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ABSTRACT 

The study of fine particle classification is common, especially since a well-

defined particle size distribution is important in most processes and products.  Many 

methods have been developed to classify micron-size particles, and although each has its 

own advantage, most cannot classify particles to an extremely narrow range.  This is 

partly due to the cohesive nature of fine particles, which can be due to electrostatic 

attraction, moisture, or van der Waals forces.  In order to overcome this problem, a wet 

method of classification has been chosen here.  Taylor vortices, discovered in 1923, 

develop in the fluid contained in the annulus of two concentric rotating cylinders.  It has 

been shown in recent years that Taylor vortices can be used to classify particles 

regardless of their size (which may range from a few microns to millimeters) and density 

difference between the particles and fluid.  This method also allows for a semi-

continuous throughput of particles.  The present work outlines the use of Taylor vortices 

to classify fine particles to a narrower size distribution.  The main objective here is to 

determine the parameters affecting classification of glass spheres of various initial 

distributions.  Factors such as rotational velocity, system annulus size, particle to fluid 

density ratio, and particle feed rate have been investigated.  The results obtained showed 

that both rotational velocity and particle feed rate have a significant effect on 

classification while classification for particles of size 10 µm or less was not feasible for 

the experimental parameter range studied here.  The conclusions were supported both 

numerically and experimentally. 
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1. INTRODUCTION 

The study of fine particle classification is common, especially since a well-

defined particle size distribution is important in most processes and products.  Many 

methods have been developed to classify micron-size particles, and although each has its 

own advantage, most cannot classify particles to an extremely narrow range.  This is 

partly due to the cohesive nature of fine particles, which can be due to electrostatic 

attraction, moisture, or van der Waals forces.  The current work outlines the use of Taylor 

vortices to classify fine particles to a narrow size distribution.   

Taylor vortices, discovered in 1923, develop in the fluid contained in the annulus 

of two concentric rotating cylinders [1].  The development and use of these vortices are 

highly researched areas.  Recent work outlined by Ohmura et al. [2] shows that Taylor 

vortices can be used to classify particles regardless of their size (which may range from a 

few microns to millimeters) and even with a small density difference between particles 

and fluid.  This method also allows for a semi-continuous throughput of particles.  A few 

factors affecting classification efficiency, specifically particle properties and feed rate, 

and system rotational velocity and dimensions, have been studied here in order to 

improve the efficiency of the process. 

 

1.1. OBJECTIVES 

The main objective of this work was to classify a wide range of particles into a 

narrower distribution.  Effects of particle properties, system rotational velocity, system 

annulus size, and particle feed rate on the system classification efficiency were assessed 
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experimentally.  The effect of system rotational velocity and particle properties on 

classification efficiency was also studied numerically to verify the experimental trends. 

1.2. BACKGROUND 

1.2.1. Methods of Particle Classification.  Classification, also known as grading, is 

usually employed to achieve a uniform distribution of particles from a mix of a wider 

distribution.  There are many methods available for classifying particles based on their 

size, shape, surface roughness, density, color, and magnetic nature.  Some of the common 

methods used in particle classification include the use of sieves, cyclone separators, 

electrostatic precipitators, fluidized beds in series, sedimentation, and elutriators.  These 

methods can be broadly organized into wet and dry methods of classification (Figure 

1.1).   

 

 

Particle Classification 

 

            Wet Methods                                                                     Dry Methods 

                   Hydrocyclones                                                          Cyclones      

                   Centrifuges                                                                    Sieves      

                   Sedimentation                                 Electrostatic precipitators      

                   Fluidized beds in series                                     Air elutriators      

                   Sieves 

 

Figure 1.1.  Particle classification methods 
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As the name suggests, wet methods of classification utilize a liquid to classify 

particles.  Dry methods of classification usually involve either compressed air or gravity 

as the classification factors.  As the size of the particles decreases, it is difficult to employ 

dry methods of classification because of increase in interparticle forces and particle-

particle interactions.  To avoid this, wet methods of classification are generally preferred 

when classifying fine particles. 

1.2.1.1 Sieves.  Sieves are the cheapest and most commonly used devices for 

classifying particles.  Sieves are mechanical screens, and depending on the number of 

particle fractions required, more than one size of sieve may be used.  Usually, a set of 

sieves in descending order of screen openings are stacked and the mixture of particles is 

poured into the top and the particles are classified into various size ranges.  Gravitational 

force along with gyration, shaking, or vibration is instrumental in the classification 

process [3]. 

Sieving can be operated under both dry and wet conditions depending upon the 

nature of the particles being classified.  Despite the fact that sieving (both wet and dry) is 

a relatively cheaper option, it is difficult to classify particles less than 40 µm using sieves 

because interparticle forces are prominent and the material can become extremely 

cohesive.  In recent years, electroformed micromeshes (which can classify particles down 

to 1 µm) have been invented to overcome this problem [4], but their cost is very high.  

Additionally, aggregation is a common occurrence with wet sieving. 

1.2.1.2 Cyclones and hydrocyclones.  When smaller particles undergo 

gravitational settling, the rate of settling is small and in order to increase this rate, 

external forces such as centrifugal forces can be used.  Cyclone separators use this 
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principle of centrifugal settling to classify particles and can be conducted under either dry 

(cyclone) or wet (hydrocyclone) conditions.  Particle-laden fluid enters tangentially from 

the top at a high velocity, and following a spiral path along the wall of the vessel, forms a 

vortex.  The larger particles immediately hit the wall and are separated quickly from the 

mix.  The lighter particles and fluid exit from the top of the vessel in an inner vortex.  In 

order to achieve complete solids removal, more than one cyclone separator can be used.  

Cyclones generally have a higher rate of efficiency and lower maintenance costs than 

most other classification methods but as particle size decreases, the efficiency drops [3].  

In addition, both cyclones and hydrocyclones promote particle attrition and aggregation 

and typically have high operating costs to overcome the pressure drop [5].  

1.2.1.3 Electrostatic precipitators.  Invented in the earlier part of the 20th 

century, electrostatic precipitators (ESPs) are highly efficient particle classifiers that use 

electrostatic charge to classify particles.  Gas (usually air) laden with the particles to be 

classified is passed through the ESP in which an electric field is created.  The particles 

are ionized and collected on an oppositely charged plate and removed.  ESPs can also be 

used in the wet mode by spraying the incoming particle stream with moisture.  This helps 

to classify very fine particles and also increases the process efficiency by reducing the 

electrical resistance.  Though ESPs have relatively high particulate removal efficiency, 

they are typically used to separate particles less than 5 µm in size because it is difficult to 

effectively charge large particles [5].  Moreover, ESPs tend to promote particle 

aggregation and although they have less maintenance and operating costs with lower 

energy maintenance, their initial capital costs are very high.  In addition, ESPs do not 

allow flexibility of operation despite the fact that they can handle large volumes of 



5 

 

mixtures with low pressure drop [6].  ESPs are also not very useful for particles with high 

electrical resistivity. 

1.2.1.4 Sedimentation.  Batch sedimentation is one of the oldest and most widely 

known wet methods of particle classification.  In this method, particles to be classified 

are mixed in a suspension and allowed to settle.  Gravitational force plays the classifying 

factor in sedimentation, with the particles settling down in layers according to their size.  

The largest particles are found in the lower layers while the smaller ones are situated near 

the top.  Despite being advantageous in that the particles settle according to their size, the 

main drawback of sedimentation is that the settled particles cannot be separated easily.  

1.2.1.5 Air elutriators.  Air elutriation is a process in which particles are 

classified by being injected into a stream of air that is flowing at a high velocity.  When a 

mix of particles is introduced in the elutriator, the larger particles settle downward while 

the smaller ones are carried out upward with the operating fluid.  The velocity at which 

air is flowing is adjusted based upon the sizes of particles present in the initial mixture, 

thus ensuring that the larger particles are not washed out of the elutriator along with the 

smaller ones.  This method is primarily used with particles having a large difference in 

their sizes.  Typically, particles larger than 10 µm can be classified using elutriation.  In 

many industrial processes, the process of elutriation is typically followed by another 

mechanical separator (mostly cyclone separators) to remove the fine particulate material.  

Elutriator efficiency increases with increasing particle size and decreasing fluid velocity, 

thereby rendering it ineffective in the case of classifying smaller particles [7]. 

1.2.1.6 Fluidized beds in series.  The use of fluidized beds in series is a recent 

method developed for fine particle classification.  It uses the principle of hydrosizing in 
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which particles are hydraulically classified based on their settling velocities [8].  A wet 

method, it has been put to use in classifying particles up to 10 µm in size.  Particles are 

fed into an upward flowing liquid stream and particles with settling velocities greater 

than the velocity of the fluid settle downward and those with smaller settling velocities 

are washed out with the fluid stream.  This method is advantageous because it avoids 

particle attrition and has also proved to be better for classifying particles with narrow 

differences in size.  Despite these advantages, since the entire process relies on 

gravitational force for separation, it is a time-consuming process, and its efficiency is not 

very high. 

1.2.1.7 Centrifuges.  Centrifuges use the principle of filtration for particle 

classification.  The operation of centrifuges is similar to cyclones, where centrifugal force 

plays an important role in the classification.  The particles are fed into a rotating drum in 

slurry form and under the influence of centrifugal force the particles are classified and 

collected in cake form on a filter.  The particles settle according to their size, but once 

again the problem of separating them from the cake becomes an issue.  Centrifugal 

classification of particles additionally promotes agglomeration of particles along with the 

occurrence of attrition. 

Despite the fact that all these methods have been or are being currently employed 

in classifying particles, most of them cannot classify particle populations with an initially 

narrow size distribution.  Moreover all the processes either show low efficiency in 

classifying small particles or promote particle attrition or agglomeration.  Hence a new 

method is required which avoids all these disadvantages. 
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1.2.2. Taylor Vortices.  The interaction of particles and fluid is especially important in 

wet methods of particle classification for process optimization.  In recent years, the 

application of fluid instabilities for particle classification has been an increasingly 

popular phenomenon.  Among the instabilities used for this application are Taylor 

vortices [2], which take the form of regularly spaced toroidal vortices in the annulus of 

concentric rotating cylinders (Figure 1.2) [9].  These were first discovered during an 

investigation into the stability of viscous liquids between two concentric rotating 

cylinders [1] (Figure 1.3) and it was observed that a pattern of stacked vortices formed as 

the flow progressed.  It was explained that these were a result of instabilities formed in 

the fluid and experiments were conducted to identify the various conditions under which 

these instabilities are formed. 

 

 

 

Figure 1.2.  Cross-sectional view of Taylor vortices [10] 
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Figure 1.3.  Schematic of the Taylor-Couette system [11] 

 

 

In most studies, these vortices have been observed to form with only the rotation 

of the inner cylinder or rotation of both the inner and the outer cylinders.  This 

phenomenon was not noticed with the rotation of outer cylinder and was proved in the 

work done by Couette in 1932 [1].  Couette’s work showed that vortex formation is not 

possible even at higher rotational speeds of the outer cylinder and the flow remained 

circular.  This circular flow was named Couette flow and is laminar by nature.  When the 

rotational speed of the inner cylinder reaches a critical value, the laminar Couette flow 

becomes unstable and transitions into a cellular vortex flow called Taylor vortex flow 
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[12] which is turbulent in nature.  The critical speed of the inner cylinder is normally 

defined to be when the Taylor number, Ta, is 1708 [13]:  

ν)(

)()(
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2
1

2
2

4
121

2
22

2
11

rr

rrrr
Ta

−
−ΩΩ−Ω=     (1.1) 

The study of Taylor vortices is a highly researched area with applications in 

diverse areas such as heat transfer, particle classification, and magnetic applications.  In 

recent years, particle classification has been an application of Taylor vortices.  Axial 

Taylor vortex classification of polymethyl methacrylate (PMMA) particles (10-80 µm) in 

glycerin was previously examined by Ohmura et al. [2].  They based their investigations 

on the work done by Ookawara et al. [14], who used Dean vortices to demonstrate 

particle classification using fluid instabilities.  Ohmura et al. concluded experimentally 

and numerically that particles from a few microns to a few millimeters in size can be 

classified using Taylor vortices and that despite a very small density difference (ratio of 

particle density to fluid density of approximately 1.04), the particles were easily 

classified.  Ohmura et al. also discussed the mechanism of particle classification in a 

Taylor-Couette device and concluded that particles are classified axially.  The larger 

particles bypass the vortices due to centrifugal forces and shear-induced particle 

migration and the smaller particles are trapped in the vortices. 

The wide range of possible particle sizes can be attributed to the fact that the 

vorticity of the secondary vortices can be controlled with the manipulation of the 

rotational speed of the inner cylinder.  Since larger particles bypass the vortices, 

millimeter-sized particles can be classified if the inner cylinder rotates at a very high 

speed, and if the operation occurs at a lower speed, micron-sized particles can be 
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classified in the same device.  The above conclusions were based on the experimental 

classification of 10-80 µm PMMA particles with a wide initial particle size distribution.  

Moreover, Ohmura et al., found via numerical simulation (with the commercial 

Computational Fluid Dynamics code Rflow©) that Taylor vortices can be used to classify 

particles. 

Their experimental results supported the conclusions drawn from the simulations, 

with the majority of the small particles concentrated in the vortex core region and the 

larger particles situated in the outer region of the vortices.  Although they studied the 

classification of particles in the micron range, their work did not cover particles with an 

initial narrow PSD.  Ohmura et al. [2] showed both experimentally and numerically the 

segregation of particles into two different regions – the vortex core region and the outer 

region of the vortices. 

1.2.3. Particle Behavior in Taylor Vortex Flow.  The behavior of a particle flowing in a 

Taylor vortex was predicted by Wereley et al. [15] to be oscillatory in nature.  However, 

gravity was not taken into account for their work.  Arifin et al. [16] conducted 

experiments taking gravity into consideration and observed that particles exhibit a 

toroidal motion in the Taylor vortex.  The particles oscillated periodically in both axial 

and radial directions while travelling around the vortices.  Arifin et al. predicted that a 

particle accelerates while moving towards the inner cylinder and decelerates when 

moving near the outer cylinder.  Their work also proved that when the rotational speed of 

the inner cylinder is reduced, the toroidal behavior is not prominent with the particles 

following an azimuthal trajectory.   



11 

 

Using CFD, a second discrete phase dispersed in a continuous phase can be 

modeled with the help of a Lagrangian frame of reference.  The trajectories and heat and 

mass transfer from the discrete phase can be calculated and modeled.  Various types of 

particle behavior such as collision, combustion, heat and mass transfer, and evaporation 

of liquid droplets can also be modeled.  Using the discrete phase model (DPM), physical 

properties of inert particles such as type of material, density, and size are defined for 

modeling.  The particle tracking equation is obtained by the integration of the force 

balance on the particle [17]: 

p

p
pD

p g
uuF

dt

du

ρ
ρρ )(

)(
−

+−=     (1.2) 

where, FD is the drag force, up and u are particle and fluid velocity, g is the 

gravitational constant and ρp and ρ are particle and fluid densities, respectively. 

The boundary conditions typically used while modeling particle flows are particle 

reflection from a boundary by elastic or an inelastic collision, particle trapped at a wall 

(usually evaporating/combusting particles), particle escaping (vanishing at the boundary) 

(Figure 1.4), particle passing through an internal boundary, and particle sliding along a 

wall. 
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Figure 1.4. Various boundary conditions of DPM [18] 
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2. EXPERIMENTAL WORK 

2.1. PARTICLE MATERIAL 

Initial experiments were conducted using soda lime glass spheres (specific 

gravity= 2.5) from Mo-Sci. Corp., Rolla, MO.  For qualitative purposes, these particles 

ranged from 10-30 µm in size.  Further experiments were also conducted using soda lime 

glass spheres with sizes ranging from 50-120 µm and 0.1-10.0 µm.  Figure 2.1 shows the 

particle size distribution (PSD) of the initial feeds. 

 

 

 

(a) 

 

(b) 

Figure 2.1.  PSD of glass particles in the initial feed: (a) Size range 10-30 µm, 50-120 µm 
(b) Size range 0.1-10.0 µm 
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2.2. PARTICLE INJECTION  

Glass spheres were initially formulated into a slurry with water and were poured 

into the system directly from a beaker, but the well-developed fluid flow was disturbed.  

To overcome this problem, particles were injected through a dropper, but this method 

was discarded as uniformity in particle feed rate was not achieved.  A peristaltic pump 

was then used to introduce the particles in the system, which allowed for regulation of the 

particle feed rate and also left the developed vortex flow undisturbed.   

Initially the inlet tubing of the peristaltic pump was placed in a beaker containing 

the particle slurry and the outlet tubing was placed in the injection port of the system.  

This led to very few particles being injected into the system and unsatisfactory results.  

To overcome this, a plug of particle slurry was introduced into the outlet tubing while the 

inlet tubing was placed in a beaker containing distilled water.  A surfactant (Tween-80) 

was added to the particle slurry to prevent particle agglomeration. 

2.3. EXPERIMENTAL SETUP AND PROCEDURE   

The experimental set-up constructed is shown in Figure 2.2.  The outer and inner 

cylinders were made of Plexiglas and their heights were 17 and 15 cm, respectively.  The 

inner cylinder was coated red and the outer cylinder was transparent to allow for better 

observation.  A funnel with the same width as that of the outer cylinder was glued to the 

outer system and served as a drainage port.  The opening and closing of this port was 

controlled by a valve attached to the funnel.  The inner cylinder was connected to a motor 

which controlled its rotational speed.  An injection port was drilled into the top of the 

system which allowed for the introduction of the working fluid and particles. 
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Figure 2.2.  Experimental set-up 

 

 

Distilled water was introduced into the system within approximately 2 inches 

from the injection port to avoid water spillage through the port when the system was in 

operation.  The motor was operated at the threshold value for vortex formation and after 

considerable time (7-10 minutes) was allowed for the vortex stabilization, particles were 

introduced into the system using a peristaltic pump.  Allowing sufficient time for particle 

classification (10 minutes), samples were collected at regular intervals from the bottom of 

the system for analysis.  The PSD analysis of each sample was performed using a 

Microtrac S3500, which uses principles of laser diffraction for particle size measurement. 
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3. MODELING USING CFD   

Taylor vortices are a form of turbulence that occurs in the annulus of two 

concentric rotating cylinders when the inertial or centrifugal forces dominate over the 

viscous forces.  Many theoretical models have been developed to describe Taylor vortex 

flow, with each model having its own set of assumptions ranging from the narrow gap 

approximation [19] to periodic disturbances [20] to the basic assumption of stability of a 

fluid particle [21].  However, the basis for all these methods is solving the Navier-Stokes 

set of equations under the turbulent flow regime using various boundary approximations.  

This section gives a brief description of modeling turbulence and particle flow using 

Computational Fluid Dynamics (CFD). 

3.1. COMPUTATIONAL FLUID DYNAMICS (CFD)   

Developed in the early 1950s, CFD is a process of solving the basic governing 

equations of fluid flow with the help of numerical methods and algorithms [22].  It is 

generally used to predict the behavior of fluids subject to conditions such as heat transfer, 

mass transfer, phase change, and chemical reaction.  A virtual model of the system is 

created and the behavior of the system is predicted by applying the various physical and 

chemical conditions.  It has been shown that with the help of CFD, the behavior of 

various real-life systems can be predicted with relative accuracy.  Used by various 

engineering disciplines (such as the automotive [23] and chemical [24] industries), CFD 

has been proven to both reduce costs and optimize systems. 
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3.1.1. Principles of CFD.  The Navier-Stokes (N-S) system of equations represents in 

general, the conservation of mass, momentum, and energy of all flows.  In order to model 

any system, depending upon the conditions, the corresponding N-S equations are solved.  

The conservation form of the N-S system of equations, representing the governing 

equations of continuity, momentum, and energy is [25]:   
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where U, Fi, Gi and B are the conservation flow variables, flux variables, diffusion flux 

variables, and source terms, respectively.  Depending upon the type of flow, the N-S set 

of equations are simplified by either removing one or more equation or by not including 

one or more terms.  For a given problem, the N-S system of equations is modified using 

various discretization techniques.  Discretization refers to the conversion of the 

conservation equations to a simple algebraic form where they take values from the 

discrete points.  Three common discretization techniques are the finite difference method 

(FDM), finite element method (FEM), and finite volume method (FVM) [26]. 

3.1.2. Finite Difference Method (FDM).  FDM is generally used for compressible 

flows.  In FDM, the governing equation partial derivatives are replaced by finite different 

quotients which are obtained by Taylor series.  A few grid points are considered on the 

domain and the finite difference equation is applied to the points where 

variable/information is not known and the boundary conditions are applied.  The process 

values at discrete points (nodes) are obtained by forward, backward, and central 

differencing schemes [27].  The values obtained are used to solve the governing 

equations which are converted to a system of linear equations.  One drawback of FDM 
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includes its inability to implement gradient boundary conditions accurately, requiring 

difficult coordinate transformations for complex geometries and not being able to ensure 

that conservation laws are satisfied. 

3.1.3. Finite Element Method (FEM).  FEM, also known as finite element analysis 

(FEA), is used to solve both partial differential and integral equations.  FEM is adaptable 

for application to complex geometries and is useful for elliptical types of problems.  It 

was primarily used in structural analysis and for simple flow problems during its 

conceptual stages.  In FEM, the system is divided into various elements, and properties 

for each element are calculated by converting the governing equations.  The selection of 

local interpolation functions is done in such a manner that continuity between adjacent 

elements is maintained [28].  These local functions in turn represent the global function – 

the modified algebraic governing equations.  The main disadvantage in using FEM is that 

with its use, higher computational power will be required for solving CFD problems 

(which require a large number of discretized points for solution). 

3.1.4. Finite Volume Method (FVM).  In FVM, the partial differential equations of the 

governing equations are converted to algebraic equations.  Similar to FDM, the domain is 

divided into sub-domains called control volumes.  Each control point has a grid point 

where the variable is evaluated.  The governing equations are integrated over the control 

volume and using various profiles, the integrals are approximated [22].  A set of linear 

equations for the problem is obtained after the discretized equations followed by 

boundary conditions are applied to every control volume.  The advantages in using FVM 

are that it can be used for unstructured grids thus allowing for modeling of complex 

geometries without requiring coordinate transformations.  Also, conservation of all the 
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variables is enforced across the control surfaces of the domain.  There is no loss or gain 

of a conserved variable and the discretized governing equations retain their physical 

interpretation [29].  FVM is cost effective as it saves a lot of computational power by not 

allowing for repetition of calculations at similar surfaces.  The following set of equations 

show the conversion of the N-S equations into their finite volume form.  The N-S system 

of equations is:   
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The finite volume equations are obtained by integrating and then summing over 

all the control volumes of the domain of the flow field (Ω) [22]: 
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where ni denotes the unit vector component normal to the boundary surface (Γ).  

Summing over all the control volumes (CV) and control surfaces (CS), we obtain 

equation (2.5) which is the finite volume equation of the N-S system of equations.   

CS
iii

CV
nGFttBU 0)()( =∆Γ+Σ∆+∆Ω∆−∆Σ

  (3.5) 

 

3.2. TURBULENT FLOW MODELING IN CFD   

The turbulent flow regime is characterized by the disordered behavior of a fluid 

including a rapid variation of flow properties such as velocity, momentum, species 
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concentration, and energy.  In turbulent flow, fluid particles form groups called eddies 

and flux (momentum, mass, volume, or heat) takes place between them.  The size and 

shape of these eddies vary randomly in the flow.  In CFD, due to the high cost involved 

in modeling fluctuating properties, the time-averaged equations of the instantaneous 

governing equations are used to model incompressible flows [30].  Turbulent flow 

properties are usually written in the form 

'
__

φφφ +=      (3.6) 

where φ , 
__

φ and 'φ  are the instantaneous, mean, and fluctuating properties.  The variation 

of the mean properties and the effect of the fluctuating components are considered in 

turbulent flow modeling.  The effects of the mean properties and not the instantaneous 

properties are studied in turbulent modeling [22].  Several turbulent models are 

commonly used, including the Boussinesq approximation, Cebeci – Smith model, 

Baldwin – Lomax model, Baldwin – Barth model, Spalart-Allmaras model, k-ε and k-ω 

models, v2-f model, Reynolds stress model (RSM), detached eddy simulation (DES) 

model, and large eddy simulation (LES) model.  These models differ in the amount of 

physics involved and the degree of accuracy. 

One of the most widely used turbulence models, the k-ε method, is based on 

modeling transport equations for the turbulent kinetic energy (k) and its dissipation rate 

(ε).  Three common variations of the k–ε model are the standard k–ε, renormalization 

group (RNG) k–ε, and realizable k–ε models [31].  The three models have similar forms 

of transport equations for k and ε.  However, each method differs in its way of calculating 

the turbulent viscosity, Prandtl number, and the generation and destruction terms for ε.  
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The standard k–ε model is the simplest model and allows for the easy determination of 

turbulent velocity and length scales.  The equation for turbulent kinetic energy dissipation 

rate (ε) is obtained by taking the moments of the N-S equation as [32] 

ε
ρ

µ µ
2kC

T =      (3.7) 

where Tµ  is the eddy viscosity, ρ is the density of fluid, and the value of the closure 

coefficient, Cµ, is 0.09.  The equation for turbulent kinetic energy (k) is given as 
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Hence, the ε equation is now obtained as 
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where ijτ  is the apparent stress, U
−

 is the mean velocity, and the values of the coefficients 

are [32]: 

Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, and σε = 1.3  

 

In order to confirm the experimental results obtained, a numerical analysis was 

performed on the process.  The use of a commercial CFD package for numerical analysis 

of a process can reduce the quantity of resources spent in conducting experiments for 

validation.  Hence, FLUENT® (ANSYS®, Inc.), a commercial CFD package, and the 

CFD preprocessor GAMBIT® (ANSYS, Inc.) were used in the current project to model 

the Taylor-Couette device to perform the computational analysis. 
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3.3. FLUENT   

FLUENT is a popular commercial CFD code that uses the finite volume method 

of evaluation to model and analyze a given problem.  It is generally used along with 

preprocessors such as TGrid and GAMBIT, with the latter being more popular.  FLUENT 

can be used to model complex systems involving transport phenomena, heat transfer, 

mass transfer, chemical reactions, or a combination of these.  Using GAMBIT, a 2- or 3-

dimensional model of the system is created and meshed using various mesh schemes (ex: 

triangular, quadrilateral, tetrahedral, hexahedral, pyramid, wedge, and hybrid) depending 

upon the geometry. 

In FLUENT, the Graphical User Interface (GUI) is used to define specific system 

working conditions of the system.  Using the GUI, working conditions and the type of 

flow (laminar or turbulent) can be specified, based on which the system is analyzed.  

Along with the operating conditions of the system, the pressure, velocity, and 

temperature boundary conditions can also be specified.  Both steady and unsteady states 

along with deformable zones and single and multiple phases can be modeled using 

FLUENT. 

In most cases, the standard options present in the GUI are adequate to evaluate the 

system, but sometimes they might not be sufficient.  In such cases, FLUENT allows the 

users to input their own values for the operating conditions of the system.  This is done 

by the User Defined Function (UDF) method where the user can specify various changes 

to occur in the system according to their requirements.  UDFs are programs written by the 

user and are connected to FLUENT to specify the preferences of the user.  For example, 
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if the temperature of a system needs to be varied at specific intervals of time, then, with 

the help of a UDF, FLUENT can be told to vary the temperature accordingly. 

Modeling of systems involving moving parts can be done in FLUENT with 

varying frames of reference depending upon whether the entire system is in motion or 

only parts of it are.  Deformable zones can be modeled using either sliding or dynamic 

meshes depending upon presence of relative motion between zones or change in shape of 

the system based on time.  Multiphase modeling in FLUENT is done with the help of 

Volume of Fluid (VOF), Eulerian, and DPM methods, the first being employed for 

immiscible liquid systems and the latter two for solid-liquid systems.  Once the 

simulation of the working of a system is complete, the results can be obtained in either 

graphical or report format depending upon choice of the user.  The formation of the 

Taylor vortices in this device was simulated using versions 6.2.16 and 6.3.26 of 

FLUENT. 

3.3.1. 3-D Modeling of Taylor Vortices.  Using GAMBIT, a model of the modified 

Taylor-Couette device was created.  In the model, the bottoms of both cylinders were 

tapered to allow for the easy drainage of classified particles (Figures 3.1 (a) and (b)) and 

an injection port was included for the system.  By including these modifications in the 

Taylor-Couette device, the system resembled the real-life apparatus with options to both 

inject and remove particles from the system.  The schematic shown in Figure 3.1(a) was 

constructed for the numerical evaluation purposes. 
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 (a)      (b)   

Figure 3.1.  Modified Taylor-Couette system: (a) Schematic (b) Computer generated 
model  

 

 

In the model, the vertical length and diameter of the outer cylinder were 17 cm 

and 10 cm, respectively, and tapered near the bottom so that its smallest width was equal 

to the diameter of the inner cylinder.  The length and diameter of the inner cylinder were 

16.5 cm and 6.0 cm, respectively.  The inner cylinder was shortened by 0.5 cm to allow 

an opening for the particles to slide down as they are classified, which allows the process 

to be easily converted from batch to semi-continuous operation.  At the top, an injection 

port 2 cm high and 1 cm wide was placed in the annulus for the easy introduction of 

particles. This port was located equi-distant from each cylinder on the top wall of system.  

The model was then meshed using a tetrahedral scheme (Figure 3.2) and exported to 

FLUENT for further analysis.  
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Figure 3.2.  Computer-generated model of the meshed geometry 

 

 

In FLUENT, the exported mesh was analyzed using the finite volume method and 

the standard k-ε turbulence model (with standard coefficients) was used to simulate the 

formation of Taylor vortices.  The system was calibrated by comparing the values of 

normalized radial velocity at a Reynolds (Re) number of 103 to the experimental values 

obtained by Wereley et al. (Figure 4.3) [33].  For Taylor vortex flow, the Reynolds 

number is calculated as [34] 

µ
ρdri Ω=Re      (3.10) 
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where, ri is the inner cylinder radius, Ω is the rotational velocity of the inner cylinder, d is 

the width of the annulus, ρ is the fluid density, and µ is the fluid viscosity. 

In Figure 4.3, x-coordinate, ζ, is the ratio of the axial position to the annulus size 

(2 cm for the current system) and the y-coordinate is the ratio of the radial velocity (vr) at 

given axial location to the surface velocity of the inner cylinder, ri*Ω (where ri is inner 

cylinder radius and Ω is the rotational velocity of inner cylinder).  The results obtained 

from the current system were in good agreement with those obtained by Wereley et al. as 

shown in Figure 3.3, validating the parameters used in the current system for modeling 

Taylor vortices.  All the surfaces in the system (excluding the inner cylinder) were 

specified as stationary walls and the inner cylinder was specified as a rotating wall. 
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Figure 3.3.  Comparison of the normalized radial velocity data (Re=103) [33] 

 

In the simulations, water was used as a fluid and the rotational velocity of the 

inner cylinder was set to a threshold value of 35 rpm based upon theoretical calculations 

given by Equation 1.1.  The Reynolds number of the system was found to be 1941, which 

lies in the typical Reynolds number ranges for Taylor vortex flow [34].  Figure 3.4 shows 

the fully developed and stabilized Taylor vortices.  The solution obtained was 

independent of the grid and turbulence model chosen, as the values of radial velocities 

obtained for both the standard and realizable k- ε models were similar (Figure 3.5).  The 

standard and realizable k- ε models were chosen as they give the best possible solution 

for the turbulent flows in which vortices and rotation are involved [35]. 
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Figure 3.4.  Developed Taylor vortices in the modified Taylor-Couette device 
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Figure 3.5.  Radial velocity data of the system indicating turbulent model independency 

 

 

3.3.2. Modeling Particle Flow in a Taylor-Couette Device   

Once the Taylor vortices were stabilized, particles were injected into the system.  

Using DPM, transient or unsteady treatment of particles was performed with the particles 

being tracked at every fluid flow time step from the point of their injection.  A transient 

approach was chosen since the particles were not being injected at the beginning of the 

flow but were being injected only after vortex stabilization.  Moreover, the particles were 

being injected for a short period of time and not for the entire duration of the simulation.  
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The reflection boundary condition of the discrete phase modeling was set for all the walls 

in the system. 

The initial conditions of the particles such as initial coordinates, velocity, 

diameter, material, and mass flow rate at which they were being injected were defined.  

Since the point properties vary with the type of injection chosen, it was essential to select 

the injection type before performing any simulations.  The merits and demerits of the 

various types of injections were evaluated before the selection of a surface injection.  In 

this type of injection, FLUENT randomly selects points on the surface (in this case, the 

injection port) and injects particles based upon the properties defined.   

For surface injections, the initial velocity, diameter of the particles, mass flow rate 

at which the particles were injected, and the duration of the injection were specified.  The 

initial positions of the particles were randomly chosen by the solver.  Multiple injections 

of varying particle size were chosen and after all the properties were set, the flow field 

was initialized and the flow was simulated.  The resulting particle tracks are shown in 

Figures 3.6 and 3.7.   
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Figure 3.6.  Particle tracks at the end of a simulation 
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Figure 3.7.  Particle tracks (t=75 s) 
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4. RESULTS AND DISCUSSION 

4.1. INITIAL EXPERIMENTS 

Initial experiments were conducted using soda-lime glass spheres to study the 

process feasibility.  The procedure explained in Section 3.3 was followed to carry out the 

particle classification process.  The velocity of the inner cylinder was set to a value of 35 

rpm which is the threshold value for vortex formation of this system.  This value was 

calculated from Equation 1.1, with a Taylor number of 1708.  To classify particles 

smaller than the minimum cut-size of the current system, the inner cylinder velocity 

should be decreased, but if this value of velocity is lower than the threshold value, vortex 

formation would not be occur and no classification can take place.  Therefore, the 

minimum cut-size was assessed by setting the velocity to the threshold value.   

Water was used as the operating fluid and glass particles of size ranging from 10-

110 µm were injected at a mass flow rate of 1.6 g/min once sufficient time had elapsed 

for vortex stabilization.  Figure 4.1 shows the PSD of the initial feed and final classified 

product.  As predicted, particles were axially classified with the amount of the smaller 

particles (10-30 µm) present in the final classified sample reducing significantly from an 

initial 10% to 5% and the amounts of the larger particles (50-110 µm) increasing from 

15% to 27%.  These values signify that classification has indeed taken place in the 

current system and the process was feasible. 
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(a)  

 

(b)   

Figure 4.1.  Particle size distribution of glass particles at 35 rpm inner cylinder velocity: 
(a) PSD of the feed (b) PSD of sample collected from bottom of the system 
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4.2. EFFECT OF INNER CYLINDER VELOCITY   

Using soda-lime glass spheres of size range 10-30 µm, the effect of inner cylinder 

velocity on the classification was studied experimentally by varying the inner cylinder 

velocity from 35 rpm to 75 rpm (Figure 5.2).  As the velocity of the inner cylinder is 

increased, the speed of the vortices increases, leading to an increased number of smaller 

particles trapped in them, allowing the larger particles to bypass the vortices.  From 

Figure 4.2, it can be observed that as the velocity is increased from 35 rpm (Re=1941) to 

75 rpm (Re=4731), the PSD curve shifts towards the right, reducing the number of 

smaller particles (below 20 µm) in the sample and increasing the number of larger 

particles (above 20 µm).  It can also be observed that the maximum amount of particles 

present in the classified sample shifts from near 20 µm to closer to 25 µm.  These values 

indicate that an increased separation can be achieved with an increase in inner cylinder 

velocity. 

Experiments were also conducted for 0.1-10.0 µm particles at an inner cylinder 

velocity of 35 rpm to verify whether classification can be achieved for particles less than 

10 µm using the current parameters.  Figures 4.3 (a)-(b) show the PSD of the initial feed 

and the PSD of a sample collected from the bottom of the cylinder.  There is no 

difference observed between the curves, thus signifying that no classification has taken 

place.  Hence, classifying particles 10 µm or less is not feasible at the current 

experimental conditions. 
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(a)                                                                        (b) 

   

(c)                                                                         (d) 

Figure 4.2.  Effect of inner cylinder velocity on classifying glass particles (10-30 µm): (a) 
PSD of feed (b) PSD of bottom sample at 35 rpm (c) PSD of bottom sample 
at 50 rpm (d) PSD of bottom sample at 75 rpm 
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(a)       (b) 

Figure 4.3.  Effect of inner cylinder velocity on classifying glass particles (0.1-10.0 µm): 
(a) PSD of feed (b) PSD of a sample collected from bottom of the system 
after classification (35 rpm inner cylinder velocity, steady state) 

 

 

4.3. EFFECT OF PARTICLE FEED RATE 

Using glass spheres of size range 10-110 µm, the effect of particle feed rate was 

studied experimentally by varying the inlet mass flow rate of particles from 0.8 g/min to 

3.2 g/min.  The data obtained is shown in Figure 4.4.  The effect of particle feed rate on 

classification was significant; the amount of smaller particles present in samples collected 

from the bottom reduced from 15% at 3.2 g/min to 4% at 0.8 g/min.  This behavior can 

be attributed to the fact that vortex formation is disturbed with the addition of particles at 

higher feed rates, and by the time they are stabilized, the smaller particles have travelled 

towards to the bottom, thus resulting in poor classification. 
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(a)                                                                        (b) 

  

(c)                                                                         (d) 

Figure 4.4.  Effect of particle feed rate on classifying glass particles (a) PSD of the feed 
(b) PSD of sample collected from bottom of the system at feed rate 3.2 g/min 
(c) PSD of bottom sample at feed rate 1.6 g/min (d) PSD of bottom sample at 
feed rate 0.8 g/min 
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4.4. EFFECT OF ANNULUS SIZE 

The effect of annulus size was studied experimentally by varying the width of the 

annulus from 1 cm to 2 cm.  Soda-lime glass spheres ranging from 10-30 µm were used 

and Figure 4.5 shows that 10-15 µm particles were not present in the sample collected in 

the 2 cm annulus, but were present for an annulus size of 1 cm.  The maximum amount of 

particles present in the classified sample also shifts from 20 µm to near 25 µm.  This 

could be attributed to the fact that width of the vortices was increased by doubling the 

annulus size, leading to an increased number of smaller particles being trapped in the 

vortices, thereby improving classification.  While the data obtained were insufficient to 

form firm conclusions, further studies with varying annulus sizes need to be performed to 

observe the effect of annulus size on classification. 
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(a)  

 

(b)  

 

(c)  

Figure 4.5.  Effect of annulus size on classifying glass particles (a) PSD of feed (b) PSD 
of bottom sample (1 cm annulus) (c) PSD of bottom sample (2 cm annulus) 
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4.5. IDENTIFICATION OF CUT-OFF DIAMETER  

Cut-off diameter, or cut size (X50), is defined as that value of particle size at 

which one can expect 50% of those particles to be present in the classified sample [36].  

Theoretically, the product sample contains particles whose size is greater than X50 and 

any particle of size less than X50 will be absent.  However, in real systems, one cannot 

expect such a sharp cut, so a cumulative value of the population (grade efficiency) of 

each particle size is taken and the particle size at which grade efficiency is 50% is defined 

as the cut-size.   

Experiments were conducted using 10-30 µm glass particles at different inner 

cylinder velocities to identify the range of cut-off diameters for the present system.  The 

feed rate of the particles was 0.8 g/min.  The results obtained are shown in Figures 4.6 

and 4.7.  The deviation bars denote the maximum and minimum values obtained during 

multiple trials.  It can be seen from the graph that for the three velocities examined, the 

cut-off diameter varies from 21.5-25.0 µm as the velocity changes from 35 to 75 rpm.  

The experimental data obtained (Figure 4.7) for the current system does not show any 

particular trend.  However, further studies at different velocities need to be performed in 

order to predict the behavior of cut-size with varying velocity.  It is expected that cut-size 

increases with increasing velocity because the presence of smaller particles in the lower 

third of the system is reduced. 
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(a)  

 

(b)  

  

(c)  

Figure 4.6.  Experimental identification of cut-off diameter for glass particles (single 
trial): (a) PSD of a sample collected from bottom of the system at 35 rpm (b) 
PSD of bottom sample at 50 rpm (c) PSD of bottom sample at 75 rpm 
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Figure 4.7.  Cut-off diameter trends (glass particles) 
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4.6. NUMERICAL VERIFICATION OF EXPERIMENTAL RESULTS 

The experimental values obtained for cut-off diameters did not show any 

particular trend and were also inconclusive.  Since some of the experimental trials 

showed counterintuitive trends, numerical simulations were conducted for particles of 

size ranges 10-30 µm and 0.1-10.0 µm to qualitatively verify the experimental trends.   

4.6.1. Effect of Inner Cylinder Velocity.  It was experimentally predicted that for 10-30 

µm particles, a higher amount of separation between the particles was observed at an 

inner cylinder velocity of 75 rpm than at 35 rpm or 50 rpm.  The effect of inner cylinder 

velocity on classification was studied numerically by varying the inner cylinder velocity 

from 35 rpm to 75 rpm (Figure 4.8).  The feed consisted of equal amounts of 10, 20, and 

30 µm glass particles.  As seen from Figure 4.8 (a), as the velocity of the inner cylinder 

increases from 35 rpm to 75 rpm, the percentage of the 10 and 20 µm particles recovered 

in the lower third of the system decreases, confirming the trend that an increased number 

of smaller particles are trapped in the vortices with an increase in velocity.  A PSD 

analysis (Figure 4.8 (b)) on the lower third of the system at both 35 rpm and 75 rpm also 

indicates that the amount of 10 µm particles does not change, while that of 20 µm 

particles reduces from 34.6% to 28.4% and the relative amount of 30 µm particles in the 

sample increases from 56.0% to 61.0%.  Hence, the amount of 10 µm and 20 µm 

particles recovered decreases when inner cylinder velocity is raised to 75 rpm, thus 

validating the trend predicted numerically. 

The effect of inner cylinder velocity was also studied numerically for particles 

0.18-10.00 µm in size.  As seen in Figure 4.8 (c), particles less than 10.00 µm do not 

follow the expected trend, with the amount of 0.18 µm particles recovered increasing 
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(rather than decreasing) with increasing velocity and no significant change in the amounts 

of 3.21 µm and 10.00 µm particles in the lower third of the cylinder.  Moreover the 

difference between the amounts recovered for either the 3.21 µm and 10.00 µm or 0.18 

µm and 3.21 µm particles is not large enough to signify separation.  This also confirms 

the experimental prediction that no classification has taken place for particles of this size 

range within the experimental conditions explored here.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

 

(a)  

 

(b)  

 

(c)  

Figure 4.8.  Numerical verification of effect of inner cylinder velocity on classification 
for glass particles (lower third of the system): (a) Particle recovery for initial 
size range 10-30 µm (b) PSD for initial size range 10-30 µm (c) Particle 
recovery for initial size range 0.18-10.00 µm 
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4.6.2. Identification of Cut-Off Diameter.  Cut-off diameter, or cut size (X50), is 

defined as that value of particle size at which one can expect 50% of those particles to be 

present in the classified sample [35].  Numerical simulations were conducted using glass 

particles ranging from 10-30 µm at different inner cylinder velocities to identify whether 

the value of the cut-off diameter lies between 21.5-25 µm as predicted experimentally.  

The results obtained are shown in Figure 4.9.  It can be seen from the graph that for the 

three velocities examined, the cut-off diameter varies from 26.5 µm to 29.5 µm.  As 

predicted experimentally, the cut-off diameters did not show any particular trends with 

varying velocity.  Figure 4.10 shows a comparison between the numerical and 

experimental results obtained.   

The cut-off diameters obtained numerically are higher than the experimental 

predictions.  Mechanical vibrations in the experimental system can disturb vortex 

formation and allow smaller particles to fall to the bottom of the system which could 

have resulted in the lower values obtained experimentally.  Since the numerical system 

was ideal, and simulations did not take the effects of mechanical vibration into 

consideration, the numerical results obtained were higher than the values predicted 

experimentally.  Another possible reason for these higher numerical values is that the 

simulations might not have represented the flow field in the experimental system 

accurately.  This is because even though the numerical system was calibrated, there is a 

possibility of discrepancy in the results obtained because of the coefficients involved in 

the turbulent flow equations.  The values of the k-ε coefficients used in the simulations 

were standard and these coefficients might not have been sufficient to accurately model 

the flow field. 
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Figure 4.9.  PSD of glass particles (lower third of the system) at steady state identifying 
cut-off diameters 
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Figure 4.10.  Cut-off diameter trends: Experimental and numerical 

 

 



50 

 

4.6.3. Effect of Particle to Fluid Density Ratio.  Ohmura et al. [2] defined factor β as 

the ratio of particle to fluid density.  They verified that classification of fine particles can 

be achieved for a value of β = 1.  However, no study has been performed to verify 

whether β has any effect on classification.  Using glass and nickel particles ranging from 

10-30 µm, a numerical study was conducted to study the effect of the ratio of particle to 

fluid density.  In the current numerical study, water was used as the fluid, which led to 

the values of β being 8.9 and 2.5 for nickel and glass particles, respectively.  The results 

obtained are shown in Figure 4.11.  It can be seen from the figure that, at steady state and 

an inner cylinder velocity of 75 rpm, there is a 10% greater recovery of 20 µm particles at 

β = 8.9 than at β = 2.5 while no observable difference can be noticed for either 10 or 30 

µm particles at these values of β.  This leads to the conclusion that the value of β has very 

little effect on the current system of experimental conditions, though further studies need 

to be conducted for various other values of β to support the conclusions drawn. 
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Figure 4.11.  Effect of particle to fluid density ratio on classification for glass, nickel 
particles 
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5. CONCLUSIONS AND FUTURE WORK 

The conclusions that can be drawn from this work are that for the given system 

and within the ranges studied, inner cylinder velocity, particle feed rate, and annulus size 

had a significant effect on the classification process and β, the particle to fluid density 

ratio, did not show much effect.  The cut-off diameters for the current system were 

identified as 26.5-29.5 µm numerically and 21.5-25.0 µm experimentally.  Increasing the 

velocity showed an increased amount of recovery of the 30 µm particles while reducing 

the amount of 10 µm and 20 µm particles recovered.  Lowering the particle feed rate also 

showed improvement in the classification process with the amount of smaller particles 

present in a sample obtained from the bottom of the system decreasing from 15% to 4% 

with a drop in the feed rate from 3.2 g/min to 0.8 g/min.   

Doubling the width of the annulus eliminated the presence of smaller particles in 

the sample obtained from the bottom of the system, indicating that larger annulus leads to 

better classification, but this must be confirmed by conducting replicate trials of 

additional experiments with a wider range of annulus sizes.  Cut-size of the system did 

not show any particular trend with varying velocity both numerically and experimentally; 

however, this must also be confirmed by conducting further experiments with other 

velocities.  The numerical trends of effect of inner cylinder velocity and identification of 

cut-off diameter compared well with the experimental trends obtained. 

Our area of future work would include a study of the effect of system dimensions 

on the classification process.  Some of the preliminary experiments in this direction have 

shown that with an increment in the annulus size resulting in larger vortices, particle 
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classification can be improved as larger vortices can trap smaller particles effectively.  

Varying system height would also be interesting as longer cylinder lengths have been 

proved to increase the number of vortices [1], potentially leading to better classification 

as more number of smaller particles would be trapped in the additional vortices formed.  

Further experiments would also include the verification of the effect of β by varying both 

fluid and particle material.  Ohmura et al. [2] have shown that particle classification is 

possible for β=1 and the present study included the values of β=2.5 and β=8.9.  

Experiments would be performed by varying either the operating fluid or the material of 

the particles, for values of β ranging from less than 1 to higher values in order to see if 

raising or lowering its value would affect the classification process.   

Our proposed future work also includes the study of various parameters to achieve 

classification of particles less than 10 µm in size and also to study the classification 

process for even narrower distributions consisting of particles with a size difference of 5 

µm or less by varying β, annulus size, and inner cylinder velocity.  The effect of a wider 

range of inner cylinder velocities and inlet particle concentrations would also be studied.  

The effect of lowering inlet particle concentration would be investigated to verify 

whether or not hindered settling occurs in the process wherein the input concentrations of 

the particles have been used.  This study will help improve the classification efficiency of 

the Taylor-Couette system.   
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