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ABSTRACT 

 The rugged elevated topography is a characteristic feature of the western and 

southwestern regions of Saudi Arabia. Few arterial roads connect the scattered villages of these 

regions to major cities, such as Habs Road in Jazan region. Rock fall poses a serious hazard to 

people, property and animals along the rock cuts of this road. Although no traditional Rockfall 

studies have previously been applied to this road, accessibility and rock formation shape and 

structure variability influenced the choice of using Terrestrial Light Detection And Ranging 

(LiDAR) technology to calculate the volume of rockfall at selected sites along this road. 

  Software has been developed at the Geological Engineering Program of Missouri 

University of Science and Technology to calculate the volume of rockfall from a sequence of 

scans conducted at the selected sites (A1, A2 and A3), at the exact locations, during different 

time periods, extended for over two months. The pre and post processing of the point cloud 

data gathered using ScanStation II, measured the real and virtual gain and real and virtual loss 

of rockfall material due to rainfall, weathering factors, animal and human disturbance, degree 

of slope-face, and the effect of minor or major earthquakes occur in the region. 

     The results of the study showed that the site (A1) is more hazardous compared to the 

site (A2) and site (A3) is the most stable compared to the site (A1) and (A2). The compact 

rock formation of site A3, the disintegrated rocks of site A2 and the relative loose rocks of 

upper site A1 (possible valley deposits), were suggested by the study of the determining factors 

of road safety. The study also found that using terrestrial LiDAR technology and new software 

reduced time, effort and increased accessibility, despite the limited number of scans 

conducted.  
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1. INTRODUCTION 

 

The frequency and volume of rockfall is one of the major indicators of the degree of 

hazard on roads in elevated and rugged topography. Measuring rockfall volumes using 

traditional methods of direct measurements encounter many risks, difficulties, and limitations. 

The development of technologies introduced new advances in the way rockfall volumes are 

measured, of which 3D LiDAR scanners are gaining wide acceptance for obtaining high 

accuracy measurement, reaching inaccessible locations and providing great safety measures 

and repeatability.  

  3D laser scanners emit laser light and receive back its reflection from objects, to 

accurately create point clouds. Repeating this process at different instances for the same object 

is used to calculate volume difference.  This thesis used Terrestrial Light Detection and 

Ranging (LiDAR) technology to quantify rockfall volume by monitoring the study area during 

a period of two months.  Erroneous data such as cars passing by, dust particles, or vegetation 

that comes between the scanner and rock slope during scanning is, removed by using 

automated methods. 

 The Habs road is an artery road linking many of the small villages to the main N-S 

access highway. Since being built, very little follow up, and maintenance on the road status 

was conducted, and no traditional or non-traditional estimation of rockfall volume count was 

attempted. Assessment of hazard levels is necessary to keep the road safe and operating. This 

study provides base-line information on the Habs Road by employing terrestrial LiDAR 

techniques to obtain rockfall volume counts, overcoming the difficulties of traditional 

methods in and assess the road hazard status.  
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1.1. STUDY OBJECTIVES 

The objective of this study is to show the merits of utilizing LiDAR technology to 

accurately determine rockfall volume count and the level of hazard of road cuts along Habs 

Road in Jazan, Saudi Arabia. 

 

1.2. LOCATION 

Habs Mountain Road is located in Bani Malek county in the Jazan region, 

southwestern Saudi Arabia, at 170 22’ 43.4”N and 430 11’ 39.2”E (Figure1.1).  

 

 

  Figure 1.1. The location of study area relative to the Kingdom of Saudi Arabia 

 

The road is the only access that connects the scattered villages with the highway of 

Alaidabi, which joins with the main highway linking the north of Saudi Arabia to its southern 
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extremes. The total length of the road is about 14 kilometers, over which it follows a very 

sinuous route over different types of rock formations. 

 

1.3. RAINFALL 

Annual average rainfall of the study area, obtained for the period 1960 to 2013, and 

represented by the two stations of Fayfa Mountain (SA110) and Ayban Mountain (SA140), 

show two maxima peaks of increasing rainfall (Figure 1.2).  

 

 

 Figure 1.2. The annual average rainfall of the study area, obtained at Fayfa and Ayban 
Mountain stations  

 

The first lower maxima peak reach an average of ~54 mm of precipitation, per month 

during April, and the higher maxima, in August shows a maximum amount of precipitation in 

the study area of about ~ 80 mm. The steady increase of rainfall during these months infiltrates 
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the rock formations, leading to increasing pore pressure and transportation of fine soil 

particles of clay and silt into rock fractures and joints, which ultimately increase the risks of 

rock sliding.  

 

1.4. TOPOGRAPHY 

The region of Habs road is characterized by highly rugged jigsaw topography of 

alternating sharp peaks and ridges and steep V-shaped valleys (Figure 1.3).  

 

 

Figure 1.3. The topographic setting of study area  

 

Elevations vary between high values of 2100 to low values 200 m asl. The region lacks 

high plateaus, but natural and man-made terraces form the only flat areas utilized in agricultural 
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practices and other urban uses. The average slope angles of road cuts varys between 60 to 85 

degrees, making this region one of the most inaccessible locations in Saudi Arabia in the past.     

1.5. TECTONIC SETTINGS 

The study area is affected with the total tectonic regimes of Saudi Arabia, where the 

Arabian plate falls under the influence of the collisional regime at its eastern boarder with Iran, 

and subduct under Zagros mountain ranges, the extensional regime of the Red Sea and East 

African Rift in its western boundaries and the contact of the Arabian plate with the Eurasian 

plate at its northeastern boundaries. These tectonic plates’ activities were suggested as the main 

drivers for the earthquakes in Gulf of Aden, the Red Sea and the Dead Sea fault and at Zagros 

and Torus mountain ranges. (Figure 1.4).  

 

 

 Figure 1.4. The tectonic forces actively acting on the Arabian plate and seismically influencing 
the study area in the Southwest  
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The southwest of Saudi Arabia, and the study area, in particular, are more affected by 

the extensional regime of the Red Sea and by the existing and pre-existing faults in the region 

(Figure 1.5), and the progress of a mantle plume from southeast to northeast, and the 

propagation of arms of the RRR triple junction rifting arms from Gulf of Aden, the Red Sea 

and the East African Rift, accompanied by the flow of basaltic lava, locally known as “harat”, 

along the eastern coast of the Red Sea. 

Tectonic history records of the study area revealed that there are three major 

earthquakes occurred in the region (6.3, 6.0 and 5.5 Richter value), while recent historical 

records showed that about 400 earthquake have occurred between 1900 and 2011, of values 

between 3.0 to 6.6 on Richter scale (Figure 1.5) 

 

 

 Figure 1.5. Location of Earthquake in Southwestern Saudi Arabia  
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1.6. GEOLOGY  

The geology of the study area comprises three types of rocks: (i) the Sabia formation 

which are meta-volcanic rocks and schist of medium to high metamorphism. (This formation 

covers two third of Bani Malik County, which include Habs Mountain Road, and is composed 

of Quartz, Conglomerate and these formation formed ~700 Ma ago), (ii), the moderately 

weathered Granite, and (iii) the metasedimentary rocks, which form hazardous block in matrix 

(debris flows) when wetted by rains (Figure 1.6) 

 

 

 Figure 1.6. The major geologic formations and rock types of Habs Road study sites  
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2. RESEARCH BACKGROUND 

 

2.1. TYPES AND CAUSES OF ROCK FAILURE  

Rocks fail as a result of internal and external factors. The internal failure factors relate 

primarily to rock properties such as the type of rock, the nature of the discontinuities, and the 

ground water level, whereas the external factors depend on the conditions that ultimately 

change the forces acting on the rock such as rainfall, snowmelt, seepage, channeled water 

runoff, weathering, erosion, freeze-thaw and heating-cooling cycles, tree root, wind, 

disturbance by animals, and earthquakes (Pantelidis 2009). Hoek (2007) mentioned the 

anthropogenic factor, which includes construction practices, blasting, vibration from 

equipment and trains, and the stress relief due to excavation. The effectiveness of failure 

increases with the presence of internal factors coupled with the external factors. Most slope 

failures were classified in one of four categories depending on the geometrical and mechanical 

nature of the discontinuity, and the conditions of the rock masses. These include the circular, 

planar, wedge and toppling failures. Raveling is treated as a special slope failure category that 

is primarily controlled by environmental factors. 

2.1.1. Planar Failures. Planar failures occur along prevalent and/or continuous joints 

dipping towards the slope, with the strike being near parallel to the slope face. There are two 

conditions govern the instability: 

 (i) When critical joints dips less than the slope, and  

 (ii) When the shear strength in the joint is not enough to assure stability.  
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Planar failures depend on the continuity of the joint and their sizes vary from few 

cubic meters to large-scale landslides.  

The KM Mountain landslide in Washington State represents one of the examples 

where the sliding was controlled by bedding orientation (Lowell 1990).  

Researcher found that four structural conditions requires the planar failure to occur, 

based on conditions (i) and (ii), and are shown in (Figure 2.1).  

1- The dip direction of the planar discontinuity must be within 20 degrees of the   dip 

direction of the slope face. 

2-  The dip of the planar discontinuity must be less than the dip of the slope face daylights 

in the slope. 

 

 

Figure 2.1. Sketch diagram showing Planar Failure type of rock slope (After Norrish and                             
Wyllie, 1996). Note the photograph on the right is after Maerz, 2000  

 

3- The dip of the planar discontinuity must be greater than the angle of friction of the 

failure plane. 

4- The lateral extent of the potential failing masses must be isolated by lateral release 

surfaces, which allow blocks to slide freely.  
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This is the requirement that leads to the likelihood of planar failure occurrence. If 

structural analysis indicates that the orientation of the slope is unstable, that is, kinematically 

unstable, then stability evaluated using a limit equilibrium procedure. 

2.1.2. Wedge Failures. Wedge failures result when a rock mass slide along two joints 

from different families whose intersection dips toward the slope. Wedge failure depends 

largely on the geometry, and residual shear strength. Further, this wedge failure depends on 

the joint attributes and conditions. This type of failure is more frequent than planar failure. 

The formation and occurrence of wedge failures are dependent primarily on lithology and the 

structure of rock mass. Piteau (1972) found that for wedge failures to occur, three conditions 

are required:  

1- The trend of the line of intersection must be close to the dip direction of the slope 

face 

2- The plunge of the line of intersection must be less than the dip angle of the slope face 

(daylights on slope),  

3- The plunge of the line of intersection must be greater than the angle of friction of the 

failure plane. 

 Figure 2.2 shows the three stages explained by Piteau.  

 

 

 Figure 2.2. Sketch diagram showing Wedge Failure type of rock slope (After Norrish and 
Wyllie, 1996). Note the photograph on the right (after Maerz, N., 2000)  
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On the stereographic projection, the point of intersection of the two great circles 

representing the intersecting planes must plot within the shaded area, which is called the 

daylight zone, and lies on the convex side of the cut slope. If the structural analysis of wedge 

stability using stereographic methods indicates the possibility of a wedge failure, kinetic 

analysis performed. 

2.1.3. Toppling Failures. Toppling failures occurred along a prevalent and/ or 

continuous family of joints, which dip against the slope, and with a strike near parallel to the 

slope face (Figure 2.3). 

 

 

 Figure 2.3. Sketch diagram showing Toppling Failure type of rock slope (After Norrish and 
Wyllie, 1996). Note the photograph on the right is after Maerz, 2000  

 

There are two types of toppling instability. Minor toppling occurs near the surface of 

the slope, and deep toppling which can produce large deformations. The necessary conditions 

for toppling failure can be summarized into (1):  The strike of the layers must be approximately 

parallel to the slope face, differences in these orientations of 20 degrees or less are required 

based on references in the literature, (2): The dip of the layers must be into the slope face, and 

(3): The discontinuity condition must satisfy the following equation: (t/h<tan ψ). Simple block 

and wedge pullout failures are easy to analyze with limit equilibrium analyses and numerical 
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modeling (Hoek and Bray, 1981; Piteau, 1979a; Piteau, 1979c; Piteau, 1979d; Piteau, 1979e).  

Piteau and Martin (1982) mentioned that the most common method was the simple limiting 

equilibrium technique to evaluate the sensitivity of possible failure conditions to slope 

geometry and rock mass parameters. Kinematic analysis based on the orientation of the 

combination of discontinuities, the slope face, the upper slope surface, and any other slope 

surface of interest together with friction that is examined to determine if certain modes of 

failure can possibly occur. This analysis is normally conducted with the aid of a stereographic 

representation of the planes and /or lines of intersection (Markland 1972). There are some 

advantages and disadvantages for this type of analysis. 

2.1.4. Circular Failures. Circular failures occur along circular slip paths (Figure 2.4) 

which are commonly associated with highly weathered and decomposed, highly fractured, or 

weak rock masses. In general, structural discontinuities such as joints and bedding planes do 

not form distinctive patterns that lead to a circular failure path and develop into kinematical 

failure possibility. For the Raida escarpment rock cuts, it is unlikely that circular failures would 

be a major concern in the rock cut areas. 

 

 

 Figure 2.4. Sketch diagram showing circular Failure type of slope (After Norrish and Wyllie, 
1996). Note the photograph on the right is taken from Raidah escarpment road. (Youssef, A. 
M., et al., 2012.)  
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2.1.5. Raveling Failures. Raveling failure is different from other failure modes, it 

occurs in both hard and soft rocks, as well. Baawner (1993), Goodman and Kieffer (2000), 

found that raveling occurs in weekly cemented Conglomerates and Breccia , and in highly 

fractured strong rocks and brittle sandstones interbedded with soft shale and mudstone (Selby, 

1993) also in that; it is caused by weathering of rock, which is a time dependent process (Figure 

2.5). 

 

 

 Figure 2.5. Two types of raveling that are caused by weathering of rocks and removal of soft 
material (Maerz, 2012)  

 

  This is the most frequently occurring rockfall type, and often releases smaller and 

fewer blocks.  Serious large-scale disasters occur when undercutting causes failure of entire 

slope (Maerz, 2012). Unlike other failure modes, raveling is more difficult to control and 

accurately assess and analyze. Detailed assessment in Northern Ontario showed that all types 

of raveling compose 65% of failures, while other types of failure composes 35%, only (Maerz, 

2012).  
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2.2. ROCKFALL AND LIDAR 

Rockfall represents one of the major man-made hazards in southwestern Saudi Arabia. 

The types of rockfall introduced at the beginning of this section, including raveling occurred 

in different regions in Saudi Arabia, and are associated with various types of rock formations. 

Wedge failure, planar, toppling and circular types were reported in southern Saudi Arabia, 

while raveling type of rockfall, dominate the central region which is characterized by 

sedimentary rock formation. Various qualitative assessment methods and mitigation efforts 

applied in resolving complicated rockfall problems, especially along road-cuts, but raveling 

forms a continuous challenge to engineers and researchers, when quantitative measures, 

remediation and mitigation assessment are needed. LiDAR technology introduced more 

recently as a tool that capable of putting an end to this challenging situation. Other than this 

advantage, LiDAR largely reduced the high cost of conducting fieldwork, by reducing the 

number of personnel and logistics, and minimizing the time for achieving tasks, accessibility, 

and results in the collection of large amount of useful data.     

 

2.3. TERRESTRIAL LIDAR APPLICATION REVIEW 

LiDAR is a scanning device that is designed to send out laser pulses and receive back 

the reflected pulse from the object. The travel time of the out-going and incoming signals is 

used to obtain the physical distance to the objects using the equation: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡 ∗ 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐹𝑙𝑖𝑔ℎ𝑡)

2
 

(Andrew, R., et al., 2012).  3D Terrestrial LiDAR has been used in a variety of applications, 

such as assessing the different stages of construction of buildings, dams, bridges, ships, planes, 
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oil refineries, tunnels, and open pit and underground mines. Another application area of 

terrestrial LiDAR is, the study and monitoring of natural phenomenon, such as mass wasting, 

geomorphology and drainage systems, geology, tree and vegetation cover, and agriculture 

(Mongus, D. et al. 2014; Clark, C. et al. 2014; Majid, Z. et al. 2008; Lato, M. et al. 2014; 

Mizoguchi, T. et al. 2013; DeMann, A. 2010; Rooper, J. 2013; Brodu, N. et al. 2012; Beland, 

M. et al. 2014).  Lato, M., et al, 2008 introduced guiding lines for optimizing automated 

structural discontinuity analysis based on LiDAR point cloud data. They concentrated primary 

on data collection location, scan orientation and data interpretation procedures. The method 

was futher investigated by Voge, M., et al, 2013, where they tested some mathematical 

algorithms developed by Lato and Voge (2012), to automate discontinuity mapping on 

detected planes, and were able to obtain colored maps of discontinuity orientation categorized 

in sets of families. This automation removed human bias and increased the speed of obtaining 

results 10x faster than the manual methods. LiDAR was used in conjunction with remote 

sensing in rockfall hazard spatial modeling, and determining the characteristics of the 3D 

physical process of rockfall, and the distribution of frequency and energy of falling rocks (Lan, 

H., et al, 2010). Tracing of discontinuity is crucial in rockfall and mass wasting processes, since 

it was evident that catastrophic rockfall events were traced back to un-noticed discontinuities. 

Umili, G., et al., (2013) implemented a procedure to automatically identify traces of 

discontinuities from digital surface models, using curvature values of the digital surface. 

The developments in using remote technology to study distant, difficult to access study 

locations, encouraged the use of optical instruments and LiDAR, together to solve some of 

the challenging problems concerning the co-existence of traces and facets. Otoo, J., et al., 

(2011), introduced a new software that was able to determine 3-D discontinuity orientations. 
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Terrestrial and air-borne LiDAR scanning were used also in monitoring steep, elevated study 

areas, and large scale sites of active slopes in Rügen, Germany by Kuhn, D., et al., (2014), and 

were utilized the technique to quantify change detection and volume balance from repeated 

scans. This volume quantification was time and effort consuming in the past, since rockfall 

volumes were obtained from direct measurements or by calculating volumes for single block 

at a time from digitally acquired data. Maerz, N., et al., (2012) in his recent research was able 

to measure and quantify the change in volume on sites exhibit raveling rockfall type, one of 

the most challenging types of rockfall and difficult to quantify. Raveling failure is unlike other 

rockfall types, it is dependent on the weathering conditions. Robust software was developed 

at Missouri University S&T, was utilized  in  rockfall volume determination, and was further 

applied in research by Kassebaum, T., 2013 to obtain a Master’s degree. Rockfall volume data 

obtained in this study was correlated with rockfall triggering events, such as freeze and thaw 

cycles, precipitation levels, and seismic (blasting) data.  
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3. METHODOLOGY 

 

3.1. SITES SELECTION 

For this research, three sites were selected for the reasons listed below:  

The Habs mountain road is important in connecting the many villages with the main road 

(Elidabi) and the highway (Figure 3.1). 

 

 

Figure 3.1. Location of three sites on Habs Mountain Road, selected for study (After: Google   
Earth)  

 

The study area is characterized by different types of road cuts, including one cut in 

massive rock, another cut in a loose assemblage rock and a road cut through a debris flow 

deposit. 
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For comparison? Moreover, using LiDAR will allow comparison of rock fall volume 

for the three different sites.   

The high degree of rockfall risks associated with this road on people and properties.  

 

3.2. LOCATIONS DESCRIPTIONS 

The field data for this study was collected at three sites located in southeastern Jazan, 

Saudi Arabia.  

Site A1, located at 170 22’ 37.85”N and 430 12’ 11.42”E, and has width of 23 m, and 

height of 24 m (Figure 3.2).  

This site is characterize by two sections, lower of which is stable near vertical hard 

rock, approximately 2.5 m in height, and an upper lower angle section representing a block in-

matrix (channel), extending to the top of the outcrop. 

 

 

 Figure 3.2. Location of Site A1  
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Site A2 is located at 170 22’ 47.2” N 430 11’ 56.1” E. The outcrop selected, has a width 

of 19.15 m and a height of 19.5 m (Figure 3.3). It is characterize by disintegrated blocks of 

rocks at its upper part and regolith covering the lower part.  

 

 

 

 

 

 

 

 

 

 Figure 3.3. Location of selected Site A2  
 

Site A3 is located at 170 22’ 42.9”N and 430 11’ 40.05”E, and have width of 20.6 meters 

and height of 23.5 meters (Figure 3.4). This site characterized by jointed rocks. 

 

 

 Figure 3.4. Location of selected Site A3  
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3.3. INSTRUMENTS AND DATA COLLECTION 

The equipment utilized included a ScanStation II®, tripod, tribrach, laptop computer 

with the Cyclone® program, generator, power supply for LiDAR and computer, and Ethernet 

connection cable (Figure 3.5). 

 

 

Figure 3.5. The picture shows the equipment used in collecting data  

 

_______________________________________  

® Cyclone and ScanStation II   are registered trademarks of Leica Geosystems 
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The start and end of each site was mark by spray paint and the distance was measured 

using a measuring tape. The height was obtained using a clinometer.  

The scan resolution for each site was selected based on the site size (width and height) 

of the cut and the processing limitations of the software used. The location of the LiDAR was 

set using fixed metal stakes for sites A2 and A3 and by using red spray paint for site A1, to 

assure repeated precise data collection (Figure 3.6) 

  

 

 

Figure 3.6. Fixed locations assigned for LiDAR ScanStation II for repeat scanning  

 

The tripod and ScanStation were levelled using the tribrach bubble, although the 

complete leveling importance decreases with the increasing size of scanned object. On the 

other hand, the registration process developed for this project, does not need leveling of the 

scanner.  
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Following the determination of the LiDAR setting, the distance between the LiDAR 

position and the target outcrop was determined by clicking on “Probe” in the ScanStation II 

software. The probe function displays the distance from the LiDAR to the center of the 

scanning domain window. This distance is required later during processing. The data 

parameters for the three study sites shown in Table 3.1, below: 

 

Table 3.1. The data collected for the three study sites. The scan resolution was manually 

chosen dependent on the estimated time for scanning. 

 

 

The final step in the data collection was the scanning of objects at different dates, 

collected from the same scanner position, saved as raw data.  

 

3.4. LIDAR DATA (POINT CLOUD) 

The data obtained by LiDAR scanners in its simplest form, are measurements of the 

(XYZ) distance’s, and the light intensity (I), reflected from a scanned object (Figure 3.7) 

 

 

 Figure 3.7. Intensity image created from site A2 using ScanStation 2  
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These measurements are collected for millions of points, which ultimately forms a 

cloud-like data set that can be presented in an RGB color format using the photography 

integrated in LiDAR scanners (Figure 3.8). 

 

 

 Figure 3.8. RGB image created from site A2 using ScanStation 2  
 

3.5. EXPORTING DATA 

Although, point cloud data can be exported to different file formats, Missouri S&T 

developed software uses the (.pts) format for further processing of the point cloud data. each 

point in the point cloud is represented by a single line in the pts file (Figure 3.9) 

 

 

 

Figure 3.9: pts file format (x,y,z, intensity, R,B,G) 

 

3.6. WORKING FILE STRUCTURE  

The S&T LiDAR software converts the raw point cloud data to a depth image format 

projected on a spherical surface. This depth image is 4300 cells wide and 3400 cells in height. 
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Each cell represents a single point in the LiDAR point cloud, and contains the distance, 

intensity and RGB color values of that point. The working file format is stored in binary for 

processing efficiency.  

 

3.7. DATA PROCESSING 

 The data obtained from LiDAR scans were converted into (.pts) file format. A C++ 

program developed by (Boyko, K 2012) at Missouri University of Science and Technology was 

used to process the data and determine the volume of rockfall.  Processing of data conducted 

through a series of steps, explained in a flow chart (Figure 3.10). 

 

 

 
 Figure 3.10. Flow Chart of Data Processing  
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The ultimate goal of the processing is to clean the data, geo-reference subsequent 

scans, and compute the volume of rockfall. The steps included:  

(1) Cyclone  

The Leica cyclone software is used to control the LiDAR  scanner during data 

acquisition and to export the data. 

(2) FindMinMax  

FindMinMax determine the xyz values for the range of the point cloud in both the 

vertical and horizontal direction were first determined for each cloud scan for the pre-loaded 

(.pts) raw data, with the first scan considered as the reference frame for subsequent scans.  

(3) Load  

The load step creates grid/mesh of the raw point data, with a resolution consistent 

with the resolution use for scanning. This step also fills in empty cells in the grid by 

interpolation.  

(4) Register 

Register is a crucial step, in data processing, in which subsequent LiDAR scans were 

co-registered to the highest precision (Figure 3.11). The user selects four conjugate control 

points in each scan. These are used to compute a 7-parameter 3D conformal transformation 

to translate all scanned data to the coordinate system of base date.  

    

 

 

Figure 3.11. Split Screen Registration Process. The smaller box shows how well the two points 
correlated with one another  
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(5) ElimVeg  

ElimVeg detects and eliminates the spikes in data caused by vegetation using 

specialized filters developed at Missouri S&T. The virtual articulating conical probe algorithm 

can identify and eliminate thin vegetation, while preserving the sharp edges of rocks  (Figure 

3.12). 

 

 
 
Figure 3.12. The figure shows vegetation before removal (right) and after removal (left)  

 

(6) Diff  

Diff creates a difference surface, by subtracting one registered scan from another. This 

difference surface is created by performing cell-by-cell subtraction. In theory, this will result 

in negative and positive values that represent the fallen blocks, in one hand and the positive 

value on the other hand representing the accumulated debris. 
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(7) CalcVol 

CalcVol is the final step for calculating the volume of fallen rocks, but prior to volume 

calculation a number of possible errors need to be assessed, which include artifacts, the 

incomplete removal of vegetation, location and scan date discrepancy and scanner accuracy 

and configuration. 

It is very important to notice that, the positioning of the LiDAR scanner in the same 

location, and the high precision of image – to –image co-registration, will produce highly 

accurate volume calculation results (see Appendix A for detailed steps).    
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4. RESULTS 

Scanning of three study sites was conducted between 28 June and 12 October 2013. 

The scans were processed and the results shown in Figure 4.1 to Figure 4.23 

 

4.1. SITE (A1) 

 

Figure 4.1. Difference between Scan 1 (6/28/2012) and Scan 2 (6/29/2012) of site A. The 
white color captured in this image is due to high value of check root mean square error (RMSE) 
of co-registration (7.8 mm)  

 

 

 

 

 

 
 
 

 
 Figure 4.2. Histogram equalized color image of difference surface for 628-629, red is reported 
gained material, green is no change & blue is reported lost material 
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Note the color gradient from the lower left to the upper right. This indicate slight tilt 

in the registration of the 629 surface. Examining the 3D residuals from 629 to 628 registration 

the overall RMSE = 7.8 mm and the individual control point residual were as follows: 

 

 

Figure 4.3. Control point 3-D residuals 

 

 

Figure 4.4. Difference between Scan 1 (6/28/2012) and Scan 3 (6/30/2012) of site A1, shows 
a more realistic amount of lost material due to high precision of co-registration (RMSE = 2.6 
mm) 
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Figure 4.5. Histogram equalized color image of difference surface for 628-630, the large 
vertical red stripe is an anomaly caused by a passing vehicle. This anomaly will be masked out 
prior to volume computation 

 

Note the lack of a color gradient across the image. This indicates that this registration 

is better than the registration of the first scanning. This can be verified by examining the overall 

3D residuals, which was 2.6 mm and magnitude of the individual control point residual were 

as follows: 

 

Figure 4.6. Control point 3-D residuals 
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3D residuals are indicative of the overall “fit” between two sets of observations. The 

registration process uses 7- parameter conformal transformation capable of applying three 

transformations, three rotations, and a universal scale factor. The 3-D RMSE residual indicates 

how well the 3-D “shape” from the base-date observations fit the “shape” of the later-date 

observations. 

 

 

Figure 4.7. Difference between Scan 1 (6/28/2012) and Scan 4 (7/02/2012) of site A1, show 
increased loose material ( white ) 

 

 

Figure 4.8. Difference between Scan 1 (6/28/2012) and Scan 5 (8/23/2012) of site A1, show 
considerable increase of loose materials (white) 
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Figure 4.9. Histogram equalized color image of difference surface for 628-823 

 

Note the gradient color from top to bottom tilt caused by high residual control point 

on the lower edge and the individual control point residual were as follows: 

  

 

Figure 4.10. Control point 3-D residuals 
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Figure 4.11. Difference between Scan 1 (6/28/2012) and Scan 6 (9/12/2012) of site A1, show 
considerable decrease of loose materials (white) from previous scan (4) 

 

 

Figure 4.12. Histogram equalized color image of difference surface for 628-912 

 

Note the gradient color from bottom to top (opposite of the previous scan, as in 

(Figure 4.12) tilt caused by high residual control point on the lower edge and the individual 

control point residual were as follows: 
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Figure 4.13. Control point 3-D residuals 

 

4.2. SITE (A2) 

 

 

Figure 4.14. Difference between Scan 1 (6/28/2012) and Scan 2 (6/29/2012) of site A2, shows 
traces of loose material (white) 
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Figure 4.15. Difference between Scan 1 (6/28/2012) and Scan 3 (6/30/2012) of site A2, shows 
increase in lost material amount (white) 

 

 

Figure 4.16. Difference between Scan 1 (6/28/2012) and Scan 4 (7/02/2012) of site A2, shows 
slight gained material (red), and increase in lost material (white); more pronounced compared 
to scan number 2 
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Figure 4.17. Difference between Scan 1 (6/28/2012) and Scan 5 (8/23/2012) of site A2, shows 
slight increase in gained material (red) and slight increase of lost material (white) compared to 
scan number 3 

 

 

Figure 4.18. Difference between Scan 1 (6/28/2012) and Scan 6 (9/12/2012) of site A2, shows 
slight decrease in gained material (red) and slight decrease of rock fall (white) relative to scan 
number (3 & 4) 



37 

 

   

 

 

4.3. SITE (A3) 

 

Figure 4.19. Difference between Scan 1 (6/28/2012) and Scan 2 (6/29/2012) of site A3, shows 
no change in slope face of outcrop 

 

 

Figure 4.20. Difference between Scan 1 (6/28/2012) and Scan 3 (6/30/2012) of site A3, show 
no change in slope face of outcrop 
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Figure 4.21. Difference between Scan 1 (6/28/2012) and Scan 4 (7/02/2012) of site A3, shows 

traces of lost material (white) 

 

 

Figure 4.22. Difference between Scan 1 (6/28/2012) and Scan 5 (8/23/2012) of site A3, shows 

traces of lost material (white) 
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Figure 4.23. Difference between Scan 1 (6/28/2012) and Scan 6 (9/12/2012) of site A3, shows 
insignificant amount of gain (red) and slight change of lost material (white) 
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5. DISCUSSION 

 Results obtained by this study for site A1 and A2, as displayed in Figure 4.1 to Figure 

4.18, indicate different degree of hazard due to rock fall on Habs road. 

Figure 4.1 of site A1 represents the reference scan, and it shows traces of lost material 

in the upper right corner of the scan. Due to coarse co-registration of images, indicated by the 

high value of RMSE (7.8 mm), the lost material (white) is not real value for the scan conducted 

between 6/28/2013 and 6/29/2013. The scan conducted in the following day for site A1 

(6/30/2013), showed removal of material only recorded in 6/29/2013. The primary reasons 

for this removal attributed to the high precision of co-registration. Other factors that 

contribute to gain and/or loose of material, include climatic factors, were rain fall carries soft 

material through joints and fractures to subsurface forming slippery surfaces, and differential 

heating by sun  leads also to rock cracking . Animal on the other hand affect loose and gain 

by moving loose material into voids, while wind can also have the same affect by sweeping 

transportable earth material into voids or remove the material binding rocks together  . These 

factors affect the scan results by re-working the material, and could lead to filling the 

depressions or further excavate voids. On the other hand, the material transported down 

slopes to the ground surface, in relatively steep slope faces.  The study area falls within a region, 

which experiences frequent earthquakes that often felt by the population, and recorded by 

earthquake recorders. During my research in 2012, there has been no earthquake activities.   

These earthquakes would likely affect the stability of slope faces materials and may 

cause falling loose material.  
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Of the main factors that explains the increase in lost material in Site A1, is the block-

in-matrix nature of this site, in which large blocks dominate its upper section, whereas its lower 

part is relatively stable.  

This research suggests that the upper part of Site A1 was probably a paleo channel, 

where large trimmed blocks occupy the base of the upper part, and the smaller, softer materials 

occupy the upper part (Figure 5.1). The results of site A1 are shown in (Figure 5.2).  

  

 

 

 

 

 

 

 

Figure 5.1. Suggested paleo-channel location of Site A1 

  

 

Figure 5.2. Site A1 shows the amount of lost/gained material during scan dates, measured in 
liters 
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Figure 4.1 showed false increase in the reported volume material lost (105 liter) that 

dropped to the real volume count of 0.35 liter in the following day scan. Increase in reported 

volume continued to a maximum value in the 4th scan to reach 695 liter for this site. The last 

scan (6), showed decrease in reported volume, compared to previous scans (Figure 4.11), 

which could be attributed to the reasons stated previously.           

Site A2 consist of a relatively medium to small blocks that primarily represent 

disintegrated meta-sedimentary rocks. The sharp edges of these blocks indicate its high-grade 

metamorphism and its less susceptibility to weathering processes (Figure 5.3).  

 

 

Figure 5.3. The picture shows Site A2, where sharp edge, disintegrated blocks of Basalt 
dominating the location 

 

Similar to site A1, site A2 displayed linear, steady increase of lost material from 150 

liter to maximum of 588 liter (Figure 5.4).  Fluctuation for gained material (0, 11, 2, 45 & 43), 

could be attributed to fill of voids by unconsolidated material. 
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Figure 5.4. The figure shows the amount of lost/gained material for Site A2 during scan dates, 
measured in cubic liters 

 

Site A3 This site is different from both site A1 and A2 in that it is composed of massive 

Meta-sedimentary rocks (Figure 5.5), and scans conducted on this site showed no lost volume 

change in material in second and third scan (Figure 4.20 and Figure 4.21). a slight increase of 

lost material was recorded in the 4th and 5th day of the scan, while noticeable increase of lost 

material (10 Liter) recorded in the last scan (Figure 5.6). No change in gained material was 

observed in this site in the scans conducted in the 1st, 2nd, 3rd and 4th scan, with the exception 

of the 5th and 6th scan days, where slight increase in gained material was recorded. The massive 

nature of this road cut was the major cause of stability of this section of the road, despite the 

possibility of the occurrence of major and disastrous rock failures in occasions of effective 

earthquakes or due to extension of fractures to great depths and presence of lubricated slip 

surfaces.    
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Figure 5.5. Location of site A3, representing massive meta-sedimentary rock formation 

 

 

 

Figure 5.6. The figure shows the amount of lost/gained material during scan dates, measured 
in liters in site A3 
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6. CONCLUSION 

 
 No previous measurements of rockfall volume counts were conducted in this study 

area. So could that be used for reference and comparison with the findings obtained by this 

research. Traditional rockfall volume count, as mentioned in literature, have a number of 

limitations such as inaccessibility and safety, and as well, prone to human errors, since studies 

require measuring irregular shapes of rocks. On the other hand, there are difficulties covering 

relatively large areas, as this require considerable number of working force, capital, and 

logistics. 

   The use of LiDAR in this research helped in resolving the major issues, deemed 

difficult using traditional methods. The study highlighted a number of points: 

 

(1) In steep sloping road cuts, voids left by falling blocks could possibly be refilled by 

loose material falling down from higher above, otherwise, falling rocks reach state of stability 

when they rest on the ground surface 

(2) The program developed at Missouri University of Science and Technology successfully 

utilized in obtaining precise measure for lost and gained material. 

(3) Modifications on the program by considering slope steepness and the other factors 

(animal trampling, human activity, rainfall wash and wind) added to the refinement of the 

results and increased accuracy.  
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7. RECOMMENDATION 

This study recommends: 

A- Engineering solutions  

1- Data collection need to be extended for a year to cover different climatic conditions, and 

number of scans need to be increased to allow for better interpretation and testing of the 

significance of  LiDAR as a tool for rockfall volume count  

2- Site A1 requires:   

 Constructing deep and wide ditches, with the base of the ditch be covered by a layer 

of gravel to absorb the energy of falling rock. 

 Installation of double twisted wire mesh blankets for the upper part of the road-cut. 

 Installations of Warning signs 

3-Site A2 requires: 

 Installation of perpendicular flexible rock fall fence at the lower end of road cut, to 

collect the frequently falling rock blocks from the slope. 

 Frequent cleaning of fence   

4-Site A3 requires: 

 Scaling of loose materials. 

B- Recommendations applicable to data acquisition and processing 

 The study recommends increasing image resolution by changing scanner resolution 

setup from 6, 8 and 10 mm (used in this study) to 3,4 or 5 mm 

 For perfect co-registration, use of spherical fixed targets are superior over unstable 

flat surfaces or points (applied in this study), in producing extremely accurate image-

to-image co-registration.  

 The study recommends changing the maximum value of (RMSE) to ~0.5 instead of 

to 1.5, such that, ScanStation II pixel resolution of 4.0 mm, produce co-registration 

discrepancy of 2.0 mm instead of 6.0 mm. 
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 This study recommends increasing the number of control points to minimum of 9 

points, distributed on the corners, the middles sides of rectangle, and a point at the 

center of the scanned area.  
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 Major Software Modules 
 

 Site Selection 
 

 Acquiring a Scan  
 

 Exporting Data from Cyclone  
 

 Detailed Instructions for each Software Module  
 

◦ ckrmse 
 

◦ regpts 
 

◦ findMinMax 
 

◦ load 
 

◦ register 
 

◦ elimVeg 
 

◦ diff 
 

◦ calcvol  
 

◦ view2Surf  
 
 
 
Focus of Missouri S&T Lidar Software  
 
The focus of the Missouri S&T Lidar software is change detection.  Applications which require 
static measurement of large complex objects could probably be fulfilled using Cyclone alone.  
However, if quantitative measurements of change (volume determination) are required, the 
specialized functions developed within the suite of the Missouri S&T software may be of value. 
 
 
Overview of S&T Lidar software 
 
The basic approach used in change detection is to acquire a high-resolution Lidar scan at two 
different dates, subtract them from one another to create a 'difference' surface, and analyze 
that difference surface for the changes which occurred over time.  While simple in concept, 
there are several processing steps required to accomplish this task.   
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First of all, when Lidar data is acquired, it represents the object being scanned with millions 
of (x,y,z) triplets based on a local coordinate system that physically depends on how the Lidar 
unit was set up.  In other words, every time the Lidar unit is set up for a scan, it will be in a 
slightly different position and orientation relative to the object being scanned, and a slightly 
different coordinate system will be used for object representation.  Therefore, before the two 
Lidar datasets can be subtracted from each other, they must be brought to the same coordinate 
system.  This process is called registration, and is accomplished by one of two methods within 
the Missouri S&T Lidar software. 
 
Secondly, the raw point-cloud data exported from Cyclone, at least in the xxx.pts format, is 
highly unstructured.  It can be viewed as a random bucket of (x,y,z) triplets in no particular 
order.  It would be meaningless to attempt to subtract one unordered bucket of points from 
another – some degree of structure must be created before the data can be manipulated by 
higher-order functions such as surface subtraction.  The findMinMax and load programs are 
responsible for providing the required structure to the Lidar data to support further 
processing.  
 
Finally, there are many data artifacts that must be dealt with if accurate change volume is 
desired.  For example, vegetation within the scene may introduce false changes due the fact 
that it is changing in position (blowing in the wind) both during the scanning operation, and 
between scanning dates.  It may itself be growing in volume, which would introduce significant 
error if not dealt with.  Other artifacts are caused by vehicles, insects, falling leaves, birds, or 
other things passing between the Lidar and the object being scanned during a scanning 
operation.  These situations cause large spikes in the Lidar surface which must be removed 
prior to volume determination.  
 
While some of these artifacts may be easily removed manually within Cyclone using the basic 
fencing functions provided, the more complex artifacts are difficult to remove.  For example, 
small tufts of vegetation embedded within rock coves would be very difficult or require too 
much time to remove manually.  Further, the inconsistency of manual removal would 
introduce additional error in the surfaces.  The Missouri S&T Lidar software provides some 
automated approaches to deal with many of these practical processing issues. 
 
Linux development environment 
 
The Missouri S&T Lidar software is being developed primarily within the Linux operating 
system, due to the several advantages that Linux offers for research-oriented software.  No 
other commercial libraries are used in the suite – only freely available libraries such as OpenCV 
and OpenGL are used.   
 
The software is written in C++, using the GNU GCC compiler.  Everything in the entire 
software suite is platform-independent, meaning that while the development is primarily 
conducted within Linux, there is nothing preventing the porting of the software to other 
operating systems, such as Windows. 
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Some of the more computation-intensive software is in the process of being converted from 
the original single-thread, single-CPU implementation to a parallel environment involving 
several CPU's and  GPU's.  These parallel ports are research in nature and in some cases, has 
resulted in improvements in performance over two orders of magnitude.  Due to the 
specialized hardware (Nvidia GPU cards) and software (CUDA development environment), 
the parallel versions of selected software modules will most likely remain in a research 
environment.  The primary operational environment for most of the Lidar applications will 
continue to be within the Windows environment – simply because this is the most common 
environment within the Lidar Applications Team. 
 
 
 
Windows port of software 
 
A windows port of this research code was created during the spring of 2013 using the latest 
version of the software.  This port represents a snapshot of the May 2013 version.  The port 
was created using Visual Studio Express 2010 and currently runs on both Windows 7 and 
Windows 8 operating systems.  
 
Being research-oriented code, the port was mainly focused on providing similar functionality 
to the Windows environment as currently exists within the Linux version.   Since most of the 
Linux software operates in terminal windows, the Windows version currently operates 
similarly – as a console application.   The next Windows port will most likely be wrapped in a 
Graphical User Interface (GUI), thus, making it appear more like mainstream Windows 
applications.   
 
 
Software License 
 
The software is being released (executables only) to the Saudi Geological Survey (SGS) for 
research and/or academic use only.  The software is not licensed for any commercial 
applications.  The software executables may be copied to any SGS government computer 
system as long as the terms of the license release are honored. 
 
The software has undergone basic technical testing of the algorithms, but has not been 
certified for applications involving assessment of risk to human health, life, or property.   
 
The Missouri University of Science and Technology assumes no liability for use of this 
software outside it's intended research-oriented purpose.  
 
Differences between research and consumer-oriented software 
 
It is important to stress that the Missouri S&T Lidar software, at this stage, is still primarily 
research-oriented code.  The following table highlights some differences between research-
oriented software and consumer-oriented software: 
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Characteristic  Research-oriented software  Consumer-oriented software  

   

Focus Algorithm development 
Ease of  use, simplifying complex 
functions to make them accessible to 
the public at large 

Operating 
environment 

Terminal-based 
Graphical User Interface (typical 
Windows environment with drop-
down menus, dialogs, wizards, etc) 

Target user  
Programmers, technical 
developers 

Users with varied backgrounds, may 
be non-technical 

Error trapping Minimal and cryptic 
Extensive hand-holding and 
anticipation of  common user errors 

Progress messages 
Extensive and tied to internal 
implementation 

Minimal and usually in form of  
graphical 'progress' bars 

Setup 
Run-time parameters and 
manually-built configuration 
files 

Wizards, dialog boxes, menus, 
option preferences 

User-base Small Large 

Flexibility / 
Adaptability 

High – constantly being 
modified to handle newly 
discovered requirements 

Low – capabilities static within a 
release 

Frequency of  New 
versions 

At times, hourly – highly 
dynamic 

Infrequent - yearly 

Stability 
Bleeding edge versions can be 
unstable, longer term builds 
more stable 

Very stable 

Degree of  testing 
before release 

Variable – long term versions 
are  tested for technical cases 

Extensive – formal testing against 
extreme conditions to handle just 
about any anticipated circumstance.   

Expertise of  User  High – usually the developer  Low - Software is made idiot-proof. 

   

 
The Windows port was created to make this research-oriented software accessible to other 
research-oriented individuals and organizations.  The Windows port does not represent any 
intent to move the state of this software towards a consumer orientation.  That may occur in 
the future, but the current state of both the Linux and Windows implementations of this 
software is still primarily research-oriented. 
 
Characteristics of Lidar data 
 
The ScanStation-II Laser Lidar Scanner is a surveying instrument which creates highly accurate 
'point cloud' data of an object.  When in scanning mode, the Lidar sends out pulses of laser 
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light, and for each pulse, keeps track of the time it takes the pulse to leave the Lidar, reflect 
off some object, and return to the Lidar – this is known as time-of-flight.  Knowing the speed 
of light in air, the Lidar calculates the distance from the Lidar to whatever the pulse hit.  The 
Lidar also keeps track of the horizontal and vertical angles of the laser beam – this, together 
with the time-of-flight determined distance allows the Lidar to compute a precise (x,y,z) 
coordinate of where the pulse hit on that object. 
 
The Lidar sends out approximately 15,000 pulses per second.  While the pulses are being sent 
out, an oscillating mirror directs the pulse train up and down.  In addition, while the vertical 
mirror is oscillating, the whole unit slowing revolves.  This results in a relatively equally spaced 
pattern of points being established on the surface of the object being scanned.  The point 
cloud density can be controlled by the user, and usually represents a point density of 5-20 mm 
spacing between the points in both the horizontal and vertical directions.  The collection of 
points collected during a scanning operation is known as a point cloud. 
 
In just a matter of a few minutes, the Lidar is capable of collecting millions of points describing 
the outside surface of an object.  For each point, the data collected include it's 3-D coordinate 
(x,y,z) in some local coordinate system, the intensity return (a number indicating how much 
energy was detected on the return path), and the color of the object hit as represented by three 
color values – a red, green, and blue (RGB) color representation. 
 
The spatial coordinates (x,y,z) are in a local coordinate system defined by how the Lidar was 
set up.  The Lidar is always at position (0,0,0).  The positive Y axis is in the direction the Lidar 
is pointing at it's 'home' position.  The positive X axis is aligned to the right of the Lidar 
(normal right-hand coordinate system).  The positive Z axis is 'up', relative to the actual 
orientation of the Lidar.   If care is taken to level the Lidar unit, the positive Z axis points up.  
If the Lidar unit is not level, and Z axis may not represent a vertical direction.  The user can 
select any units for the spatial coordinates, but normally, the units are defined to be in 
millimeters.   The spatial coordinates are represented by floating point numbers usually to at 
least 3-4 decimal places.  The accuracy of these points depends on their distance from the 
Lidar, but are usually within a few millimeters for distances under 30 meters. 
 
The intensity return is an integer that ranges from approximately -2000 to +2000, and 
represents the relative brightness of the object at the point where the laser beam hit.  In reality, 
it can be thought of as the albedo (reflectivity) of the object at the wavelength of the laser 
(green laser light).  The intensity return is relative reflectivity value – highly specular (mirror) 
surfaces reflect the laser pulse off to some other direction, so no energy is ever returned to the 
Lidar unit.  These points tend to have very dark intensity.  Flat white, or retro-reflective 
materials, such as reflective tape, tend to have very high intensity return values, since much of 
the original pulse energy is returned.   
 
The color information (RGB values) are derived from a separate lower-resolution color camera 
used to acquire preview images prior to scanning.  While these images are useful for planning 
the actual scan, they are less useful for analytical use because of slight miss-registration 
between the RBG image and the actual object.  Up to 1-2 cm of image shift has been observed 
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in the RBG image.  Therefore, the RGB images should never be used for analytical purposes 
– they are mainly to be to the set-up for a scanning session. 
 
The RGB values are unsigned positive integers with 8-bit domains (values vary from 0 to 255).  
Colors are represented by the relative value of these three numbers, for example, red would 
have RGB values of (255,0,0).  RGB values for common colors are as follows: 
 

Color Red value Green value Blue value 

    

Red 255 0 0 

Green 0 255 0 

Blue 0 0 255 

Magenta 255 0 255 

Cyan 0 255 255 

Yellow 255 255 0 

Black 0 0 0 

Dark Gray 80 80 80 

Light Gray 160 160 160 

White 255 255 255 

 
The points in a Lidar point cloud represent the 'first return' for each pulse of laser energy sent 
out.  More sophisticated Lidar systems employed in aerial acquisition platforms typically 
record multiple returns per laser pulse.  Having the whole 'return waveform' enables analysis 
of the texture and transparency of the object being scanned – for example, when forested 
areas are being scanned with a multi-return Lidar, some indication of the forest structure 
(height of canopy, density of undergrowth, forest floor) can be ascertained from the multiple 
returns.  Since the ScanStation-II Lidar is a single-return device, each point represents the 
spatial and reflective properties of the first object hit by each pulse.   
 
If some other object drifts in front of the laser beam during a scanning operation, there will 
be anomalous points within the point cloud data.  These points, floating in space between the 
object being scanned and the Lidar unit are most often caused by small insects, falling leaves, 
or other objects that happen to drift into the field during an active scan.   
 
Frequently when scanning rock cuts along a road, the Lidar unit is set up across the road to 
obtain a good view of the whole area under study.  With this set-up, it is common for vehicles 
to pass in front of the Lidar during the scanning operation, especially if a very fine resolution 
is being used, and the scan takes several minutes to complete.   
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All of these types of data artifacts must be removed prior to quantitative analysis because they 
introduce large spikes in the data.  Many of the simple artifacts, such those caused by passing 
vehicles or flying insects can be easily removed using the 'polygon fence' and 'delete outside'  
functions available within Cyclone.  However, more complex artifacts, such as those caused 
by wind-driven moving vegetation or insects flying within a rock cove cannot be easily 
removed with the basic edit tools available within Cyclone.  To detect and remove these types 
of artifacts, the program elimVeg can be used. 
 
Random spatial ordering in point cloud data 
 
Since the points are collected in sequence, one might expect that the individual points in a 
point cloud file would be in some regular order – related to the sequence in which they were 
collected.  With Leica ScanStation-II data in the xxx.pts format, this is not the case.  While the 
points seem to follow large-scale ordering, on a micro-scale, the point order in the file is not 
related to the point's spatial position or sequence of acquisition.   This makes it necessary to 
spatially order the points into a regular mesh.  The spatial ordering of raw points into a 
complete mesh is the function of the programs findMinMax and load. 
 
 
Mirror swing inertia error 
 
On sharp horizontal edges, a small timing error relating to the position of the vertically 
oscillating mirror results in adjacent columns in the point cloud being slightly offset from each 
other – appearing similar to an interlace offset.  This effect is minor, and results in points 
vertically out of position by as much as one or two cell units, where the cell unit is equivalent 
to the scanning resolution.  This error cannot be accurately modeled – it is only mentioned  as 
a reminder that the raw point cloud data has a few natural visible anomalies, this being one of 
them.  The interlace error occurs on horizontal edges only, and does not affect vertical edges: 
 

 
 
Lidar Export Data format 
 
The Missouri S&T Lidar software uses  Lidar data exported from Cyclone in the Leica PTS 
format.  This is a simple ASCII text format where each point in the point cloud is represented 
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by a single line in the file.  For each point, seven data elements are presented:  the (x,y,z) 
coordinates of the point, the intensity return, and the (R,G,B) color of the point.   
 
The xxx.PTS files can be rather large – a point cloud dataset consisting of 4 million points is 
typically 250MB in size.  While these files can be viewed in a simple text editor such as 
NotePad, because of their size, the NotePad application either runs very slow, or hangs up.  If 
the user wishes to cancel a hung-up application, the Windows Task Manager can be used to 
halt and end the NotePad application. 
 
 
Directory structure 
 
The directory structure for Lidar data processing is as follows: 
 
C: 
    Users 
        Username      (this will vary – depending on the name of the user) 
            OutcropData 
                Site1 
                Site2 
                Site3 
                   . 
                   . 
                   . 
                Site202 
                Site203 
                 (etc) 
   
OutcropData is the highest level directory for all Lidar data.  Each 'Site' represents a 
geographic location under study.  Sites are named using a number; sites cannot have names 
like 'Site1-a' or  'site red rocks'.   
 
Sample Directory Structure: 
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Each site has a fixed number of directories for representing the Lidar data at different phases 
of processing.  For example, when the xxx.PTS files are first exported from Cyclone, they are 
copied into the 'pointFiles' directory.  After the findMinMax and load programs are run, the 
meshed Lidar data is written to the 'meshed' directory.  The 'registered' directory contains 
Lidar data that has been run through the registration process.  After vegetation is eliminated, 
the resultant Lidar data is written to the noVeg directory.  The various 'pix.....' directories are 
used to store pictures generated at various points in the processing.   
 
In addition to the directories established for each site, there are two configuration files – 
resolution and sitexVegRemoval.  These are set-up files which control the behavior of the 
load and elimVeg programs. 
 
The resolution configuration file contains user-set options to define how the Lidar data is to 
be loaded.  Important data elements such as mesh resolution and mapping options are defined 
in this file.   
 
The sitexVegRemoval  configuration file contains user-set parameters that define how the 
vegetation elimination program is to operate.  This file is automatically generated after the first 
time elimVeg is run on any dated dataset in a site, and contains a saved copy of all the slider 
settings established by the user during the interactive elimVeg session.  When elimVeg is 
subsequently run on all the other dated datasets in the site, this file is used to apply the same 
saved slider settings to those datasets. 
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The 'Sitexxxx' directory can be used as an empty template to copy and rename if additional 
sites are desired.  For example, if the user wishes to create a new site numbered 243, the 
following steps can be taken: 
 

1. Copy Sitexxxx directory  
2. Paste to OutcropData directory 
3. Rename 'Copy of Sitexxxx'  to 'Site243'  

 
 
Now Site243 is established with a fresh set of empty directories.  Make sure that the file 
resolution.config is updated to reflect the processing parameters desired for this new site. 
 
Each site represents a single geographic area under study.  The spatial domain (scanning 
boundaries) and scanning resolution will always be the same for all scans conducted on a site.  
Any number of dated scans can be inserted into a site.  For example, if site 267 was scanned 
each week for one year, the pointFiles directory for site 267 would contain 52 xxx.PTS files 
(exported from Cyclone).  Each PTS file would have a name which encodes the date and site 
in the following format: 
 
yyyy-mm-dd-s.pts    
 
For example, the scan from April 23, 2013 would be named:  2013-04-23-267.pts 
 
Internal data structure – the xxx.bin files 
 
Within each of the directories holding Lidar data such as such as meshed, registered, noVeg, 
files with a 'bin' extension are used to represent the Lidar data.  These files cannot opened or 
viewed with any program – they are compact binary representations of the Lidar data used 
only by the Missouri S&T Lidar software.   
 
Some computers miss-interpret the '.bin' extension and might lead the user to believe these 
files are video files which can be viewed in a video viewer.  Of course, this is not the case, and 
any attempt to open these files risks damaging them if an application attempts to write to 
them.  Therefore, the '.bin' files should be left alone – they are only to be used used internally 
by the Missouri S&T Lidar software.   
 
 
Mapping Options 
 
There are two options to define how the coordinate system of the pts file are mapped to the 
internal cell-based data structure – spherical mapping and ground plane mapping.  The internal 
cell-based data structure can be thought of an a grid or raster structure (similar to an image 
format) having 4300 columns and 3400 rows.  Each cell within this structure stores 
information about an idealized 'point' within the Lidar point cloud.   
 



60 

 

 

With the spherical mapping option, a grid is laid out on an imaginary spherical surface with 
the Lidar unit at the center of the sphere, and the sphere radius being equal to the probe 
distance used during the scan.   The grid is laid out with the wide dimension (4300 cells wide) 
aligned with the horizontal direction (X-axis of the pts coordinate system), and the shorter 
dimension (3400 cells high) aligned with the vertical direction (Z-axis of the pts coordinate 
system).  Since the grid is projected on a spherical surface, each cell is defined using angular 
units.  This representation model most closely reflects how the Lidar data was actually 
collected, and is the option most often used. 
 
With the ground plane mapping option, the grid is laid out using a normal Cartesian coordinate 
system with the width (4300 cells wide) aligned with the Y-axis of the pts coordinate system 
(+Y facing right) and the height (3400 cells high) aligned with the X-axis of the pts coordinate 
system (+X facing down).    Since the grid is planar, each cell is defined using linear units.   
 
For projects involving change-detection and volume calculation for slopes ranging from 40 
degrees to vertical faces, the spherical mapping option should be used.  For projects involving 
relatively flat areas (subsidence studies), the ground plane mapping option should be used. 
 
Processing limitations 
 
The internal cell structure used for all the programs utilizes statically allocated fixed-size arrays 
for the performance advantages they offer.  The arrays were sized to handle a wide variety of 
research requirements, but do have limitations. 
 
The horizontal extent is limited to 4300 cells, while the vertical extent is limited to 3400 cells.  
The maximum areal coverage for projects depends on the mesh resolution used and these 
limits.  For example, if a mesh resolution of 10mm is used, the software would be capable of 
handling an area 43 meters in width and 34 meters in height.  (4300 cells * 10mm/cell = 
43000mm = 43 meters) 
  
The mesh resolution (in millimeters) multiplied by the number of cells (horizontal and vertical)  
defines the largest area that can be processed.  Alternatively, the actual project width and height 
divided by the applicable cell limits (4300 horizontal and 3400 vertical) would determine the 
smallest mesh resolution at could be used for that site.  For example, if a site had a width of 
85 meters and a height of 75 meters, the smallest computed horizontal mesh resolution would 
be 85000mm / 4300 cells = 19.76 mm per cell.  The smallest computed vertical mesh 
resolution would be 75000 mm / 3400 cells = 22.05 mm per cell.  Therefore, since the cell 
shape is always maintained to be 'square' internally, the smallest mesh resolution that could be 
used for this project would be 22.05 mm per cell (the larger of the computed horizontal and 
vertical mesh resolutions) 
 
It is important to note that the mesh resolution specified in the resolution.config file is quite 
independent of the scanning resolution used during data acquisition.  Normally, the mesh 
resolution is set to the same resolution used for scanning, but this is not strictly necessary.   
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If the scanning resolution is finer (smaller) than the mesh resolution, there will be, on average, 
several lidar 'hits' per cell – and the software will assign the 'depth' of the cell using either the 
closest, farthest, or average of all hits for that cell (this option is also set in the resolution.config 
file).  If the scanning resolution is coarser (larger) than the mesh resolution, some cells will 
receive no hits.  During the load program, the software will detect cells having no lidar 'hits' 
and will determine a depth and color for that cell using a weighted average of the surrounding 
cells that did have hits. 
 
When the scanning resolution is finer than the mesh resolution, the main result is wasted scan 
time, since the preserved object detail can never by finer than the mesh resolution.  When the 
scanning resolution is coarser than the mesh resolution, empty cells will be filled in, but the 
dataset will contain a large amount of artificially created data for these filled cells.  If it is 
important to preserve the maximum amount of original object detail, and minimize scanning 
time, it is best to use a mesh resolution that matches the scan resolution used. 
 
 
Overall flow – programs, inputs, outputs 

There are two overall production flows – one if registration is accomplished using the 

Missouri S&T Lidar software (lidarsw), the other if registration is accomplished using 

Cyclone.  For most situations, the registration method using lidarsw will be faster, easier, 

and just as accurate.  The Cyclone-based method is more manual, more tedious and time-

consuming, but may have slight accuracy advantages in certain circumstances.  The 

Cyclone-based approach is only used in cases where the control points are scanned  

separately at a higher resolution than that used for the rest of the object under study. 
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Lidarsw-based Registration Process 
 

1. Crop Lidar data in Cyclone for consistent left-right and top-bottom borders 
 

2. Export Lidar data using pts format and file naming convention (yyyy-mm-dd-s.pts) 
 

3. Establish a new (empty) site in the OutcropData directory 
 

4. Copy exported pts files to pointFiles directory within the new site just created 
 

5. Review resolution.config to ensure the right parameters are set 
 

6. Run findMinMax for every dated Lidar dataset in the site 
 

7. Run load for every dated Lidar dataset in the site 
 

8. Examine the pixColorAfterLoad directory to ensure all files were processed correctly 
 

9. Manually copy the base-date (earliest date) Lidar binary file from the 'meshed' to the 
'registered' directory 

 
10. For each of the dated Lidar datasets past the base-date, run register to transform the 

coordinates to those of the base date. 
 

11. Run elimVeg on the base-date dataset.  The first time elimVeg is run for a site, the 
program will initiate an interactive session to allow the user to experiment with various 
filter settings.  After this interactive session is completed, all slider values will be saved 
to the file sitexVegRemoval.config – where it will be used when running elimVeg on 
all subsequent dated Lidar datasets. 

 
12. Run elimVeg on the remaining dated Lidar datasets beyond the base-date.  All of 

these runs will be conducted in a batch-mode using the vegRemoval.config file to 
define the operating parameters. 

 
13. Run diff on all the non-base Lidar datasets 

 
14. Examine the pixDiff directory to ensure the difference surfaces were built correctly 

 
15. Run calcvol on all the non-base Lidar datasets 

 
16. Examine the volume results in the volume report sent to the site directory  
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Cyclone-based Registration Process 
 
 

1. Crop Lidar data in Cyclone for consistent left-right and top-bottom borders 
 

2. Establish a new (empty) site in the OutcropData directory 
 

3. Manually read out control points in Cyclone and record the (x,y,z) coordinates for all 
four control points from both before and after lidar datasets. 

 
4. Using NotePad, record the four control points in the following format:  before (x,y,z), 

after (x,y,z), inserting a space between each number.  Make sure to include all signs 
and decimal values.  Save this file to the properly named file in the regObservations 
directory. 

 
5. Run ckrmse to verify that 3-D rmse is under 1.5 times the mesh resolution 

 
6. Export the base-date Lidar data to the site pointFiles directory and use the normal .pts 

extension 
 

7. Export the all the non-base-date Lidar data to the site pointFiles directory, but instead 
of using the .pts extension, use the .after extension 

 
8. Run regpts on all the non-base-date Lidar datasets.  This will create pts files that have 

the same coordinate system as the base-date. 
 

9. Review resolution.config to ensure the right parameters are set 
 

10. Run findMinMax for every dated Lidar dataset in the site 
 

11. Run load for every dated Lidar dataset in the site 
 

12. Examine the pixColorAfterLoad directory to ensure all files were processed correctly 
 

13. Manually copy all the Lidar binary files from the 'meshed' to the 'registered' directory 
 
 
From this point on, the processing is identical to the lidarsw method of registration described 
above.  Pick up at step 11 (elimVeg) of that process. 
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Console operation  
  
For this release of the Missouri S&T Lidar Software, all programs are run in a terminal console.  
In Windows 7, the console can be invoked by: Start > All Programs > Accessories > 
Command Prompt.  Alternatively, the terminal console can be sent to the desktop for easier 
retrieval.  The terminal console window should be maximized at this point to make it easier to 
read all the program messages. 
 
At this point, the terminal will be indicating the name of the current user (C:\Users\Ken>  ).   
In order to run the software, the directory needs to be changed to  'lidarsw'  - this can be 
accomplished using the windows 'change directory' command as follows: 
 
  cd lidarsw <enter>  
 

 
 
Now the user will be in the software directory, ready to run any of the programs. 
 
 
 
Dir command 
 
Once the user is in the lidarsw directory, the 'directory' command can be used to remind the 
user of the actual names of the programs.    
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Running an application  
 
Programs have the extension '.exe' at the end of their name.  To run any program listed after 
the DIR command is run, enter the program name (just the first part – the '.exe' is not 
necessary), followed by the run-time parameters defined for that program. A single space 
should be inserted between the program name and each run-time parameter.  If the number 
or format of the run-time parameters is unknown, the user can either look that information 
up in this software manual, or simply type in the name of the program with no run-time 
parameters.  The required run-time parameters will be displayed. 
 
For example, the run-time parameters for the program view2surf can be determined by typing 
in the name of that program: 
 

 



68 

 

 

 
When a program finishes it's processing with no errors, the message:   'orderly end of 
program'  is displayed to the console.  The user should always look for this message on the 
console output.  If the program stops without this message being displayed, it may be an 
indication that the program encountered an internal fault, which would require some follow-
up investigation to determine the cause. 
 
Stopping an active process 
 
To stop an active process, left click anywhere within the terminal console (if other interactive 
windows are being displayed), hold down the 'ctrl' key, and hit the 'c' key.  This will stop any 
program being run in the console terminal.   
 
When a program is halted in this fashion, the program may be restarted by hitting the 'up' 
arrow key, which displays the last command line from the command line buffer.  Hitting 
<enter> at this point will re-run the program.  This feature uses the command line history 
buffer feature of Windows. 
 
When a program is manually stopped using this process, the normal 'orderly end of program' 
message will not be displayed. 
 
  
 
Major Software Modules 
 
The current release of the Missouri S&T Lidar Software suite consists of nine programs: 
 
ckrmse 
regpts 
findMinMax 
load 
register 
elimVeg 
diff 
calcvol 
view2surf 
 
The full documentation for each program (what it does, how it operates, user instructions, 
examples, screenshots, etc) is covered in the next section of this software manual. 
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Site Selection 
 

 Site should cover area with evidence of recent rockfall activity 

 Site should be relatively void of vegetation – software can handle only thin-stemmed 
and small-leafed vegetation 

 Measure or estimate the width and height of the site and considering the size of rocks 
to measure, the scanning and processing time required, and the processing limitation 
of the software, compute the resolution that should be used for scanning and mesh 
generation.  Use this same scanning resolution for all scans of this site. 

 Find stable, sharp rock corners to use as control points in the four corners of the site 
area. 

 Mark control points with paint if possible to make subsequent recovery easier.  If 
points cannot be reached, take a photo of the site and mark both the boundaries of 
the site and the control points on the photo to ensure that the same site domain is 
scanned for each date. 

 Mark the center of the area with paint if possible to assist with the Lidar set-up 

 Mark position of tripod 
 
 
 
 
 
 
Acquiring a Scan 

 

Set up tripod in pre-marked location 

 Push legs firmly into ground and bring height of the top of tripod to the previously 
recorded height for this site. 
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 Attach tribrach to tripod.  Face the the optical plummet (eyepiece projection) towards 
the previously marked center of the site area. 

 Level the tribrach. 

 Place ScanStation2 unit on top of tribrach. 

 ScanStation2 power supply hookups should be faced away from the rock slope of 
interest, as this puts zero degrees directly center of the rock slope. 

 Secure ScanStation2 to the tripod by engaging the tribrach lidar lock  

 Remove lens covers and unlatch Lidar so rotation is possible. 

 Start generator and then plug in ScanStation2 power supply. 

 Start up laptop and connect Ethernet cable from laptop to ScanStation2.  Secure 
Ethernet cable to something stable at both ends to relieve strain at end-connectors. 

 Open Cyclone on the laptop. 

 To begin a new project a new database should be made.  On the top toolbar, go to 
“Configure”>”Databases...” and add a new database.  Enter the database name 
(twice), hit “OK”, then close dialog box. This step is only needed for the first time 
when starting a project, multiple scans can be done in a single database, and reused 
anytime. 

 Now connect to the scanner. Go to “Scanners”>”ScanStation2” and double click. 
Find the database which was made in step 7, and create a new project folder. Highlight 
new project folder and select ok.  On the top toolbar, go to “Scanners”>”Connect to 
scanner”. 

 Wait for the green light to come on on the Lidar unit. 

 When the “dual axis” message appears, hit “OK” 

 Once the status bar in the bottom left of the Modelspace viewer says “Connected and 
Ready” it is time to gather the image. 

 Make a rough estimate with the field of view, knowing the center of the rock outcrop 
of interest (the direction the optical plummet is pointing to if set up correctly) is zero 
degrees. 

 The field of view can be changed by either inputting numbers into the field of view 
window on the right hand side, or by using the fence mode located in the top toolbar 
(looks like a rectangle). 

 Once the field of view is set up, click “Image”, located at the bottom right of the 
modelspace viewer. 

 Depending on the brightness, the internal camera exposure may need more or less 
light.  This can be adjusted by going to “Image” located on the top toolbar and 
selecting “Adjust Exposure...”.  From here the exposure length can be increased or 
decreased. 

 Next the field of view can be adjusted to the image, so that only the area of interested 
is located within the box.  This can be adjusted using the fence mode. 

 Now probe the distance from the scanner to the center of the area of interested, by 
selecting “Probe” on the right side, in the “Resolution” window.  Once the scanner 
status (located bottom left) says “Probe Completed”, change the “Sample Spacing” to 
the desired point distance.  This measurement is the average distance between points 
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for that probe distance.  Finally hit “Scan” and wait for the scanner to finish (Scanner 
status at bottom left will say “Scan Completed”. 

 If another scan is desired from the same location immediately afterwards, the user can 
press “New ScanWorld” located on the right hand side in the “Project Setup” window. 

 Once scanning is completed for the day, Cyclone should be shut down, and the data 
can be exported back in the office. 

 
 
 
 
 
Exporting Data from Cyclone 
 
 

 Open Cyclone on the laptop, and find the database of interested in the SERVERS 
folder. 

 Open the modelspace which data is located in and trim the point-cloud data to just 
the site area. If rgb data is desired (image color imported onto the point cloud), go to 
“View”>”View Object As...” and then select “Point Cloud” in the dropdown box, 
then select “Color Map...”. This should open another window, where the first 
dropdown box (Mode) should be changed to “Colors from Scanner”. Click on 
“Apply” and then “Ok” and close the property window.  

 Trim the site to consistent left, right, top and bottom boundaries by using the fence 
and delete outside functions. 

 To select all the data, go to “Selection” on the top toolbar, and “Select All”. 

 To export, go to “File”>”Export...” and select the folder the data should go to.  Also 
change the type of file which the data will be exported to: “Text – PTS Format (*.pts)”.  
Then click “Save”. Two clicks of 'save' will be required.  On the second save click, a 
new window should open. Make sure “Selected” is check marked and then click 
“Export”. 

 Wait until the export function is completed before starting any new operation. 
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ckrmse – check root-mean-square error 
 
Purpose 
 
This program examines a manually built registration control-point file and computes the root-
mean-square error.  It also reports the individual control point residuals which is useful for 
analyzing which control points may need to be replaced with better readings. 
 
How to run program and Run-time Parameters  
 
ckrmse site control-point-file-name   <enter> 
 
site: site number 
control-point-file-name : full path name of control point file in Site directory. 
 
Example:  ckrmse 3 july4.txt <enter> 
 
Input Directory for Lidar Data: none – this program does not operate on Lidar data 
 
Other input sources:  Control point file in site directory  
 
Output Directory for  Lidar Data: none – this program does not operate on Lidar data 
 
Other output destinations:  All output is sent to the console. 
 
Control Point file setup 
 
The control point file is manually built using Notepad.  It must be saved as a text file – no 
special formatting characters can be in the file.  Do not use Word or any other higher-end 
word processor – they embed special control characters. 
 
The file has four lines, each line represents a control point.  The order of points doesn't matter, 
but it is best to pick a point order and use that for all processing – this makes analysis of errors 
easier.  It is suggested that the points be collected in the following clock-wise order:  1 = upper 
left, 2 = upper right, 3 = lower right, 4 = lower left. 
 
This file is built using xyz values obtained from Cyclone.  When running Cyclone, it is best to 
make a diagram of the before and after rectangles on a piece of paper, and record the xyz 
values for both the before and after scans on each corner of the diagram.  Then, after values 
for all control points are recorded, type them into Notepad in the proper format. 
 
For each control point, the 'before' x,y,z coordinate values are listed, followed by the 'after' 
coordinate values (six numbers total, with a space between each number)  .  Be careful to 
include all decimal values, and signs.   
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Format: 
 
before-x before-y before-z after-x after-y after-z   (all for control point 1) 
before-x before-y before-z after-x after-y after-z   (all for control point 2) 
before-x before-y before-z after-x after-y after-z   (all for control point 3) 
before-x before-y before-z after-x after-y after-z   (all for control point 4) 
 
Example of control point file: 
 
-2190.59 9311.63 949.83 -2493.02 9233.49 950.82 
807.66 10099.25 1026.48 471.26 10133.49 1025.73 
1070.08 6652.58 -1293.24 856.98 6684.68 -1292.51 
-1831.54 6609.97 -680.88 -2024.04 6526.58 -684.20 
 
The first three numbers are the x,y,z of control point 1 on the 'before' scan.  The next three 
numbers are the x,y,z values of that same control point on the 'after' scan.  The next three 
lines follow the same format for the remaining control points.  
 
This control point format is exactly the same as the 'sitex-yyyy-mm-dd-reg-obs.config' file (in 
directory regObservations) generated when the program register is run.   
 
Explanation of Console Output 

 
 
In the above example, ckrmse was run on file osp1.txt.  The overall 3-D rmse was 6.06mm.  
The residuals for the individual control points are shown last. 
 
Operational Strategy 
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The RMSE should be no higher than 1.5 times the mesh or scan resolution.  For example, if 
a site were scanned and meshed at 4 mm resolution, the 3-D RMSE should not be greater 
than 6 mm (4 * 1.5 = 6). 
 
If the RMSE is above this limit, the control point residuals should be examined.  Usually, if a 
read-out error occurred on just one point, that point will have a higher residual error, and 
should be re-read.  If the residual errors are high on all the points, all the points should be re-
read. 
 
 
regpts – register point file 
 
Purpose 
 
This program is used to transform the points in an 'after' pointcloud file to the coordinate 
system used in the 'before' scan.  This program is only required if using the 'Cycone-based' 
registration process.  If the normal (lidarsw-based) registration process is used, regpts is not 
run. 
 
How to run program and Run-time Parameters  
 
regpts site before-date after-date control-point-option <enter> 
 
site: site number 
before-date: base (before) date for site in yyy-mm-dd format  
after-date: later (after) date for site in yyy-mm-dd format  
control-point-option (y or n): paints white dots over control points in image (usually set to 'n') 
 
example: 
 
regpts 1 2013-05-15 2013-05-16 n <enter> 
 
Input Directory for Lidar Data: pointFiles 
 
Other input sources 
 
Control-point file located in Sitexx/regObservations directory and renamed to: 
 'sitexxlaterdate-reg-obs.config' 
 
example:  site3-2013-05-16-reg-obs.config 
 
Both the before and after lidar point files should be located in pointFiles directory. 
 
The before file should be named beforedate-site.pts    (example: 2013-05-15-3-1.pts) 
The after file should be named afterdate-site.after    (example: 2013-05-16-1.after) 
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Output Directory for  Lidar Data: pointFiles 
 
After running regpts, the file laterdate-site.pts will be created (example: 2013.05.16.1.pts) .  
This file is basically the after point file transformed to the coordinate system of the before 
point file. 
 
Other output destinations 
 
Progress and status information is output to the console during execution. 
 
Configuration file setup 
 
For control-point file setup, see ckrmse documentation. 
 
Explanation of Console Output 
 

 
The first part of the output echos run-time parameters and the coordinates in the control point 
file.  It then computes the RMSE (2.03 mm in this case), and reports the residuals for the 
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individual control points.  Next, the base date lidar data will be examined to determine the 
ranges of x,y,and z coordinates. 
 
 
After the ranges have been determined, the xxxxx.after file (which is the 'after' point file) is 
transformed to the coordinate system of the base date lidar data.  The result is written to the 
pointFiles directory.   
 
The end result is a xxx.pts file that has the same minimums and coordinate system of the base 
date pts file.  When both the base date and later date pts files are processed through 
findMinMax and load, they will be positioned in the same relative location in the binary files 
– thus, they will be able to be subtracted from one another to produce a “difference” surface. 
 
 
 
Operational Strategy 
 
This program is only used for the Cyclone-based registration process.   

1. Manually collect control points (4 from before and 4 from after) and format them as 
described in the ckrmse documentation. 

2. Copy the control point file to the regObservations directory for that site, and rename 
the file to the proper name, encoding the later date and site within the file name. 

3. Export the 'before' and 'after' point could data from cyclone to the pointFiles directory 
for that site. 

4. 'Before' point could should be named the usual xxx.pts, while the 'after' point cloud 
should be named xxx.after 

5. Run regpts and examine the console output to ensure the program operated 
successfully.  The rmse error should be the same as that reported during running of 
ckrmse.  Ckrmse should always be run prior to regpts to identify and control point 
errors. 

 
 
 
 
 
findMinMax – Find the minimum and maximum coordinate ranges 
 
Purpose 
 
This program examines a xxx.pts file and determines the minimum and maximum ranges of 
the x,y, and z coordinates.  The program also determines the minimum and maximum ranges 
of horizontal and vertical coordinates if a spherical mapping option is chosen.  This 
information, together with the user-selected mesh resolution, is used to construct meta-data 
which is used by the load program to properly position and orient the Lidar data within the 
binary data structure used for all the Missouri S&T Lidar software.   
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How to run program and Run-time Parameters  
 
findMinMax site date <return> 
 
site: site number 
date: date of scan in yyyy-mm-dd format  
 
example:  findMinMax 1 2013-05-15 <enter> 
 
Input Directory for Lidar Data: pointFiles 
 
Other input sources 
 
The file resolution.config in the site directory defines several options which control how 
findMinMax operates.  See configuration file setup below. 
 
Output Directory for  Lidar Data: None 
 
Other output destination 
 
Metadata for the Lidar is stored in a  binary file called yyyy-mm-dd-s.meta in the metadata 
directory. 
 
Configuration file setup 
 
The file resolution.config defines how all dated scans in the site will be processed.  Use of a 
single file to define the set-up of all dated scans in a site ensures that all data is collected to the 
standard (same resolution, same mapping option, etc.) 
 
This file is usually built in  NotePad, and contains 8 data elements, each separated by a space.  
Frequently, this file is built by opening an example resolution.config from another site, 
modifying certain fields if necessary, and saving it to the site needing a resolution.config file. 
 
 
The eight data elements are : 
 
Mesh resolution 
Unit multiplier  
Image Option 
Mapping option 
Number of point files 
Multi-hit option 
Probe distance 
z-offset 
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Mesh resolution the cell size in mm at the probe distance.  The mesh resolution is usually set 
to the same scanning resolution set in Cyclone and represents the average point spacing within 
the point cloud at the probe distance.  The mesh resolution is, in reality, independent of the 
resolution used during scanning.  If the mesh resolution is smaller than the scan resolution, 
some fraction of the cells will never get a point 'hit'.  The load program will detect these 'holes' 
and fill them using values from adjacent cells.  If the mesh resolution is larger than the scan 
resolution, cells will, on average, be hit by more than one point.  In this case, the value assigned 
to the cell will depend on the multi-hit option selected. 
 
The Unit Multiplier is used if the pts file happens to use units other than millimeters.  If 
millimeters are used during scanning, then the Unit Multiplier will be 1.0.  If the scanning 
process was set up to use meters, the Unit Multiplier should be set to 1000.0 (this will internally 
convert the coordinates of the points from meters to millimeters.  Users are encouraged to 
always use millimeters in the scanning set-up to avoid confusion. 
 
The image option exists to handle older Leica Lidars which did not have the capability to 
collect RGB information for every point.  For scans collected by the ScanStation-II, this 
element should always be set to 'c' (color). 
 
The mapping option describes how the point-cloud coordinate system is mapped to the 
internal data structure used within the Missouri S&T Lidar software.  This option is usually set 
to 's' (spherical mapping).  Full discussion of the mapping option can be found earlier in this 
document. 
 
The number of point files option is normally set to '1'.  This option exists for the case where 
multiple pts files are to be loaded into a single internal data structure.  Since Cyclone allows 
multiple scans to be collected within a project, there is no reason to have multiple point files 
for most work.  This option was created to support some earlier unique research projects 
where it was necessary to have multiple pts files for the same scene. 
 
In most cases, the multi-hit option is set to 'a'.  For the case of multiple hits per cell, the values 
assigned to the cell will be determined by averaging the values from all the points which 'hit' 
that cell.  The multi-hit option 'c' uses only the closest point (nearest to the Lidar unit) to 
assign values to the cell.  Similarly, the 'f' option uses only the farthest point (most distant from 
the Lidar unit) to assign values to the cell. 
 
The Probe Distance is the distance from the Lidar unit to the middle of the study area, in 
millimeters.  This distance is displayed during the probe operation which is run just prior to 
scanning an area, and should be recorded.  If this value is not recorded, it can be recovered 
invoking the Cyclone scene viewer and picking a point near the center of the study area.  The 
Y coordinate of the selected point can be used as the probe distance. 
 
The z-offset is used when FARO data is acquired with the altimeter not disabled.  Normally, 
the altimeter should be disabled – this will result in the lidar unit having a z-coordinate of 0.0.  
If the data is acquired with the altimeter enabled, the lidar instrument will have a z-coordinate 
equal to the elevation of the instrument above mean sea level.  If a scan is accidentally acquired 
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with the altimeter enabled,  the z-coordinates can be brought back to zero by applying the z-
offset, which will be the altimeter setting of the FARO at the time of data acquisition in mm.   
 
For example, if the FARO altimeter read 459.345 m at the time of data acquisition (with the 
altimeter was enabled), all z coordinates in the xxx.pts file will have z-coordinates relative to 
this instrument height.  To bring these values down to zero, an offset of 459345.0 should be 
used. 
 
 
 
In the following example of a resolution.config file, the meaningful information is all 
contained in the first line.  The subsequent lines serve to document the various fields: 
 
4.0 1.0 c s 1 a 8300 0.0 

 
documentation of fields 
 
4.0 resolution in mm for site  
1.0  unitMult (multiply raw x,y,z's by this number to get to millimeters - use 1.0 if already in 
mm) 
c    imgOption  c: color  (rgb's present)  b: no rgb info included in pts file 
s    mapOption   g: ground plane  s: spherical (vertical rock face) 
1    numPointFiles  (used to loop thru multiple pts file for the same scene) 
a    multiHitOption   'a': use average    
   'c': use closest (highest z for g mapOption)   
   'f': use farthest (lowest z for g mapOption)  
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8300 probe distance in mm 
0.0  z-offset in mm  (altimeter reading if altimeter was enabled during the scan) 
 
 
Explanation of Console Output 
 
 
 
Most of the console output involves echoing user input (from the resolution.config file) and 
providing progress messages as the pts file is being processed.  Other information such as 
number of points processed, the ranges of x, y, and z coordinates, and the apparent resolution 
are useful for debugging purposes. 
 
The main item to look for is the number of cells in the horizontal and vertical direction to 
ensure that processing limits will not be exceeded.  These numbers are indicated by the 
maxHur (1051 in this case) and the maxVur ( 745 in this case) values.  These values should be 
less than the processing limits of 4300 and 3400, respectively. 
 
Operational Strategy 
 
None – as long as the resolution.config file was properly built, no other interaction is required. 
 
 
load – load a xxx.pts file into the binary data structure 
 
Purpose 
 
The load program loads a pts file into the internal binary data structure using the set-up 
information contained in the metadata file produced by findMinMax.  The spatial sorting and 
binning process occurs here – as each point in the pts file is read, the load program determines 
the appropriate cell to load that point in, and loads the information about that point (position, 
intensity value, and color) into that cell.    
 
After all points are processed, the program examines the resultant surface for holes or gaps.  
Holes are cells that were not 'hit' by any points in the point cloud.  All holes are filled using 
values from surrounding adjacent cells on a weighted basis based on distance. 
 
How to run program and Run-time Parameters  
 
load s date <enter> 
 
s: site number 
date: scan date in yyyy-mm-dd format  
 
For example, to load the scan collected on April 23, 2013 for site 37: 
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load 37 2013-04-23 <enter> 
 
Input Directory for Lidar Data: pointFiles 
 
Other input sources 
 
Metadata created by findMinMax 
 
Output Directory for  Lidar Data: meshed 
 
Other output destinations 
 
pixColorBeforeFill contains images of the surface before the fill operation within load 
pixIntensityAfterLoad contains images of the intensity surface after the fill operation  
pixColorAfterLoad contains images of the RGB surface after the fill operation  
 
Configuration file setup 
 
See findMinMax documentation for details on how to set up the resolution.config file. 
 
Explanation of Console Output 
 
Most of the messages echo user input and give progress messages on how many points were 
processed, how many cells were used, the distribution of hits per cell, and other general 
information. 
 
Operational Strategy 
 
None – as long as the resolution.config file was properly built, no other interaction is required. 
 
When the load program is finished, the user should check the directory 'pixColorAfterLoad' 
to examine pictures of the study site.  If the pictures look good, chances are the load program 
performed it's function properly.  If the pictures are all black, or exhibit some other peculiarity, 
the console output from findMinMax and/or load should be examined for clues as to what 
the error was. 
 
 
 
 
register – Registers later-date Lidar data to the base-date data 
 
Purpose 
 
Before two Lidar surfaces can be subtracted from one another, they must be registered to each 
other.  Typically, a site will have been scanned several times at different dates.   The earliest 
scan is called the 'base date', as it provides the base against which all future change will be 
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measured.  The other scans are called 'later dates', as they occur later in time.  It is the common 
practice to register all of the 'later dates' to the 'base date'.  This results in all the data being in 
the same coordinate system as the 'base date'.   
 
The register program applies a 3-D 7-parameters conformal transformation to the later date 
Lidar data to bring it to the same coordinate system of the base date.  This conformal 
transformation allows x,y, and z translation, x,y, and z rotations, and a universal scalar.  It is 
conformal in the sense that 3-D shapes remain the same.  The transformation cannot shear or 
skew the model space – nor will it allow differential scaling.  No 'rubber sheeting' takes place. 
 
The transformation parameters are determined by a least-squares method using four control 
points.  Each control point represents some surface feature which is clearly visible on both 
the base and later surfaces.  For each control point, the x,y,z on the before surface and the 
x,y,z on the later surface is collected.  Thus, a total of 12 observations are collected and used 
to solve a set of equations with  7 unknowns.  This over-determined solution makes it possible 
to calculate residuals which indicate 'goodness of fit' for the set of observations.   
 
The program employs an automatic correlation function which attempts to find a 'matching' 
point in the later surface based on it's local topographic expression.  The program keeps track 
of both the manual pointings and the correlated pointings, calculates the RMSE for both, and 
uses the solution that has the lowest RMSE if the user elects to accept the results of the 
registration. 
 
 
 
How to run program and Run-time Parameters  
 
register site base date later-date <enter> 
 
site: site number 
base-date: earliest date for that site 
later-date: date of the scan being registered to the base date 
 
For example, to register a scan taken on July 17, 2013 to the first scan taken for site 45 (base-
date: February 19, 2013): 
 
register 45 2013-02-19 2013-07-17  <enter> 
 
Input Directory for Lidar Data: meshed 
 
Other input sources:  None, other than interactive mouse clicks during the registration 
session. 
 
Output Directory for  Lidar Data: registered 
 
Other output destinations 
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Progress and status messages are sent to the console. 
 
If the user accepts the RMSE result, the pointings (xyz values of the control points from both 
the base and later surfaces) are preserved in a file called sitex-y-reg-obs.config (x = site, y = 
later date) in the regObservations directory.  This permits re-running of the registration using 
the same set of observations. 
 
Configuration file setup 
 
None. 
 
 
Operational Strategy 
 
The left window (titled 'base registration') is used for navigation.  The surface displayed on the 
right window will respond to all navigation initiated on the left window.  The initial alignment 
of the two surfaces will depend on how well the two scans match each other in terms of 
trimmed boundaries.  Surfaces that have matching trimmed boundaries will be easier to 
register  - thus it is important to ensure consistent boundaries of each site scan either during 
Lidar set-up, or by cropping in Cyclone prior to exporting the pts files. 
 
The following mouse-based navigation functions are provided (active on left window only): 
 

Left button down while moving mouse:  Panning (up, down, left, right) 
 
Right button down while moving mouse down:  Zoom in 
 
Right button down while moving mouse up:  Zoom out 
 
Middle button (or wheel) click:  Circular toggle of display image (color image, linear 
depth-image,  
                                                     histogram- depth image, intensity image) 
 

The display images can be switched at any time by toggling the middle button (or wheel).  The 
color image is useful for overall navigating, but should not be used for control point selection 
because the source of this image is a separate overview camera which is not precisely registered 
to the Lidar data.   
 
The linear and histogram depth images provide a dynamically adjusted greyscale with 
brightness values assigned according to their relative depth (distance from Lidar) – lighter 
objects are closer and darker objects are farther.  The histogram depth image provides superior 
contrast and is the image best suited for final control point selection. 
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The intensity image represents the reflected energy of the Lidar pulses.  It is useful for general 
navigation, but should not be used for final control point selection because it does not reveal 
subtle topographic detail which is critical for control point identification. 
 
The following screen dumps illustrate the four display options (color, linear depth, histogram 
depth, and intensity): 

                                            Color image display (from preview camera) 
 

                               Linear Depth image display – gray shade determined by relative depth  
 

                                  Histogram-equalized image display – provides better contrast 
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 Intensity image display  
 
Collection of Control Points 
 
Control points are stable identifiable features which have not moved (and are unlikely to move)  
during the duration of the study.  Any feature can be used as a control point – as long as it is 
unique to the local area and clearly identifiable on both the 'before' and 'after' depth images. 
 
The control points should be located close to the corners of the surface.  This pattern 
minimizes the area of the surface that would lie outside the control points.  Cantilevering 
beyond control results in less-accurate registration and volume determination.  While is is not 
always possible to obtain a good control point in the corner area, every effort should be made 
to do so. 
 
The best control points are stable rocks that have a pointy surface facing the Lidar unit.  This 
type of object is easy to identify in the histogram-equalized depth image, and easy to match in 
the right image display.  When selecting control points, the user should stay away from edges 
and large flat areas.  Areas of high local topographic detail make the best control points. 
 
To select a control point, left click the location on the left window display, then find the same 
point on the right window display, and left-click that point.  A small correlation window will 
appear showing the results of the automatic feature-matching correlation.  A good correlation 
is indicated when the center of the correlation image is small and bright compared to the 
surrounding area: 
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Accept the point by hitting <enter> after the correlation image is displayed.   
 
 
After the fourth point is collected, the program calculates and displays the RMSE resulting 
from both the manual and correlated set of observations, and asks the user if the 
transformation is to be applied to the later surface: 
 
 

 
As seen in the above example, the manual RMSE was 2.01 mm and the correlated RMSE was 
3.11 mm.  The register program will use the better of these two (the manual in this case) for 
the transformation if the user elects to proceed with the transformation. 
 
The RMSE should be no greater than 1.5 times the cell mesh resolution.  In the example 
above, the mesh resolution was 4mm.  Therefore, the RMSE limit would be 6 mm (4 mm* 1.5 
= 6mm). 
 
For this example, since the best reported RMSE achieved during this registration session was 
under that limit, the user would first make the console window active, then would enter 'y' and 
hit <enter>.  The program would then proceed to create a transformed version of the later 
surface, and write it to the 'registered' directory. 
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If the reported RMSE was over this limit, the user should make the console window active, 
enter 'n' , and hit <enter>.  This will terminate the program so the user can try running register 
again. 
 
 
 
elimVeg – Eliminate Vegetation from Lidar data 
 
Purpose 
 
Vegetation and other small moving objects which float in front of the Lidar unit during an 
active scanning operation introduce artifacts into the Lidar surface which must be removed if 
accurate quantitative measurements are to be made for volumetric change.  These types of 
artifacts are characterized by spikes in the data having high spatial frequencies and small 
individual but large cumulative volumes.   
 
Commonly used methods of vegetation detection and removal are based on simple edge 
detection.  While these methods are effective for identifying and removing features exhibiting 
high spatial frequencies, they don't discriminate between the types of high-frequency data we 
want to eliminate, like vegetation, and other types of high-frequency data we want to preserve, 
like the sharp edges of rocks.  The Missouri S&T Lidar software includes specialized filters 
which detect and eliminate thin vegetation while preserving the high-frequency edges of rocks.   
 
 
How to run program and Run-time Parameters  
 
elimVeg site date  <enter> 
 
site: site number 
date: date in yyyy-mm-dd format  
 
 
Input Directory for Lidar Data: registered 
 
 
Other input sources 
 
User-selected parameters are determined during the interactive session.  These values are saved 
to a configuration file, which may be used for other dates to eliminate vegetation using the 
same parameters to reduce subjectivity and the variable outcome that would result if every 
date were processed with it's own set of vegetation removal parameters. 
 
Output Directory for  Lidar Data: noVeg 
 
 
Other output destinations 
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Progress and status messages are output to the console. 
Configuration file setup 
 
The file 'sitexVegRemoval.config' (x:site number) contains the five user-selected parameters 
to define the vegetation removal process.  These are usually determined when running 
elimVeg on the first (base-date) scan of a site.  All other dated scans for that site will be run 
with the same parameters defining these vegetation removal tuning parameters.   
 
 
Method used within the Vegetation Elimination Program  
 
The vegetation detect and elimination method uses a two-step process.  The first process 
(Roof filter) identifies potential vegetation using a relatively fast edge-based method.  This 
method does a good job identifying all the vegetation, but because it is based only on edge 
criterion, it falsely includes all sharp rock edges as well.  The second process (Probe filter) is 
run all all the cells identified as potential vegetation and is more discriminating – it can 
differentiate rock edges from vegetation.  While the second process is smarter, it is also much 
slower.   The optimum solution is to pre-identify potential vegetation using the first process, 
which only takes a few minutes.  Even with liberal settings, only 15% of the Lidar surface is 
typically identified as potential vegetation.  Because the second, slower process only needs to 
be run on 15% of the total cell cell count, it operates much faster.  Even with this time-saving 
pre-process, the second process can take up to 45 minutes to execute, depending on the Lidar 
surface size, mesh resolution, and settings for the second process. 
 
The 'sitexVegRemoval 'configuration file contains all the settings saved from an interactive 
elimVeg session.  The first process is controlled by two parameters:  a kernel diameter, and a 
distance below roof threshold.  The kernel diameter defines a sampling area to compute the 
average local depth.  The distance below roof threshold is the difference in depth between a 
single cell, and it's local average depth.  The kernel is normally set to be equal to the diameter 
of the visible vegetation stems and leaves.  The distance threshold is set to a value that 
highlights all the vegetation, and just some of the rock edges.  The user should be liberal in 
assigning these first two values, as the only penalty for being too liberal is increased run time 
for the second process.  The consequences of being too conservative in assigning the first two 
values is that some real vegetation might not get flagged as being potential vegetation.  Since 
only cells identified as potential vegetation are examined by the second process, those cells 
representing real vegetation would not be examined, thus the vegetation over those areas 
would have no possibility of being detected or eliminated. 
 
The second process is controlled by three parameters:  virtual cone solid angle (in degrees), 
virtual cone length (in millimeters), and the limits of articulation (wobble, in degrees).  In this 
second process, a virtual articulating conical probe scans the back-side of the rock face.  Any 
cell that can be reached by the end-point of the virtual cone without the cone intersecting 
anything else is classified as rock.  If a cell cannot be reached by the conical probe, the probe 
begins a wobbling motion – increasing in angle using a spiral pattern.  This action allows the 
probe to reach into sharp corners of rock blocks.  If the limits of articulation are reached and 
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the probe could not find an orientation that resulted in the probe point hitting the cell without 
any intersections, the cell is classified as vegetation and marked for removal.   
 
 
 
 
Operational Strategy 
 
For the first part (Roof filter) , the user should set the kernel diameter to the size of the thin 
stems or leaves, and adjust the distance slider until all the vegetation is high-lighted.  The 
display should look something like this: 

 
 
 
When the 'apply' slider is activated, the console will display the percentage of vegetation 
highlighted – this will normally be between 15-25%.  In this example, the percent of 
highlighted vegetation is 20.6%: 
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The user should roam around the image to confirm that all the vegetation is high-lighted.  
After this confirmation, hit the 'escape' key twice to advance to the second part of elimVeg, 
the Probe filter. 
 
The second part of elimVeg is the Probe filter.  When the probe filter window is displayed, 
zoom in to some typical vegetation and left-click.  The display should look something like this: 
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The green line represents a horizontal plane cutting into the rock face. The red line represents 
the profile of the Lidar surface at that cutting plane (viewed from above).  The down-ward 
spikes are caused by the vegetation.  The bright yellow triangle is the virtual articulating conical 
probe behind the rock face, and the darker yellow lines represent the limits of articulation. 
 
The sliders can be adjusted to set the solid angle of the probe, the length of the probe, and the 
limits of articulation (wobble).  The wobble should always be at least as large as half of the 
solid angle.  For example, if the solid angle is 26, the wobble should be set to at least 13.  In 
the above example, the wobble is set to 15.   
 
The parameters can be tested by panning within the image to position some test vegetation in 
the middle of the display window and hitting 'apply'.  This will run the probe filter on the 
middle third of the display for review.   
 
 
 
 

 
 
 
The user should pan around the surface and test the parameters on various types of vegetation.  
When it appears that the settings work for most of the cases, the 'escape' key is hit while in 
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the probe filter display.  A message appears on the console asking if the user wishes to save 
the settings: 
 

 
Enter 's' , then  <enter>  This will save the settings and run the probe process on the whole 
dataset.  Depending on the resolution, site size, and parameter settings, the elimVeg program 
will require anywhere from 2 minutes to 45 minutes to run.   
 
All subsequent dated scans for the site will need to run through the elimVeg program, 
however, since the settings from the initial base-date are saved, the program will operate in a 
batch (non-interactive) mode for the remaining sites.  Running all scans using the same 
vegetation parameter settings helps to ensure that objective criteria is applied to all scans 
equally.  If it is desired to run a particular date with different settings, the 
'sitexVegRemoval.config' file in the site can be temporarily renamed to something else – this 
will allow the elimVeg program to be run in an interactive mode for that particular date.  
 
 
diff  – Creates a difference surface  
 
Purpose 
 
The diff program subtracts one Lidar surface from another – producing a 'difference' surface.  
Prior to this operation, the Lidar datasets must be structured into a raster data structure 
(performed by load), registered to each other (performed by register), and have thin 
vegetation removed (performed by  elimVeg).   
 
The resultant 'difference' surface represents a cell-by-cell difference of the two surfaces.  In 
theory, the difference surface would contain large negative areas where rocks have fallen, and 
large positive areas where falling debris had accumulated.  In practice, the difference surface 
contains not only these expected features, but numerous other data artifacts caused by residual 
registration error, parallax anomalies caused by slight positional error in the Lidar unit setup 
from date to date, vegetation which did not get removed due to improperly assigned tuning 
parameters or limitations within the vegetation removal algorithm, and from accuracy 
limitation of the Lidar unit itself.  Separating these artifacts from true change data is the job 
of the final program, calcvol. 
 
The diff program examines every cell within the domain of the base surface.  If that cell has 
data in both the base and later surface, the difference between the cells is computed as assigned 
to the corresponding cell in the difference surface.  For the most part, the surface metadata 
from the later surface is used to populate the difference surface metadata. 
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How to run program and Run-time Parameters  
 
diff site base-date later-date diff-date  <enter> 
 
site: site number 
base-date: earliest date in the site in yyyy-mm-dd format  
later-date: some later date that will be subtracted from the base date in yyyy-mm-dd format  
diff-date: constructed from the base and later date by using the month a day as follows: 
 

For a base-date of  '2013-05-23' and a later-date of  '2013-07-05', the diff-date 
would be '523-705' 
 

For example, to create the difference surface for the scan taken April 24, 2013 on site 25 where 
the base-date for that site was January 15, 2013: 
 
diff 25 2013-01-15 2013-04-24 115-424  <enter> 
 
Input Directory for Lidar Data: noVeg 
 
Other input sources 
 
None 
 
Output Directory for  Lidar Data: diffSurfaces 
 
Other output destinations 
 
Status and progress output sent to the console. 
Pictures of the result are sent to the pixDiff directory. 
 
Configuration file setup 
 
None. 
 
Explanation of Console Output 
 
After echoing the metadata of the two input Lidar files, the actual diff program subtracts the 
two surfaces from each other, and displays some statistics concerning the process: 
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Here we see that 94.6% of the base-date cells existed in the later-date Lidar data. 
 
Finally, some pictures are created and written to the pixDiff directory.  Information on the 
pictures is sent to the console output. 
 
 
 
 
 
 
calcvol – Calculates the volume of lost and gained material in a difference surface 
 
Purpose 
 
The calcvol program accomplishes two tasks – first, it eliminates the remaining artifacts from 
the raw difference surface (separating artificial features from true 'missing' or 'gained' material), 
and second, computes the volume of lost and gained material. 
 
 
How to run program and Run-time Parameters  
 
calcvol site diff-date base-date later-date <enter> 
 
site: site number or name 
 
diff-date: constructed from the base and later date by using the month a day as follows: 
 

For a base-date of  '2013-05-23' and a later-date of  '2013-07-05', the diff-date 
would be '523-705' 
 

base-date: first date in sequence 
 
later-date: some later date in the sequence 
 
For example, to run calcVol on a scan taken December 22, 2013 for site 18 where the base-
date for that site was March 12, 2013: 
 
calcvol 18 312-1222 2013-03-12 2013-12-22 <enter> 
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Input Directories for Lidar Data: diffSurfaces, noVeg 
 
Other input sources 
 
User input received during an interactive session – slider values, hot key commands, and 
cropping. 
 
When run in a batch-mode, the file volume.config contains all the settings established during 
the interactive session.  This ensures that all dates in a sequence are run with he same 
parameter-tuning settings.  The file cropMask.bin is a binary file (non-viewable) which 
contains the cropping mask created during the interactive tuning session.  This is used to 
ensure that all subsequent dates use the same domain for calculation of the change in volume. 
 
 
Output Directory for  Lidar Data: None 
 
Other output produced by calcvol 
 
Informational, diagnostic, and debugging messages are presented to the console when running 
the program in the interactive (first time filter-defining) mode. 
 
A summary report of lost and gained material volume (given a name reflecting the diff-date) 
is written to the site directory: 
 

 
  
 
Pictures of the lost and gained rocks are also created: 
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          Binary image of  lost (light blue) and gained (red) material is created in the pixMask 
directory. 
 
 

 
      
                       An image of Lost (blue) and gained (red) material overlaid on RGB  
                        color surface image is created in the pixRocks directory. 
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Operational Strategy 
 
The computed volumes of lost and/or gained material are highly dependent on the settings of 
several tuning parameters used to differentiate real rocks from residual artifacts.  Therefore, 
for sites having multiple later dates, it is critical that the same set of tuning parameters be used 
for all later dates.  The software facilitates this by saving all tuning parameter settings in the 
file volume.config. 
 
When calcVol is executed, the program first checks for the existence of the file volume.config.  
If this file exists, it means at one point, the user had an interactive session with calcvol and set 
all the tuning parameters for that site.  In this case, the calcvol program reads the 
volume.config file to capture all the tuning parameters, and proceeds to run in a batch mode, 
using those fixed tuning parameter settings.   
 
If the file volume.config does not exist, it means that the tuning parameters were never 
established, so the program initiates an interactive session to allow the user to set the various 
tuning parameters.   
 
During the interactive session, the user will invoke a number of functions to eliminate residual 
artifacts from the difference surface.  The user will also create a domain mask which will be 
used as a common clipping boundary for all subsequent processing of all the later dates in a 
sequence. 
 
It is recommended that the terminal window be maximized before invoking the calcVol 
program – this way, progress, status, and error messages generated on the terminal screen can 
be visible during execution of the program.  This is most critical when calcVol is run for the 
first time during the interactive parameter setting session. 
Interactive parameter-setting operation 
 
Typically, the user will invoke the following functions in this order: 
 

1. Set the lost noise slider (minimum thickness of lost material to be used) 
2. Set the gained noise slider (minimum thickness of gained material to be used) 
3. Build the cropping mask and save it 
4. Run erode on the lost rocks some number of times 
5. Run dilate on the lost rocks some number of times  
6. Run erode on the gained rocks some number of times 
7. Run dilate on the gained rocks some number of times  
8. Run the inside rule to clean up small 'holes' 
9. Run the function which computes the volume of lost and gained rock 
10. Hitting the 'escape' key will save all tuning parameter settings, generate the diagnostic 

pictures, and terminate execution of the program 
 
The Difference Surface 
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After the surfaces are all registered to each other, a difference surface is created by subtracting 
some later-date surface from the base-date surface.  The distance value of each cell in a 
difference surface is simply the base-date distance minus the later-date distance for that cell.  
Therefore, lost material will be represented by a negative value, and gained material will be 
represented by a positive value. 
 
Some sites, such as vertical rock cuts, have mostly lost material.  As the material is lost, it drops 
all the way to the bottom of the cut without accumulating in any shelf or pocket.  On the other 
hand, some sites have mostly gained material  - for example, at the bottom of a slope failure.  
Finally, some sites have a mixture of both lost material and gained material, such as medium 
slopes with shelves to catch moving material.  Previous versions of the software dealt only 
with lost material.  This limitation limited the ability of the software to model more complex 
situations involving both lost and gained material. 
 
Mr. Abdullah Alotaibi, a graduate researcher at Missouri S&T, came up with the idea that lost 
material and gained material should be tracked separately because they each have different 
characteristics.  He proposed that each of these sets (lost material and gained material) should 
have their own set of noise-elimination functions, such as minimum depth sliders and 
geomorphic operators such as the erode and dilate functions.  Having separate and 
independent tuning parameters for lost and gained material allows the analyst to more precisely 
model the true characteristics of the moving material and to better segregate real data from 
residual artifacts. 
 
This concept has been implemented in the current implementation of calcVol.  Separate noise 
sliders are provided for setting independent noise thresholds for lost material and gained 
material.  In addition, geomorphic functions such as erode and dilate are implemented 
separately for lost and gained material.  Finally, the tuning parameters (noise slider positions, 
number of erodes executed, number of dilates executed) are saved using values established 
separately for both the lost and gained material.  This has resulted in a more general solution 
– one that covers a wider variety of slope situations. 
 
User Interaction with Calcvol 
 
The following sliders, mouse navigation functions, and hot-key functions are provided: 
 
Sliders (on right display): 
 
Loss noise: 
 

Blue cells in the difference surface that have a thickness less than the value of the slider 
position will be eliminated.  Small negative-valued residual artifacts can be eliminated 
by adjusting the value of this slider. 
 

Gain noise: 
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Red cells in the difference surface that have a thickness less than the value of the slider 
position will be eliminated.  Small positive-valued residual artifacts can be eliminated 
by adjusting the value of this slider. 
 

Veg adjust: 
 

Future research-oriented capability …... not currently active. 
 

Mouse-based navigation functions : 
 

Left button down while moving mouse:  Panning (up, down, left, right).  Applies to 
both screens. 
 
Right button down while moving mouse down:  Zoom in.  Applies to both screens. 
 
Right button down while moving mouse up:  Zoom out.  Applies to both screens. 
 
Middle button (or wheel) click: toggles between three displays on the right screen: 

 Lost rock only (shown in blue) 
 Gained rock only (shown in red)  
           Both lost and gained rock (blue for lost, red for gained) 
  
 Ctrl + mouse move:  Draw a crop mask (can be used to create bounding ring and 
inside masks) 
Uses the crop mask dot size previously set with up/down arrows. 

Shift + mouse move:  Erases a crop mask.  Uses the crop mask dot size previously set 

with up/down arrows. 
 
 

Hot-key functions: 
 
r:  Reset - cancels the effects of all previous erodes and dilates for both lost and gained material, 
and  redraws the right display to reflect only the effect of the current noise-elimination slider 
values. 
 
s:  Saves the crop mask to a binary file in the site directory 
 
g:  Gets the previously saved crop mask stored in the site directory 
 
d:  Dilate operation for lost material.  Adds a single layer of blue on each blue blob. 
 
e:  Erode operation for lost material.  Subtracts a single layer of blue on each blue blob. 
 
D:  Dilate operation for gained material.  Adds a single layer of red on each red blob. 
 
E:  Erode operation for gained material.  Subtracts a single layer of red on each red blob. 
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i:  Runs the 'internal' filter, which fills in single interior holes in large blobs.  This function 
operates on lost and gained material independently. 
 
v:  Computes and displays the volume of lost and gained material, using the filters applied. 
 
1:  Sets the left display mode to 1 – the original color histogram-equalized difference surface 
 
2:  Sets the left display mode to 2 – base date RGB 
 
3:  Sets the left display mode to 3 – later date RGB 
 
4:  Sets the left display mode to 4 – base-date Intensity 
 
5:  Sets the left display mode to 5 – later-date Intensity 
 
up triangle:  Increases the crop dot radius 
 
down triangle:  Decreases the crop dot radius 
 
left triangle:  Clears all cropping 
 
right triangle:  Completes the cropping – fills in the area outside the manually-drawn bounding 
ring 
 
 (Note: The above four hot-keys are also called 'arrow' keys, but they are not the arrows 
coincident with the numeric keypad) 
 
escape:  Triggers the generation of the pictures in pixMask and pixRocks directories, saves the 
tuning parameters in a file called volume.config, and terminates the calcvol program. 
 
Strategy for a typical calcvol session 
 
The difference surface contains many artificial artifacts which must be identified and removed.  
The initial screen displays two windows – the left window initially displays the histogram-
equalized difference surface, and the right window displays the result of filtering actions: 
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The left window displays the difference surface - green indicates no change, blue indicates lost 
material, red indicates gained material.  The left window can also display the base date RGB 
image, the later date RGB image, the base date intensity image, or the later-date intensity image 
by using the hot keys 1-5.  The right window displays the result of filtering operations – 
primarily the result of successive erodes and dilates on both the lost material and gained 
material overlays.  The initial mode for the right window displays both lost (blue) and gained 
(red) material. 
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The right window can be toggled between three views using the middle wheel-button on the 
mouse.  The three views are: lost material only (blue), gained material only (red), or both lost 
and gained material (blue and red).  Each cell represents either lost (negative) or gained 
(positive) volume.  The right display initially displays both lost and gained material, but can be 
changed to lost-only by toggling the middle mouse button, as shown above. 
 

 
 
Toggling the middle mouse button again changes the right display to gained material only 
(red), as seen above.   
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The first step is to set the noise sliders for both the lost and gained material.  These sliders 
define the minimum thickness of the difference surface that is considered 'real'.  The slider 
values are in mm of depth, but in setting these 'noise' levels, it is best to do this visually, rather 
than be overly concerned about the value of the numbers.  In many cases, the threshold for 
noise seems rather high (40 mm, for example).  One might question why apparent rocks 40mm 
in depth are being regarded as 'noise'.  The analyst should remember that there are many 
opportunities for various errors to creep into the processing model.   Inherent Lidar accuracy, 
registration residuals, vegetation not fully removed, and parallax errors all contribute different 
types of errors.  Therefore, it is better to make the noise-level adjustments by visually 
examining a few representative areas to decide what is real and what is merely an artifact. 
 
To assist in this type of assessment, the user can zoom into an area of interest and quickly flip 
the left display to show (alternatively) the base date RGB and the later date RGB images (using 
the '2' and '3' hot-keys.  For example, in the image below, the user is trying to ascertain if the 
big blue area is a real missing rock, or a data anomaly.  First, zoom to the area under study: 
 
 
 

Next, rapidly alternate the '2' and '3' keys to show the 'before' and 'after' views of this same 
area as represented by the RGB images: 
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In the 'before' image above, a rock can be seen that equates to the large blue area in the middle 
of the right window. 

 
 
When the left display is changed to the 'later' date by hitting the '3' key, it is clear that the rock 
has fallen away.  Therefore, in this case, the blue area represents a real rock loss, and not an 
anomaly.  The sliders are adjusted to show all the features which appear to be 'real' – while at 
the same time, eliminating many of the smaller features that are mere artifacts in the data. 
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Care must be taken to set the noise slider at a reasonable setting.  If the slider is moved too 
far to the right, the rejection criteria will be set too high.  All the noise will disappear, but so 
will the real rocks: 
 

 
 
On the other hand, if the slider is moved too far to the left, then all the rocks are retained, but 
so are all the data artifacts: 
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In this case, a reasonable setting of '17' , as shown below, shows all the probable rocks, and 
eliminates much of the noise.  There are further tools to use to eliminate the remaining noise, 
so at this early stage, the best strategy is to ensure that all the rocks are shown and the noise is 
kept to a minimum.  If a real rock disappears because too high of a noise threshold was used, 
further filtering tools can never bring it back – so it is better to use the noise sliders to eliminate 
as much noise as possible without affecting the size or shape of the features which appear to 
be real rocks. 
 
 

 
 
Next, the same operation is conducted for the gained material.  Again, it is advisable to zoom 
into any suspect areas and use the before-after flip keys to show either the before and after 
RGB images ('2' and '3' keys) or the before and after Intensity images ('4' and '5' keys): 
 
To determine if the red area is a real rock gain, or just an artifact, zoom into the area of interest: 
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Next, toggle the left window to determine if this feature is a real gained rock, or just a data 
artifact: 
 

 
In the 'before' image above, it is clear that no rock is resting on the ledge (yet). 
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In the 'after' picture above, the newly gained rock is clearly visible. 
 
In some cases, the changes are hard to see in the RGB images – this can be caused by improper 
camera exposure settings during the scan (too light or too dark), or simply from the fact that 
the RGB images are acquired from a separate lower-resolution camera that is not precisely 
registered to the rest of the Lidar data.  In this case, the Intensity images can be viewed in the 
same rapid 'before' and 'after' mode (using hot keys '4' and '5') to determine if the feature is 
real. 
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The following sequence of screen-shots illustrates the intensity images of the 'before' date: 
 
 

 
                ….....and the 'after' date: 
 

 
      By alternating these images quickly, the 'gained' rock is clearly identifiable.  These display 
keys are useful in determining the appropriate noise level to set with the noise slider. 
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At this point, the gain noise setting of 60 appears reasonable – this setting eliminates most of  

 
the noise, yet preserves the real gained rocks: 
 
 
The next step is to define a common cropping boundary for all the dates (base and all later 
dates) in the site.  Changes in volume can only be computed if the same domain is used to 
define the area under study.  Because individual scans may have slightly varying domains, a 
single domain representing the intersection of all scans (picture this as a logical 'AND' for the 
areal extents of each scan).  In other words, a domain must be defined such that every scan 
completely covers this domain.  The cropping domain should be an area completely covered 
by each and every scan in the site. 
 
To define a clipping domain, the user draws a single polygon around an area covered by all 
scans by holding down the 'ctrl' key while drawing with the mouse (no buttons pressed on the 
mouse while drawing).  The thickness of the boundary line may be adjusted by using the up 
and down arrows.  Mistakes can be corrected by holding down the 'shift' key while using the 
mouse as an eraser.  If the user wants to eliminate the cropping boundary and start over, the 
left arrow key can be used.   
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In addition to the single outside polygon, interior areas representing artifacts (residual 
vegetation, for example) can also be masked out.  The user should take care that the masked 
area not include very short-range areas, or areas near the horizon, as these areas may not be 
represented in all the scans.  Finally, it is important that the single exterior polygon be complete 
with no gaps in the bounding polygon line.   
 
 
 
 
A typical masking domain definition might look like the following: 
 
 

 
The final step in domain definition is to 'complete' the mask by hitting the right arrow key.  
This defines a cropping mask to the edge of the data: 
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The volume computations will only use data inside the cropping boundary and not masked 
off with any interior masks. 
 
 
The next step in artifact removal is to apply geomorphic operators such as erode and dilate to 
further eliminate small noise cells.  Erode is a function which peels away cells from the 
periphery of a blob of either red or blue cells.  Dilate performs just the opposite operation – 
it adds cells to the periphery of either a blue or red blob of cells.   
 
On each erode cycle, one layer of cells is peeled away.  Once a blob becomes 1 cell wide, an 
additional erode cycle will eliminate it.  Once eliminated, cells cannot be reconstituted by using 
the dilate function.  Dilate only expands existing blobs.   
 
The Erode function is run first by hitting either the 'e' key (for lost material) or the 'E' key (for 
gained material.  After so many erode cycles, the Dilate function is run next by hitting either 
the 'd' key (for lost material) or the 'D' key (for gained material).  Usually, the number of dilates 
should equal the number of erodes, but again, the number of erodes and dilates should be 
determined by visually examining the effect on the right window.  The user may use the reset 
key ('r') to eliminate all the filtering performed by the erode and dilate functions.  After hitting 
the reset key, the right display is based only on the noise-slider values. 
 
On the following set of screen-shots, the erode key is hit a number of times.  Notice how the 
blue blobs react by getting smaller.  The single-cell blobs (noise) disappear after a few erode 
cycles: 
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The above sequence shows the result of using the erode function four times.  Notice how the 
rocks got smaller and the noise was largely eliminated. 
 
 
 
Next, the dilate function is run on the lost material by using the 'd' key.  In this case, the best 
results were obtained by running dilate four times.  Notice how the rocks regained their 
original size, but the noise that was eliminated did not re-appear: 
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Finally, the same erode and dilate functions are run on the gained material using the 'E' and 
'D' keys.  In this case, the optimal results were obtained by running two cycles of erode, 
followed by two cycles of dilate: 
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At this point, all residual artifacts have been removed and the volume statistics can be 
generated by running the volume ('v' key) function.  The results are shown on the console 
window: 
 

 
 
As indicated, the same results are also written to a file named with the diff-date: 
 

 
To terminate the calcvol program, hit the 'escape' key.  This will trigger the generation of 
diagnostic pictures and will also save the tuning parameters in a file named 'volume.config' 
located in the site directory.  Always check for the 'orderly end of program' message to indicate 
the program came to a normal successful completion: 
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Two diagnostic images are created.  The first is a binary image showing the lost material (in 
light blue) and the gained material (in red).  This image is located in the PixMask directory 
within the site: 
 
 

 
 
A second diagnostic image shows the same information, but with the lost and gained rocks 
overlaid on the RGB image for the site.  The lost material is shown as a transparent blue tint, 
with the gained material showing as a red transparent tint: 
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The final output is the volume.config file which stores the tuning parameters used during the 
interactive calcvol session.  This is a simple text file which may be viewed in any simple editor 
such as Notepad. 
 
In this case, the file shows that the lost material noise slider was set at 17 mm while the gained 
material noise slider was set to 60 mm.  Next, the erode and dilate functions were run four 
times each on the lost  material (e,e,e,e,d,d,d,d).  Finally, the erode and dilate functions were 
run two times each on the gained material (E,E,D,D). 
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Because the resultant volume statistics are highly dependent on the tuning parameters, it is 
recommended that a single set of tuning parameters be used on all dates of a site.  Once tuning 
is accomplished, the file 'volume.config' will be produced.  The next time any other date for 
that site is run thru the calcvol program, calcvol sees that the volume.config file exists, and 
proceeds in a batch mode – running the process using the pre-set tuning parameters.  If the 
user desires to restart with a new set of tuning parameters, the file 'volume.config' must either 
be renamed to something else (saved-volume.conf), or deleted.  This way, when calcvol is run, 
it doesn't find the file 'volume.config', so it operates in the interactive mode – ready for the 
user to select a new set of tuning parameters. 
 
view2surf – Views two surfaces side-by-side  
 
Purpose 
 
This utility program is used to examine two surfaces to see the results of some prior operation, 
such as registration or vegetation elimination.  It is most commonly used to examine the result 
of vegetation elimination for the purpose of determining if the operation was successful, or if 
re-running the operation is required.  The program displays two windows and uses the same 
navigation functions provided in the program register.  This program is for viewing only – 
no edit or saving functions are provided. 
 
This utility program is also used to tag spherical targets with roles and Ids, and to examine a 
surface to determine the distances at various spot locations. 
 
 
How to run program and Run-time Parameters  
 
view2surf site first-directory first-date second-directory second-date <enter> 
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site: site number 
first-directory: source directory for Lidar data displayed on left window 
first-date: date of Lidar data (yyyy-mm-dd format) to be displayed on left window 
second-directory: source directory for Lidar data displayed on right window 
second-date: date of Lidar data (yyyy-mm-dd format) to be displayed on right window 
 
Example to examine the results of vegetation removal for the July 17, 2013 scan in site 25: 
 
view2surf 25 registered 2013-07-17 noVeg 2013-07-17  <enter> 
 
Example to examine the results of registration for the August 3, 2012 scan in site 234: 
 
view2surf 234 meshed 2012-08-03 registered 2012-08-03  <enter> 
 
The following mouse-based navigation functions (similar to those provided in the program 
register) are provided: 
 

Left button down while moving mouse:  Panning  
Right button down while moving mouse down:  Zoom in 
Right button down while moving mouse up:  Zoom out 
Middle button (or wheel) click:  Circular toggle of display image (color image, linear 
depth-image, histogram- equalized depth image, intensity image) 
Left click while mouse is motionless: displays H and V values of cell (used for 
debugging) 
 
 

The following screen-shots provide an example of the typical output displayed by this 
program.  In this example, the results of vegetation removal are being examined: 
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Input Directory for Lidar Data: Defined in the run-time parameters 
 
Other input sources:  None – other than mouse clicks during the interactive session. 
 
Output Directory for  Lidar Data:  None – this program is for viewing only 
 
Other output destinations:  None – other than left and right window displays. 
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Configuration file setup:  None. 
 
Explanation of Console Output 
 
A left click while the mouse is motionless will display the H and V values of the cell the cursor 
is pointing to.  This information is mainly used for debugging. 
 
Operational Strategy 
 
When examining the results of vegetation removal, the surfaces to be examined should be the 
same date, the first directory should be set to 'registered', and the second directory should be 
set to 'noVeg'. 
 
When reviewing vegetation removal results, the user should navigate around the study area 
and examine the remaining vegetation artifacts.  Thick vegetation cannot be removed, so 
remnants are commonly visible.  These remnants will not usually affect volume determination 
because they will be present in both the 'before' and 'after' surfaces – thus they will tend to 
cancel each other out.  The vegetation elimination is designed to detect and eliminate thin 
vegetation which may move in position between the 'before' and 'after' scans.  The study area 
should be examined to ensure that most of the thin vegetation was properly removed.  If too 
much thin vegetation remains, this is an indication that the parameters used during vegetation 
elimination must by adjusted. 
 
When examining the results of registration, the first directory should be set to 'meshed' and 
the first date should be set to the base-date (earliest date) for that site.  The second directory 
should be set to 'registered' and the second date should be some 'later date' for that site. 
 
When reviewing registration results, the user should navigate around the study area, and 
examine how well the 'before' and 'after' images match each other in terms of relative position.  
The depth or intensity images should be used for this comparison, as they do not contain the 
inherent 'offset' common with the color images. 
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