shown in Figure 6. As dis-

cussed in Chapter II, the nonstationarity of the process can be overcome, 

for simplifYing the mathematics, by assuming the noise process to be con-

tinued throughout the interpulse period. However, in the problem repre­

sented in Figure 6, care must be taken in receiver formulation to avoid 

a s.ystem which relies on the conceptual artifice mentioned above. To 

guard against this occurrence, the p.d.f. for the likelihood ratio will 

now be formulated in terms of sequence elements. Using previously def.ined 

terminology for the likelihood ratio (Section A of Chapter III)and contin-

uing use of the complex variables, A may be written as 

A ( o1----- ON) = exp { -t [F*-S*] Q [ F-S J } 
exp { -t [ F* Q F ] } 

• (4.8) 

The capital letters are taken to indicate column vectors or matrices as 

defined. below 

F= S= Q= 

where F is the received data made up of samples (fl-----fN), S is the 



Pulse 1 Pulse 2 Pulse .3 

time 

T-4 
I T 

T = Interpulse period 

T = System pulse width 

Figure 6 Clutter and signal pulse sequence 

~ 
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desired signal made up of sample (s1-----sN) occurring at times 

(n = 0,1,2,-----N-1) ' 
(4.10) 

a sample being taken at the peak of the envelope of each pulse. The mat-

rix Q is the inverse of the covariance matrix K. The covariance matrix 

K has elements defined on the basis of Equations (4.2), (4.3), and (4.4), 

except we shall only be interested in covariance coefficients from pulses 

T seconds apart in time. Then, recalling that each element of the signal 

vector, s, is made up of terms of the form 

(4.ll) 

where (} is the random phase angle uniformly distributed in accoreance with 

Equation (3.13), it can be seen that likelihood ratio of Equation (4.8) 

will be difficult to integrate unless the exponential in 0 i can be reduced 
N 

to a product of the form n exp h( (} i) • If the noise process n(t) 
i=l 

were white noise, the Q would be a diagonal matrix and the integration could 

be carried out directly. Since the noise is assumed colored in this prob­

lem due to its physical origin, it will have a covariance matrix K( T) which 

is positive definite, Hermitian. Since the covariance matrix is Hermitian, 

it can be diagonalized. This step is undertaken next. 

The numerator of the right hand term of Equation (4.8) can be written 

as 

exp { -t [ F*QF-2Re(F*QS) + S*QS J } (4.12) 

Techniques of matrix algebra such as found in (22) and (23) are utilized 

to develop the following unitary transfon1ations 



s = uz 

z = u1s 
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(4 .1.3) 

where U is the unitary transformation derived from the characteristics 

of the matrix Q. Substituting Equations (4.1.3) into the bracketed term 

of Equation (4.12) 

F*QF-2Re(F*QS) + S*QS = Y*U*QUY-2Re ( Y*U*QUS] + Z*U*QUZ 

F*QF-2Re(F*QS) + S*QS = Y*DY-2Re ( Z*DY ] + Z*DZ (4.14) 

where D is a diagonal matrix whose elements are the eigenvalues of Q and 

represented by ( J.L1 JJ-2---- J.Ln). The eigenvalues are real and positive 

due to the positive definite Hermitian nature of K and hence Q. Noting 

that F*QF = Y*DY, and substituting Equation (4.14) in Equations (4.12) 

and (4.8), the likelihood ratio reduces to 

A( 81, 02---- On) = exp { -! [ Z*DZ-2ReZ*DY]} (4.15) 

The term Z*DZ related to the desired signal is Hermitian in form and 

may be written Z*DZ = L J.L. 1 z. 1 2 where z. represents the elements of 
1. 1. 1. 

the vector defined by Equation (4.13). 

The diagonalization of the complex inverse covariance matrix can be 

accomplished by the unitary transformation due to the positive definite 

Hermitian nature of Q suggested earlier. The columns of the matrix 

are the normalized eigenvectors of the inverse covariance matrix. 

The matrix U is represented 



37 

u ~ 
4>u- - - - - c/>1 
I I N 
I I 
I I 
I I 

(4 .16) 

cf>N1- - - - - <f!rn 

where the ~n are the normalized eigenvectors with the superscript 

indicating column position in the matrix U. Since U is unitary, the 

inverse { u-1} is simply the conjugate transpose of u or 

* * 1* 
u-1 = U* ~ cJ) u----<1> N1 ~ 

I I 
I I ~2* 
I I -
I I (4.17) 

I I 

* * cf> 1N - - - - </) NN ~N* 

The elements of a given eigenvector ~i are written as cf> • where, as 
IIll. 

before, the upper case Phi represents a vector quantity while lower case 

Phi represents particular elements of that vector. It should be noted 

that the elements of the matrix U* have retained the subscript order of 

the original eigenvector definition rather than row/column ordering of 

the U* matrix location in order that the eigenvectors may be more easily 

identified as the work progresses. 

It should be noted that since U diagonalizes the matrix Q, it also 

diagonalizes the covariance matrix K. It can be shown to be true by 

premultiplying U*QU = D by U, then K, post-multiplying by o-1, pre-

multiplying by u• to yield 

U* KU = D-l • 
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The elements of the inverse of the diagonal matrix are >.. =1/ 
i / p.i 

which is consistent with the fact that the eigenvalues of a square matrix 

are the inverse of the eigenvalues of the inverse matrix. 

Returning now to the evaluation of the likelihood ratio, in order 

to separate the various 8 . , the second term in the exponent of Equation 
~ 

(4.15) is rewritten 

-2R Z*DY = -2R ""' ""' 11. Y· "' s'* e e ~ L.J ,-I 1 'Pki k 
1.•1 k·l 

where the term ~ c/>ki st is equal to the quantity z! 
of the Z vector. Similarly, y. is the ith component 

~ 

th 
or the i-- component 

of the Y vector. 

The desired form is obtained by interchanging the order of summation 

and letting 

Mk exp (j y ) = ""' J.t· Y· m. · s* ~ 1 1.,...~1 k 
1 

= 

where the relation sk = rk exp(j 8 k) has been used. It should be noted 

the doppler shift has been left in association with the term rk. Then 

N 

Mk = '""" L.J 11-i y i cf> ki 
i=l 

* 
r k (4.18) 
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and Equation (4.15) may be rewritten as 

Integrating over the random variables 

(} ] ld(}·····d8 (4.19) 
k ~ I N 

(4.20) 

In the integration, it has been assumed that the term 
2 

lzil is dominated 

by the signal magnitude squared elements. Similar assumptions are made 

in the derivations in both (1) and (24) concerning the random phase in 

the desired signal terms. That it is an acceptable approximation is 

seen by noting that the remaining terms of jzij2, other than signal 

magnitude squared, are of the form sm sn exp(j ( (} -(} )] • 
m n 

Based 

on the assumed uniform distribution of the phase elements, the expected 

value of such terms approaches zero. It is, therefore, considered 

acceptable to assume the contribution of such terms to the value of 

\zi\ 2 to be negligible. Using the assumption, and taking the logarithim 

of both sides of Equation (4.20), the final expression is 

N 

In A= + L 
k=1 

(4.21) 

The receiver must then form ~ and, as in Appendix A, pass the out­

put of the processor into a In I 0 [ *] detector. The outputs of the 

detector are then summed over the index k of the desired signals, assuming 
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that over the input sequence the signal represents a target having a 

given doppler shift. If the doppler shift is an unknown parameter, for 

example, uniformly distributed over wd to wd + dwd, then Equation (4.18) 

would be rewritten as 

(4.22) 

where the ( * ~ is taken to indicate the statistical average over the 
d 

parameter wd. However, the average would again result in a form similar 

to that encountered in Chapter III herein, and no obvious closed form 

solution exists. To avoid this difficulty, it will be assumed that wd 

is a known parameter. Then, rewriting Equation (4.21), and using the 

definitions of Equation (4.17), the likelihood ratio becomes 

(4.23) 

where the index m is over the input received data sequence and the k 

designates the desired signal elements at the sequence times denoted by 

Equation (4.10) where rk is the signal at time tk. The term B is the 

bias term arising from the likelihood ratio development. 

Equation (4.23) then describes the structure for a threshold receiver 

operating on discrete samples of the received data in a noncoherent system. 

Considering the argument of In I 0 [*], the receiver must perform the 

operation defined by 

(4.24) 
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This can be interpreted in several general forms, depending upon the 

order in which the elements of the statistic are viewed. As written 

above, the receiver is of a form which may be considered the discrete­

time analog to "whitening" of the received data and correlation with a 

"whitened'' replica of the desired signal. Similarly, if in Equation 

(4.24), the signal term rk is moved outside the summation over the index i, 

the receiver represents a discrete filter operating solely on the received 

data, the output of which is "correlated" with the desired signal prior 

to envelope detection. 

C. INVESTIGATION OF THE SUBOPTIMUM RECEIVER 

These receiver operations are carried out at the system carrier 

frequency or prior to second detection. The operations are discrete or 

digital in nature requiring substantial mechanization and difficulty in 

visualization. Generally, a continuous system is often simpler than the 

discrete counterpart, and for that reason the discrete formulation will 

be investigated under the limiting assumptions of continuous received 

data. A formal discussion concerning passage from the discrete sample 

case to the continuous data representation can be found in (24).1 How­

ever, a more heuristic argument suffices here to justify the investigation 

of the continuous data representation. It can be shown that a pulse 

radar system can be represented by a continuous wave (CW) illumination 

system so long as it is recalled that the representation is accurate 

only over the frequency domain limits between -PRFj2 and +PRFj2 where 

PRF, as before, is the pulse repetition frequency. 

Appendix A of this Thesis assumes the clutter or colored noise pro­

cess to be extended beyond the limits of the signal in the observation 

1 Pages 822-824 
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interval and formulates a receiver using the Karhunen-Loeve expansion. 

Assumptions are made which allow the definition of an optimum receiver 

using Fourier Transform techniques. Equations (A-17) and (A-18) repre-

sent a simple interpretation of such a receiver and correspond with the 

Optimum Receiver derived in (18) under the restrictions of a given range 

point target with some doppler shift in a reverberation background. It 

can be noted that the discrete formulation shown in Equation (4.24) 

requires the received data sequence be multiplied by the weighting function 

representing the eigenvectors of the covariance matrix. This is analoguous 

to the weighting of the received data by the eigenfunctions to provide 

the expansion coefficients of Equation (A-4) in the continuous repre-

sentation of Appendix A. 

At this point, several avenues of investigation are open. The per-

2 formance of the receiver could be evaluated utilizing the quantity d0 

defined by Helstrom (19) 1 and utilized by Van Trees (5). Similarly, 

Equation (4.22) could be expanded in some appropriate series form, the 

averages considered in the manner of (24)2 , and the performance of the 

resulting system evaluated. However, the receiver of Equations (A-15) to 

(A-18) offers an interesting interpretation in comparison with the video 

domain systems of Chapter II herein. Therefore, since the optimum receiver 

represents a complex mechanization problem, the processor of Appendix A 

will be modified to the suboptimum form of Figure 7, applied direcUy to 

the video section of the radar and compared with processors shown in Figure 4. 

Another factor which causes complication of the IF processing des-

cribed in the derivation of Sections A and B is a characteristic not 

1 Pages 149-156 

2 Pages 845-848 
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specifically defined to this point. It was mentioned that the spectral 

spread of the clutter return is a function of the radar system azimuth 

scan angle and, for similar reasons, the center of the clutter spectrum 

shifts with the antenna pointing angle. The resulting impact on the IF 

processing is to require that any equivalent filtering operations be 

mechanized to track the center doppler frequency of system antenna bore­

sight angle. This, of course, could be accomplished by utilizing an analog 

signal from the antenna scan loop. 

A comparison of the processors in the video frequency region can be 

easily implemented by using a computer simulation of the radar system 

and allowing the processors of Figure 4, and that of Figure 7, to operate 

on the simulated outputs. Several simulation techniques are available, 

one of the most useful of which is the time domain simulation presented 

in (25). For this Thesis, however, a frequency domain simulation repre­

sented less computer time and was selected for use. The author worked 

with Mr. R. P. Brueggemann in the formulation of a frequency domain sim­

ulation which has been used in other study programs. The simulation was 

mechanized to provide the signal to clutter plus noise power ratio at 

the processor output, and to compute cumrnulative probability of false 

alarm based on human observation of a radar display. But rather than 

select the decision criteria associated with the arbitrary probability 

of false alarm, the outputs of the processors were compared directly. 

A block diagram and brief discussion of the simulation are presented in 

Appendix B of this Thesis. 

In utilizing the receiver of Figure A-1, it must be formulated at· 

video frequencies. Since the simulation program developed the clutter 

spectrum at the output of a square-law second detector, the inverse of 
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that spectrum was used directly to represent the first filter element. 

The factors of physical or practical realizability of such a device were 

not studied. The element of Figure A-1, representing the matched filter 

based on desired signal, must be interpreted in terms of the desired 

signal in the video frequency region. In Section B of Chapter III, the 

desired signal was identified as the intermodulation terms between the 

clutter and signal. It is to this intermodulation term that the filter 

must be matched. 

However, as discussed in Appendix B, the signal matched filter 

element was omitted for direct comparison as a clutter rejection device. 

The curves shown in Appendix B, Figure B-2 and Figure B-3, are the 

result of the simulation depicting the ratio of signal power plus clutter 

power plus noise power to clutter power plus noise power at the output 

of the individual device versus the antenna scan angle in degrees. It 

should be noted that the antenna scan angle is analogous to the clutter 

spectral spread by virtue of the problem as discussed in Chapter II 

herein. 

Furthermore, the simulation was run for a specific radar system 

antenna beamwidth. To select a much more narrow beamwidth, or more 

broad beamwidth, could be expected not only to alter the curve shape 

but also the relative position. However, it appears from the definition 

of the suboptimum filter that the shape of a video domain device should 

take into account the spectral shape rather than simply selecting the 

steepest slope response. Additional conclusions are drawn in the follow­

ing chapter. 
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CHAPTER V 

CONCLUSION 
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In this Thesis, the problem of detecting a movine target in the 

presence of heavy ground clutter, represented as colored noise, was 

investigated for a noncoherent radar system. A survey of the techniques 

presently utilized, based on empirical results in the video frequency 

region of radar systems, was presented for reference. The problem of 

formulating an optimum receiver, both in the video frequency region 

after square-law detection and in the general case of operating on the 

received data, was considered. In the former system, a closed form 

solution for optimum video processing was not available; however, for 

the system operating at the 11 carrier11 frequency, a general implementa­

tion was defined. In both cases, the optimum system was based on the 

Neyman-Pearson likelihood ratio criterion. 

The optimum receiver described in Chapter IV in terms of discrete 

time notation appears to be the most practical system to implement as 

opposed to the continuous filter approach, within the constraints of a 

pulsed radar system. Also, as suggested in Chapter IV, the performance 

of the discrete time formulation can best be evaluated utilizing a com­

puter simulation of the general type discussed in (25). The practical 

system implementation at the system IF represents a significant increase 

in hardware complexity over the processing techniques implemented at 

video frequencies, and for this reason the optimum form was evaluated 

in a suboptimum application by employing the continuous filter shaping 

of Appendix A to the video section. 

The comparison of the suboptimum receiver with the range gate and 

filter (RGF), and the shaped double delay canceller (SDDC), shows the 
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suboptimum receiver under some conditions to provide generally better 

performance. The filter shaping, based on the inverse of the clutter 

spectrum, appears to be a sound approach in the selection of a video 

frequency processor. Additional study and comparative evaluation is 

required over a more broad range of target velocities. Similarly, the 

evaluation should be extended to the angles near ground track and also 

to include comparative data on probability of false alarm. It was not 

possible to show a clear advantage for one device over the other in the 

application simulated. However, the suboptimum filter did demonstrate 

an essentially constant clutter plus noise power at the device output more 

than did either the RGF or SDDC over the range of clutter spread charac­

teristi.cs considered. This factor indicates a more nearly constant 

false alarm rate without the use of an adaptive threshold. However, 

generalizations concerning the superiority of the RGF or SDDC are 

meaningless without a careful examination of radar parameters, such as 

beamwidth and scan rate, and application, such as aircraft speeds and 

altitudes. 

Several areas for future study are apparent in the derivations of 

Chapter IV and are worthy of mention in this concluding Chapter: 

a.) The basic performance of the receiver of Chapter IV, Equation 

(4.23), in terms of probability of false alarm and of detection, should 

be studied. The most profitable evaluation would be by computer simu­

lation due to the lack of a proven analytical model for clutter. 

b.) The receiver of Chapter IV assumed a given signal amplitude 

and should be reconsidered in light of some statistical amplitude 

characteristics representing the expected target scintillation function. 
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Similarly, the implementation should be reviewed by averaging over the 

expected range of target doppler frequencies of interest. 

c.) Efforts should be devoted toward definition of adequate clutter 

models along the lines being pursued by Van Trees with comparisons to 

results of simulation models such as (25). 
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APPENDIX A 

INVESTIGATION OF NONCOHERENT DETECTION 

ASSUMING NOISE IS AVAILABLE BEYOND TIME EXTENT OF TARGET 

In Chapter IV of this Thesis, a discrete formulation of the likeli-

hood ratio was utilized in developing the optimum receiver. vfuere 

continuous data is assumed relative to the noise sample, a more effective 

representation is available and is discussed in this Appendix with appli-

cation to the noncoherent radar problem. In this Appendix, the symbol-

is used to indicate a complex quantity. 

The representation of the random process desired is one in which 

the representation utilizes an orthonormal set of coordinates having 

coefficients which are statistically independent. The Cardinal Series 

or Shannon Sampling Theorem expansion would provide a set of orthogonal 

coordinates; however, in this system problem involving colored noise and 

an availability of samples constrained by system parameters, the coeffi-

cients of the series expansion would not necessarily be statistically 

independent. The Sampling Theorem, therefore, does not provide an 

attractive representation. More useful for Gaussian processes is the 

Karhunen-Lo~ve expansion which is discussed in (11), (14), (16), (19), 

and (21). The general procedure for utilizing such a representation is 

to find the coefficients ni by which the random noise process may be 

expressed as 

N 

n(t) L - -= n. t/Ji (t) 
l 

(A.1) 

i=1 

- is where n 
i 

~2 • 
n(t) -n. = t/J. ( t )dt 

l l 

1 

(A.2) 



50 

-and the factors ~.(t) are determined from the integral equation 
~ 

->._. ~.(t) = 
1 1 

t 
1 

-Kn(t,u) ~. (u)du 
~ 

• (A-3) 

The expansion provides a series representation of the random process n(t) 

over the finite observation interval t to t • The >... are the eigen-
1 2 ~ -values and the ~.(t) the eigenfunctions of the integral Equation (A-3). 

1. -Since the complex covariance function K (t,u) is positive definite Hor-
n -mitian, the eigenvalues will be positive and real, and the ~ (t) form 

i . 

an orthonormal set. The complex covariance function is positive real 

Hermitian since the narrow-band power spectrum of the noise process is 

-assumed real. The desired orthonormal functions ~.(t) are then found 
1. 

by solving the integral Equation (A-3). General properties of integral 

equations and their solution may be found in applicable mathematics texts 

but are briefly summarized in (14), (19), or (21). Van Trees, in (14), 

also clearly discusses the meaning of utilizing the open observation 

interval of Equation (A-3), and the advantages of including a white noise 

-component in the noise process as well as conditions on K (t,u) under-
n -which the ~.(t) represent a complete orthonormal set. 

1. 

Let the quantity~ (t) be the complex Gaussian noise process which 

may include some white noise component. The representation of the pro-

cess using Equations (A-1) and (A-2) is 

M 

L - ;j;,(t) (A-4) X (t) = l.i.rn. X. 

i=1 
~ ~ 

M-oo 
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I ;:(t) 
t 

1 
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~~(t) dt. 
1 

The expansion of Equation (A-4) is taken to converge to x(t) in the 

mean-square sense where l.i.m. denotes "limit in the mean" defined 

l.i.m. 

M-oo 

For convenience of notation, the limit operation is omitted in the form-

ulation of A and will be reinserted and limits taken in evaluation of 

the receiver implementation. It should further be noted that where the 

process x(t) includes both colored and white noise, the eigenvalue of 

Equation (A-3) is the eigenvalue associated with the colored noise 

process. However, the eigenvalue representing the variance of the total 

noise process in the likelihood ratio must be 

where 

c 
= 

i 

c A. is the eigenvalue of the complex covariance function of the 
1 

colored noise and N represents the white noise component (14). 
0 

The received waveform is designated 

r(t) = x(t) + s(t) 

and the term f(t) is likewise represented as 

-f. = 
1 
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The signal s(t), however, must be expressed as 

(A-5) 

where each sk is a pulse of the carrier frequency shifted by the target 

doppler frequency wd, and of duration T • Associated with each sk is 

some random phase angle Ok. The pulses are located within the observa­

tion interval t 1 < t < t 2 at times 

(k = 1,2,---N) 

where T is the interpulse period, and NT < t 2-t 1• 

The transform of the signal to the orthogonal coordinates determined 

from the noise random process is written as 

s. = 
1 

N 

s. = 2:: 
1 k=1 

N .... 2:: s = 
i 

k=1 

where 

- J 8 ik = 
tl 

[ j 0 k] -5 ik 
exp 

'""'* 
sk 1/l. (t )dt. 

1 

s 
k 

-* 
"'. ( t) dt 1 

(A-6) 

(A-7) 
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As a result of the orthonormal representation and the statistical 

independence of the coefficients, the likelihood ratio may be written 

from Equation ( 4.8 ) as 

exp 

A( 8--8) = 
1 N 

exp 

which reduces to 

A( 8 -- 8 ) = exp l-! 1 n 

M 

lr i-s i 12 -il: ..L 
l=l A.i 

M 

-i L: ..L 
I 1i 1

2 
i=1 A.. l 

• 

Using Equation (A-6) and evaluating the real part of the second term 

in the exponential 

and reversing the order of summation, the likelihood ratio becomes 

A(8---8)=exp ~ 
1 N 

Letting 

M exp(j a k) 
k 

=t 
i=l 

-*-f. S,k 
l l 

A.i 

• 



the likelihood ratio becomes 

M 

A ( 0 --- 0 ) = exp 1 N -!I: 
i=1 

or 

1 
A. 

]_ 

1- I 2 s. + 
]_ 

51~ 

t 
k=l 

M cos( a + (} ) 
k k k 

(A-8) 

(A-9) 

Using the orthonormal expansion thus reduces the integration over the 

random phase terms to a product of N single integrations. Using the 

identity 

I (x) = 
0 J 

0 
exp[x cos((}- a) J dfJ 

21T 

Equation (A-9) can be integrated as shown below 

N 

A = exp { w } IT I 0 ( \) • 

k=1 

(A-10) 

The form of the receiver or processor for a sequence of doppler 

shifted target pulses in colored noise is similar to the receiver derived 

by Helstrom (19) for detection of a single pulse of a noncoherent system 

in colored noise for N successive observations. 

DISCUSSION OF RECEIVER IMPLEMENTATION 

As suggested above, the likelihood ratio of F4uation (A-10) is very 
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similar to that discussed .in ( 19). In order to consider the differences 

demanded by Equation (A-10), a brief summary of the implementation will 

be provided. Since it is only necessary to compare the likelihood ratio 

or some monotone increasing function thereof with a threshold to make 

decisions on the hypothesis and alternative, the logarithim of Equation 

(A-10) is taken. The eigenvalue utilized in the following discussion is 

Ai, the eigenvalue associated with white and colored noise. 

N 

In A =I: (A-ll) 
k=l 

The term W has been rewritten from the appropriate terms of Equations 

(A-8) and (A-6). During the observation interval, the receiver forms 

the quantity 

M = 
k t 

i=1 

-* ... f. s 
~ ik 

(A-12) 

for each signal input index k and applies ~ to a detector having a 

characteristic In I 0 (Mk). A summation of the detector outputs over 

k=l to k=N is implemented and the result compared with a threshold deter-

mined in part by the second term on the right hand side of Equation (A-11). 

As can be seen, the threshold depends on the expected amplitude of the 

signal through the relations of Equations (A-11), (A-7), and (A-5) and, 

therefore, does not provide a uniformly most powerful test relative to 

signal amplitudes. A major difference in this problem from that derived 

by Helstrom is the dependence of the statistic of Equation (A-12) upon the 

target doppler frequency. The implementation of the statistic ~ must 
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provide for the processing and detection of targets over the doppler 

range of interest. 

The actual implementation of the statistic Mk must now be investi­

gated. Rewriting Equation (A-12), and passing to the limit as defined 

by Equation (A-4), the result is 

M = 
k 

00 

L: 
i=1 

"'* _1_ f 
i 

.., 
s 
ik • 

Define the quantity within the magnitude sign as a new functional 

00 

g (f. ; wd) L: - -* = fi 9 ik k 1 

i=l 
Ai 

Substituting the equation defining f. 
1. 

and letting 

* hk (t; wd) = L: 
i=1 

• 

the test functional is represented by the form 

(A-13) 

(A-14) 



f ( t) h* ( t ; w ) dt 
d 
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(A-15) 

The statistic is then derived from the envelope of a matched filter 

operation on the received data. From (14), (16), or (19), the function 

h(ti; wd) is the solution to the integral equation 

t2 

I Kn ( t, u) h ( u ; wd) du = -; ( t) 

t1 

(A-16) 

where the cited references treat the conditions for existence of the 

solution. However, if the colored noise process is stationary, and the 

observation interval is allowed to become very long, t 2-t 1 -oo, then 

Equation (A-16) can be investigated by Fourier Transform techniques. 

Then, since Equation (A-16) is a generalized convolution, it can be 

written in terms of transforms as 

F[h(u;w)] = . d 

H( w) = 
S( w) 

2'1'(w) 
(A-17) 

where 'I' ( w) is the spectral density of the noise process, which is 

assumed to include white noise to avoid the inconsistency of singular 

detection. The factor of 1/2 arises from the definition of the complex 

covariance. The impulse response of the filter is then 



+oo 
h( T ) = _!_! H( w ) e+jwTdw 

2.1T 
-00 
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(A-18) 

where the '¥( w ) is assumed to be such that S( w )fv(w) approaches zero 

rapidly as w-±oo and the inverse transfonn exists. The receiver then 

takes the form shown in Figure A-1 herein. 
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APPENDIX B 

REVIffiv OF THE SIMULATION FOR VIDEO PROCESSOR EVALUATION 

A computer simulation in the frequency domain was developed for 

use in analyzing and predicting the performance of air-to-ground ~ITI 

processors during a study program at McDonnell Aircraft Company. Oper-

ation of the MTI processor was assumed with a noncoherent radar system. 

A mathematical model of radar ground clutter at IF was derived by pro-

jection of the antenna pattern on iso-doppler contours. Techniques 

were utilized whereby such factors as radar system instabilities and 

modulation due to antenna scanning were incorporated in the model. The 

video detector characteristic was modeled in the frequency domain and 

representations for clutter, signal and noise at video developed. 

Though methods were implemented to determine the probability of detec-

tion of a moving target immersed in a background of clutter, that feature 

was not uti1ized for this Thesis. Figure B-1 illustrates a simplified 

block diagram of the simulation. A detailed descrir-' ion of the deriva-

tion in formulating the simulation is not presented her~in as future 

publication is anticipated. 

In order to compare the suboptimum receiver formulation of Chapter 

IV, Section C, with existing processing techniques, systems as depicted 

by Figure 4 were simulated in the frequency domain. The transfer function 

of the "range gate and filter" (RGF) was approximated by 

l 

(B-1) 

in cascade with 



H (f) = 
2 

1 
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(B-2) 

to provide the desired passband. The term f 01 designates the high­

pass filter corner location and was varied with the predicted clutter 

spectral spread as a function of antenna scan angle. The resultant ~ilter 

implementation was 

(B-3) 

The transfer function of the processor of Figure 4-(b) was 

___(?.- 2 cos wT)2 
a0 a1 cos wT + a2 cos 2w T (B-4) 

where the factors a0 , a1, and a2 are functions of the gains A and B, and 

T is the interpulse period. Similar to varying the corner frequency of 

the RGF, the feedback gains A and B were varied as a function of the 

antenna pointing angle to shape the filter as a function of the clutter 

doppler spread. 

The implementation of the suboptimum system was not so direct as 

that of the RGF and SDDC. Based on Figure 7, the suboptimum processor 

must provide first a transfer function 

l 
'I'T (w) (B-5) 
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where 'IF ( w) is the power spectral density of the total noise. The 
T 

system total noise is composed of both white noise and the clutter 

originated colored noise. The autocorrelation function of the total 

noise is, therefore, of the form 

R.r ( T ) = R(T)+R(r) 
w c 

o(T)+R(r) 
e 

2 

with the power spectral density (P.S.D.) 

'IF (w)= 'IF (w) +'IF (w). 
T w c 

(B-6) 

The simulation computes the clutter as a function frequency and similarly 

distributes thermal noise power over the region -PRF to +PRF. In order 

to prevent unrealistic gains from the device, the transfer function was 

modified to provide unity gain where the noise power in an interval f to 

f = ~ f was approximately equal to the thermal noise in that interval. 

The simulation provided clutter and thermal noise power as follows: 

'l'(w.) = Clutter power in the interval w. to w. + Llw 
l l 

= SCP (I) 
c l 

'IF ( w. ) = Thermal power in the interval w to 
w l i 

The suboptimwn receiver was simulated by letting 

w.) 
l 

2 
= PN(I) 

SCP(I) + PN(I) 

w. 
l 
+~w = PN (I) 

(B-7) 
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and the filter element simulating an element matched to some signal 

doppler was deleted to allow a direct comparison as a clutter rejection 

device. 
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