

 e-ISSN: 2289-8131 Vol. 10 No. 1-9 153

Development of a Wideband PLC Channel

Emulator with Random Noise Scenarios

Ann Dulay, Ryan Sze, Aileen Tan, Roderick Yap, Lawrence Materum
Gokongwei College of Engineering, De La Salle University, Manila 1004, Philippines

ann.dulay@dlsu.edu.ph

Abstract—Channel emulators are an integral part of the test

equipment that offers a more practical approach to testing new

communication devices. It is imperative though to develop the

emulator such that it best represents the channel. For PLC

channel emulator, the channel representation can be either top-

down or bottom-up. In this paper, the top-down

characterisation and reference channels are used. In this

approach, statistical measurements of the characteristics of the

power line were conducted, and the closest mathematical

representation is presented. The emulator operates in the

frequency domain utilising 4096 transform points for the FFT

process and 14 fractional bits for fixed point presentation. This

number of bits allowed the emulator to sufficiently generate an

average of 0.4% error between the software simulation results

and the hardware test results. The input signal is converted to

an LVDS signal by the FMC151 which serves as the AFE of the

emulator. Two linear regulators block are used to convert both

the negative and positive values of the input signal. The random

generation of noise reduced the taxing efforts of adding different

combinations of noise thus providing ease in focusing on the

analysis of the resulting waveform.

Index Terms—PLC; BBPLC; Emulator; Random Noise

Generation; FPGA.

I. INTRODUCTION

Powerline communications is an emerging technology that

uses the cables for transporting electricity as the

communications medium [1]. Although it has been here since

the 1900’s, the renewed interest started with the introduction

of Smart Grid [2]. One of PLC’s advantages over other

communications system is that it uses the same infrastructure

as the grid. Hence, there is no need for additional wires (for

wired communications) or the setting up of high power

antennas (for wireless).

There are two types of PLC based on the frequency it

covers, narrowband and wideband. The latter is used in this

study. Wideband PLC uses the frequency range from 500 kHz

to 10 MHz. The high-frequency range allows high data rate

transmission which makes it useful for internet and video

applications [3].

Several PLC channel characterisations show that PLC

channel is frequency selective, time-varying, and marred by

the noise coming from various sources [4]. Thus, PLC modem

designers must develop a robust design. Testing of the

modem though using the live power network is not only

hazardous, it is also relatively expensive and impractical

since the test is not repeatable. PLC channel emulator offers

a more viable testing approach.

II. PRIOR STUDIES

The latest literature on PLC channel emulation is found in

Table 1. Each of these emulators considers a specific channel

model and PLC category in their implementation. It is notable

that most emulator implementation uses the impulse response

where the PC generates the filter coefficients. While [5] has

the random noise generation feature similar to this study, it

covers only a single channel model. The noise model

presented in [6] and [7] assumes that the noise is fixed. In this

study, the noise is generated randomly such that either none,

one of them, all of them or other possible combinations of the

different types of noise are added to the channel.

In this paper, the top-down characterisation and the

reference channels presented in [8] are used. The statistical

measurements of the characteristics of the power line were

conducted, and the closest mathematical representation is

presented in [9].

III. PLC CHANNEL EMULATOR ELEMENTS

A. Analog Front End

The channel emulator requires an analogue signal as its

input to truly emulate a hardware implementation of the

whole system. With this, an ADC and a DAC are required

before the input and output respectively. Selecting the proper

ADC and DAC requires knowledge of the input frequency for

the system. Both ADC and DAC should also compliment the

FPGA system clock to synchronise both devices properly.

The basic requirement for the sampling rate must be at least

twice the highest fundamental frequency, following the

Nyquist theorem.

The AFE used is the FMC151. FMC151 has an FPGA

mezzanine card that is compliant with Virtex 6 and higher

boards. It contains a dual-channel high-speed 14-bit ADC,

dual-channel 16-bit DAC, and a clock tree within the module

which is controlled by a PC using SPI connection (Ethernet).

Not only does the FMC151 needs an SPI connection, but it

must also have a reference design code to store the digitalised

values inside the FPGA. This reference design code merely is

used as mapping and synchronising code for the FMC151 to

store the values properly. The reference code was modified to

integrate the channel transfer function in between the analog

interfaces. Figure 1 shows the FMC151 block diagram with

its interconnection to the FPGA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229277234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

154 e-ISSN: 2289-8131 Vol. 10 No. 1-9

Table 1
PLC Channel Emulation Literature

Ref Title Implementation

Random

noise
generation

[10]

Flexible FPGA-

based powerline

channel emulator for
testing MIMO-PLC,

neighbourhood

networks, hidden
node or VDSL

coexistence scenarios

FPGA No

[11]

Analysis of the PLC

channel statistics

using the bottom-up
random simulator

Simulation No

[3]

Channel emulation

of low-speed PLC
transmission

channels

FPGA No

[12]
A top-down random
generator for the In-

Home PLC Channel

Simulation No

[13]

Time-varying
channel emulator for

indoor powerline

communications

FPGA No

[7]

A new channel

emulator for low

voltage broadband
power line

communications

FPGA (Time

domain)
yes

Figure 1: FMC151

B. Linear Regression

Linear regression is used to accurately recreate the ADC’s

binary coded signal, which is to be interpreted as fixed point

by the FPGA. It is essential to take note of this for the FFT

modules since the core interprets the amplitude of the signal

as its fixed-point equivalent and cannot interpret the ADC’s

coded signal. To do this, the equivalent resolution of the ADC

is calculated and used as the intervals for amplitude change,

then the equivalent amplitude in fixed point is plotted against

the samples needed by the FFT. Figure 2 shows the flowchart

of the linear regression module as implemented in the FPGA.

Figure 2: Flowchart of the linear regression module in Xilinx

Since the ADC operates on low voltage differential

signalling (LVDS), its output code is represented in binary 2’s

complement [14]. Thus, two equations are needed to

accommodate the positive coded values and negative coded

values. The positive and negative equations are obtained by

getting the equation of the line made from the plots

mentioned earlier. Equations (1) and (2) are the fixed point

equivalent equations for the positive and negative values

respectively. Using the fact that negative coded values are

represented as 2’s complement of the positive value, it is

easily distinguished with a 1 at its MSB. Finally, the output is

then truncated before it is passed through the FFT module to

fit the number of input bits.

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑌

= 512𝑥 − 1279
(1)

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑌

= 512𝑥 + 29360128
(2)

where Y represents the output of the linear regression, and x

is the output of the ADC.

C. FFT/IFFT

The Fast Fourier Transform converts the time domain

signal to the frequency domain signal. In this domain, channel

transfer function is simply multiplied with the input signal.

The FFT and IFFT blocks are implemented using the built-

in FFT core from Xilinx. The FFT core is an IP (intellectual

property) core designed to perform the FFT or IFFT

algorithm for an input using Equations (3) and (4)

respectively.

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−
𝑗𝑛𝑘2𝜋

𝑁

𝑁−1

𝑛=0

 𝑘

= 0, … , 𝑁 − 1

(3)

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑒

𝑗𝑛𝑘2𝜋
𝑁

𝑁−1

𝑘=0

 𝑛 = 0, … , 𝑁 − 1 (4)

Development of a Wideband PLC Channel Emulator with Random Noise Scenarios

 e-ISSN: 2289-8131 Vol. 10 No. 1-9 155

The following specifications are included within the core:

• Number of points

• Target clock frequency

• Arithmetic type

• Architecture type

• Bit interface type

To properly use this core, the first parameter that needs to

be set is the bit interface type. Within the FFT core, the

designer can either use floating point or fixed point as the bit

interface. Fixed-point representation is used here to quickly

interpret the output data of the whole system while using

minimal resources. The other design specifications are all

based on the subcarrier spacing of current BPLC modem

standard, Homeplug AV, which is 24.414 kHz. Therefore, the

needed number of points must be enough to ensure the

accuracy of the system while considering the 24.414 kHz

spacing. Aside from this, the target clock rate is also

determined by considering the Nyquist rate, ensuring an un-

aliased signal. Since this study covers the frequency range up

to 10 MHz, a 20 MHz minimum clock rate is necessary. In

actual application, however, it is preferable to oversample to

attain a high-fidelity signal at the output. Based on

experimentation, the clock that satisfies the criteria is 100

MHz. From this value, the number of points needed is

calculated by dividing the sampling frequency (target clock)

with the subcarrier spacing as shown in Equation (5).

𝑁 =
𝑓𝑠

∆𝑓
 (5)

where: 𝑓𝑠 = target clock; ∆𝑓 = subcarrier spacing

The transform points are found to be 4096. The chosen

arithmetic type of the core is unscaled to ensure maximum

precision for the outputs. An unscaled output means that the

FFT core output bits do not match the user input bits. This

growth in the integer bits is carried to the output. Therefore,

the FFT output bit, bxk, results to 29 bits and is calculated

using Equation (6).

𝑏𝑥𝑘 = 𝑏𝑥𝑛 + 𝑙𝑜𝑔2(𝐹𝐹𝑇 𝑝𝑜𝑖𝑛𝑡 𝑆𝑖𝑧𝑒) + 1 (6)

where: 𝑏𝑥𝑘 = 𝐹𝐹𝑇 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠
 𝑏𝑥𝑛 = 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑏𝑖𝑡𝑠

Lastly, the architecture type improves the latency or speed

of the FFT core and is not directly related to emulation needs.

There are four design choices, each with its corresponding

speed and resource tradeoff. The pipelined streaming

architecture is chosen since it offers the best speed compared

to the others at the expense of using more resources. This type

is optimal for the system to attain maximum accuracy.

D. Channel Transfer Function

The channel transfer function refers to the power line’s

channel frequency response expressed in an equation. The

powerline channel used is the multipath model proposed by

Zimmermann and Dostert [15]. Equation (7) gives the

transfer function based on this model. Four different transfer

function test models given in [8] were used as test channels

for the emulator. These are generated by variations in the total

distance and number of paths used. Figure 3 shows the

different transfer functions based on Zimmermann’s equation.

𝐻(𝑓) = ∑ 𝑔𝑖 . 𝑒−(𝑎0+𝑎1𝑓𝑘)𝑑𝑖

𝑁

𝑖=0

. 𝑒
−𝑗2𝜋𝑓

𝑑𝑖
𝑣𝑝 (7)

The transfer function contains both real and imaginary

components. The values for each are generated using the

Euler’s theorem as follows:

𝐻(𝑟𝑒) = ∑ 𝑔𝑖𝑒−(𝑎0+𝑎1𝑓𝑘)𝑑𝑖𝑁
𝑖=0 . cos (2𝜋𝑓

𝑑𝑖

𝑣𝑝
) (8)

𝐻(𝑖𝑚) = − ∑ 𝑔𝑖𝑒−(𝑎0+𝑎1𝑓𝑘)𝑑𝑖. . sin (2𝜋𝑓
𝑑𝑖

𝑣𝑝

𝑁
𝑖=0) (9)

All the transfer functions shown in Figure 3 are

implemented in Xilinx as a look-up table or LUT. LUT’s are

similar to a storage register wherein the different values of the

channel are stored in two registers – one for real and one for

imaginary. These values are then called simultaneously to be

multiplied with the FFT outputs.

Figure 3: Four references channels based on distances and number of multi-

paths

E. Multiplier Block

The multiplier block is designed using FOIL method. In

this method, the rectangular form of the equation is used. This

is simpler to implement in hardware than the polar form.

Equation (10) shows the format of the two values.

(𝑎 + 𝑗𝑏) ∗ (𝑐 + 𝑗𝑑) (10)

where: a = Real value of FFT;

b = Imaginary value of FFT;

c = Real value of transfer function;

d = Imaginary value of transfer function.

Since the transformed signal contains negative values, this

is considered in the allocation of bits. With 4096 transform

points and a 16 bits input bit from the FIFO of the ADC of

FMC151, the FFT outputs 29 bits. To make the multiplication

simpler, the number of bits for the transfer function is set at

29 bits also. With this, the necessary bits to support

multiplication would be twice the current number of bits.

Negative numbers are represented in 2’s complement form;

thus, when multiplying with negative numbers, overflow is

possible unless an additional bit is allocated. Instead of

allocating more bits to accommodate the overflow, the

negative values are converted to positive, therefore keeping

the bits predictable, then performing 2’s complement to bring

back its sign. The padded register, which is twice that of the

original number of bits, is then truncated to fit the IFFT. The

fractional bits sent to IFFT are maintained at 14 bits.

Journal of Telecommunication, Electronic and Computer Engineering

156 e-ISSN: 2289-8131 Vol. 10 No. 1-9

F. Noise Blocks

The noise present inside the PLC channel is characterised

by three types, namely, coloured background noise,

narrowband noise, and impulsive noise. The noise is added to

the output of the multiplier block. The noise models for the

background and impulsive noise were taken from [16] [17]

while the narrowband noise is based on [18] and its equation

is presented in Equation (11). All these noise values are stored

as LUT. LUT was used for the noise blocks since the FPGA

is limited regarding implementing high-level mathematical

equations. Figure 4 and Figure 5 shows the background and

impulsive noise respectively.

𝑁𝑁𝐷(𝑓) = ∑ 𝐴𝑘𝑒
−

(𝑓−𝑓𝑜,𝑘)
2

2𝐵𝑘
2

𝑁

𝑘=1

 (11)

Figure 4: Coloured background
noise simulated in MATLAB

Figure 5: Impulsive noise
simulated in MATLAB

G. Random Number Generator

The random number generator (RNG) is implemented

using the concept of linear feedback shift register (LFSR)

with slight modifications. LFSR’s are easily implemented

using simple exclusive OR logic gates for the taps and D-type

flip-flops for the shift register [19]. By performing left shift

and XOR operations, and tapping it on specific points, a

random number is generated. In this study, the RNG

developed uses a 32-bit vector with only three taps. Figure 6

shows the logic circuit.

Figure 6: Random Number Generator with Three Taps

Initially, the RNG needs a constant state to generate

succeeding values. This is done through simultaneously

shifting of the register and performing the XOR operation for

the taps [20]. The initial value can be mathematically

represented as shown in Equation (12) and referred to as the

“seed” [21].

𝑅𝑒𝑔 = {𝑋0 (𝐵𝐼𝑇 31 𝑡𝑜 𝐵𝐼𝑇 0} (12)

where: Reg = 32-bit vector register; Xo = 32 bit seed;

The series of vectors produced by the RNG is pseudo-

random, meaning, the vectors possess the statistical property

of randomness but not entirely random. This is because the

values are only repeating in powers of 2. Thus, the values or

the intervals can be computed using Equation (13) [22].

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 2𝑛 − 1 (13)

In a truly random sequence, it should be occurring at

varying intervals. Therefore, by making use of a maximum

length sequence generator (MLSG) with k number of taps,

better randomness can be achieved [23].

Test results for the random number generator are shown in

Figure 7(a) and 7(b) and were observed to be random enough

based on varying intervals.

(a) Random number generation

plot for the first trial.

(b) Random number generation

plot for the second trial

Figure 7: Random number generation with two different trials

IV. RESULTS AND DISCUSSIONS

The test setup involves interconnection between the

analogue front-end modules and the FPGA. Figure 8 shows

the setup used to perform all the tests for the hardware part.

The results from the actual hardware were captured through

the oscilloscope. To properly test the hardware, module per

module test were done to ensure accuracy. Before the actual

hardware test, parameters are first simulated in Xilinx and

gathered through iSim, a simulator specifically for ISE

designs.

Figure 8: Complete test setup of the channel emulator

A. Transfer Function Implementation Accuracy Test

To properly emulate the channel, the channel transfer

function was first simulated when converted to fixed-point

representation. This is to assure accuracy when implemented

Development of a Wideband PLC Channel Emulator with Random Noise Scenarios

 e-ISSN: 2289-8131 Vol. 10 No. 1-9 157

in the FPGA. Figure 9(a), 9(b), 9(c), and 9(d) shows all four

transfer functions for the MATLAB simulation compared

with fixed point converted transfer functions. Stored values

are taken at 14 bits as its fractional part and 15 bits as the

integer part, having a total of 29 bits. Different bits were

tested, but due to hardware constraints, only 14 bits were

allocated for the fraction. The transfer functions generated

with 14 fractional bits implementation is already acceptable

as Figure 9 suggests.

(a) 150 meters reference channel

with bad characteristics.

(b) 150 meters reference channel

with medium characteristics.

(c) 150 meters reference channel
with good characteristics.

(d) 250 meters reference channel
with good characteristics.

Figure 9: Comparison between simulation and hardware implementation of
the transfer function

(a) 150 meters good
multiplication output

(b) 150 meters medium
multiplication output

(c) 150 meters bad multiplication
output

(d) 250 meters good
multiplication output

Figure 10: Multiplication Output of All four channel transfer functions

B. Algorithm Accuracy Test

The next module tested the multiplication algorithm which

mimics the passing of the signal through the channel. Similar

to the previous test, values were simulated in Xilinx for the

linear combination of the regression block, FFT block,

multiplier block and the channel block. Testing was all done

for the four transfer functions with an input signal frequency

of 1.23 MHz. Noticeable changes can be seen in the values

that have extremely low amplitudes due to the number of bits

used as stated earlier. Figure 10 shows the normalised

magnitude of the multiplied functions for all four channel

transfer functions. An average of 0.4 % error between the

software simulation results and the Xilinx results is logged

for all the reference channels. The critical value is that for the

centre frequency, which basically is the input signal

frequency. The other frequencies show very small values;

hence, the very small values cannot be detected anymore by

the emulator since it can only detect fractional bits up to 14

bits. This does not affect the overall performance of the

emulator since it is only the input frequency that is required

to have a significant magnitude.

C. Random Noise Selection Output and Hardware

Results

For the final test setup, the full modules were implemented.

Results were obtained from Matlab, Xilinx, and the actual

hardware emulator. The selection of transfer functions was

made user dependent. A simple multiplexer is used for the

selector with the select lines acting as the user input. Table 2

summarises the combinations used in the test.

Table 2

 Selector Input Combination to Output Certain Transfer Functions.

Binary

Combinations

Channel Transfer Function Outputs

0000 No Transfer Function
0001 150 meters with good characteristics

0011 150 meters with medium characteristics

0111 150 meters with bad characteristics
1111 250 meters with good characteristics

On the other hand, the random number generator served as

the random selector for the noise models to mimic the

randomisation of noise present in a power line. Testing

involved stopping the randomisation counter through a

switch to select the needed noise combination. There was a

total of 8 combinations for the noise models and are

summarised in Table 3 with its corresponding binary input

equivalent.

Table 3

Binary Combinations of the Random Noise Selector.

Binary
Combinations

Noise Selected

000 No Noise

001 Impulsive Noise

010 Narrowband Noise
011 Background Noise

100 Impulsive + Background

101 Impulsive + Narrowband
110 Background + Narrowband

111 All Noise

The selection process is done by inserting the output from the

random number generator into the multiplexer. The

multiplexer contains the input noise models and outputs the

selected noise combination. Figure 11(a) and 11(b) presents

the simulated outputs of noise in iSIM.

Journal of Telecommunication, Electronic and Computer Engineering

158 e-ISSN: 2289-8131 Vol. 10 No. 1-9

(a) Channel emulator output with randomly selected noise (background

noise + narrowband noise)

(b) Channel emulator output with randomly selected noise (background

noise + impulsive noise)

Figure 11: Channel emulator outputs for a 1.23 MHz input signal

In the actual hardware test, signals are applied using an RF

generator. It goes through the AFE that converts it to the form

read by the FPGA. Several tests were conducted utilising the

RNG to generate the pattern that would select the type of

noise as provided in Table 3. The selector switch that selects

the channel transfer function is also utilised. Figure 12 shows

output waveforms measured using a digital oscilloscope

taken at the output of the DAC for four different scenarios.

The results were compared with Matlab simulation and

Xilinx, and their waveforms are comparatively proximate.

One difference seen in the hardware results is the effect of

all three noise models to the signal. It was observed to have

completely distorted the signal, and none of its remaining

characteristics can be seen. Overall, the main hardware

implementation has proven the effects of the channel are

correlated with the input signals.

(a) Output signal with no transfer

function used

(b) Output signal with transfer

function and background noise.

(c) Output signal with transfer

function and impulsive noise

(d) Output signal with transfer

function and all noise models
present

Figure 12: Hardware implementation of channel emulator results

D. Channel Parameter Results

To verify the channel’s integrity, the signal to noise ratio

(SNR) was obtained for the system. This test was conducted

by directly connecting the system’s output to a spectrum

analyser which calculates the signal power. The input signal’s

power was computed as the reference signal power for all the

tests. Noise power was obtained in a similar manner. This is

made possible by removing all the modules except the noise

models and the IFFT block and directly connecting it to the

input for the DAC. SNR results are shown in Table 4.

Table 4

Signal to Noise Ratio for Input Signal with Noise Models

Output Signal Signal to noise ratio

Signal with background noise 22.15 dB
Signal with impulsive noise 12.93 dB

Signal with narrowband noise 39.11 dB

Signal with all noise -13.86 dB

The values measured were consistent with the degree of the

effect of each noise. Impulsive noise proved to have the most

significant effect of the three noise models which is consistent

with its MATLAB simulation. This is followed by

background noise and lastly the narrowband noise. Also,

since the output of the system when all three noise models are

present completely distorted the signal, the expected SNR

would be below 0 dB.

V. CONCLUSION

The emulator presented in this paper successfully

implemented the multipath models developed by

Zimmermann using Virtex 6 FPGA and FMC151 AFE with

channel selection and random noise generation. Since the

broadband channel uses higher frequency range, it is critical

to consider the memory that the overall design will occupy in

the FPGA. A conservative 14 bits for the fractional part of the

fixed-point representation of the input and the transfer

function was used to economically include at least four

reference channels and three noise models. A 0.4% percent

difference between the simulated value and the hardware

implemented transfer function is logged. The random

generation of noise was also demonstrated and was

successfully implemented.

ACKNOWLEDGEMENTS

The authors would like to thank URCO (University

Research Coordination Office) of De La Salle University-

Manila for funding this research.

REFERENCES

[1] M. Bauer, W. Liu and K. Dostert, "Channel emulation of low-speed plc

transmissiion channels," Power line communications and its
applications (ISPLC), pp. 267-272, 2009.

[2] S. Galli, A. Scaglione and Z. Wang, "For the grid and through the grid:

The role of power line communications in the smart grid," Proceedings
of the IEEE, pp. 998-1027, 2011.

[3] W. Zhu, X. Zhu, E. Lim and Y. Huang, "State-of-art power line

communications channel modeling," Procedia computer science, first
international conference on information technology and quantitative

management, vol. 17, pp. 563-570, 2013.

[4] J. Anatory and N. Theethayi, Broadband power-line communications

systems: theory and applications, WIT Press, 2010.

[5] Y. Zhao, X. Zhou and C. Lu, "A new channel emulator for low voltage

broadband power line communication," in 2013 IEEE 10th
International Conference on ASIC, Shenzhen,, 2013.

Development of a Wideband PLC Channel Emulator with Random Noise Scenarios

 e-ISSN: 2289-8131 Vol. 10 No. 1-9 159

[6] H. Çelebi, S. Güzelgöz, T. Güzel and H. Arslan, "Noise and channel
statistics of indoor power line networks," in 2011 18th International

Conference on Telecommunications, Ayia Napa, 2011

[7] H. Gassara, F. Rouissi and A. Ghazel, "Narrowband stationary noise
characterization and modelling for power line communication,"

Communications and information technologies (ISCIT), 2013.

[8] H. Ferreira, L. Lampe, J. Newbury and T. Swart, Power line
communications: theory and applications for narrowband and

broadband communications over power lines, John Wiley & Sons Ltd,

2010.
[9] M. M. R. S P Majumder, "Performance analysis of a power line

communication with fading over non-white impulsive noise channel,"

Information Technology: Towards New Smart World (NSITNSW) 2015
5th National Symposium on, vol. 57, pp. 1-5, 2015

[10] N. Weling, "Flexible FPGA-based powerline channel emulator for

testing MIMO-PLC, neighborhood networks, hidden node or VDSL
coexistence scenarios," Power Line Communications and Its

Applications (ISPLC), pp. 12-17, April 2011

[11] F. Versolatto and A. Tonello, "Analysis of the PLC channel statistics
using a bottom-up random simulator," Power line communications and

its applications (ISPLC), pp. 236-241, March 2010.

[12] Tonello, F. Versolatto and B. Bejar, "A Top-Down Random Generator

for the In-Home PLC Channel," in 2011 IEEE Global

Telecommunications Conference - GLOBECOM 2011, Houston, TX,

USA, 2011.
[13] F. Cañete, L. Diez, J. Cortes, J. Sanchez-Martinez and L. Torres,

"Time-varying channel emulator for indoor power line
communications," in Global Telecommunications Conference, 2008.

[14] J. Albanus, "Coding schemes used with data converters," Texas

Instruments Incorporated, Dallas, 2015.

[15] M. Zimmermann and K. Dostert, "A multipath model for the powerline
channel," IEEE Transactions on Communications, vol. 57, pp. 553-

559, 2002.

[16] "Working group on plc," [Online]. Available:
http://www.plc.uma.es/channels.htm.

[17] J. Cortes, L. Diez, F. Cañete and J. Sanchez-Martinez, "Analysis of the

indoor broadband power-line noise scenario," IEEE Transactions on
Electromagnetic Compatibility, vol. 52, pp. 849-858, 2010.

[18] N. Andreadou and F. N. Pavlidou, "Modeling the noise on the OFDM

power-line communications system," IEEE Transacions on Power
Delivery, vol. 25, pp. 150-157, 2010.

[19] H. Lv, J. C. Fang, J. X. Xie and P. Qi, "Generating of a nonlinear

pseudorandom sequence using linear feedback shift register," in 2012
International Conference on ICT Convergence (ICTC), Jeju Island,

2012.

[20] K. Saluja, Linear feedback shift registers theory and applications,
Madison: University of Wisconsin-Madison, 1991.

[21] H. Pan, E. Hou and N. Ansari, "Enhanced name and vote separated E-

voting system: an E-voting system that ensures voter confidentiality
and candidate privacy," in Security and Communication networks,

2014.

[22] H. Pan, E. Hou and N. Ansari, "M-NOTE: A multi-part ballot based e-

voting sytem with clash attack protecion," in IEEE international

conference on communications, 2015.

[23] H. Lv, J. C. Fang, X. J. Xie and P. Qi, "Generating a nonlinear
pseudorandom sequence using linear feedback shift register," in

International Conference on ICT Convergence (ICTC), Jeju Island,
2012.

