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ABSTRACT 

There is a need, in industry, for an efficient method 

of determining an optimal sequence for processing a number 

ii 

of jobs through two or more machines. A method which requires 

a minimum amount of time would be most beneficial. 

The purpose of this study has been to define such a 

method. Tests on the method described indicate that although 

an optimal solution is not always obtained, the solutions 

obtained are quite good and due to the time factor the 

method would be beneficial to industry. 
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I. INTRODUCTION 

The solution of sequencing problems is an area which 

has received considerable attention in recent years. Due 

to the increasing demand on our industrial society the 

solution of sequencing problems is becoming more important 

every day. 

Consider a company which produces a number of items. 

l 

Each item must be processed on one, or more, of several 

machines. Certain machine processes may require that an 

item be processed on one machine prior to another, therefore 

a fixed sequence of machines may be necessary, i.e. an item 

must be cleaned before it can be painted. For other process­

es, however, it may be possible to deviate from a fixed 

sequence of machines. An item that requires both the boring 

of holes and sanding may be sent to the sanders first 

when the drill presses are overloaded and returned to the 

drill presses at a later time. 

By efficient utilization of the machines' time, such 

a company would increase their output and expected profits. 

The availability of a solution for sequencing problems 

would enable such a company to determine one or more 

sequences which would utilize their machine time efficiently. 

From the previous description, it can be seen that 

sequencing is concerned with determining an optimal order 

for a number of jobs to be performed on a number of machines 



with regard to some measure of effectiveness(!)*. Various 

criterion may be chosen for a measure of effectiveness. 

The most common chosen is the total elapsed time for pro-

cessing all jobs through all machines, i.e. we wish to 

determine one or more sequences that will allow all jobs 

to be processed through all machines in a minimum total 

elapsed time. Other criteria which may be chosen are the 

total man hours involved or the expected profits(~). 

Regardless of the measure of effectiveness chosen for a 

problem the objective is to determine one or more sequences 

that will yield an optimal solution with respect to that 

measure of effectiveness. 

Sequencing problems can be classified in two cate-

2 

gories. For the first type there are n jobs to be performed, 

each of which requires processing on one or more of several 

machines. m The objective is to choose, from the (n!) 

theoretically possible sequences, one or more sequences 

which give an optimal solution with regard to the measure 

of effectiveness chosen. In problems of this type all 

jobs must be known before any assignments are made and 

once processing is started no deviation from the chosen 

sequence is allowed. 

In problems of the second type, again there are m 

machines and a number of jobs to be performed. However, 

*All numbers (a) refer to the bibliography while the 
numbers (a.b) refer-to equations. 



the number of jobs is dependent on time, that is, new jobs 

that arrive are allowed to be considered for assignment as 

well as any jobs which have not been assigned up to that 

time. The objective now is to decide on the next job to 

be started each time a machine completes the task on which 

it is engaged such that an optimal solution with regard to 

the measure of effectiveness is achieved. 

Although both types of problems have proven difficult, 

solutions for some special cases of the first type have 

been developed. At the present time there appears to be 

no mathematical approach to problems of the second type. 

However, in this paper we will be concerned only with 

problems of the first type. 

The purpose of the present study is to further develop 

criterion for determining the solution to sequencing prob­

lems involving n machines and m jobs, where all jobs are 

to be processed in a prescribed order on the machines. The 

investigation will be based on a study of the idle time of 

the last machine when the order of processing for two jobs 

3 

is interchanged. This is appropriate since the total elapsed 

time can be interpreted as the sum of the processing time 

for all jobs on the last machine and the idle time for that 

machine. Thus a criterion which will minimize the idle 

time on the last machine will minimize the total elapsed 

time for processing all jobs on all the machines. 
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II. REVIEW OF LITERATURE 

In the general sequencing problem of the first type 

as discussed in Chapter I, there are n jobs (1, 2, •·· , n), 

each of which must be processed on m machines (A, B, ···). 

The problem is to find a sequence (i 1 , i 2 1 ••• 1 in) 1 where 

(i 1 , i 2 , ••• , in) is a permutation of the integers (1, 2, 

••• , n), for each machine such that the total elapsed time 

is a minimum. 

Basic assumptions made for most sequencing models are 

described by Hardgrave and Nemhauser(~), as the following: 

1. The time to process each job on each machine is 

known. 

2. The sequence of machines on which each job is to 

be processed is known. 

3. A job may not be processed by more than one machine 

at a time. 

4. A machine may not process more than one job at a 

time. 

5. Once a machine has begun to process a job, it must 

complete the job before starting on another. 

As stated in Chapter I, solutions exist only for some 

special cases of sequencing problems. According to Sasieni, 

Yaspan and Friedman(l), satisfactory solutions are available 

for only the three foll6wing special cases. 

1. n jobs and two machines A and B; all jobs processed 



in the order AB. 

2. n jobs and three machines A, B, and C; all jobs 

processed in the order ABC. 

However, to obtain a solution to the second 

case, one or both of the following conditions must 

hold. 

Condition 1: The smallest processing time for 

machine A is at least as great as the largest 

processing time for machine B. 

Condition 2: The smallest processing time for 

machine C is at least as great as the largest 

processing time for machine B. 

3. two jobs and m machines; each job to be processed 

through the machines in a prescribed order which 

is not necessarily the same for both jobs. 

5 

As a result of an extension of the procedure developed 

by Sasieni, Yaspan, and Friedman(!) for the third case, a 

solution to the more general problem, n jobs and m machines, 

each job to be processed through the machines in a pre~ 

scribed order which is not necessarily the same for all 

jobs, has been obtained by Hardgrave and Nemhauser(l). 

However for large n, it was found that the procedure 

required a large amount of time, therefore making it 

inefficient. 

Certainly one method for finding the optimal solution 

to an n-job m-machine sequencing problem is by calculating 



the total elapsed times for all possible sequences. Obvi­

ously the number of possibilities becomes quite large for 

large values of n and m. Therefore the time involved in 

enumerating all possible sequences makes it infeasible to 

solve problems by this method. By solving the sequencing 

problem, it is meant to find a method such that only a 

minimum number of sequences have to be enumerated. 

Basically three methods have been applied to sequen­

cing problems. The first was a non-numerical approach 

developed by Akers and Friedman(2) for solving problems 

involving two jobs and m machines; each job to be processed 

through the machines in a prescribed order which is not 

necessarily the same for both jobs. The procedure to 

obtain a solution involves an examination of all possible 

sequences and by the use of specified rules, all sequences 

which are not feasible are eliminated. By a feasible 

sequence, it is meant to be any sequence which can actu­

ally be completed. The rules for eliminating the non­

feasible sequences were developed by purely logical con­

siderations without regard to any specific numerical data. 

6 

Further elimination of possible sequences was obtained 

by defining rules for determining a set of optimal sequences. 

The set of optimal sequences have the following two prop­

erties: 

1. for any assignment of time intervals the optimal 

sequence will be in the set. 



2. every sequence in the set is optimal for some 

assignment of time intervals. 

Although this method eliminates a large number of possible 

sequences, for large m the number of sequences that must be 

enumerated is still quite large. 

A second method which has been used is a graphical 

approach, first introduced by Sasieni, Yaspan, and Fried­

man(!) as a solution to the two-job m-machine problem; each 

job to be processed through the machines in a prescribed 

order. Later, Hardgrave and Nemhauser (_~) extended the work 

and developed a geometric algorithm for a solution of the 

n-job m-machine problem; all jobs to be processed through 

the machines in the same prescribed order. The procedure 

is based primarily on the fact that all feasible sequences 

can be represented geometrically within an n-dimensional 

closed rectangle. However, Hardgrave and Nemhauser (~) 

state that for large n this method may require as many as 

n! trials. Thus the time required makes the use of the 

method infeasible. 

7 

One of the latest attempts at solving sequencing 

problems has employed dynamic programming concepts. Bellman 

and Dreyfus(i) have developed a procedure for determining 

the solution of an n-job two-machine problem where all 

jobs are to be processed through the machines in the same 

order. The procedure involves only scanning the processing 

times of both machines for the minimum time and scheduling 



that job either first or last, depending on which machine 

the minimum time appears under. Bellman and Dreyfus(!) 

stated that no corresponding solution seemed to exist for 

the more general problem, n jobs and m machines, all jobs 

to be processed through the machines in the same order. 

Dudek and Ottis(~) announced an algorithm for the 

solution of the n job m machine problem, all jobs to be 

processed through the machines in the same order. In the 

procedure m - 1 conditions have to be satisfied, for an 

m-machine problem, to determine which of two jobs should 

come first. Recently, however, Karush(~) has shown an 

example for which the algorithm does not give the correct 

result. Karush(~) suggested that the inability of the 

algorithm to solve all problems may be due to an assumption 

made in the derivation of the conditions to be satisfied. 

The assumption questioned was that the order of processing 

for all jobs, other than the two under consideration, would 

have no effect on the decision to interchange two jobs. 

8 
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III. THEORETICAL DEVELOPMENT 

The mathematical formulation of the m machine problem 

deals with the minimization of the idle time on the last 

machine. This analysis follows Johnson's(~) approach to 

the two-and three-machine sequencing problem. 

Assumptions which are necessary for this development 

are as follows: 

1. All jobs are known and completely organized before 

any processing is started. 

2. Jobs are processed by the machines as soon as 

possible. 

3. No job may be processed on more than one machine 

at a time. 

4. No machine may process more than one job at a time. 

5. A job, once started, must be processed to completion. 

The following notation will be used throughout this 

development. Let: 

A .. = time required by job i on machine j • lJ 
x .. = idle time on machine j from the end of job i - 1 
lJ 

to the start of job i. 

T = total elapsed time to process all jobs through all 

machines. 

The problem is to find one or more permutations of the 

integers 1 through n such tb..at T will be a minimum. For 

the n job case 
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n n 
T = I A. + 

. 1 l.m 1.= 
I x. 

. 1 J.m 1.= 

(3.1) 

n 
Since I A. is fixed once all jobs are known the problem 

i=l l.I)l 
n 

becomes one of minimizing I X .. 
. 1 l.ffi 
1.= 

Machine 1 All A21 As1 

2 X12 A12 X22 
-----· ·--------

3 X1s A13 X2s -----. ·------· 

m 

A22 Xs2 As2 
·------· 

A23 Xg 3 Ag 3 . ------· 

A 2m 
-----·-------·------·------·------·------
+- T 

Figure 1. Gantt Chart (m-machines) 

From Figure 1, the idle times for job 1 are 

and generalizing 

X1m = Xlm-1 + A lm-1 ( 3. 2) 

Continuing for job 2 1 

x 22 = max[A11 + A21 - A12 - x12 ;0] 

x23 = rnax[X12 + A12 + x22 + A22 - A13 - x13 ;0] 

and again generalizing 
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max[X1 +A + X +A m-1 1m-1 2m-1 ~m-1 

- X • 0] 1m' · ( 3. 3) 

Combining the idle times for jobs 1 and 2 we have 

X12 + X22 = max[A11 + A21 - A12;A11J 

X13 + X23 = max[X12 + A12 + X22 + A22 - A13iX12 + A12l 

= max[X 
liD-1 

+A 
1ID-1 + X 2m-1 

+A 
2m-1 

( 3. 4) 

The idle times for job 3 are given by: 

3 2 2 
= max[ I A. 

. 1 11 1= 
- I A. 

. 1 12 1= 
- I x. ;oJ 

. 1 13 1= 

3 3 2 2 
= max [ I X . 2 + I A. - I A. - I X . ; 0] 

i=l 1 i=l 12 i=l 13 i=l 13 

3 3 2 2 
=max[ I X. 1 + .I A 1.m_ 1 - I A. 

i=l J..m- 1=l i=l J..m 
I x. ;oJ. (3.s> 

. 1 1ffi 1= 

The total idle time for the first three jobs then becomes 

3 
I x. 

i=l 12 

3 
I X. 

i=l 13 

3 
L X. 

i=l J..ffi 

3 2 
= max [ \ A - \ A . ,·A + A - A ,·A ] 

L i1 L 12. ll 2.1 i=l i=l 12 11 

3 
= max [ I X. 

. 1 12 1= 

3 2 2 
+ L A. - I A. ; I x. + 

. 1 12. . 1 13 . 1 12 1= 1= 1= 

3 3 2 2 

2 
I A. 

. 1 12 1= 

= max [ I X. 1 + I A. ·l - L A. ; I X . . 1 1m- . 1 1m- . 1 1m . 1 1m-1 1= 1= 1= 1= 

2 
+ \ A. - A ; X + A ] • (3. 6} 

. L 1m-1 1m 1m-1 1m-1 1=1 



Inductively, the idle times for n jobs are given by the 

following: 

n 
I x. 

. 1 J.2 J.= 
= max 

l<u<n 
K 

U2 

u 
where Ku 2 = I A. 

. 1 J.l J.= 

u-1 
- I A. 

. 1 J.2 l= 

n 
I X. 

i=l ]. 3 
= max 

l<u<n 
K 

U3 

u u u-1 
where Ku 3 = I x.2 + I A.2- I A.3 

'll 'll 'll 

n 
I x. = 

i=l lffi 
max 

l<u<n 

l= l= l= 

K 
urn 

u u 
where K = I X. 1 + I A. 

um i=l 1m- i=l 1m-1 

u-1 
- I A. 

. 1 lm l= 

12 

( 3. 7) 

The problem becomes one of finding a permutation of 

the integers 1, 2, •·• , n, such that the expression in 

equation (3.7) is a minimum. Rewriting the expression for 

K using a recurrence relation we have um 

u 
K um = .I Aim-1 -

l=l 

u-1 
I A. + max 

l<V<U 
K . vm-1 . 1 lffi l= 

and equation (3.7) can be written as 

n 
I x. = 

. 1 lm l= 

u u-1 
max [ I A. 1 - I A . + 

l<u<m i=l J.m- i=l 1m 
max 

l<V<U 

( 3. 8) 

K ] • vm-1 ( 3. 9) 

To determine if job k should precede job k + 1, define 

two sequences 



s 1 = 1, 2, 3, ••• k- 1, k, k + 1, k + 2, 

and s2 = 1, 2, 3, k - 1, k + 1, k, k + 2, 

Let 

K(l) represent the value of K . for sequence s 1 , 
UJ UJ 

and K(~) represent the value of K . for sequence s 2 • 
UJ UJ 

Also let 

I ( 2) = 

n 
I X. for sequence s 1 and, 

i=l lm 

n 
I X. for sequence s 2 • 

i=l lm 

' n' 

, n. 

Now for u = 1, 2, (1)- (2). -, k - 1, K . - K . , but for u - k, 
UJ UJ 

13 

k + 1, k + 2, , n, K(~) does not necessarily equal K(~). 
UJ UJ 

This might make the idle time, I (l), for sequence s 1 different 

than the idle time, I( 2 ), for sequence s2 , thereby making 

sequence s 2 preferable to sequence s 1 if 

The following statement can now be made: Job k + 1 precedes 

job k if: 

max [K ( 2 )] 

l<u<n um 
< max [K ( 1 )] • 

urn l<u<m 
(3.10) 
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IV. COMPUTATIONAL TECHNIQUE 

The computation involved to determine whether job 

k + 1 should precede job k involves only sums and differ-

ences of the processing times. However by an examination 

of equation (3.8) a relationship between the values of 

K(:) and K<:> can be determined. 
UJ UJ 

Let 
u u-1 

QUJ' = I A. . 1 - I A .. 
i=l ~J- i=l ~J 

j = 2, 3, m. ( 4 .1) 

Also let Q ~ 1 ) represent the value of Q . for sequence s 1 UJ UJ 

and o~j) represent the value of Quj for sequence s2. 

For sequence S 1 : 

For 

Q (:) = 
UJ 

Q ( 1) 
kj = 

(1) 
Qk+1j 

Q (:) = 
UJ 

= 

sequence 

Q (~) = UJ 

Q(2) 
kj = 

u u-1 
I A .. l - I A .. 

i=l 1 ]- i=l 1 ] 

k k-1 
I A .. 1 - I A .. 

i=1 1)- i=1 1] 

k+l k 
I A .. 1 - I A .. 

i=l ~J- i=l 1] 

u u-1 
I A .. 1 - I A .. 

i=1 1]- i=l 1] 

S2: 

u u-1 
I A .. I A .. 

i=l 1]-1 i=l 1 ] 

k,1 
l: A .. 1 + Ak+1 j"-"1. 

i=1 1]-

U = 1, 2, • • • 1 k - 1 

u = k + 2, k + 3, . . . 

j = 2, 3, ... , m 

k-1 
- I A .. 

. 11] 
~= . 

(4. 2) 

, n. 



(2) 
Qk+lj = 

k+l k-1 
L A .. 1 - L A .. - A. . 

i=l 1]- i=l 1] -K+lJ 

u u-1 
I A .. l ~ I A .. 

i=l 1]- i=l 1 ] 
u = k + 2, k + 3, 000 

15 

( 4. 3) 

, no 

Comparing equations (4o2) and (4o3) it can be observed that 

the following relations hold. 

u = 1, 2, • • • 1 k - 1 

Q (2) = Q(1) +A A 
kj kj k+1j-1 - kj-1 

(4 0 4) 

U = k + 2 r k + 3, • 0 0 1 n. 

Rewriting equation (3o8) in expanded form 

u u-1 
K = \' A. urn . L 1m-1 

1=1 
- I A. + 

. 1 1m 1= 
[ 

v v-1 
max \' A. 2 - \' A. + 

!.. 1m- .L 1m-1 
l~v~u i=l 1=l 

[ 
b b ... l [ c 

max · L A. - L A. 3 + max I A. 
l5b~a i=l 12 i=l 1 l<c<b i=l 11 

and making the substitution 

u u-1 
QUJ. = I A . . 1 - I A. . 

i=l 1 J- i=l 1 ] 

equation (3.8) takes the form 



K 
urn = Q + max [Q + max [Q + urn 1 vm-1 wm-2 

16 

max [···<:<umax [Qb 3 :<w::x Q lJ]]· 
l<x<w l<b<a l<c<b c 2 

( 4. 5) 

c 
Note that, Q 2 = K = I A. 

C C2 i=l 11 

c 
- I A .• 

. 1 12 1= 

A simple 

K( 2 ) can 
urn 

computation scheme for both values of K(l) and 
urn 

now be noted. Starting the computation by con-

sidering only machines one and two and making use of the 

relation given by equations (4.4) a minimum number of 

calculations is required. 

To keep the computing time to a minimum for large 

values of n and m, a method was needed to obtain an "initial" 

sequence such that the number of interchanges of jobs could 

be kept as small as possible. After examining the solutions 

to a number of problems it was observed that the solution 

obtained by the following rules required very few inter-

changes to obtain an optimal sequence. 

1. For machines one through m - 1, calculate the total 

processing time for each job. 

2. For machines two through m, calculate the total 

processing time for each job. 

3. Scan the processing times for all jobs calculated 

in steps 1 and 2 for the minimum time. 

4. If the minimum time appears in the times calculated 

in step 1 1 assign the corresponding job first. 
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If the minimum time appears in the times calculated 

in step 2, assign the corresponding job last. 

5. Delete the times corresponding to the job assigned 

and repeat steps 1 through 5 on the remaining 

times until all jobs have been assigned. 

A near optimal sequence can now be obtained by use of 

the following steps: 

Step 1: 

Step 2: 

m-1 
Compute M! = 

l 
I A.} i l = 

k=l ll:. 
1, 2, · · · , n 

m 
and M '.' = L A. k ; j = 1, 2 , • • • , n. 

J k=2 l 

Determine the minimum of M! and M'.'. 
l J 

a. If the minimum is a M!' assign job 
l 

b. If the minimum is a M" j , assign job 

i 

j 

c. If a tie exists, assign job i first. 

first. 

last. 

Step 3: Eliminate all jobs assigned by the procedure of 

Step 4: 

Step 5: 

(2) and repeat procedure (2) for all remaining 

jobs until all assignments have been made. 

Arrange the processing time matrix to correspond 

to the sequence determined by steps 1 through 3. 

For jobs k and k + 1 calculate the values of K(l) urn 

and K( 2 ) by use of equations (4.2), (4.4) and 
urn 

(4.5). 

Step 6: Do one of the following: 

If K( 2 ) < K(l) interchange jobs k and k + 1. 
urn urn a. 

Proceed to Step 7. 



18 

b. If K(l) = K( 2 ) store an optional sequence with 
urn urn 

jobs k and k + 1 interchanged. Proceed to 

Step 7. 

c. If K(l) < K( 2) continue with job k preceding 
urn urn 

job k + 1. 

Step 7: Do one of the following: 

a. If k + 1 < n, increase k by one and proceed 

to Step 5. 

b. If k + 1 = n, the last job to be processed 

has been determined. Decrease n by one. 

Step 8: Do one of the following: 

a. If n > 1, set k equal to one and proceed to 

Step 5. 

b. If n = 1, a near optimal sequence has been 

determined. 

Step 9: Enumerate all sequences found to be near optimal. 

While the procedure is primarily designed for machine 

computation, hand computation can be made without difficulty 

when rn < 4 and n < 4. To illustrate the method of solving 

small problems using this technique consider the following 

problem taken from Karush(~), page 325: 

Problem 

Consider three jobs 1, 2, 3 with operation times given 

by the following table: 
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Machine 

A B c 

1 3 22 2 

Job 2 22 20 20 

3 20 14 18 

Applying the steps described 

M' = 25 M" = 24 
1 1 

M' = 42 M" = 40 2 2 

M' = 34 M" = 32 
3 3 

Thus the initial sequence is 

2, 3, 1. 

Place job 2 in sequence position 1, job 3 in position 2 and 

job 1 in position 3. The processing time matrix becomes: 

Machine 

A B c 

2 22 20 20 1 
Sequence 

Job 3 20 14 18 2 
Position 

1 3 22 2 3 

Compare jobs 3 and 2 

Q ( 1) 
12 = 22 Q ( 2) 

12 = 22+20-22 = 20 

Q ( 1) = 22+20-20 = 22 Q ( 2) = 22+20-14 = 28 22 22 

Q ( 1) = 22+3-14 = 11 32 
Q ( 2) 

32 = 11 

Q ( 1) = 20 Q ( 2) = 20+14-20 = 14 
1 3 1 3 

Q ( 1) = 20+14-20 = 14 Q ( 2) = 14+20-18 = 16 23 23 



Q(l) = 14+22-18 = 18 
3 3 

Q(Z) = 18 
33 

max [K~;)J = max[22+20;22+14;22+18] = 42 
l<u<3 

max [K( 2 )] = max[20+14;28+16;28+18] = 46 
l<u<3 u 3 

Now max [K(~)] <max [K(~)J; therefore job 2 preceeds 
l<u<3 u l<u<3 u 

job 3. 

Compare jobs 3 and 1 

max [K{ 1 )] = max[22+20;22+14;22+18] = 42 
l<u<3 us 

max [K(~)J = max[22+20;22+22;22+34] =56 
l<u<3 u 

20 

Again max [K~~)J < max [K~~)]; hence job 3 preceeds job 1. 
l<u<3 l<u<3 

Since no jobs have been interchanged, the sequence 

2, 3, 1 must be optimal. By direct enumeration the following 

elapsed times are computed to be: 

T(l23) = 83 

T(l32) = 85 

T(312) = 96 

T(321) = 86 

T(231) = 82 

T(213) = 96 

Hence the sequence 2, 3, 1 is indeed the optimal sequence. 
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V. RESULTS AND CONCLUSIONS 

Throughout this chapter, Method A will denote the 

method developed in this paper for solving sequencing prob­

lems. Method B will denote the method enumerating all 

possible sequences to determine one or more optimal solutions 

to a sequencing problem. 

Evaluation of Method A was accomplished by comparing 

the sequenc~ or sequences, generated by the use of Method 

& with the optimal sequence, or sequences found by Method B 

for many problems. An IBM 1620 digital computer was programmed 

to generate all of the sequences obtainable using both 

methods. In all problems tested the elements of the pro­

cessing time matrix consisted of uniformly distributed 

random numbers between 0 and 1000, thus subjecting Method 

A to its most severe test. One hundred fifty-six 3-machine, 

twenty-one 4-machine, twenty-three 5-machine, and nineteen 

6-machine problems with n ranging from three to seven were 

tested for a total of two hundred twenty problems. 

Although Method A did not give an optimal sequence for 

every problem, it was found that the sequences generated 

were always better than 95% of all possible sequences. In 

more than. one-half of the problems in which an optimal 

sequence was not obtained, the sequence generated was the 

second best sequence. 

The relative efficiency of Method A is shown by the 
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data presented in Tables I through III. An examination of 

these data will indicate that: (a) on the average the 

percentage of correct results decreases as n increases; 

(b) the percentage of correct results decreases as m increases; 

(c) in general the number of optimal sequences increases 

as n increases; (d) the number of optimal sequences gen­

erated by Method A increases as n increases; and (e) the 

ratio of time required by Method A to determine an optimal 

sequence to the time for Method B to generate all possible 

sequences decreases as the number of jobs increase. However 

for n < 5 and m < 4 the data indicates that it would be best 

to enumerate all possible sequences or to use Method A with 

hand computation. 

As stated previously Method A does not guarantee an 

optimal sequence. However, for problems with n ~ 6, finding 

a sequence better than 95% of all possible sequences in a 

relatively small amount of time should make the use of 

Method A well worthwhile. 
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TABLE I 

Results Obtained Using Method A 

No. of No. of No. of Prob. No. Percent 
Jobs Machines Tested Correct Correct 

3 3 57 56 98 

4 3 53 45 85 

5 3 33 25 76 

6 3 12 12 100 

7 3 2 2 100 

3 4 7 7 100 

4 4 7 7 100 

5 4 3 2 67 

6 4 4 2 50 

3 5 6 6 100 

4 5 3 2 67 

5 5 7 4 57 

6 5 7 6 86 

3 6 6 6 100 

4 6 2 0 0 

5 6 4 2 50 

6 6 7 3 43 

Total 220 187 85 
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TABLE II 

Results Obtained for Multiple Solutions 

No. of Prob. No. of Optimal 
No. of No. of Having Solutions Generated 

Jobs Machines Multiple Enumeration Method A 
Solutions (Method B) 

3 3 10 2 2 

4 3 13 2 2 

4 3 2 

2 3 3 

1 4 2 

1 4 4 

1 5 4 

5 3 6 2 2 

1 3 2 

2 3 3 

2 4 4 

1 6 3 

1 9 5 

1 18 7 

6 3 3 2 2 

1 4 2 

1 4 4 

1 9 6 

1 20 8 

1 28 3 

1 60 8 

1 96 16 

7 3 1 34 12 
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TABLE II (continued) 

No. of Prob. No. of Optimal 
No. of No. of Having Solutions Generated 
Jobs Machines Multiple Enumeration Method A 

Solutions (Method B) 

4 4 1 2 1 

2 2 2 

1 6 2 

6 4 1 3 2 

1 4 2 

3 5 1 2 2 

4 5 1 2 1 

5 5 1 8 4 

6 5 1 2 2 

1 3 2 

1 7 4 

1 21 1 

1 32 4 

5 6 1 2 2 

6 6 1 6 4 

1 22 4 



No. of 
Jobs 

3 

4 

5 

6 

7 

3 

4 

5 

3 

4 

5 

3 

4 

5 

TABLE III 

Comparison of Times Required to Determine 
Optimal Solution by Method A and by 

Enumeration of all Possible Sequences 
(Time in Minutes) 

No. of Enumeration Method A 
Machines (Method B) Mean Range 

3 .025 .050 .025-.067 

3 .128 .098 .067-.167 

3 .645 .201 .116-.550 

3 4.470 .970 .167-2.58 

3 36.410 .383 .267-.500 

4 .041 .070 .050-.083 

4 .158 .090 .067-.116 

4 '. 850 .191 .133-.450 

5 .050 .067 .050-.083 

5 .168 .108 .100-.133 

5 1.050 .215 .116-.500 

6 .055 .088 .067-.133 

6 .200 .130 .100-.133 

6 1.283 .236 .200-.300 

26 



APPENDIX 

Program for Optimal Sequencing, Method A 

C DETERMINATION OF OPTT~AL S~OUENCES 
C N JOBS AND M MACHINES 
C ALL J09S TO BE PROCESSED THROUGH THE ~ACHINES 
C IN THE SAME ORDER 

DIMENSION A(9,9l ,8(9,9) ,T(C) dN(9~50l 

DH4ENSTON SM\9l ,Si\l(9J ,P(9l ,R\9) ~RP(9l 
? READ 80,N,M~LAST 

READ 8l;((8(I,J),J=ltMld=l;Nl 
PRINT R2 
PRINT R3tCI,I=l,MJ 
DO 20 I=l;N 

20 PRINT 84,!,(8(I,Jl,J=l,M> 
MM=M-1 
DO 37 I=l,N 
s~~~ r J:::e:B< r ,1 J 
SN!Il=B(I,2l 
DO 37 J=2,MM 
SM (I l =SM ( I HB ( I ;J l 

~7 SN<II=SNIT}+BII,J+lJ 
T I= 1 
NN=N 

45 SMTN=SM(ll 
J=l 
SNIN=SN(ll 
K=l 
DO 38 I=2,N 
IF(SM<Il-SMINl39,40,40 

39 SMTN=S~~{ I) 
J=I 

40 IF(SN(I)-SNINl41,38,38 
4 1 S N I N =Sf\! ( I ) 

K=! 
38 CCf\!iiNUE 

IFCSMIN-SNIN)43,43,42 
42 IN(NNd>=K 

NN=NN-1 
SM<Kl=l.E8 
SN<Kl=l.E8 
GO TO 46 

43 !N(IIdl=J 
II=II+l 
SM(Jl=l.ES 
SN(JJ=l.ES 

46 DO 44 I=l,N 
IFtSM(IJ-l.E8)45,44,45 

44 CONTINUE 
PRINT 87 
PRINT 80,<IN<I,ll,I=l,Nl 
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PRINT 88 
NS=l 
NP=N 
""lM=M-1 

15 NSP=2 
16 KSP=NSP-1 

DO 48 I=l;N 
K=IN( I .I l 
DO 48 J=1•M 

48 A(I,Jl=BCKtJl 
DO 149 J=ltMM 
PCJl=A(l,Jl 

149 R(J)::::A(l,J) 
DO 190 J=2,MM 

190 R(Jl=R(Jl+R(J-ll 
IF(KSP-ll152,153t152 

153 DO 166 J=l,MM 
166 RP<Jl=A<2•J> 

DO 191 J=2tMM 
191 RP(Jl=RP(J)+RPCJ-1) 

GO TO 167 
152 DO 192 J=1tMM 
192 RP(J)=f:i(J) 

MP=KSP-1 
IF(KSP~2l212t213,212 

212 DO 150 I=2,MP 
P ( 1) =P ( 1 >+A C I, 1 l -A { T -1 t 2 l 
IF<RCll-PCl)ll79tl80•180 

179 R(l)zP(ll 
.RP(1l•P(1) 

180 DO 150 J=2tMM 
P(Jl=P(Jl+A(I,Jl-A(I-ltJ+ll 
Q=P(Jl+R(J-1) 
lFCR(Jl-Qll5lt150tl50 

151 R(Jl=Q 
RPCJ)=Q 

150 CONTINUE 
213 P<1l=PC1l+A(KSP,1)-A(MP,2l 

Q=PCll+ACNSP,l)-A(KSP,ll 
IF<RCll-P(llll54,155,155 

154 RC1l=P(1l 
155 IFCRP<ll-Q)l56,158tl58 
156 RP (1 > =Q 
158 DO 159 J=2tMM 

PCJ)=PCJl+A<KSP,Jl-A(MP,J+ll 
Ql=P(Jl+R(J-1> 
Q=P(Jl+A(NSP,Jl-A(KSP,Jl 
Q2=Q+RP(J-ll 
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tF{R(J)-Ql)201,202t202 
201 RCJ>=Q1 
202 !FCRP(J)-Q2J203t159tl59 
203 RI'CJl=Q2 
159 CONTINUE 
167 P!ll=P<1>+ACNSP,l>-ACKSPt2) 

Q=PC1l+ACKSP,2l-ACNSP•2l 
IFCRCll-P(ll)204,205t205 

204 RCll=PCl> 
205 IF(RP<ll-Ql206t207,207 
206 RP(l)=0 
207 DO 208 J=2tMM 

P(Jl=P(J)+ACNSP,Jl-A(KSP,J+ll 
Ql=P(J)+RCJ-1) 
Q=PCJl+ACKSP,J+ll-A(NSP,J+ll 
Q2=Q+RP(J-ll 
IFCRCJ)-Q1)209t210,210 

209 RCJl=Q1 
210 IF<RP<Jl-02l2llt208,208 
211 RPCJ)=Q2 
208 CONTINUf 

NI:(=NSP+1 
DO 162 I=NRtN 
PC l) =P ( 1 ) +A< I , 1 l -A ( I -1, 2 l 
IFCRC1l-P(1ll175,176tl76 

175 RCll=PCll 
176 IFCRP!1>-PCllll77tl78t178 
177 RP<l>=PCll 
178 DO 162 J=2,MM 

P(J)=PCJl+A(!,Jl-ACI-l;J+1l 
Q1=PCJ)+R(J-ll 
02=PCJl+RP(J-1> 
IF(R(Jl-Qlll63,164tl64 

163 FUJ>=Ol 
164 IF<RP(Jl-02)165,162,162 
165 RPCJ)=Q2 
162 CONTINUE 

IF ( R ( MM l -RP ( MM l > 7 3, 7 4, 7 5 
75 NEX=IN<KSP,ll 

DO 76 I=ltNS 
DO 62 J=l,N 
IFCNEX-IN(J,Ill62,63,62 

62 CONTINUE 
63 INCJ,Il=IN(NSP,IJ 
76 IN<NSP,I )=NEX 

GO TO 73 
74 NX:cNS 

NS=NS+NS 
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NEX=TNCKSPtl> 
DO 77 J=l;I\IX 
K=N5-J+l 
KK=K-NS/2 
DO 78 !=1 ,N 

7 8 ! N ( I t K l =IN ( I , KK) 
DO 60 I=l;N 
IFCNEX-INCI,Kl>60t61,60 

60 CONTINUE 
61 IN(I,Kl=INCNSP,Kl 
77 INCNSPtK)=NEX 

NX=NS-1 
DO '56 K=l.,NX 
1(1(:1(+1 

DO 56 J=KKtNS 
DO 57 I=l tN 
IF (IN( I ,K >-IN< I ,J) l 56,57,56 

57 CONTINUE 
DO 59 I=l,N 

59 tNCI,J)=INCltNSl 
NS=NS-1 
NX=NS-1 
K=K-1 

56 I =0 
73 NSP=NSP+l 

IF<NSP-NP)l6,l6tl7 
17 NP=NP-1 

!FCNP-lll5,14tl5 
14 DO 12 L=1,NS 

DO 9 I=1tN 
9 INCI,ll=IN(I,L> 

DO 8 I=ltN 
K=IN(!,U 
DO 8 J=l,M 

8 A(!,Jl=BCK;Jl 
TCll=ACltll 
DO 7 I=2tM 

7 TCil=Tci-ll+ACltll 
DO 6 I= 2, N 
T C 1) =T < 1) +A C I, 1) 
DO 6 J=2,M 
IFCTCJ-1)-TCJl)4,4;3 

4 TCJ>=T(J)+A(I,J) 
GO TO 6 

3 TCJ>=T<J-l>+ACI,Jl 
6 CONTINUE 

PRINT 85,TCM) 
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12 PQTNT 86,(!N(I,lltl=ltN) 
IFCLASTl5t5•2 

2 CALL EXIT 
80 FOPMAT(Q!S) 
81 FOPMAT(qF7.0) 
82 FORMATC//10X21HPROCESSING TIME, HRS.l 
83 FORMATCSH JOB3X2HA(!l,lH),9(3X2HA(Il,1Hll l 
84 FORMATti5t9F7.0) 
85 FORMATC15H ELAPSED TIME F7.0l 
86 FORMATC5X8HSEQUENCE9I5) 
87 FORMAT(//18H INITIAL SEQUENCEl 
88 FORMATC//20H SOLUTIONS OBTAINEDl 

END 
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