
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2011

Integration of model-based systems engineering and virtual Integration of model-based systems engineering and virtual

engineering tools for detailed design engineering tools for detailed design

Akshay Kande

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Systems Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Kande, Akshay, "Integration of model-based systems engineering and virtual engineering tools for detailed
design" (2011). Masters Theses. 5155.
https://scholarsmine.mst.edu/masters_theses/5155

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5155?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

INTEGRATION OF MODEL-BASED SYSTEMS ENGINEERING AND VIRTUAL

ENGINEERING TOOLS FOR DETAILED DESIGN

by

AKSHA Y KANDE

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

2011

Approved by

Steve Corns, Advisor
Cihan Dagli

Scott Grasman

© 2011

Akshay Kande

All Rights Reserved

111

ABSTRACT

Design and development of a system can be viewed as a process of transferring

and transforming data using a set of tools that form the system's development

environment. Conversion of the systems engineering data into useful information is one

of the prime objectives of the tools used in the process. With complex systems, the

objective is further augmented with a need to represent the information in an accessible

and comprehensible manner. The importance of representation is easily understood in

light of the fact that the stakeholder's ability to make prompt and appropriate decisions is

directly related to his understanding of the available information. Systems Modeling

Language (SysML), a graphical modeling language developed by Object Management

Group is one such tool used to capture and convey information about a system under

development. This work proposes a methodology for integrating the models developed

using SysML with virtual engineering software to create an executable, interactive, and

user-centered platform for engineering systems. The framework provides an opportunity

to combine the benefits offered by both model-based systems engineering and virtual

engineering for detail design. This research demonstrates how this framework can be

implemented using a biotech fermentor to illustrate the coupling of information between

SysML and virtual engineering.

lV

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Steve Corns, for his valuable leadership and

advice during my graduate studies. I have sincerely enjoyed working on his research

projects. I would also like to thank Dr. Cihan Dagli and Dr. Scott Grasman for their

valuable input and participation in my committee.

I would like to thank my parents, Shekhar and Shilpa Kande, for their love and

commitment to make me what I am today. I would also like to thank my grandmother,

Vijaya Kande, for her blessings and support.

I would like to thank my roommates, Juned Kazi, Ravi Bhatt, Balaji, and Vinayak

Bhagwat, for their unconditional support and encouragement throughout my graduate

studies. I would also like to thank a very close friend of mine, Shashank Babele, whose

willingness to help me when I needed it the most was truly commendable.

v

TABLE OF CONTENTS

Page

ABSTRACT iii

ACKNOWLEDGMENTS iv

LIST OF ILLUSTRATIONS vii

LIST OF TABLES viii

SECTION

1. INTRODUCTION 1

2. COMPLEXITY AND SYSTEMS ENGINEERING 4

2.1 . DEFINITION 4

2.2. BACKGROUND 5

3. MODEL-BASED SYSTEMS ENGINEERING 8

3.1. BACKGROUND .. 8

3.2. SYSTEMS MODELING LANGUAGE 11

3 .2.1. SysML Blocks 13

3 .2.2. SysML Structural Diagrams.. 13

3 .2.3. Profiles and Stereotypes 14

3.3. PREVIOUS WORK ON EXECUTABLE MODELS 14

4. VIRTUALENVIRONMENT .. 15

4.1. BACKGROUND 15

4.2. VIRTUAL ENGINEERING 16

4.3. VIRTUAL ENGINEERING TOOL 16

5. VIRTUAL SYSTEMS MODELING APPROACH 19

5.1. OVERVIEW 19

5.2. METHODOLOGY 20

5.3. C++ PROFILE 25

5.4. VIRTUAL ENGINEERING MODELS IN AN MBSE ENVIRONMENT 26

6. EXAMPLE MODEL DEVELOPMENT 28

6.1. SYSTEM OVERVIEW 28

Vl

6.2. MODEL DEVELOPMENT USING SYSML 29

6.3. DEFINING AN ANALYTICAL MODEL IN SYSML 30

6.4. ADDING VE MODELS 33

7. EXPERIMENTAL RESULTS ... 35

8. DISCUSSION AND CONCLUSION 40

APPENDICES

A. OUTPUT CODE 43

B. GUIDELINES 63

BIBLIOGRAPHY 66

VITA 70

Vll

LIST OF ILLUSTRATIONS

Figure Page

2.1 V -model of Systems Engineering 6

2.2 Document-centric Method 7

3.1 OMG's Model-driven Architecture 9

3.2 Elements of an MBSE Environment.. 10

3.3 SysML Diagram Types 11

3.4 Four Pillars of SysML 12

4.1 CAVE Setup 15

4.2 VE-Suite Architecture 17

5.1 Virtual Systems Modeling Approach 19

5.2 VE-Suite Model Structure 20

5.3 Analytical Model Structure in SysML 21

5.4 Analogy Between Two Model Structures 22

5.5 Modeling Methodology 23

5.6 C++ Constructs 25

5.7 VE-UI Module Using SysML Block 26

6.1 Fermentor System Layout 29

6.2 Block Definition Diagram ofthe Fermentor System 30

6.3 Constraints Used in FermentorAnalysis 31

6.4 BDD Showing Fermentor Analysis Model.. 32

6.5 Parametric Diagram Relating Structural and Simulation Properties 33

6.6 Fermentor Analysis Model Structure with VES Modules 34

7.1 Fermentor Analysis Model in VE-Suite 39

Vlll

LIST OF TABLES

T~e P~

5.1 SysML Relationship Constructs from [1] 24

1. INTRODUCTION

Systems engineering is a process of transforming a set of customer needs into an

integrated package of high performing solutions. Since its inception, systems engineering

has found applications in solving complex engineering problems. Potential solutions to

these problems can involve any combination of hardware, software, data, people, and

facilities [1]. The manner in which these elements are selected and combined determines

the effectiveness of proposed solutions.

Due to the amount of information generated and processed in systems engineering

projects, a key aspect of efficient systems engineering is the management of data and

information throughout the development process. Any errors introduced in managing this

information would have a direct impact on the value of the end product. With complex

systems, the challenge is even greater due to the increased interconnections between

subsystems.

Traditionally, information management and exchange in systems engineering has

relied on document-centric methods. The underlying principle of such an approach is to

use documents as a means of communication between stakeholders of the system.

Information concerning every exercise in the systems development process is

documented for later use. However, a major drawback of such methods is that managing

a large amount of information stored separately in individual files becomes cumbersome.

The focus of the process shifts from effective systems engineering towards maintaining

the validity and consistency of these documents. The pressure to build systems with

increased performance capabilities at a reduced cost and in less time has led researchers

to find new ways to aid the systems engineering practice.

Model-based systems engineering is one discipline developed to overcome the

limitations of these document-centric methods. A system model developed using this

approach mimics the requirements, structural, and, behavioral aspects of the system in an

integrated and consistent manner. Use of models in .developing systems has the potential

to provide an effective means for handling information present in the development

environment. Axelsson [3] identifies the necessity of having a modeling language to

satisfy general systems engineering needs and proposes an approach to extend the

2

capabilities of existing object-oriented language. He extended unified modeling language

(UML), largely affiliated with software-centric systems, to apply to general purpose

systems. Addressing the increasing demand for a modeling language for general systems

engineering applications, the Object Management Group (OMG) introduced systems

modeling language (SysML) [25, 38]. SysML is an extension to UML that provides a

framework to capture and represent information about a system under development. The

objective is to use an object-oriented methodology to model systems, subsystems, and

their components, along with interrelationships among them.

Although SysML has proven useful in developing formal descriptions of systems,

it is not an interactive design tool. A connection with a separate simulation package is

required in order to perform engineering analysis using SysML models. This paper

addresses this limitation by creating a framework to integrate model-based and virtual

engineering disciplines. The work presented here exemplifies the use of virtual

engineering in the form of an open source package called VE-Suite [39] in conjunction

with SysML to link formal system models to executable engineering models. The use of

virtual engineering technology eliminates the need to link the system model with various

analytical tools. This is made possible by the fact that virtual engineering technology

itself provides the potential to integrate and combine geometric models, analysis,

simulation, optimization, and other decision making tools in a single environment [5].

Once the information from a system model is passed on to this framework, VE-Suite has

the capability to work with numerous types of analysis packages in addition to executing

user-defined computational units. The methodology presented here has the potential to

combine the capabilities of model-based systems engineering (MBSE) to effectively

manage information complexity and the executable aspects of virtual engineering tools,

thus creating an integrated modeling environment. The goal of this research is to

demonstrate the capability of generating a computer-based virtual environment to

develop, analyze, and optimize a complete system that is formally described using

SysML. Using a virtual engineering tool in conjunction with SysML models would allow

system architects to develop systems in an interactive and executable design

environment.

3

The organization of the thesis is as follows: Section 2 discusses complexity in

systems engineering projects and provides an overview of techniques introduced

previously to manage it. Section 3 gives a detailed introduction to model-based systems

engineering, describing its history and development. It also provides an overview of

SysML. Section 4 provides information about the virtual engineering domain and the

software tool used in this research. Section 5 presents the approach taken here to integrate

model-based and virtual engineering technologies. Section 6 tests this methodology with

an example of a model. Section 7 presents the results of this model integration approach.

Finally, the thesis concludes with a discussion of some important aspects of the use of

this framework and provides a template for future users to develop their own executable

models.

4

2. COMPLEXITY AND SYSTEMS ENGINEERING

This Section introduces some important concepts relevant to the work discussed

later on in this thesis. It defines complexity as it is used in this work, outlines the history

of systems engineering, and describes its applicability to complex engineering ventures.

It also provides an overview of the traditional document-based approach to systems

engineering, describing the limitations of that approach. Finally, it introduces the current

model-based systems engineering methodology.

2.1. DEFINITION

Historically, many researchers have attempted to define complexity based on their

own perspectives and the context in which they apply it. Edmund [6] defines complexity

as "that property of a language expression which makes it difficult to formulate its overall

behavior even when given almost complete information about its atomic components and

their interrelations." (page # 6) This definition however, holds true only when there is a

possibility of finding significant amount of information about the components of a system

[7]. Gershenson and Heylighen [35] offer a simpler interpretation, which states that "in

order to have a complex, you need two or more distinct components that are connected in

such a way that they are difficult to separate." (page # 2) Again, the limitation of this

definition is that an apple-to-apple comparison is not possible to measure the overall

complexity. These definitions and their limitations demonstrate that there is no single

accepted definition of complexity. The vastness of the concept and its applicability

restricts a general consensus among different authors when they define complexity.

At this point a brief discussion of complexity as it will be treated in this work is in

order, to define techniques that can be used to manage it. The definition of complexity

used in this research must be understood in the context of its application to a general

purpose system. Here, complexity is the property by which behavior of elements becomes

interconnected in such a way that changes made have effects beyond a local area. Thus,

in complex systems, behavior is governed by the complexity that exists within the

architecture of the system itself. The art of building such complex engineering ventures is

5

known as systems engineering. According to the NASA Handbook [8], "Systems

engineering is a holistic, integrative discipline, wherein the contributions of structural

engineers, electrical engineers, mechanism designers, power designers, human factors

engineers and many more disciplines are evaluated and balanced, one against another, to

produce a coherent whole that is not dominated by the perspective of a single discipline."

(page # 21) It is a logical way of handling today's challenging engineering ventures

involving highly interconnected subsystems.

2.2. BACKGROUND

From its beginning systems engineering has addressed complexity. The demand

for building systems with increased performance capabilities at reduced cost and time

spurred the need to have a streamlined way of managing complexity that these systems

necessitate. Systematic design approaches such as those described in [9, 10, and 11] have

addressed this need. Figure 2.1 illustrates a typical systems development process. The

first part of the V-model represents the decomposition and definition phases. The

remainder comprises system integration and realization activities. Thus, the model begins

with the initial set of customer requirements and eventually transforms those

requirements into a complete system description.

LCI-Lowest
configurdiion
item
development

LCI-Lowest
configuration
item
realization

Subsystem
rea.liz:ation

Solution I
System

Realization

Figure 2.1 V-model of Systems Engineering [12]

6

A careful study of the above process indicates that the success of the effort to

meet stakeholder needs depends on the information flow through the development

process. In other words, managing the information flow effectively is one of the key

drivers in satisfying end customer needs. Traditionally, this information management has

been done using document-centric methods that store information on every step of the

process in separate files. Thus, information from requirements to technical specifications

to the detail design is documented individually in relevant file formats. Figure 2.2 shows

the traditional approach, each step of which has inputs and outputs in the form of

documents.

7

Figure 2.2 Document-centric Method

The document-centric technique has been adequate for many systems engineering

projects in the past. However, it has certain limitations. First, maintaining consistency

among documents becomes cumbersome, especially when change is the only thing that

remains constant in a development process. Additionally, extracting useful information

from the pile of documents becomes tedious and time consuming. Finally, today's

systems have become increasingly complex. The nature of systems engineering

challenges has changed significantly [13], warranting for a new approach that more easily

accommodates the increased demands oftoday's systems.

One way of dealing with the information complexity in a systems development

environment is by the use of computer-aided modeling. Model-based systems

engineering is one of such technique. The International Council on Systems Engineering

(INCOSE) [37] defines MBSE as "the formalized application of modeling to support

system requirements, design, analysis, verification and validation activities beginning in

the conceptual design phase and continuing throughout development and later lifecycle

phases." MBSE promotes the use of computer-aided modeling approaches to develop

models that represent structural, behavioral, and operational characteristics of a system in

development. A detailed discussion ofMBSE follows in Section 3.

8

3. MODEL-BASED SYSTEMS ENGINEERING

This Section explains the model-based approach introduced in Section 2. It

discusses OMG's SysML and explains some important constructs of that language. This

section also reviews some previous work that has also used SysML and describes the

approach adapted here to overcome some of its limitations.

3.1. BACKGROUND

Model-driven development in systems engineering can be traced back to the mid-

1990's when researchers first began to identify applications of object-oriented techniques

to support the systems engineering process. Friedenthal and Lykins [2] document the use

of parameter-based representation to define system attributes and their relationships with

the help of object-oriented constructs for modeling complex systems. Lykins,

Friedenthal, and Meilich [14] trace the evolution of the object-oriented systems

engineering method (OOSEM), which uses OMG's Unified Modeling Language (UML)

to capture system-level requirements and design information. Addressing the

interoperability issue of platform dependent models in software systems, OMG

introduced model-driven architecture (MDA). In MDA, platform-independent models

(PIMs) are initially defined using a modeling language. These models are then translated

to platform specific models (PSM) using transformations [44]. Figure 3.1 below

describes MDA and its elements.

9

Figure 3.1 OMG's Model-driven Architecture [45]

At the core of the architecture lie the platform independent modeling standards: UML,

meta-object facility (MOF) and common warehouse meta-model. The target platforms

form the outer thin layer followed by the application areas.

The initial success of OOSEM and MDA in software-intensive systems prompted

its application to general purpose systems engineering projects involving software,

hardware, people, and other entities. Studies by Bahill and Daniels [15] and Hsu and

McDonough [16] were early attempts to apply OOSEM to general systems. Model-based

systems engineering offers a more formalized way to use object-oriented principles to

solve complex systems engineering problems. Estafen's work [17] identifies several

model-based systems engineering methodologies catering to the requirements of modem

and highly complex systems engineering projects. Arthurs [18] studied the vital

components of an MBSE environment and the relationships among them. His work

identifies three core elements of an MBSE environment: modeling language, modeling

tools and the modeling process. Figure 3.2 illustrates these MBSE elements and their

interrelationships.

10

[~~] ...--· -Uses - [-~~ J
. ~ribes Devr

,-------------~

t-

Figure 3.2 Elements of an MBSE Environment [18]

A brief explanation of the three core elements is as follows:

• Modeling language: Provides the semantics to define the constructs for modeling

systems characteristics in an MBSE environment

• Modeling tool: Provides the means to implement the modeling language and the

interface to develop the system model

• Modeling process: This is specific to the users of an MBSE tool. Requirements

can either be defined in an MBSE tool and assigned to functions before building a

physical architecture, or traced directly to the physical architecture

Currently, several modeling languages are available for developing system

models in an MBSE environment; these include OMG's SysML, along with object

process methodology (OPM) and OMG's unified profile for Department of Defense

Architecture Framework/Ministry of Defense Architecture Framework (UPDM) for

architecture and system-of-systems modeling. The present work uses SysML. Detailed

information about the other two languages can be found in [19, 20, 21, 22, and 23]. A

detailed comparison between SysML and OPM is documented by Grobshtein [24].

11

3.2. SYSTEMS MODELING LANGUAGE

SysML is a graphical modeling language used to specify, analyze, design, and

verify complex systems [25]. It is an extension ofUML, which is a modeling tool that has

been used extensively in the software industry to manage complex software engineering

projects. OMG introduced SysML in cooperation with the International Council on

Systems Engineering to support the implementation of model-based systems engineering.

The language is based on object-oriented principles with a semantic foundation for

creating models of physical systems using well defined visual constructs. As an extension

of UML, it has inherited various properties of the parent language. Additionally, many

new features have been added in order to make it suitable for the systems engineering

domain. For example, it supports both requirements modeling and parametric modeling

(to develop mathematical and engineering models). Figure 3.3 shows SysML diagram

taxonomy, including diagrams inherited from UML and those that represent new

additions.

,, -·-Uiill2

........ r,._Uiill2)

I~;._;:.:;;.,: - ·
"----- ·--~

.--- --. . ~.
·-~--'

Figure 3.3 SysML Diagram Types [39]

.---. --,
I hnmt41!<: 1

'--~-·

12

Each diagram type offered by SysML corresponds to activities to be performed in

a typical systems development process. All the diagram types are organized under one of

three major categories: structure, behavior, and the newly added requirements. This

allows the development of a system model beginning with a requirements diagram to

specify system requirements followed by behavior and structure diagrams to further

detail the system. Figure 3.4 shows a screenshot of sample SysML diagrams developed in

an MBSE tool.

1. structure 2. Behavior

... ~.·==-. ..,_ --

3. Requirements 4 .. Parametrics

Figure 3.4 Four Pillars of SysML [39]

Since majority of the work reported here is based on model development in

SysML, the following is an overview of the basic SysML constructs relevant to the

example model described in Section 6.

13

3.2.1. SysML Blocks. The block is the primary modeling unit in SysML. It is an

extension of a UML class, and it represents elements of the system whether hardware,

software, personnel, facilities, or some other entity. Blocks provide a means to describe

the system features in the form of reusable components. Additionally, a collection of

blocks permits decomposition of a system into several layers of detail.

3.2.2. SysML Structural Diagrams. SysML offers three maJor structural

constructs: the package diagram, the block definition diagram (BDD), and the internal

block diagram (IBD). These diagrams provide an interface to model the physical

architecture of the system and the relationships among subsystems. In SysML, a package

groups a large collection of data pertinent to a particular domain. Package diagrams

provide an interface to group these elements in a hierarchical structure and establish

relationships among them. They typically represent the topmost level of the system

model. Examples of domains include system behavior, system structure, and system

requirements defined by the modeler at the beginning of the development process. A

BDD describes the architectural hierarchy of a system. It is defined by grouping blocks

representing elements of the system and establishing relationship among them. An IBD

describes the internal structure of a block by defining relationships using flow properties

and connectors. In addition to these constructs, SysML permits creation of an engineering

model that uses constraint blocks to specify constraints on the system, subsystem, or

component properties. A collection of these blocks along with their relationships is

represented using the parametric diagram. In addition, SysML provides valuetypes to

capture the quantifiable characteristics of each element of the engineering model under

development.

I.
I

14

3.2.3. Profiles and Stereotypes. OMG indicates that the extension of the

metamodel to add domain specific information is possible using profile packages. For

example, SysML is a profile created to suit the systems engineering domain on top of the

UML metamodel thus using and extending the capabilities of the original profile.

Similarly, SysML profile can be further customized to suit certain user-specific

requirements. Stereotypes are the primary mechanism for creating these profiles. A

combination of three different types of profiles: SysML, UML, and C++ are used while

creating the example model presented in Section 6. The model based systems engineering

software used in this work is Artisan Studio [36]. A detailed reading about SysML and its

semantics can be found in [25].

3.3. PREVIOUS WORK ON EXECUTABLE MODELS

SysML has attracted the attention of the systems engineering community ever

smce its introduction. One of the main areas researchers have sought to develop

techniques for is to overcome its non-executable nature. Johnson [27 and 28] integrates

SysML and Modelica constructs using triple graph grammars to generate executable,

continuous, dynamic model output. Huang, Ramamurthy, and McGinnis [4] demonstrate

the use of SysML as a formal modeling language to create conceptual models and

transform them into Arena simulation language constructs for execution. Peak et al. [29

and 30] document the use of SysML parametrics for engineering design and analysis and

demonstrate its support for simulation-based design. The work presented here introduces

virtual engineering domain as a companion to MBSE in order to execute engineering

models in an interactive design environment. Such a model integration framework would

not only extend the capabilities of SysML and MBSE, but also clarify systems

performance characteristics and thus promote informed decision making. Section 4

explains the virtual engineering domain and the tool used in this research.

15

4. VIRTUAL ENVIRONMENT

This Section provides an overview of the virtual engineering technology used in

this research in conjunction with the MBSE tool. It offers a brief explanation of the

virtual engineering software along with an insight into the architecture of this software.

4.1. BACKGROUND

Howard Rheingold [42 and 46] defines virtual reality (VR) as an experience in

which a person is "surrounded by a three dimensional computer-generated representation,

and is able to move around in the virtual world and see it from different angles, to reach

into it, grab it, and reshape it."(page # 2) In other words, VR is a computer simulation

that uses three-dimensional graphics to create a virtual environment and gives user the

feeling of being immersed in that environment. The level of immersion experienced by

the user depends upon the type of hardware used. For example, a desktop virtual

environment uses stereo-enabled graphics cards, shutter glasses, and a three-dimensional

mouse to create the sense of immersion and allow the user to interact with the

environment. Single- and multiple-wall virtual environments provide a larger display,

creating a high level of immersion and a more natural interface. Figure 4.1 below shows a

setup of theCA VE Automatic Virtual Environment with four walls.

Figure 4.1 CAVE Setup

16

4.2. VffiTUAL ENGINEERING

The engineering community soon recognized the interactive capability of a virtual

workspace, and subsequent efforts to exploit its potential led to the foundation of virtual

engineering as a discipline. Virtual engineering provides a means of creating a replica of

a physical system in a computer-generated virtual environment. The model underlying

such an environment can be a combination of geometric, physical, qualitative, and

quantitative data associated with the system (33]. The objective of virtual engineering is

to allow designers to observe how a system reacts to changes in design and operation

without the need to create a physical prototype. In addition, it provides an accessible

visual format for the presentation of information that is of value to all stakeholders. The

combination of geometric models and a variety of decision support tools creates an

environment in which engineers can make appropriate decisions by interacting with the

system naturally and exploring details that might otherwise remain undetected. With the

increased demand for building complex systems, virtual engineering can be an effective

way ofbuilding, operating, and testing such a system in an integrated design environment

with a user-centered perspective.

4.3. VIRTUAL ENGINEERING TOOL

This research uses VE-Suite, an open-source software package developed at Iowa

State University to facilitate virtual engineering. VE-Suite addresses the need to have a

common platform for performing the engineering process by providing open interfaces

that allows software packages to exchange data in a comprehensive design environment

[40]. Thus, engineers can work in a single environment that accommodates information

from various software tools, and they can interact with engineering models to create a

virtual decision-making environment.

The architecture of VE-Suite is composed of three core engines: VE_Xplorer,

VE _ CE, and VE _Conductor. Figure 4.2 shows the architecture of VE _Suite. A brief

description of the architectural components is provided below.

Figure 4.2 VE-Suite Architecture

softwant
eoglnes .

plugins ·

add'l '
plug ll$.

17

VE _Conductor forms the front end user interface. It uses open-source cross

platform user interface (UI) libraries offered by Wxwidgets [41]. Depending on the user's

requirements they can create an interface using the base classes provided with the VE

Suite Application Programming Interface (API).

VE _ CE is the computational engine that handles the coordination, scheduling and

monitoring of the simulation runs and provides a means of linking commercial analysis

software packages with the virtual engineering framework. Thus, the communication

with other software packages to send and receive data is handled by the computational

engine. Additionally, users can define their own computational unit and attach it to the

service by creating digital library files to create these plugins.

VE _ Xplorer is the graphical engine that is responsible for creating the virtual

environment. It provides the visual interface to display the simulation under observation.

Additionally, physical architecture prototypes can be created using the OpenSceneGraph

libraries which form the underlying layer of this engine. Once we have the prototype,

Xplorer can be connected with an immersive virtual reality environment like the CAVE

18

using VRJuggler as the device manager. Thus, a stakeholder can decide the level of

interactivity he/she wants and switch from a desktop-based display to a highly immersive

CAVE environment without having to worry about the compatibility issue.

In addition to the above core engines, VE-Suite uses Common Object Request

Broker Architecture (CORBA) [38] standard implemented in VE-Open to establish a

communication medium between its core engines. This also provides the capability to

operate engines independently from different locations. A typical VE-Suite model is a

combination of three plugins: UI plugin, Computational unit plugin and graphical plugin.

Users can build their custom plugins using the VE-Suite application programming

interface (API) comprised of the base classes.

19

5. VIRTUAL SYSTEMS MODELING APPROACH

This Section explains the model integration approach proposed in this thesis. It

also discusses the model transformation procedure used to integrate SysML and virtual

engineering models.

5.1. OVERVIEW

The present work seeks to integrate virtual engineering models with system

models described using SysML. The MBSE tool used here work is Artisan Studio. Figure

5.1 outlines the model integration approach; where we have system formal model

developed using MBSE methods on one side and an executable virtual engineering model

on another. Once the information from a system model is passed on to the virtual

engineering framework, analytical models of varying types and levels of fidelity can be

executed.

System Formal
Model

D
Detailed design &

Analysis

Figure 5.1 Virtual Systems Modeling Approach

The use of virtual engineering in conjunction with SysML demonstrates the value

of this approach for meeting the following objectives:

20

• Execute analysis models developed using SysML in an MBSE tool.

• Provide a visual interface that clarifies the system and its operations in a better way.

• To create an appropriate decision making environment.

• To identify potential effects of changes in design parameters on system

performance.

• To maintain consistency in information flow by creating an integrated design

environment.

A single environment capable of meeting these objectives would allow engineers to

concentrate on systems development rather than focusing on the tool interfaces and

transformations necessary to gather the required information.

5.2. METHODOLOGY

As explained in section 4.2, a typical virtual engineering model designed in VE

Suite is composed of three components: the VE-UI (User interface that displays the

design parameters considered in a simulation and acts as the data feeding point), VE-Unit

(Backend computational unit), VE-GP (the graphical Plugin to display the simulation

results and CAD data). Figure 5.2 shows the VE-Suite model structure composition.

VE-Suite model
structure

I
I I I

VE-UI VE-Unit VE-GP

Figure 5.2 VE-Suite Model Structure

21

Similarly, an analysis model in SysML can be viewed as being composed of three

essential components: 1) the simulation block, which defines the input/output parameters

and time constraints to control simulation start and stop times, 2) the constraint block,

which defines the constraints to be applied to the design parameters in the simulation, and

3) the system model, which defines the structure and value properties to be analyzed.

Figure 5.3 shows the structure of the analytical model.

Analysis model
structure

L
I I I

Simulation Constraint
System model

block blocks

Figure 5.3 Analytical Model Structure in SysML

When using this type of model structures, it becomes clear that the two model

compositions can be thought of as being analogous to each other. Figure 5.4 shows the

analogy between the two model structures. Thus, models from the MBSE domain can be

the source of the information on which executable virtual models are built.

Model Based Systems

Engineering domain

Simulation
block

Constraint
block

System
model

Virtual Engineering

domain

VE-UI

VE-Unit

VE-GP

Figure 5.4 Analogy Between Two Model Structures

22

Another important consideration is that VE-Suite models are C++ based. This gives

increased flexibility in the types of information that can be represented, but to create

executable virtual engineering models there has to be a mechanism for information

exchange between SysML and C++ based VE-Suite models. A combination of SysML,

UMLand C++ profiles provides such a mechanism in an MBSE environment. Figure 5.5

illustrates the modeling methodology.

MBSETool

Analysis
model

23

VE-model
Mapping

Figure 5.5 Modeling Methodology

The connection between the two types of models is done using relationship constructs

offered by SysML. Table 5.1 below gives a detailed description of composite, reference,

and generalization relationship constructs used in this work.

24

Table 5.1 SysMLRelationship Constructs from [1]

Qjagram
Element No~on Description

Com posit~ ~ <Na~ cPbll> Aoomposite
Assodat:lon

<IIAull~
I!SSOCh!Jtion

Pattl <MUltiplic;ity> r1!!l!!~s ~ w hole

<End> <Namac> <Part> to its parts

• ') s howing the
<Uulllpllclty> <Munlpllclty> relatlwe

multlplidty at
both whole and

-Fh Ph part ends. A

<Uuii~Jlkity> <~l(;/iic.ity>
cornJX)Sfte
assooetton
always defines
a part propertv <~)'>
In the whole
(ln<llc<it:oed by
<Part>),
Where there is
no arrow on
the
non d iamond
and of the
assodaoon It
also sJ>e(::ifies
a referenoe
property to
the whok! in
the part
(indic.!lted by
<Reference>).

Otherwise
when there is
an arrow, t:n.e
name- at the
w hole .. nd
simply gives a
name- to the
association end
(indicated by
<End>).

; Re~renoe <Aeier'enco!P .:Aelenlnoe> A reference
Asscx:iation <> <N me> association ca1

Path <Mtl~ <Multlplicllly>
be used to

<End> <Relonmoa> speafy a

<> <N etroe<>- relationshiP
<M<I~ <Muftiplicily> between two
<A~ <A:elerenoe> blocks:. A

<Na.-,. re fef'en<:.e
<MU~ <M~y> assooatton ca"'

<End> <A:elerenoe>
speCify <>
refef'eooe

<~)
pr~ oo <M<IItiplidly> <Mullipl;olly>
the blocks ilt <AoF-h ~ one or both

<Mulllpicily> ~~hiplicity>
ends. The
white diam<lfid
is the same fi:S

<Uulllplk:lty> n o diamond,
but pro·t'lles can
b e u sed to
dl~tiat:e
t h em by
spedfylng
additiOnal
oonstratnts .

~- ---- -- ·-···- --·

25

Table 5.1 SysML Relationship Constructs from [1] (Continued)

Generalization

<Gi r8JftK3ni>
A

Path <Gr·~~5m> gen eralization

--- ----- -- --- describes the
relationship
between the
gen eral
classifier and
specialized
classifier. A set
of
generalizations
may either be
{disjoint} or
{overlapping}.
They may also
be {complete}
or
{ In complete}.

5.3. C++ PROFILE

The C++ profile package supplied by the MBSE tool infuses the model with

information specific to C++. It contains stereotypes and tag Definitions required to model

C++ code that can be used in combination with SysML and UML profiles. Figure 5.6

shows a screen shot of the template of the C++ profile elements provided in Artisan

Studio.

Tag Definition N arne

C++ Header Include
C++ Implementation Include
C++ Inheritance List

Tag Value

Figure 5.6 C++ Constructs

26

By applying C++ stereotypes to objects defmed usmg SysML, information

specific to C++ can be entered using tag values. Thus, a SysML block can contain

SysML properties such as values, parts, and constraints, as well as tag values defined in

the C++ stereotype applied to it.

5.4. VIRTUAL ENGINEERING MODELS IN AN MBSE ENVIRONMENT

Virtual engineering models in an MBSE tool can be represented using SysML

blocks. Each VE block in the tool corresponds to the VE-Suite model structure described

in section 5.2. These blocks are composed of the sets of operations necessary to create

models compatible with VE-Suite using the information supplied by the corresponding

SysML analytical model. Figure 5.7 shows a sample VE-Suite UI module to create the

user interface plugin defined using SysML block along with its primary operations .

..block»
VEUI

operations
Get\krsion 0
GetConductorName 0
UIO
...,... .-..

Figure 5.7 VE-UI Module Using SysML Block

Once all the VE-Suite modules are created, relationship constructs are used to

establish a connection between the two models. Information about the design parameters

and time constraints is supplied by the simulation block to the corresponding VE-UI

block. The latter contains the operations to create a user interface for the simulation. The

constraint information used in the analysis is passed from one module to another by

creating a relationship between the constraint block and VE-Unit block, which stores the

operations to create the backend computational unit. Information about the computer

aided design (CAD) models associated with structural units of the system can be passed

on to VE-GP using the reference association. ·

27

Plugin dll files required to run the application in VE-Suite can then be created by

compiling the auto generated C++ code in an integrated development environment (IDE).

The model organization created in the MBSE tool makes the code readily available for

compilation to create the plugins for VE-Suite.

28

6. EXAMPLE MODEL DEVELOPMENT

This Section provides a proof of concept for the methodology introduced in

Section 5. It introduces a fermentor system and develops an example model in the MBSE

environment. The sections of this Section outline the steps to build a model using the

virtual systems modeling approach.

6.1. SYSTEM OVERVIEW

An example model of a fermentor system demonstrates the feasibility of

integrating the SysML model into a virtual engineering environment. Bio-processing

industry uses fermentor systems to produce compounds like ethanol and citric acid. A

virtual engineering model of the fermentor has already been created as part of a training

project at Indian Hills Community College Bioprocess Training Center. The purpose of

this model was to train students and operators to understand the effects of varying

chemical and biological inputs on the fermentation process. This fermentor system

provides a baseline sufficiently broad to display the utility of the method proposed here,

but still small enough to permit rapid modifications to evaluate the performance of our

method. A typical fermentation process requires a set of inputs including both physical

compounds and controlled working conditions. Production is governed by the chemical

reactions that result from these input sets. Figure 6.1 shows a conventional fermentor

system to demonstrate the composition and internal interfaces of the system.

User Input

Impeller drive

system

Feeding

System

Tank

Figure 6.1 Fermentor System Layout

29

Output

Development of the fermentor model began with the identification of input and

output parameters required to create a realistic model of the fermentation process. The

inputs considered here are impeller speed, initial pH level, initial nitrate concentration,

and initial temperature. The output of the system is the concentration of citric acid

produced with the given set of input parameters.

6.2. MODEL DEVELOPMENT USING SYSML

With the layout of the system as the baseline, the first step was to create a formal

model of the fermentor using SysML constructs. Figure 6.2 shows the fermentor

structure, modeled using a block definition diagram offered by SysML.

30

bdd [Package) Fermenter structure[Fermenter System Components]

«block» l1 1 A.
Fermenter ,_

~ -- I\ . ~r ~ ~
....

Agitator 1) 1

Iff'"'''"'"
/

«block» eeder «block»
Impeller drive system 1

1 i Tank

" values «block» «block»

11

values
agttation in rpm : double Feeding system Gauges cttric cone : double

values
inttial pH : double
temperature : double

air cone : double ~

nttrate cone : double

Figure 6.2 Block Definition Diagram of the Fermentor System

The ferrnentor block shown here is composed of four key elements: the impeller

drive system, the feeding system, the gauges, and the tank. Each element has value

properties that represent the quantifiable characteristics of the blocks. These quantities

also represent the input and output parameters considered in the experiment.

6.3. DEFINING AN ANALYTICAL MODEL IN SYSML

Developing an analytical model requires the knowledge of the model type and the

purpose that it is going to satisfy. The purpose here refers to the effective understanding

of a particular type of system behavior under controlled input conditions. In the case of

the fermentor system, the objective was to observe the behavior of the fermentation

process by varying input conditions. An analytical model was developed using SysML

diagram types to accommodate the computational information required to run the

simulations. The first type of information was the constraints required to calculate the

concentration of citric acid. Figure 6.3 shows the constraints used to calculate the

concentration, defmed using a SysML construct.

«block:.
Fennentor Analysis

«Constraint:.
Eqnstocalculateacidicyeild

constrairts
· Citric cone= c[1)*c(2]*c[3]*c[4]*c[5)*c[6)*c[7];

F[1 1 = c-o.oooo36 •t •t •t) + co.oo92 •t •t- o.o72 *t)
lt-1;

c[2) = (-0 .000091 • agitation • agitation)+ 0.035 •
agitation- 2.56;

c[3] = (-1 • airconc • airconc) + (2 • airconc) -2;

c[4] = (-0.41 • inipH • inipH) + (4.9 • inipH) -13;

c[5) = (-17 • nitrateconc • nitrateconc) + (8.4 •
if1itrateconc)- 0.004;

ic[6] = (-0.01 • temp •temp) + (0.69 •temp)- 7.8;

c[7) = -1;
}

Figure 6.3 Constraints Used in Fermentor Analysis

31

Once the constraints were defined, the next step was to add the properties of the

various subsystems defining the actual system model and the simulation model which is

comprised of experiment specific information. The actual systems model is the fermentor

model structure described previously; the simulation model includes input and output

parameters and time constraints to run the experiment. Figure 6.4 shows the structure of

the fermentor analysis model using a BDD of SysML.

bdd (Package(Fermentor Analysis[calculat ing acid concentratio~JJ

«block»
Simulation

values
timelnput: double

>

acid yieldOutput : double
agitationlnput: double
air_conclnput : double
Nitrate_conclnput : do ...
Templnput: double

«block»
Fermentor Analysis

I
«block»

Fermentor

)

«constraint»
Eqnstocalc ulateacid icyie lc

--.-

Figure 6.4 BDD Showing Fermentor Analysis Model

32

Developing a system structural model separately and then introducing it in the

analysis context gives the advantages of having a modular design. The analysis can be

changed by varying the constraints and simulation properties while keeping the primary

system model unaffected. Thus, different analyses involving the same system model

properties can be undertaken easily. Value properties defined in the simulation block

must be constrained by the value properties of the actual system model in order to

maintain consistency throughout the model. Such constraints are imposed by a parametric

model that relates value properties of both the blocks using an equality constraint. Figure

6.5 shows the parametric diagram developed to constrain the simulation block properties.

par [block) F ermentor Analysis j

cparb
[Simulation] : Simulation

cparb
[Fermentor] : Fermentor

cparb
: lmpellerdrivesystem

33

I. timelnput : double Jl
!acid yieldOutput : doubl~l

~>c~'aSgrt;af~1on~in~r;pm~:~do;u~ble~~~~--. l
cparb J

Sim ~itation : double Femnentoragrtation : d / : Feedingsystem

I agrtationlnput : double il . tJ ~
~~~~~~ji i~::::·~S~im~NC~:~d~ou~blbtJ 1 !fermentorNC : double I nitrateconc : double 1: 
I Nitrate_conclnput : Jr ._,c1J~==J~~~~;;;=;;;;;;;;~ 

double , SimAC : double [Equal) : Equal fermentorAC : double 1 Ill ·. 
~~~~~~f-~~;~;gr--::::;:;:;::;:---rti===::::j~----t--j airconc : double r I J COnstraints I.., I. 
I air_conclnput : double •·1 C: . ~rmentoragrtation= I=~~~~~~~JI Jl ~ :n Temp . double agnation; ~

rmentorNC = s·.lmNC; r' lfermentorTe np : double cparb I I ll L. : Tank I Templnput : double s· H . d bl FermentorAC = S1mAC;

~~~~~~~~~b~m~p==. ;ou~e ~l.EermentorTemp = SimTemp;} r IJ r. ermentorpH : double I temperature : double h 
I inrtialpHinput : double Jl L1F:::::::::_~--~~~=~~~~ J 

I inrtialpH : double 

Figure 6.5 Parametric Diagram Relating Structural and Simulation Properties 

6.4. ADDING VE MODELS 

This section describes the creation of a VE-Suite model in the MBSE tool. First, 

the three main components representing the VE model are created (see Section 3.2). Each 

VE-Suite module in the MBSE environment is composed of operations specific to the 

plugin that it is creating. The FermentorUI block represents the user interface module that 

will control the simulation; the FermentorUnit represents the backend computational unit, 

and the FermentorGP stores the operation to create the display. In order for the VE 

models to have analysis-specific information, relationships are established with the model 

already developed using SysML. Thus, the FermentorUI inherits the simulation-specific 

properties from the simulation block, and the FermentorUnit has a reference to the 

constraint block that stores the operation to calculate the concentration of citric acid. 

One of the key advantages of using a virtual engineering model is that 

information can be presented in a manner readily understood even by a non-expert. This 



34 

is due in part because of the use of CAD models to represent a system. Subsystem models 

can be represented by individual CAD models. VE-Suite's graphical engine provides the 

capacity to create such a model architecture using OpenSceneGraph libraries. To exploit 

this option, part properties of the fermentor system model are referenced with individual 

CAD files that replicate their structure using an UML operation. This operation reads 

data from the CAD file using an OpenSceneGraph function. Each subsystem associated 

with a CAD file has a member function to read the CAD data and store it in the form of 

an OpenSceneGraph node. These part properties are then referenced in the FermentorGP 

module using relationship semantics. The module has operations to create a complete 

scene graph composed of individual nodes by calling the member function defined in the 

part properties using the reference handle. Figure 6.6 shows the organization of the 

complete fermentor analysis model. It represents VE models in the diagram explicitly 

using the < <VES> > stereotype. 

bdd [Package] Fermentor Analysis( calculating acid ~JI 

«block» 
Fennentor Analysis 

/ 
~ -..... ~_ _ ...... 

/ l l «constraint» ~1 
f/ ' Eqnstocalculateacidicyiel «block» 

«block» Fennentor 
Simulation 1 

values 1 ~ 'i ~~ I timelnput : double 
1 I. '< I acid yieldOutput : double 

«block» «block» >. 
agitation Input: double «block» Feedingsystem Gauges «block» 

ll 
air_conclnput: double lmpellerdrivesystem «VES» 
initialpHinput : double 

operations 
operations operations FennentorUnit 

Nitrate_conclnput : do ... 
ReadCADdataandl ... 

ReadCADdataa ... ReadCADdataa ... II Templnput : double 

-T ' .1 

\ 
I 

«block» 
Tank 

I 

operations <l 
I 

«block» ReadCADdataandlntialize () I 
«block» «VES» 

FennentorUI «VES» 
./' FermentorGP - "< - -- ---

·-~ 

Figure 6.6 Fermentor Analysis Model Structure with YES Modules 



35 

7. EXPERIMENTAL RESULTS 

This section describes the output from the MBSE tool and its compilation to 

create the VE-Suite model. The auto code synchronizer (ACS) function in Artisan was 

used to generate and synchronize the C++ code with the SysML model. The objective 

here was to convert a model developed from one language (SysML) to another (C++) so 

that it can take advantage of the execution capabilities provided by the virtual 

engineering tools. The advantage of using the ACS while generating output is that the 

code in the IDE (Visual Studio, in this case) remains synchronized with the model at all 

times. In this way the code and the model can be updated whenever a change is made. In 

addition, the code generated as an output of this process remains consistent with the 

relationships defined in the SysML model. For example, the FermentorGP module has 

references with both the constraint block and the structural components of the fermentor 

system; therefore, when we output the code for the GP module it will have information 

access to the related files. The following pseudo code of the FermentorGP module 

explains how reference pointers provide access to the CAD data defined individually in 

the structural components and to the constraint information. 

//FermentorGP . h 

class VEFermentorGraphicalPlugin : inheriting f r om VE-Suite Xpl ore r b a se 
c lass 
{ 

publ i c : 

II PubliciPackage operations 
Con s tructor for the FermentorGP clas s 
Destru c tor f o r t he FermentorGP class 

//Base class operations 

virtual void Initi a lizeNode( os g :: Gr oup * ve worldDCS ) ; 
virtual void Pr eFrame Update (}; 
virtual void Pr ocessOnSubmit J ob() ; 

p r ivate : 



II Private attributes 

II Reference pointers 

//Pointer to access constraints information 

Eq ntocalculateconc* cons tra int; 

//Pointer to access CAD data from the system model 

} ; 

endif 

I mpelle rdrivesy s t e m* i mpe l ler; 
Tank* tank ; 
Feedings yste m* f eed i ngs ystem; 

36 

The complete C++ output code is presented in the appendix. Each structural component 

of the fermentor system has an associated CAD file that is read using OSG functions and 

stored in a node accessed by the Fermentor GP module. This process creates a tree 

structure to display all the elements in the Xplorer interface. The following pseudo code 

represents the feeding system: 

II File : . \Feedingsystem.cpp 

# i nclude <Feeding system header file> 

# i nclude <Osg header file to read CAD data> 

II Operation implementation of the read CAD data function 

osg:: r e f _ p t r< osg :: Node > Feedi ngs ys t e m: : ReadCADdata () 
{ 

II ## OperationBody [llfeb10e-328a- 4f94 - a6c9 - 473b14683f60) 

1/feedingsystem . ive is the CAD file passed as argument to the OSG 
function ; output of the function is in the form OSG node 

_ferme n t o r Ge ometry = o s gDB::readNodeFile( "Models/feedingsystem . ive " 
) ; 

II The return type is in the form of OSG node 



II FermentorGP module has access to this OSG node through the pointers 
defined in its header file 

return fermentorGe ometry ; 
II ## OperationBody End 

37 

The .1ve file is the CAD file which is read and stored in an OSG node defined as 

_fermentorGeometry. This process is repeated for all other structural components and the 

OSG nodes are available to the GP module to access. 

The simulation block in the fermentor analysis model defines the experimental 

data elements and their value types. The FermentorUI module inherits this information 

from the simulation block. Shown below is the pseudo code of the simulation block 

followed by the FermentorUI module: 

II File: . \Simulation .h 

#ifndef 
#define 

simulation 
simulation 

class simulation 

Public: 
//user defined experimental parameters 

double agitationinput; 
double air_concinput; 

double Tempinput 
//All these parameters are defined in the simulation block using 

SysML value properties 

} ; 

endif 

I I File : . \FermentorUI . h 

#ifndef 
#define 

FermentorUI 
FermentorUI 

#include <header file to provide access to simulation block properties> 

#include <header file of the conductor base class> 



class FermentorUI 
class 

inherits from conductor base class and simulation 

public: 

II PubliciPackage operations 

FermentorUI constructor 
FermentorUI destructor 

lives conductor base class operations 

virtual double GetVersion(); 

virtual ves: :conductor::UIDialog* UI( wxWindow* parent); 

virtual wxString GetConductorName(); 

wxString GetName(); 

} ; 

#endif 

38 

Once the output C++ code of the fermentor analysis model has been generated, 

the next step is to generate the dll files that can be plugged into the virtual engineering 

software to run the experiment. The code was compiled using SCons [43], a software 

construction tool used to build the VE-Suite source code. Before compiling, the 

SConscript files were created with the software environment necessary for VE-Suite. The 

output of the compilation process was in the form of dll files that VE-Suite can read and 

execute in its environment. Figure 7.1 shows a screenshot of the fermentor model in VE

Suite as the final output. The user interface can be used to change the design parameters, 

run the simulation, and view the results in the Xplorer window. 



39 

Figure 7.1 Fermentor Analysis Model in VE-Suite 



40 

8. DISCUSSION AND CONCLUSION 

The power of using . Model based design has been known to the engmeenng 

community for quite some time. It provides a scope to enhance the traditionally used 

relatively inflexible form of doing engineering design by introducing modularity, 

reusability, and easy maintainability of design information. Model-based systems 

engineering has been introduced to utilize these opportunities to solve more complex 

engineering problems confronted while undertaking systems engineering projects. 

Additionally, the activities involved in designing complex systems demand that different 

modeling formalisms work together synergistically. This increases the importance of 

having an effective model integration approach that satisfies multiple requirements. This 

paper has introduced an approach that integrates formal system models with detailed 

engineering models using the profiles and relationship constructs offered by an MBSE 

tool. 

As a language supporting MBSE, SysML has gained attention for both the 

capability it offers and its limitations. It addresses various aspects of systems engineering 

activity and provides an easy-to-use library of graphical constructs to facilitate those 

activities. In addition, SysML permits the use of relationships to maintain consistency 

and coherence in models. However, its lack of self-execution capability forces it to rely 

on external analytical tools to solve mathematical models. This work proposes the use of 

virtual engineering as a means of analysis that retains the formal system models 

developed using SysML as the source of information. By integrating virtual engineering 

models with SysML, the potential of SysML to manage information complexity can be 

used in conjunction with executable detailed design models. The example model 

developed here demonstrates the effectiveness of this approach for: 

• creating an executable model of a simulation that is synchronized with the 

systems engineering information, 

• using CAD data to create a realistic view of the system, thus creating an effective 

decision making environment, 



41 

• understanding the effects of changing design parameters on system performance. 

The integration of an MBSE tool with the virtual environment brings high-level 

formal models closer to detailed engineering models so that decisions can be made with 

the help of interactive engineering analysis. The model integration approach illustrated 

here also maintains information consistency throughout the process. Thus system models 

in both the environments remain synchronized so that changes can be tracked and 

information can be updated dynamically. In addition, the manner in which SysML model 

is defined allows for extensive model reuse. System structural components can be tested 

by performing different types of analyses without making major changes to the original 

model. For example, if the user decides to change the type of analysis for the fermentor 

from calculating the concentration of citric acid to a different product, they can 

manipulate the model structure without destroying the original one. Also, the VES 

modules defined above can be reused to support the new analysis. Once the first model is 

created and executed, amount of rework required to test the system for a different set of 

parameters and constraints is much reduced. 

The objectives accomplished in this research demonstrate our efforts towards 

larger integration of software tools for systems engineering management and engineering 

decision making. The example model demonstrates the creation of a user-defined 

computational unit, which is one of numerous capabilities that VE-Suite offers. 

Furthermore, external analytical tools such as CFD and FEA packages can be 

synchronized with the virtual platform to vary the levels of fidelity. The use of high 

fidelity models in conjunction with systems engineering information in a virtual 

environment can provide an interactive, user-centered, and thorough working 

environment for the stakeholders to work in. In addition, the open interfaces offered by 

the virtual engineering tool permit for integration of different software tools used in 

systems development in a single, comprehensive design environment. The work 

presented here represents the preliminary steps required to use the capabilities of the 

virtual engineering platform to create an integrated development environment. Also, a 

template giving basic information on using the methodology for creating engineering 

models is presented in Appendix B. By providing this template we demonstrate the 



42 

breadth of the methodology described in this thesis in developing newer engineering 

models using a combination of model-based and virtual engineering domains. Thus, 

future users can use this as a guide in developing executable models relevant to their 

needs. 

The next step in this research will be to use the MBSE tool API and integrate it 

with the VE-Suite open interface. A linkage of this kind will provide a more seamless 

integration between the two tools for data exchange and could minimize the amount of 

manual work required to create the dll files after generating the C++ code. Additionally, 

the access to the MBSE tool API would allow component traceability between the two 

domains. Thus, if an engineer decides to change the composition of the system model by 

replacing a component, the outcome ofthis decision can be instantaneously visualized in 

the corresponding virtual environment. This would also help in analyzing the effects of 

changing requirements on the system architecture as the model traceability will span from 

requirements to the detailed engineering models. 



APPENDIX A 

OUTPUT CODE 



II File . \FermentorUI . h 

#ifndef FermentorUI 
#define FermentorUI 

#include "sirnulation .h" 
#include <ves/conductor/UIPluginBase .h> 
#include <wx/image .h> 
#include <string> 

class FermentorUI 
simulation 

public ves::conductor::UIPluginBase, public 

DECLARE DYNAMIC_CLASS( Fermentor ) 

public: 

} ; 

II PubliciPackage operations 

FermentorUI(); 
virtual -FermentorUI(); 

virtual double GetVersion(); 

virtual ves::conductor::UIDialog* UI( wxWindow* parent); 

virtual wxString GetConductorName(); 

wxString GetName(); 

long cycle_ ID; 
long rotation ID; 
long xray_ID; 
long loop_ID; 

double rot_speed; 
d oubl e sim_speed; 

#endif 

II File : . \FermentorUI . cpp 

//#include " StdAfx . h" 
#include "Fe rmentorUI . h " 

44 



#include " FermentorUIDialog.h ~ 

#include <wx/wx . h> 
#include <iostream> 
#include <fstream> 
#include <wx/wx . h> 

IMPLEMENT_DYNAMIC_CLASS( FermentorUI, ves::conductor::UIPluginBase) 

II Operation implementations 

FermentorUI::FermentorUI() 
{ 

II## OperationBody [8e8d3b2c-2lad- 4003- 8726- 7350lbafa0e2] 
RegistVar( ~ agitation~ , &agitation); 

RegistVar ( ~a ir_conc ~, &air_conc ) ; 
RegistVar( " ini_ph ~, &ini_ph); 
RegistVar( " nitrate_conc ~, &nitrate_conc ); 
RegistVar( "temperature ~, &temperature) ; 
RegistVar( " hours" , &hours); 
RegistVar( " cycle_ID", &cycle_ID ); 
RegistVar( "rotation_ID", &rotation_ID ) ; 
RegistVar ( "xray_ID", &xray_ID ) ; 
RegistVar( " loop_ID", &loop_ID ); 
RegistVar( "rot speed", &rot_speed ); 
RegistVar ( " sim_speed" , &sim_speed ) ; 

mPluginName = wxString( ( ~Fermentor" ); 

wximage my_img ( ( "Icons/fermentor. jpg" ) ) ; 
Setimage( my_img ) ; 

II## OperationBody End 

double FermentorUI: : GetVersion() 
{ 

II ## OperationBody [0456d9c9 - la98 - 408a-bead-lb2b5fd3769d] 
double result = 1.0; 

//Your code 

return result; 
II ## OperationBody End 

wxString FermentorUI: :GetConductorName() 
{ 

II ## OperationBody [55012352 -f872 - 4996 - b77b- 7056cb46363b] 
//Your name 

wxString result( "IHCC Fermentor") ); 

45 



return result; 
II ## OperationBody End 

wxString FermentorUI::GetName() 
{ 

II ## OperationBody [25b85835 - f0b8-4750-941b-lf7f2b55148f) 
return mPluginName; 

II ## OperationBody End 

ves::conductor::UIDialog* FermentorUI::UI( wxWindow* parent) 
{ 

II ## OperationBody [128919dl - 2502-4a6c-9d46- 05b1 16cf3bd8] 
if( dlg ) 

{ 

return dlg; 

dlg new FermentorUIDialog( parent, wxiD_ANY, &agitation, 
&air_conc, 
&ini_ph, 
&nitrate_conc, 
&temperature, 
&hours, 
&cycle_ID, 
&rotation_ID, 
&xray_ID, 
&loop_ID, 
&rot_speed, 
&sim_speed ); 

ConfigurePluginDialogs( dlg ); 

return dlg; 

II ## OperationBody End 

FermentorUI: :-FermentorUI() 
{ 

II ## OperationBody [196070f4 -e928-41 28 - 8e08-a8aa6646adb9) 

II ## OperationBody End 
} 

II File 

#ifndef 
#define 

. \Simulation . h 

simulation 
simulation 

46 



//# include "C : \Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ . . \Program2\double .h " 

class simulation 
{ 

public: 

} ; 

double agitation; 
d ouble air cone ; 
double ini_ph; 
double nitrate cone ; 
double temperature ; 
double hours ; 

#endif 

II File : . \Eqntocalculateconc . h 

#ifndef EQNTOCALCULATECONC_H 
#define EQNTOCALCULATECONC_ H 

class Eqntocalculateconc 
{ 

public : 
Eqntocalculateconc(); 

47 



double 
calculateacidyield(int,double,double,double, double,double) ; 

} ; 

double c[ 8 ]; 
int time; 
double agitation; 
double airconc; 
double iniph; 
double nitratconc; 
double temp ; 

II File : . \Eqntocalculateconc . cpp 

#include "Eqntocalculateconc.h" 

Eqntocalculateconc::Eqntocalculateconc() 
{ 

48 

double Eqntocalculateconc:: calculateacidyield(int t, double ag, double 
ac , double iph, double niconc, double tempture) 

time =t ; 
agitation=ag; 
airconc =ac; 
iniph = iph; 
nitratconc =niconc; 
temp tempture; 

c[ 0 ] = 1; 
c[ 1 ] = ( -0.000036 *time *time* time ) + ( 0.0092 * 

time * time ) - ( 0.072 * time ) + 1; 
c[ 2 ] ( -0 . 000091 * agitation* agitation ) + 0 . 035 * 

agitation- 2.56 ; 
c[ 3 ] -1 * airconc * airconc) + ( 2 * airconc) - 2 ; 
c[ 4 ] -0 . 41 * iniph * iniph) + ( 4 . 9 * iniph) - 13 ; 
c[ 5 ] -17 * nitratconc * nitratconc ) + ( 8.4 * 

nitratconc ) - 0 . 004 ; 
c[ 6 ] ( -0.01 *temp* temp) + ( 0 . 69 * t emp) - 7 . 8 ; 
c[ 7 ] = -1; 

for ( int i 1; i < 8; ++i 
{ 

c[ 0 c [ 0 * c[ i l ; 

if ( c[ 0 l <= 0 ) 

c[ 0 l = 0.0; 



II File 

#ifndef 
#define 

return c[O]; 

. \Feedingsystem . h 

Feeding system 
Feeding system 

//#include "C : \Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ .. \Program2\double . h" 
#include <osg/ref_ptr> 
#include <osg/MatrixTransform> 

class Feedingsystem 
{ 

public : 

II PubliciPackage operations 

osg : :ref_ptr< osg::Node > ReadCADdata(); 

osg : :ref_ptr< osg : :Node > fermentorGeometry; 

double airconc; 

double nitrateconc ; 

} ; 

#endif 

II File : . \Feedingsystem . cpp 

//#include "StdAfx.h " 
#include "Feedingsystem . h" 

#include <osgDB/ReadFile> 

#include <iostream> 
#include <iomanip> 

II Operation implementations 

osg : :ref_ ptr< osg : :Node> Feedingsystem: : ReadCADdata() 
{ 

II ## OperationBody [llfebl0e-328a- 4f94 - a6c9 - 473bl4683f60] 

49 



_ fermentorGeometry = osgDB::readNodeFile( 
"Models/fermentor_noimpeller .ive " ); 

return fermentorGeometry; 
II ## Ope rationBody End 
} 

II File . \Impellerdrivesystem.h 

#ifndef __ Impellerdrivesystem 
#define Impellerdrivesystem 

//# include "C : \Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ . . \Program2\double.h" 
#include <osg/ref_ptr> 
#include <osg/MatrixTransform> 

class Impelleidrivesystern 

public : 

II PubliciPackage operations 

osg: : ref_ptr< osg : :Node > ReadCADdataandinitialize() ; 

osg: : ref_ptr< osg: : Node > _ impellerGeornetry; 

double agitation in_rprn; 

} ; 

#endif 

II File : . \Impellerdrivesystem .cpp 

// #include "StdAfx. h " 
#include "Impellerdrivesystem .h" 

#include <osgDB/ReadFile> 

#include <iostream> 
#include <iomanip> 

II Operation implementations 

osg : : ref_ptr< osg : : Node > 
Impellerdrivesystern : :ReadCADdataandinitialize() 
{ 

50 



51 

II ## OperationBody [6d290d37-6f08 - 46ea-a108 - bf56d44ca489] 
impellerGeometry = osgDB :: readNodeFile ( "Models/impeller fixed. ive " ) ; 

return _impellerGeometry; 

II ## OperationBody End 

II File 

#ifndef 
#define 

. \Tank . h 

Tank 
Tank 

//#include "C:\Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ . . \Program2\double.h" 
#include <osg/ref_ptr> 
#include <osg/MatrixTransform> 

class Tank 

public : 

II PubliciPackage operations 

osg: : ref_ptr< osg: :Node> ReadCADdata(); 

osg::ref_ptr< osg: : Node> _ tankGeometry ; 

double initialpH; 

double temperature; 

} ; 

#endif 

II File : . \Tank.cpp 

//#include "StdAfx.h" 
#include "Tank.h" 
#include <osgDB/ReadFile> 

#include <iostream> 
#include <iomanip> 

II Operation implementations 

osg :: ref_ptr< osg : : Node> Tank::ReadCADdata{) 
{ 



II ## OperationBody [a90 f 6320 -fa65-4ae 9- 9913 - 0b9 f 75 103d84] 

_tankGeometry = osgDB: :readNodeFile( "Models lopaque_tank . ive" ); 

return _tankGeometry; 

II ## OperationBody End 

II File . \ FermentorGP . h 

#ifndef 
#define 

FermentorGP 
FermentorGP 

class Shaders; 

#include "Eqntocalculateconc . h " 
#include "Impe l lerdrivesystem.h" 
#include " Tank.h" 
#include "Feedingsystem . h " 

n amespace display 
{ 

class DigitalGauge; 

#include <ve s lxplorer lplugin iPluginBase .h> 

namespace ves 
{ 

namespace xplorer 
{ 

namespace scenegraph 
{ 

class DCS ; 

#i n clude <map> 

class VE USER PLUGIN_EXPORTS VEFermentorGraphicalPlugin 
ves : :xplorer::plugin: :PluginBase 
{ 

public: 
II PublicJPackage operation s 

VEFermentorGraphicalPlugin(); 
virtual -VEFermentorGraphicalPlugin(); 

virtual void InitializeNode( osg : :Group* veworldDCS ); 
v irtual void PreFrameUpdate(); 
virtual void ProcessOnSubmitJob( ) ; 

public 

void UpdateGauges( double , double, double , double , double, double , 
double); 

52 



private: 

} ; 

II Private attributes 
bool mSimulationStart; 

int frame count; 
int frame speed_control; 

double _agitation; 
double air cone; - -
double _ini_ ph; 
double _nitrate_conc; 
double temperature; 
double hours; 
double rot_speed; 
double sirn_speed; 

long 
long 
long 
long 

cycle_ID; 
rotation_ID; 

_xray_ID ; 
_loop_ID; 

std : :vector< double> time_steps; 
std::vector< double> result_steps; 

Shaders* shader; 
Eqntocalculateconc* constraint; 
Impellerdrivesystem* impeller; 
Tank* tank; 
Feedingsystem* feedingsystem; 

std::map< int, osg::ref_ptr< display : : DigitalGauge >>_gauges ; 

osg::ref_ptr< osg: :Sequence> capsule_sequence; 

llosg : :ref_ptr< osg : :Node> _fermentorGeometry ; 
llosg : :ref_ptr< osg: :Node > impellerGeometry; 
osg : : ref_ptr< osg : :Node > tankGeometry; 

osg :: ref_ptr< osg : : MatrixTransform > roomGeometry; 
osg : : ref_ptr< osg: : MatrixTransform > fermentorGroup; 

osg : :ref_ptr< osg : :MatrixTransform >transform ferm; 
osg::ref_ptr< osg : :MatrixTransform > transform_ imp; 
osg : :ref_ptr< osg: :MatrixTransform >transform tank; 

CREATE_VES_XPLORER_PLUGIN_ENTRY_POINT( VEFermentorGraphicalPlugin ) 

#endif 

53 



II File : . \FermentorGP .cpp 

#include "FermentorGP.h" 
#include "DigitalGauge.h" 
#include "Shaders.h" 
#include "Eqntocalculateconc .h" 
#include "Impellerdrive s y stem.h" 
#include "Tank.h" 
#include "Feedingsystem. h " 

#include <veslopen lxml /mode l /Model.h> 
#include <ve s lopen/xml/Comma nd . h> 
#include <ve s lopen /xml /shader iShader.h> 
#include <veslopen/xml/DataValuePair.h> 

#include <veslxp l orer l scenegraphiSceneManager.h> 

#include <osgiMatr i xTransfo rm> 
#i nc lude <osgiAnimationPath> 
#include <osgiShapeDrawable> 
#include <osgiSequence> 

#i n clude <osgTextiText> 

#include <o s gDB/Rea d File> 

#include <osgSim/ColorRange> 

II Operation implementations 
VEFermentorGraphicalPlugin::VEFermentorGraphicalPlugin() 

PluginBase (), 
agitation( 200 ), 
air_conc( 1.25 ), 
ini_ph( 6 ) , 

_nitrate_conc( 0.1 ), 
temperature( 37 ) , 

_hours( 240 ), 
_cycle_ID( 0 ) , 

rotation_ID( 0 ), 
_xray_ID( 0 ) , 

loop_ID( 0 ), 
rot_speed( 0 ), 
sim_speed ( 0 ) , 

frame_count( 0 ), 
frame_speed_control( 0 ), 

shader( new Shaders() ), 
constraint( new Eqntocalculateconc() ), 
impeller( new Impellerdrivesystem() ), 

54 



tank (new Tank() ) 1 

feedingsystem ( new Feedingsystem() ) 1 

capsule sequence( new osg::Sequence() ) 1 

fermentorGeometry( 0 ) 1 

impellerGeometry( 0 ) , 
tankGeometry( 0 ) 1 

roomGeometry( new osg ::MatrixT ransform() ), 
fermentorGroup( new osg: : MatrixTransform() ) 1 

transform_ferm( new osg::MatrixTransform() ), 
transform_imp( new osg: : MatrixTransform() ), 
transform_tank( new osg::MatrixTransform() ), 
mSimulationStart( false ) 

mObjectName = "FermentorUI"; 

VEFermentorGraphicalPlugin::-VEFermentorGraphicalPlugin() 
{ 

if( !mSceneManager 
{ 

return; 

osg: :ref_ptr< osg::Group > rootNode 
mSceneManager->GetRootNode(); 

if ( ! rootNode. valid () 
{ 

return; 

rootNode->removeChild( _roomGeometry.get() ); 

for( std: :map< int 1 osg::ref_ptr< display::DigitalGauge > 
> : :iterator 

itr = _gauges.begin(); itr != _gauges.end(); ++itr 

rootNode->removeChild( itr->second.get() ); 

gauges. clear() ; 

delete shader; 

55 

void VEFermentorGraphicalPlugin::InitializeNode( osg::Group* veworldDCS 
) 

{ 

PluginBase::InitializeNode( veworldDCS ); 

osg::ref_ptr< osg::Group > rootNode = 



ves::xplorer: :scenegraph::SceneManager::instance()
>GetRootNode(); 

osg: :ref_ptr< osg::Node >temp= osgDB::readNodeFile( 
"Models / fermentor_room.ive" ); 

_roomGeometry- >addChild( temp.get() ); 
rootNode->addChild( _roomGeometry.get() ); 
mDCS->addChild( fermentorGroup.get() ); 

osg::ref_ptr< osg::Node > Feedingsystemnode 
>ReadCADdata (); 

II fermentorGeometry = osgDB: : readNodeFile( 
"Models /fermentor_noimpeller.ive" ) ; 

//_impellerGeometry = osgDB::readNodeFile( 
"Models / impeller_fixed.ive" ) ; 

feedingsystem -

osg: :ref_ptr< osg::Node > impellernode 
>ReadCADdataandinitialize(); 

impeller-

* 

tankGeometry = osgDB: : readNodeFile ( "Models / opaque tank. i ve " ) ; 

//osg : :ref_ptr< osg::Node > tanknode = tank->ReadCADdata(); 

shader->XRay( _tankGeometry.get() ); 

//shader - >XRay( tanknode.get() ); 

transform_ ferm->addChild( Feedingsystemnode.get() ); 

transform_imp->addChild( impellernode.get() ) ; 

I / transform_ imp- ·>addChild ( impellerGeometry. get () ) ; 

//transform_tank->addChild( tanknode . get() ) ; 

transform_tank->addChild( _tankGeometry . get() ); 

fermentorGroup->addChild( capsule_sequence.get() ); 

fermentorGroup->addChild( transform_ferm.get() ); 

fermentorGroup->addChild( transform_imp.get() ); 

fermentorGroup->addChild( transform_tank.get() ); 

double trans[ 3] = { 0 . 8, 13.5, 0.15 }; 
mDCS->SetTranslationArray( trans); 

roomGeometry->setMatrix( osg : :Matrix::scale( 3.28, 3 . 28, 3.28 ) * 
osg::Matrix: :translate( -4.5, 0.0, -3.4) 

osg::Matrix::rotate( 0.0, 0, 1, 0) ); 

56 



57 

transform_ferm- >setMatrix( osg ::Matrix::scale( 3.28 , 3 . 28 , 3 . 28) * 
osg :: Matrix :: translate( - 0 . 67 , 0.8 , -

1.36) ); 

transform tank->setMatrix( osg ::Matrix ::scale( 3 . 28 , 3 . 28 , 3.28) * 
osg ::Matrix :: translate( 0 . 005 , - 0 . 02, -

0 . 05 ) ) ; 

_ gauges . insert ( std : :make __pair ( 0 , new display::DigitalGauge( 
" Time : Hours " ) ) ) ; 

_gauges. insert ( std : :make _pair( 1 , new display :: DigitalGauge( " Acid 
Yield" ) ) ) ; 

gauges . insert ( std: : make _ pair( 2, new display::DigitalGauge( 
" Agitation : rpm" ) ) ) ; 

_ gauges. insert ( std: :make _ pair( 3, new display : : DigitalGauge( "Air 
Cone : vvm" ) ) ) ; 

_gauges. insert ( std : : make__pair ( 4 , new display :: DigitalGauge( 
" Initial pH " ) ) ) ; 

gauges . insert ( std: :make pair( 5 , new display: : Digital Gauge( 
"Nitrate : g/L " ) ) ) ; 

gauges . insert ( std: : make _pair( 6, new display ::DigitalGauge( 
" Temp: C" ) ) ) ; 

for ( std : : map< int , osg :: ref_ptr< display: : DigitalGauge > 
> :: iterator 

itr = _gauges .begin (); itr != _gauges . end() ; ++itr 

rootNode - >addChild( itr- >second . get() ); 

itr->second->GetNameText()->setCharacterSize( 0 . 12 ); 
itr- >second- >GetDigitalText() - >setCharacterSize( 0 . 22 ) ; 
itr->second->GetNameText ()->setColor( osg :: Vec4 ( 0 . 3, 0 . 3 , 0 . 3 , 

1. 0 ) ) ; 
itr- >second- >GetDigitalText()->setColor( osg : :Vec4( 0 . 0 , 1 . 0 , 

0 . 0 , 1. 0 ) ); 
} 

_ gauges[ 0 ]->SetPrecision( 0 ) ; 

_ gauges[ 1 ] - >SetPreci sion ( 0 ) ; 

_ gauge s[ 2 ] ->SetPrecision ( 0 ) ; 

gauges[ 3 ] - >SetPrecision( 1 ) ; 

- gauges[ 4 ] - >SetPrecision( 1 ) ; 

_ gauges[ 5 ] - >SetPrecision( 2 ) ; 

_ gauges[ 6 ]->SetPrecision( 1 ) ; 

_ gauges[ 0 ] ->set Mat rix ( osg : :Ma trix:: t ranslate ( 2 . 5, 6 , 3 . 5 ) ; 

_ g a uges [ 1 ] - >setMa trix ( osg : :Matrix:: t r a nslate( 2 .5, 6 , 2 . 9 ) ; 

gauge s[ 2 ] ->s e tMa trix( osg ::Matrix :: translate( -2 . 5 , 6 , 4 . 7 ) ; 

gauges[ 3 ]->setMatrix( osg: :Matrix: : translate ( - 2 . 5, 6 , 4 . 1 ) ; 

gauges[ 4 ]->setMatrix( osg: :Matrix::translate( -2 . 5, 6 , 3.5 ) ; 

gauges[ 5 ] - >setMatrix ( osg : :Matrix::translate( - 2 . 5, 6 , 2 . 9 ) ; 

_ gauge s[ 6 ]->setMa trix( osg : : Mat r ix :: translate ( - 2 . 5 , 6 , 2 .3 ) ; 

voi d VEFe rme n torGraph icalPlugin : :ProcessOn Submit J ob (} 



mXmlModel->Getinput( "agitation" )->GetDataValuePair( "agitation" 
)->GetData( _agitation); 

mXmlModel->Getinput( "air_conc" )->GetDataValuePair( "air_conc" )
>GetData( air_conc ) ; 

mXmlModel->Getinput( "ini_ph" )->GetDataValuePair( "ini_ph" )
>GetData( _ini_ph ); 

mXmlModel - >Getinput( "nitrate cone" )->GetDataValuePair( 
"nitrate_conc" )->GetData( _nitrate cone); 

mXmlModel - >Getinput( "temperature" )->GetDataValuePair( 
" temperature " )->GetData( temperature); 

mXmlModel->Getinput ( "hours" ) - >GetDataValuePair ( "hours " ) -
>GetData( hours ) ; 

mXmlModel->Getinput( "cycle_ID" )->GetDataValuePair( "cycle_ID" )
>GetData( cycle_ID ); 

mXmlModel - >Getinput( "rotation_ID" )->GetDataValuePair( 
"rotation_ID" )->GetData( _rotation_ID ); 

mXmlModel->Getinput( "xray_ID" )->GetDataValuePair( "xray_ID" )
>GetData( _xray_ID ); 

mXmlModel - >Getinput( "loop_ID" )->GetDataValuePair( "loop_ID " )
>GetData( loop_ID ); 

mXmlModel->Getinput( "rot speed" )->GetDataValuePair( "rot_speed" 
) - >GetData( _rot_speed ); 

mXmlModel->Getinput( "sim_speed" )->GetDataValuePair( "sim_speed " 
) - >GetData( sim_speed ); 

rot_speed _rot_speed I 10.0£; 

sim_speed = 1.1 - ( sim speed I 10.0 ); 
std:: cout << "Sim speed will be " << sim_speed << std: :endl; 

std :: fstream results; 
results.open( "results.txt", std::ios::out ); 

double acidyield; 

double min 
double max 

1000000000; 
- 1000000000; 

time_steps.clear(); 
result_steps.clear(); 

if( rotation ID == 0 
{ 

fermentorGroup->setUpdateCallback( new 
osg: :AnimationPathCallback( 

osg :: Vec3( 0, 0, 0 ), osg: : Z_AXIS , O. Of) ); 

else if( rotation ID 1 
{ 

fermentorGroup - >setUpdateCallback( new 
osg: :AnimationPathCallback( 

58 



osg: :Vec3( 0, 0, 0 ), osg::Z_AXIS, rot_speed) ); 

if( cycle ID == 0 ) 
{ 

time steps.push_back( 0 ); 
result steps.push_back( 0 ); 

capsule_sequence->removeChildren( 0, static cast< int >( 
capsule_sequence- >getNumChildren() ) ) ; 

capsule sequence->setMode( osg::Sequence::STOP); 

else if( cycle_ID == 1 ) 
{ 

capsule sequence->removeChildren( 0 , static cast< int >( 
capsule sequence->getNumChi1dren() ) ); 

results << "Agitation(rpm) : \ t" << _agitation << " \ n" ; 
results << "Air Co nc(vvm) : \ t" << air cone << " \ n"; -
results << "Initial pH: \ t" << ini ph << 
results << "Nitrate(g/ L) : \ t" << nitrate 
results << "Temp(C) : \ t" << 

results << "t (hours) : \ t \ t "; 
results << "Acid Yie1d: \ n" ; 

-
_temperature 

for( int t = 0 ; t <=_hours ; ++t ) 
{ 

" \ n" ; 
cone << " \ n" ; -
<< " \ n \ n "; 

acidyield = constraint->calculateacidyield( t , 
_agitation, air cone, _ini_ph, nitrate cone, _temperature) ; 

results << t << " \ t \ t \ t"; 
results << acidyield << " \ n "; 
time_steps .push_back( t ) ; 
result_steps.push_back( acidyield ); 

if( max min 
{ 

min O. Of ; 
max 0.0000001 ; 

//Create a custom c o lor set 
std :: vector< osg : : Vec4 > cs; 
cs.push _back( osg: : Vec4 ( 0 . Of , O.Of, 1. Of, 
cs. push - back( osg:: Vec4 ( 0 . Of , 1.0f, 1 . Of , 
cs.push _back( o sg: :Vec4 ( O.Of, 1.0f, O. Of , 

0 . 4f ) ; 

0 . 4f ) ; 

0 .4f ) ; 

//Blue 
//Cy an 
//Green 

59 

cs . push back( osg : :Vec4 ( 1. Of I 1.0f, 0 . Of I 0 . 4f ) ; I /Yellow -
cs.push back( -

o sg: :Vec4 ( 1. Of, 0. Of I 0 . Of I 0.4f ) ; //Red 

osg: :ref_ptr< osgSim::ColorRange > cr = new osgSirn ::ColorRange( 
min, max, cs ) ; 

for( int t = 0; t <= hours; ++t 
{ 

//Create c o ncentrati o n color capsules 



osg: :ref_ptr< osg::Geode > geode_O =new osg : :Geode; 

osg : :ref_ptr< osg: :Capsule > capsule 
osg :: Vec3( 0. 0 , 0 .0, 1.95 ), 0 .75, 2 . 7 ); 

new osg::Capsule( 

osg: :ref_ptr< osg: :TessellationHints > hints = new 
osg: :TessellationHints(); 

osg: :ref_ptr< osg : : ShapeDrawable > sd =new 
osg : :ShapeDrawable( capsule.get(), hints.get() ); 

hints->setDetailRatio( 1.0f ) ; 

sd->setColor( cr->getCo1or( result steps . at( t) ) ); 

osg: :ref_ptr< osg : :StateSet > stateset 0 =new 
osg: :StateSet(); 

stateset_O->setMode( GL_BLEND, osg: : StateAttribute::ON ); 
stateset_O ->setRenderBinDetails( 8, std: : string( 

"DepthSortedBin " ) ) ; 
sd->setStateSet( stateset_O.get() ); 

geode 0->addDrawable( sd.get() ); 

capsule sequence->addChild( geode_O.get(), sim speed); 

double imp speed= O.Of; 
if( sim_speed > O. Of ) 
{ 

imp_ speed _agitation I 30 . 0£; 

transform imp->setUpdateCallback( new 
osg: :AnimationPathCallback( 

osg : : Vec3( 0, 0, 0 ), osg::Z_AXIS, imp_speed) ); 

mSimulat i onStart = true ; 

if ( sim speed == 0 ) 
{ 

capsule_sequence->s.etMode ( osg:: Sequence: : PAUSE ) ; 

r esults . close(); 

capsule_ sequence->setinterval ( osg::Sequence :: LOOP , 0 , -1 ); 

i f ( loop_ID == 0 ) 
{ 

capsule_ sequence- >setDuration( 1.0f, 1 ); 

if ( loop_ID 1 ) 
{ 

60 



capsule sequence->setDuration( 1.0f, -1 ); 

if( _xray_ID == 0 ) 
{ 

shader->Phong( _tankGeometry.get() ); 

else if( _xray_ID == 1 ) 
{ 

shader- >XRay( _tankGeometry.get() ); 

void VEFermentorGraphicalPlugin::PreFrameUpdate() 
{ 

if( time_steps.empty() I I result_steps.empty() 
{ 

return; 

if( mSimulationStart ) 
{ 

capsule_sequence- >setMode( osg::Sequence: :START); 
mSimulationStart = false; 

int seqVal capsule_sequence->getValue(); 
if( seqVal > -1 ) 
{ 

UpdateGauges( tirne_steps[ seqVal ], 
result_steps[ seqVal ], 
agitation, 

_air_conc, 
ini_ph, 

_nitrate_conc, 
_temperature); 

if( seqVal == hours && loop_ ID == 0 
{ 

transform imp- >setUpdateCallback( 
new osg: :AnimationPathCallback( osg: :Vec3( 0, 0, 0 ), 

osg :: Z_AXIS , O. Of) ); 

capsule sequence->setMode( osg::Sequence: :STOP); 

void VEFermentorGraphicalPlugin: : UpdateGauges( double time_ for_update, 
double 

result for_update, 
double agitation , 
double air_conc , 
double ini_ph, 
double nitrate_ conc , 

61 



double temperature ) 

_gauges[ 0 ]->UpdateText( time_for_update ) ; 
gauges[ 1 ]->UpdateText( result_for_update ) ; 

_gauges[ 2 ] - >UpdateText( agitation); 
_gauges[ 3 ]->UpdateText( air_conc); 
_gauges[ 4 ] - >UpdateText( ini_ph ); 
_gauges[ 5 ]->UpdateText( nitrate_conc); 

gauges[ 6 ]->UpdateText( temperature); 

62 



APPENDIXB 

GUIDELINES 



64 

To help users in creating the virtual engineering interface in the MBSE tool, basic steps 

and cautions that are important in the model development are mentioned below. 

Basic steps for creating the user interface: 

• Stepl : Decide the type of analysis that you want to perform using information 
available in the system formal model. This is important because depending on the 
type of analysis it will be decided whether a CFD package will be required or a 
custom-made computational unit capable of running differential equations be 
enough. 

• Step2: Select the parameters that will be used in the analysis. These parameters 
will be the ones that will be used while running the experiment in the virtual 
environment; thus both the input and output parameters of the experiment will 
have to be determined. 

• Step 3: Create a simulation block to store these experimental parameters. 

• Step 4: Specify value types of all the parameters using UML datatypes library. 
This is important because VE-Suite is C++ based, thus SysML value types cannot 
be used directly in the IDE. 

• Step 5: Once the parameters are defined in the simulation block the next step is to 
link these parameters with value properties defined in subsystem blocks. This 
linkage can be created using a parametric diagram and by defining an equivalent 
constraint in it. This also helps to establish traceability between the simulation 
model and the system model. 

• Step 6: Define a new block in the MBSE tool to represent the user interface 
module (conductor) of the virtual engineering software. Establish parent-child 
relationship between simulation and VE-UI block using inheritance association. 
At this point, apply the C++ profile to the entire model. Information on inserting a 
profile can be found in the help section of the MBSE tool (Artisan Studio in this 
case). Development of the virtual engineering interface in the MBSE environment 
depends on the specification of information about the header files and operations 
that will be required to create the plugins. Operations will have to be specified 
using UML operations construct whereas header information is provided using 
C++ stereotype applied to the newly created VE-UI block. The developer has to 
specify the body of the operations. The type of header files required for the UI 
module can be found in the code provided in Appendix A. 



65 

Basic steps for creating the graphical interface: 

• Stepl : Creating a graphical interface in the MBSE tool requires a thorough 
definition of the structural components in the system model. Each component or 
subsystem to be represented in the graphical engine of the virtual engineering 
software requires a CAD file associated with it. Thus, the first step in developing 
the graphical interface is to have the CAD files in place for the entire system. 

• Step2: The way VE-Suite works with these files is by using · OSG libraries to 
create a tree structure composed of OSG nodes. Each node can be used to 
represent a structural component/subsystem of the SysML model. Thus for each 
subsystem block define a UML operation to read and store the CAD file in the 
form of an OSG node. An <OSGDB/Readfile> header file is required to perform 
this operation. 

• Step3: Once these individual CAD files are associated with the relevant structural 
elements of the system, the next step is to create the graphical interface block in 
the MBSE tool. This block will store operations and header information that is 
required to generate the VE-Suite graphical plugin. 

• Step 4: Connect each structural element of the system to this block using 
reference association construct. By doing this, the graphical interface block will 
have access to the CAD files stored as OSG nodes. The formation of the tree 
structure to bring these nodes together is done using an initialize operation. This 
operation will specify the root node and its association with the display coordinate 
system. 



66 

BIBLIOGRAPHY 

1. S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: The 
Systems Modeling Language, Morgan Kaufmann, San Francisco, 2008. 

2. S. Friedenthal, H. Lykins, "Parameter-based representation for modeling complex 
systems", Proceedings IEEE Symposium and Workshop on Engineering of 
Computer-Based Systems, 11-15 Mar, 1996, 65-71. 

3. J. Axelsson, "Model based systems engineering using a continuous time extension 
of the unified modeling language", Systems Engineering 5(3) (2002), 165-179. 

4. E. Huang, R. Ramamurthy and L.F. McGinnis, "System and simulation modeling 
using SYSML", Proceedings ofthe Winter Simulation Conference, 2007. 

5. G. Huang, K .M. Bryden, "Introducing virtual engineering technology into 
interactive design process with high-fidelity models", Proceedings of the 37th 
conference on winter simulation, 2005, 1958-1967. 

6. B. Edmund. "What is Complexity? - The philosophy of complexity per se with 
application to some examples in evolution" in F. Heylighen & D. Aerts (eds.): 
The Evolution of Complexity, Kluwer, Dordrecht, 1998. 

7. B. Edmund. "Syntactic Measure of Complexity'' Doctoral thesis, 1999, University 
of Manchester. 

8. NASA Systems Engineering Handbook, NASA/SP-2007-6105 Rev 1. 

9. W. W. Royce, "Managing the development of large software systems" 
Proceedings ofthe IEEE Wescon, 1970, Vol. 26, pp. 1-9. 

10. K. Forsberg, H. Mooz, T.N. Chattanooga, N. Oslo, "The relationship of system 
engineering to the project cycle", Center for Systems Management, 1994, Vol. 9. 

11. G. Pahl, W. Beitz, K. Wallace, Engineering design: a systematic approach, 
Springer Verlag, 1996. 

12. K. Forsberg, H. Mooz, H. Cotterman, Visualizing project management: Models 
and frameworks for mastering complex systems, Wiley, 2005. 

13. C. N. Calvano, P. John, "Systems engineering in an age of complexity", Systems 
Engineering, 2004, Vol. 7, pp. 25-34. 



67 

14. H. Lykins, S. Friedentha1, A. Meilich, "Adapting UML for an Object Oriented 
Systems Engineering Method", Proceedings of the tenth annual international 
symposmm on the International Council on Systems Engineering, 2000, Vol. 
2000. 

15. T. Bahill, J. Daniels, "Using Objected-Oriented and UML Tools for Hardware 
Design: A Case Study", Systems Engineering, 2003, Vol. 6, pp. 28-48. 

16. J. Hsu, J.M. McDonough, "Applying the object oriented systems engineering 
method to a simple hardware system", Conference on Systems Engineering 
Research, 2004, Paper no 142. 

17. J. A. Estafen, "Survey of model-based systems engineering (MBSE) 
methodologies Rev.A", INCOSE MBSE Focus Group, 2007. 

18. G. Arthurs, "Model based systems engineering- Elements for deploying an 
Efficient Development Environment", Telelogic White paper version 1.0, 2008. 

19. D. Mavris, "A Review of the Proposed UML Profile for the Department of 
Defense Architecture Framework and Ministry of Defense Architecture 
Framework (UPDM)", INCOSE, 2007. 

20. M. Hause, "An Overview of UPDM-a Unified Profile for DoDAF/MODAF", 
Military Embedded Systems, 2008. 

21. M. Hause, "Model-Based System of Systems Engineering with UPDM", 
Omg.org, 2010. 

22. D. Dori, I. Reinhartz-Berger, "OPCAT-a bimodal CASE tool for object-process 
based system development", 5th International Conference on Enterprise 
Information Systems (ICEIS 2003), 2003, pp. 286-291. 

23. N. R. Soderberg, E. F. Crawley, D. Dori, "System function and architecture: 
OPM-based definitions and operational templates", Communications of the ACM, 
2003, Vol. 46, pp. 67-72. 

24. Y. Grobshtein, V. Perelman, E. Safra, D. Dori, "Systems Modeling Languages: 
OPM Versus SysML", ICSEM'07. International Conference on Systems 
Engineering and Modeling, 2007, pp. 102-109. 

25. Object Management Group (OMG), 2007b, OMG Systems Modeling Language 
(OMG SysML™), Vl.O, OMG Document Number: formal/2007-09-01, 
http://www.omg.org/spec/SysML/l.O/PDF, Accessed November 10, 2010. 



68 

26. Object Management Group (OMG), 2009a, Unified Profile for the Department of 
Defense Architecture Framework (DoDAF) and the Ministry of Defence 
Architecture Framework (MODAF), http://www.omg.org/spec!UPDM/, Last 
Accessed November 10,2010. 

27. T. A. Johnson, C.J.J. Paredis, J.M. Jobe and R. Burkhart, "Modeling continuous 
system dynamics in SysML", International Mech. Eng. Congress and Exposition, 
2007. 

28. T. A. Johnson, "Integrating models and simulations of continuous dynamic 
system behavior into SysML", M.S. Thesis, Georgia Institute of Technology, 
2008. 

29. R.S. Peak, R.M. Burkhart, S.A. Friedenthal, M.W. Wilson, M. Bajaj, and I. Kim, 
"Simulation-Based Design Using SysML-Partl: A Parametrics Primer", INCOSE 
Inti. Symposium, San Diego, CA, 2007. 

30. R.S. Peak, S.A. Friedenthal, R.M. Burkhart, M.W. Wilson, and M. Bajaj, 
"Simulation-Based Design Using SysML-Part 2: Celebrating Diversity by 
Example", INCOSE Intl. Symposium, San Diego, CA, 2007. 

31. D. E. Goldberg. Sizing populations for serial and parallel genetic algorithms. In 
Proceedings of the Third International Conference on Genetic Algorithms, pages 
70--79. Morgan Kaufmann Publishers Inc., 1989. 

32. Smith, R. E "Adaptively resizing population: An algorithm and analysis", in 
proceedings of fifth international conference on genetic algorithms Morgan 
Kauffman Publishers 1993. 

33. D.S. McCorkle, and K.M. Bryden, Virtual engineering and design of power 
systems, Section 3, Thermal Engineering in Power Systems, R.S. Amano and B. 
Sunden, Editors, WIT Press, do Computational Mechanics Inc., 25 Bridge St., 
Billerica, MA 01821, 2008. 

34. S. Wolkl, and K. Shea, "A computation product model for conceptual design 
using SysML", Proceedings of the ASME International Design Engineering 
Technical Conferences & Computers and Information in Engineering Conference 
IDETC/CIE, San Diego, California, USA, 2009. 

35. C. Gershenson, F. Heylighen, "How can we think the complex? in: Richardson, 
Kurt (ed.)Managing the Complex Vol. 1: Philosophy, Theory and Application", 
Institute for the Study of Coherence and Emergence/Information Age Publishing, 
2005, p.47-62. 

36. Artisan Studio website www.Atego.com (last accessed: Aug. 9, 2010). 

37. INCOSE website www.incose.org (last accessed: Aug. 9, 2010). 



69 

38. Object Management Group website www.omg.org(last accessed: Aug. 9, 2010). 

39. www.omgsysml.org (last accessed: Dec. 3, 2010). 

40. VE-Suite website www.vesuite.org (last accessed: Aug. 9, 2010). 

41. WxWidgets website www.wxwidgets.org(last accessed: Aug. 9, 2010). 

42. Rheingold, H. Virtual Reality. Summit, New York, 1991. 

43. SCons website www.scons.org (last accessed: Dec 3, 2010). 

44. J.D.Poole, "Model-Driven Architecture: Vision, Standards and Emerging 
Technologies", position paper submitted to European Conference on Object
Oriented Programming, 2001. 

45. R.Soley and the OMG Staff Strategy Group, "Model Driven Architecture", Object 
Management Group, White paper Draft 3.2, 2000. 

46. C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, "Surround-screen projection-based 
virtual reality: the design and implementation of the CA VB", Proceedings of the 
20th annual conference on Computer graphics and interactive techniques, 1993, 
pp. 135-142. 



70 

VITA 

Akshay Kande received his Bachelor's degree in Mechanical Engineering from 

University of Mumbai, India. He is currently pursuing his Master's degree in Systems 

Engineering at Missouri S&T, Rolla. Along with his studies, he works as a Graduate 

Research Assistant at the Smart Engineering Systems Laboratory at Missouri S&T. His 

research interests include Virtual Engineering, Computer Aided Engineering and 

Analysis, and model-based systems engineering. With three conference paper 

publications and a journal article submission, he was also recognized with the 

Outstanding Graduate Student Research Award for the year 2009-10 from the 

Engineering Management and Systems Engineering Department. Prior to joining the 

Master's program he has worked as a Design Engineer for steel plant projects at Mukand 

Ltd, India. Apart from his academic and research commitments, he is currently working 

as the President of the International Council on Systems Engineering (INCOSE) student 

Section at Missouri S&T. In May 2011 he will receive his Master of Science degree in 

Systems Engineering. 


	Integration of model-based systems engineering and virtual engineering tools for detailed design
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078

