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ABSTRACT 

Design and development of a system can be viewed as a process of transferring 

and transforming data using a set of tools that form the system's development 

environment. Conversion of the systems engineering data into useful information is one 

of the prime objectives of the tools used in the process. With complex systems, the 

objective is further augmented with a need to represent the information in an accessible 

and comprehensible manner. The importance of representation is easily understood in 

light of the fact that the stakeholder's ability to make prompt and appropriate decisions is 

directly related to his understanding of the available information. Systems Modeling 

Language (SysML), a graphical modeling language developed by Object Management 

Group is one such tool used to capture and convey information about a system under 

development. This work proposes a methodology for integrating the models developed 

using SysML with virtual engineering software to create an executable, interactive, and 

user-centered platform for engineering systems. The framework provides an opportunity 

to combine the benefits offered by both model-based systems engineering and virtual 

engineering for detail design. This research demonstrates how this framework can be 

implemented using a biotech fermentor to illustrate the coupling of information between 

SysML and virtual engineering. 
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1. INTRODUCTION 

Systems engineering is a process of transforming a set of customer needs into an 

integrated package of high performing solutions. Since its inception, systems engineering 

has found applications in solving complex engineering problems. Potential solutions to 

these problems can involve any combination of hardware, software, data, people, and 

facilities [1]. The manner in which these elements are selected and combined determines 

the effectiveness of proposed solutions. 

Due to the amount of information generated and processed in systems engineering 

projects, a key aspect of efficient systems engineering is the management of data and 

information throughout the development process. Any errors introduced in managing this 

information would have a direct impact on the value of the end product. With complex 

systems, the challenge is even greater due to the increased interconnections between 

subsystems. 

Traditionally, information management and exchange in systems engineering has 

relied on document-centric methods. The underlying principle of such an approach is to 

use documents as a means of communication between stakeholders of the system. 

Information concerning every exercise in the systems development process is 

documented for later use. However, a major drawback of such methods is that managing 

a large amount of information stored separately in individual files becomes cumbersome. 

The focus of the process shifts from effective systems engineering towards maintaining 

the validity and consistency of these documents. The pressure to build systems with 

increased performance capabilities at a reduced cost and in less time has led researchers 

to find new ways to aid the systems engineering practice. 

Model-based systems engineering is one discipline developed to overcome the 

limitations of these document-centric methods. A system model developed using this 

approach mimics the requirements, structural, and, behavioral aspects of the system in an 

integrated and consistent manner. Use of models in .developing systems has the potential 

to provide an effective means for handling information present in the development 

environment. Axelsson [3] identifies the necessity of having a modeling language to 

satisfy general systems engineering needs and proposes an approach to extend the 
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capabilities of existing object-oriented language. He extended unified modeling language 

(UML), largely affiliated with software-centric systems, to apply to general purpose 

systems. Addressing the increasing demand for a modeling language for general systems 

engineering applications, the Object Management Group (OMG) introduced systems 

modeling language (SysML) [25, 38]. SysML is an extension to UML that provides a 

framework to capture and represent information about a system under development. The 

objective is to use an object-oriented methodology to model systems, subsystems, and 

their components, along with interrelationships among them. 

Although SysML has proven useful in developing formal descriptions of systems, 

it is not an interactive design tool. A connection with a separate simulation package is 

required in order to perform engineering analysis using SysML models. This paper 

addresses this limitation by creating a framework to integrate model-based and virtual 

engineering disciplines. The work presented here exemplifies the use of virtual 

engineering in the form of an open source package called VE-Suite [39] in conjunction 

with SysML to link formal system models to executable engineering models. The use of 

virtual engineering technology eliminates the need to link the system model with various 

analytical tools. This is made possible by the fact that virtual engineering technology 

itself provides the potential to integrate and combine geometric models, analysis, 

simulation, optimization, and other decision making tools in a single environment [ 5]. 

Once the information from a system model is passed on to this framework, VE-Suite has 

the capability to work with numerous types of analysis packages in addition to executing 

user-defined computational units. The methodology presented here has the potential to 

combine the capabilities of model-based systems engineering (MBSE) to effectively 

manage information complexity and the executable aspects of virtual engineering tools, 

thus creating an integrated modeling environment. The goal of this research is to 

demonstrate the capability of generating a computer-based virtual environment to 

develop, analyze, and optimize a complete system that is formally described using 

SysML. Using a virtual engineering tool in conjunction with SysML models would allow 

system architects to develop systems in an interactive and executable design 

environment. 
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The organization of the thesis is as follows: Section 2 discusses complexity in 

systems engineering projects and provides an overview of techniques introduced 

previously to manage it. Section 3 gives a detailed introduction to model-based systems 

engineering, describing its history and development. It also provides an overview of 

SysML. Section 4 provides information about the virtual engineering domain and the 

software tool used in this research. Section 5 presents the approach taken here to integrate 

model-based and virtual engineering technologies. Section 6 tests this methodology with 

an example of a model. Section 7 presents the results of this model integration approach. 

Finally, the thesis concludes with a discussion of some important aspects of the use of 

this framework and provides a template for future users to develop their own executable 

models. 
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2. COMPLEXITY AND SYSTEMS ENGINEERING 

This Section introduces some important concepts relevant to the work discussed 

later on in this thesis. It defines complexity as it is used in this work, outlines the history 

of systems engineering, and describes its applicability to complex engineering ventures. 

It also provides an overview of the traditional document-based approach to systems 

engineering, describing the limitations of that approach. Finally, it introduces the current 

model-based systems engineering methodology. 

2.1. DEFINITION 

Historically, many researchers have attempted to define complexity based on their 

own perspectives and the context in which they apply it. Edmund [ 6] defines complexity 

as "that property of a language expression which makes it difficult to formulate its overall 

behavior even when given almost complete information about its atomic components and 

their interrelations." (page # 6) This definition however, holds true only when there is a 

possibility of finding significant amount of information about the components of a system 

[7]. Gershenson and Heylighen [35] offer a simpler interpretation, which states that "in 

order to have a complex, you need two or more distinct components that are connected in 

such a way that they are difficult to separate." (page # 2) Again, the limitation of this 

definition is that an apple-to-apple comparison is not possible to measure the overall 

complexity. These definitions and their limitations demonstrate that there is no single 

accepted definition of complexity. The vastness of the concept and its applicability 

restricts a general consensus among different authors when they define complexity. 

At this point a brief discussion of complexity as it will be treated in this work is in 

order, to define techniques that can be used to manage it. The definition of complexity 

used in this research must be understood in the context of its application to a general 

purpose system. Here, complexity is the property by which behavior of elements becomes 

interconnected in such a way that changes made have effects beyond a local area. Thus, 

in complex systems, behavior is governed by the complexity that exists within the 

architecture of the system itself. The art of building such complex engineering ventures is 
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known as systems engineering. According to the NASA Handbook [8], "Systems 

engineering is a holistic, integrative discipline, wherein the contributions of structural 

engineers, electrical engineers, mechanism designers, power designers, human factors 

engineers and many more disciplines are evaluated and balanced, one against another, to 

produce a coherent whole that is not dominated by the perspective of a single discipline." 

(page # 21) It is a logical way of handling today's challenging engineering ventures 

involving highly interconnected subsystems. 

2.2. BACKGROUND 

From its beginning systems engineering has addressed complexity. The demand 

for building systems with increased performance capabilities at reduced cost and time 

spurred the need to have a streamlined way of managing complexity that these systems 

necessitate. Systematic design approaches such as those described in [9, 10, and 11] have 

addressed this need. Figure 2.1 illustrates a typical systems development process. The 

first part of the V-model represents the decomposition and definition phases. The 

remainder comprises system integration and realization activities. Thus, the model begins 

with the initial set of customer requirements and eventually transforms those 

requirements into a complete system description. 



LCI-Lowest 
configurdiion 
item 
development 

LCI-Lowest 
configuration 
item 
realization 

Subsystem 
rea.liz:ation 

Solution I 
System 

Realization 

Figure 2.1 V-model of Systems Engineering [12] 
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A careful study of the above process indicates that the success of the effort to 

meet stakeholder needs depends on the information flow through the development 

process. In other words, managing the information flow effectively is one of the key 

drivers in satisfying end customer needs. Traditionally, this information management has 

been done using document-centric methods that store information on every step of the 

process in separate files. Thus, information from requirements to technical specifications 

to the detail design is documented individually in relevant file formats. Figure 2.2 shows 

the traditional approach, each step of which has inputs and outputs in the form of 

documents. 
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Figure 2.2 Document-centric Method 

The document-centric technique has been adequate for many systems engineering 

projects in the past. However, it has certain limitations. First, maintaining consistency 

among documents becomes cumbersome, especially when change is the only thing that 

remains constant in a development process. Additionally, extracting useful information 

from the pile of documents becomes tedious and time consuming. Finally, today's 

systems have become increasingly complex. The nature of systems engineering 

challenges has changed significantly [13], warranting for a new approach that more easily 

accommodates the increased demands oftoday's systems. 

One way of dealing with the information complexity in a systems development 

environment is by the use of computer-aided modeling. Model-based systems 

engineering is one of such technique. The International Council on Systems Engineering 

(INCOSE) [37] defines MBSE as "the formalized application of modeling to support 

system requirements, design, analysis, verification and validation activities beginning in 

the conceptual design phase and continuing throughout development and later lifecycle 

phases." MBSE promotes the use of computer-aided modeling approaches to develop 

models that represent structural, behavioral, and operational characteristics of a system in 

development. A detailed discussion ofMBSE follows in Section 3. 
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3. MODEL-BASED SYSTEMS ENGINEERING 

This Section explains the model-based approach introduced in Section 2. It 

discusses OMG's SysML and explains some important constructs of that language. This 

section also reviews some previous work that has also used SysML and describes the 

approach adapted here to overcome some of its limitations. 

3.1. BACKGROUND 

Model-driven development in systems engineering can be traced back to the mid-

1990's when researchers first began to identify applications of object-oriented techniques 

to support the systems engineering process. Friedenthal and Lykins [2] document the use 

of parameter-based representation to define system attributes and their relationships with 

the help of object-oriented constructs for modeling complex systems. Lykins, 

Friedenthal, and Meilich [14] trace the evolution of the object-oriented systems 

engineering method (OOSEM), which uses OMG's Unified Modeling Language (UML) 

to capture system-level requirements and design information. Addressing the 

interoperability issue of platform dependent models in software systems, OMG 

introduced model-driven architecture (MDA). In MDA, platform-independent models 

(PIMs) are initially defined using a modeling language. These models are then translated 

to platform specific models (PSM) using transformations [ 44]. Figure 3.1 below 

describes MDA and its elements. 
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Figure 3.1 OMG's Model-driven Architecture [ 45] 

At the core of the architecture lie the platform independent modeling standards: UML, 

meta-object facility (MOF) and common warehouse meta-model. The target platforms 

form the outer thin layer followed by the application areas. 

The initial success of OOSEM and MDA in software-intensive systems prompted 

its application to general purpose systems engineering projects involving software, 

hardware, people, and other entities. Studies by Bahill and Daniels [15] and Hsu and 

McDonough [ 16] were early attempts to apply OOSEM to general systems. Model-based 

systems engineering offers a more formalized way to use object-oriented principles to 

solve complex systems engineering problems. Estafen's work [17] identifies several 

model-based systems engineering methodologies catering to the requirements of modem 

and highly complex systems engineering projects. Arthurs [ 18] studied the vital 

components of an MBSE environment and the relationships among them. His work 

identifies three core elements of an MBSE environment: modeling language, modeling 

tools and the modeling process. Figure 3.2 illustrates these MBSE elements and their 

interrelationships. 
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Figure 3.2 Elements of an MBSE Environment [ 18] 

A brief explanation of the three core elements is as follows: 

• Modeling language: Provides the semantics to define the constructs for modeling 

systems characteristics in an MBSE environment 

• Modeling tool: Provides the means to implement the modeling language and the 

interface to develop the system model 

• Modeling process: This is specific to the users of an MBSE tool. Requirements 

can either be defined in an MBSE tool and assigned to functions before building a 

physical architecture, or traced directly to the physical architecture 

Currently, several modeling languages are available for developing system 

models in an MBSE environment; these include OMG's SysML, along with object 

process methodology (OPM) and OMG's unified profile for Department of Defense 

Architecture Framework/Ministry of Defense Architecture Framework (UPDM) for 

architecture and system-of-systems modeling. The present work uses SysML. Detailed 

information about the other two languages can be found in [ 19, 20, 21, 22, and 23]. A 

detailed comparison between SysML and OPM is documented by Grobshtein [24]. 
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3.2. SYSTEMS MODELING LANGUAGE 

SysML is a graphical modeling language used to specify, analyze, design, and 

verify complex systems [25]. It is an extension ofUML, which is a modeling tool that has 

been used extensively in the software industry to manage complex software engineering 

projects. OMG introduced SysML in cooperation with the International Council on 

Systems Engineering to support the implementation of model-based systems engineering. 

The language is based on object-oriented principles with a semantic foundation for 

creating models of physical systems using well defined visual constructs. As an extension 

of UML, it has inherited various properties of the parent language. Additionally, many 

new features have been added in order to make it suitable for the systems engineering 

domain. For example, it supports both requirements modeling and parametric modeling 

(to develop mathematical and engineering models). Figure 3.3 shows SysML diagram 

taxonomy, including diagrams inherited from UML and those that represent new 

additions. 

,, -·-Uiill2 

........ r,._Uiill2) 

I~;._;:.:;;.,: - · 
"----- ·--~ 

.--- --. . ~. 
·-~--' 

Figure 3.3 SysML Diagram Types [39] 

.---. --, 
I hnmt41!<: 1 

'--~-· 
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Each diagram type offered by SysML corresponds to activities to be performed in 

a typical systems development process. All the diagram types are organized under one of 

three major categories: structure, behavior, and the newly added requirements. This 

allows the development of a system model beginning with a requirements diagram to 

specify system requirements followed by behavior and structure diagrams to further 

detail the system. Figure 3.4 shows a screenshot of sample SysML diagrams developed in 

an MBSE tool. 

1. structure 2. Behavior 

... ~.·==-. ..,_ --

3. Requirements 4 .. Parametrics 

Figure 3.4 Four Pillars of SysML [39] 

Since majority of the work reported here is based on model development in 

SysML, the following is an overview of the basic SysML constructs relevant to the 

example model described in Section 6. 
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3.2.1. SysML Blocks. The block is the primary modeling unit in SysML. It is an 

extension of a UML class, and it represents elements of the system whether hardware, 

software, personnel, facilities, or some other entity. Blocks provide a means to describe 

the system features in the form of reusable components. Additionally, a collection of 

blocks permits decomposition of a system into several layers of detail. 

3.2.2. SysML Structural Diagrams. SysML offers three maJor structural 

constructs: the package diagram, the block definition diagram (BDD), and the internal 

block diagram (IBD). These diagrams provide an interface to model the physical 

architecture of the system and the relationships among subsystems. In SysML, a package 

groups a large collection of data pertinent to a particular domain. Package diagrams 

provide an interface to group these elements in a hierarchical structure and establish 

relationships among them. They typically represent the topmost level of the system 

model. Examples of domains include system behavior, system structure, and system 

requirements defined by the modeler at the beginning of the development process. A 

BDD describes the architectural hierarchy of a system. It is defined by grouping blocks 

representing elements of the system and establishing relationship among them. An IBD 

describes the internal structure of a block by defining relationships using flow properties 

and connectors. In addition to these constructs, SysML permits creation of an engineering 

model that uses constraint blocks to specify constraints on the system, subsystem, or 

component properties. A collection of these blocks along with their relationships is 

represented using the parametric diagram. In addition, SysML provides valuetypes to 

capture the quantifiable characteristics of each element of the engineering model under 

development. 

I. 
I 
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3.2.3. Profiles and Stereotypes. OMG indicates that the extension of the 

metamodel to add domain specific information is possible using profile packages. For 

example, SysML is a profile created to suit the systems engineering domain on top of the 

UML metamodel thus using and extending the capabilities of the original profile. 

Similarly, SysML profile can be further customized to suit certain user-specific 

requirements. Stereotypes are the primary mechanism for creating these profiles. A 

combination of three different types of profiles: SysML, UML, and C++ are used while 

creating the example model presented in Section 6. The model based systems engineering 

software used in this work is Artisan Studio [36]. A detailed reading about SysML and its 

semantics can be found in [25]. 

3.3. PREVIOUS WORK ON EXECUTABLE MODELS 

SysML has attracted the attention of the systems engineering community ever 

smce its introduction. One of the main areas researchers have sought to develop 

techniques for is to overcome its non-executable nature. Johnson [27 and 28] integrates 

SysML and Modelica constructs using triple graph grammars to generate executable, 

continuous, dynamic model output. Huang, Ramamurthy, and McGinnis [ 4] demonstrate 

the use of SysML as a formal modeling language to create conceptual models and 

transform them into Arena simulation language constructs for execution. Peak et al. [29 

and 30] document the use of SysML parametrics for engineering design and analysis and 

demonstrate its support for simulation-based design. The work presented here introduces 

virtual engineering domain as a companion to MBSE in order to execute engineering 

models in an interactive design environment. Such a model integration framework would 

not only extend the capabilities of SysML and MBSE, but also clarify systems 

performance characteristics and thus promote informed decision making. Section 4 

explains the virtual engineering domain and the tool used in this research. 
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4. VIRTUAL ENVIRONMENT 

This Section provides an overview of the virtual engineering technology used in 

this research in conjunction with the MBSE tool. It offers a brief explanation of the 

virtual engineering software along with an insight into the architecture of this software. 

4.1. BACKGROUND 

Howard Rheingold [ 42 and 46] defines virtual reality (VR) as an experience in 

which a person is "surrounded by a three dimensional computer-generated representation, 

and is able to move around in the virtual world and see it from different angles, to reach 

into it, grab it, and reshape it."(page # 2) In other words, VR is a computer simulation 

that uses three-dimensional graphics to create a virtual environment and gives user the 

feeling of being immersed in that environment. The level of immersion experienced by 

the user depends upon the type of hardware used. For example, a desktop virtual 

environment uses stereo-enabled graphics cards, shutter glasses, and a three-dimensional 

mouse to create the sense of immersion and allow the user to interact with the 

environment. Single- and multiple-wall virtual environments provide a larger display, 

creating a high level of immersion and a more natural interface. Figure 4.1 below shows a 

setup of theCA VE Automatic Virtual Environment with four walls. 

Figure 4.1 CAVE Setup 
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4.2. VffiTUAL ENGINEERING 

The engineering community soon recognized the interactive capability of a virtual 

workspace, and subsequent efforts to exploit its potential led to the foundation of virtual 

engineering as a discipline. Virtual engineering provides a means of creating a replica of 

a physical system in a computer-generated virtual environment. The model underlying 

such an environment can be a combination of geometric, physical, qualitative, and 

quantitative data associated with the system (33]. The objective of virtual engineering is 

to allow designers to observe how a system reacts to changes in design and operation 

without the need to create a physical prototype. In addition, it provides an accessible 

visual format for the presentation of information that is of value to all stakeholders. The 

combination of geometric models and a variety of decision support tools creates an 

environment in which engineers can make appropriate decisions by interacting with the 

system naturally and exploring details that might otherwise remain undetected. With the 

increased demand for building complex systems, virtual engineering can be an effective 

way ofbuilding, operating, and testing such a system in an integrated design environment 

with a user-centered perspective. 

4.3. VIRTUAL ENGINEERING TOOL 

This research uses VE-Suite, an open-source software package developed at Iowa 

State University to facilitate virtual engineering. VE-Suite addresses the need to have a 

common platform for performing the engineering process by providing open interfaces 

that allows software packages to exchange data in a comprehensive design environment 

[ 40]. Thus, engineers can work in a single environment that accommodates information 

from various software tools, and they can interact with engineering models to create a 

virtual decision-making environment. 

The architecture of VE-Suite is composed of three core engines: VE_Xplorer, 

VE _ CE, and VE _Conductor. Figure 4.2 shows the architecture of VE _Suite. A brief 

description of the architectural components is provided below. 



Figure 4.2 VE-Suite Architecture 
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VE _Conductor forms the front end user interface. It uses open-source cross

platform user interface (UI) libraries offered by Wxwidgets [ 41]. Depending on the user's 

requirements they can create an interface using the base classes provided with the VE

Suite Application Programming Interface (API). 

VE _ CE is the computational engine that handles the coordination, scheduling and 

monitoring of the simulation runs and provides a means of linking commercial analysis 

software packages with the virtual engineering framework. Thus, the communication 

with other software packages to send and receive data is handled by the computational 

engine. Additionally, users can define their own computational unit and attach it to the 

service by creating digital library files to create these plugins. 

VE _ Xplorer is the graphical engine that is responsible for creating the virtual 

environment. It provides the visual interface to display the simulation under observation. 

Additionally, physical architecture prototypes can be created using the OpenSceneGraph 

libraries which form the underlying layer of this engine. Once we have the prototype, 

Xplorer can be connected with an immersive virtual reality environment like the CAVE 
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using VRJuggler as the device manager. Thus, a stakeholder can decide the level of 

interactivity he/she wants and switch from a desktop-based display to a highly immersive 

CAVE environment without having to worry about the compatibility issue. 

In addition to the above core engines, VE-Suite uses Common Object Request 

Broker Architecture (CORBA) [38] standard implemented in VE-Open to establish a 

communication medium between its core engines. This also provides the capability to 

operate engines independently from different locations. A typical VE-Suite model is a 

combination of three plugins: UI plugin, Computational unit plugin and graphical plugin. 

Users can build their custom plugins using the VE-Suite application programming 

interface (API) comprised of the base classes. 
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5. VIRTUAL SYSTEMS MODELING APPROACH 

This Section explains the model integration approach proposed in this thesis. It 

also discusses the model transformation procedure used to integrate SysML and virtual 

engineering models. 

5.1. OVERVIEW 

The present work seeks to integrate virtual engineering models with system 

models described using SysML. The MBSE tool used here work is Artisan Studio. Figure 

5.1 outlines the model integration approach; where we have system formal model 

developed using MBSE methods on one side and an executable virtual engineering model 

on another. Once the information from a system model is passed on to the virtual 

engineering framework, analytical models of varying types and levels of fidelity can be 

executed. 

System Formal 
Model 

D 
Detailed design & 

Analysis 

Figure 5.1 Virtual Systems Modeling Approach 

The use of virtual engineering in conjunction with SysML demonstrates the value 

of this approach for meeting the following objectives: 
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• Execute analysis models developed using SysML in an MBSE tool. 

• Provide a visual interface that clarifies the system and its operations in a better way. 

• To create an appropriate decision making environment. 

• To identify potential effects of changes in design parameters on system 

performance. 

• To maintain consistency in information flow by creating an integrated design 

environment. 

A single environment capable of meeting these objectives would allow engineers to 

concentrate on systems development rather than focusing on the tool interfaces and 

transformations necessary to gather the required information. 

5.2. METHODOLOGY 

As explained in section 4.2, a typical virtual engineering model designed in VE

Suite is composed of three components: the VE-UI (User interface that displays the 

design parameters considered in a simulation and acts as the data feeding point), VE-Unit 

( Backend computational unit), VE-GP (the graphical Plugin to display the simulation 

results and CAD data). Figure 5.2 shows the VE-Suite model structure composition. 

VE-Suite model 
structure 

I 
I I I 

VE-UI VE-Unit VE-GP 

Figure 5.2 VE-Suite Model Structure 
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Similarly, an analysis model in SysML can be viewed as being composed of three 

essential components: 1) the simulation block, which defines the input/output parameters 

and time constraints to control simulation start and stop times, 2) the constraint block, 

which defines the constraints to be applied to the design parameters in the simulation, and 

3) the system model, which defines the structure and value properties to be analyzed. 

Figure 5.3 shows the structure of the analytical model. 

Analysis model 
structure 

L 
I I I 

Simulation Constraint 
System model 

block blocks 

Figure 5.3 Analytical Model Structure in SysML 

When using this type of model structures, it becomes clear that the two model 

compositions can be thought of as being analogous to each other. Figure 5.4 shows the 

analogy between the two model structures. Thus, models from the MBSE domain can be 

the source of the information on which executable virtual models are built. 



Model Based Systems 

Engineering domain 
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block 

Constraint 
block 

System 
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Virtual Engineering 
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VE-UI 

VE-Unit 

VE-GP 

Figure 5.4 Analogy Between Two Model Structures 

22 

Another important consideration is that VE-Suite models are C++ based. This gives 

increased flexibility in the types of information that can be represented, but to create 

executable virtual engineering models there has to be a mechanism for information 

exchange between SysML and C++ based VE-Suite models. A combination of SysML, 

UMLand C++ profiles provides such a mechanism in an MBSE environment. Figure 5.5 

illustrates the modeling methodology. 



MBSETool 
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VE-model 
Mapping 

Figure 5.5 Modeling Methodology 

The connection between the two types of models is done using relationship constructs 

offered by SysML. Table 5.1 below gives a detailed description of composite, reference, 

and generalization relationship constructs used in this work. 



24 

Table 5.1 SysMLRelationship Constructs from [1] 

Qjagram 
Element No~on Description 

Com posit~ ~ <Na~ cPbll> Aoomposite 
Assodat:lon 

<IIAull~ 
I!SSOCh!Jtion 

Pattl <MUltiplic;ity> r1!!l!!~s ~ w hole 

<End> <Namac> <Part> to its parts 

• ') s howing the 
<Uulllpllclty> <Munlpllclty> relatlwe 

multlplidty at 
both whole and 

-Fh Ph part ends. A 

<Uuii~Jlkity> <~l(;/iic.ity> 
cornJX)Sfte 
assooetton 
always defines 
a part propertv <~)'> 
In the whole 
( ln<llc<it:oed by 
<Part>), 
Where there is 
no arrow on 
the 
non d iamond 
and of the 
assodaoon It 
also sJ>e(::ifies 
a referenoe 
property to 
the whok! in 
the part 
(indic.!lted by 
<Reference>). 

Otherwise 
when there is 
an arrow, t:n.e 
name- at the 
w hole .. nd 
simply gives a 
name- to the 
association end 
(indicated by 
<End>). 

; Re~renoe <Aeier'enco!P .:Aelenlnoe> A reference 
Asscx:iation <> <N me> association ca1 

Path <Mtl~ <Multlplicllly> 
be used to 

<End> <Relonmoa> speafy a 

<> <N etroe<>- relationshiP 
<M<I~ <Muftiplicily> between two 
<A~ <A:elerenoe> blocks:. A 

<Na.-,. re fef'en<:.e 
<MU~ <M~y> assooatton ca"' 

<End> <A:elerenoe> 
speCify <> 
refef'eooe 

<~ ) 
pr~ oo <M<IItiplidly> <Mullipl;olly> 
the blocks ilt <AoF-h ~ one or both 

<Mulllpicily> ~~hiplicity> 
ends. The 
white diam<lfid 
is the same fi:S 

<Uulllplk:lty> n o diamond, 
but pro·t'lles can 
b e u sed to 
dl~tiat:e 
t h em by 
spedfylng 
additiOnal 
oonstratnts . 

~- ---- -- ·-···- --· 
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Table 5.1 SysML Relationship Constructs from [1] (Continued) 

Generalization 

<Gi r8JftK3ni> 
A 

Path <Gr·~~5m> gen eralization 

--- ----- -- --- describes the 
relationship 
between the 
gen eral 
classifier and 
specialized 
classifier. A set 
of 
generalizations 
may either be 
{disjoint} or 
{overlapping}. 
They may also 
be {complete} 
or 
{ In complete}. 

5.3. C++ PROFILE 

The C++ profile package supplied by the MBSE tool infuses the model with 

information specific to C++. It contains stereotypes and tag Definitions required to model 

C++ code that can be used in combination with SysML and UML profiles. Figure 5.6 

shows a screen shot of the template of the C++ profile elements provided in Artisan 

Studio. 

Tag Definition N arne 

C++ Header Include 
C++ Implementation Include 
C++ Inheritance List 

Tag Value 

Figure 5.6 C++ Constructs 
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By applying C++ stereotypes to objects defmed usmg SysML, information 

specific to C++ can be entered using tag values. Thus, a SysML block can contain 

SysML properties such as values, parts, and constraints, as well as tag values defined in 

the C++ stereotype applied to it. 

5.4. VIRTUAL ENGINEERING MODELS IN AN MBSE ENVIRONMENT 

Virtual engineering models in an MBSE tool can be represented using SysML 

blocks. Each VE block in the tool corresponds to the VE-Suite model structure described 

in section 5.2. These blocks are composed of the sets of operations necessary to create 

models compatible with VE-Suite using the information supplied by the corresponding 

SysML analytical model. Figure 5.7 shows a sample VE-Suite UI module to create the 

user interface plugin defined using SysML block along with its primary operations . 

..block» 
VEUI 

operations 
Get\krsion 0 
GetConductorName 0 
UIO 
...,... .-.. 

Figure 5.7 VE-UI Module Using SysML Block 

Once all the VE-Suite modules are created, relationship constructs are used to 

establish a connection between the two models. Information about the design parameters 

and time constraints is supplied by the simulation block to the corresponding VE-UI 

block. The latter contains the operations to create a user interface for the simulation. The 

constraint information used in the analysis is passed from one module to another by 

creating a relationship between the constraint block and VE-Unit block, which stores the 

operations to create the backend computational unit. Information about the computer

aided design (CAD) models associated with structural units of the system can be passed 

on to VE-GP using the reference association. · 
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Plugin dll files required to run the application in VE-Suite can then be created by 

compiling the auto generated C++ code in an integrated development environment (IDE). 

The model organization created in the MBSE tool makes the code readily available for 

compilation to create the plugins for VE-Suite. 
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6. EXAMPLE MODEL DEVELOPMENT 

This Section provides a proof of concept for the methodology introduced in 

Section 5. It introduces a fermentor system and develops an example model in the MBSE 

environment. The sections of this Section outline the steps to build a model using the 

virtual systems modeling approach. 

6.1. SYSTEM OVERVIEW 

An example model of a fermentor system demonstrates the feasibility of 

integrating the SysML model into a virtual engineering environment. Bio-processing 

industry uses fermentor systems to produce compounds like ethanol and citric acid. A 

virtual engineering model of the fermentor has already been created as part of a training 

project at Indian Hills Community College Bioprocess Training Center. The purpose of 

this model was to train students and operators to understand the effects of varying 

chemical and biological inputs on the fermentation process. This fermentor system 

provides a baseline sufficiently broad to display the utility of the method proposed here, 

but still small enough to permit rapid modifications to evaluate the performance of our 

method. A typical fermentation process requires a set of inputs including both physical 

compounds and controlled working conditions. Production is governed by the chemical 

reactions that result from these input sets. Figure 6.1 shows a conventional fermentor 

system to demonstrate the composition and internal interfaces of the system. 



User Input 

Impeller drive 

system 

Feeding 

System 

Tank 

Figure 6.1 Fermentor System Layout 
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Output 

Development of the fermentor model began with the identification of input and 

output parameters required to create a realistic model of the fermentation process. The 

inputs considered here are impeller speed, initial pH level, initial nitrate concentration, 

and initial temperature. The output of the system is the concentration of citric acid 

produced with the given set of input parameters. 

6.2. MODEL DEVELOPMENT USING SYSML 

With the layout of the system as the baseline, the first step was to create a formal 

model of the fermentor using SysML constructs. Figure 6.2 shows the fermentor 

structure, modeled using a block definition diagram offered by SysML. 
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bdd [Package) Fermenter structure[Fermenter System Components] 

«block» l1 1 A. 
Fermenter ,_ 

~ -- I\ . ~r ~ ~ 
.... 

Agitator 1 ) 1 

Iff'"'''"'" 
/ 

«block» eeder «block» 
Impeller drive system 1 

1 i Tank 

" values «block» «block» 

11 

values 
agttation in rpm : double Feeding system Gauges cttric cone : double 

values 
inttial pH : double 
temperature : double 

air cone : double ~ 

nttrate cone : double 

Figure 6.2 Block Definition Diagram of the Fermentor System 

The ferrnentor block shown here is composed of four key elements: the impeller 

drive system, the feeding system, the gauges, and the tank. Each element has value 

properties that represent the quantifiable characteristics of the blocks. These quantities 

also represent the input and output parameters considered in the experiment. 

6.3. DEFINING AN ANALYTICAL MODEL IN SYSML 

Developing an analytical model requires the knowledge of the model type and the 

purpose that it is going to satisfy. The purpose here refers to the effective understanding 

of a particular type of system behavior under controlled input conditions. In the case of 

the fermentor system, the objective was to observe the behavior of the fermentation 

process by varying input conditions. An analytical model was developed using SysML 

diagram types to accommodate the computational information required to run the 

simulations. The first type of information was the constraints required to calculate the 

concentration of citric acid. Figure 6.3 shows the constraints used to calculate the 

concentration, defmed using a SysML construct. 



«block:. 
Fennentor Analysis 

«Constraint:. 
Eqnstocalculateacidicyeild 

constrairts 
· Citric cone= c[1)*c(2]*c[3]*c[4]*c[5)*c[6)*c[7]; 

F[ 1 1 = c-o.oooo36 •t •t •t) + co.oo92 •t •t- o.o72 *t) 
lt-1; 

c[ 2) = (-0 .000091 • agitation • agitation)+ 0.035 • 
agitation- 2.56; 

c[ 3] = (-1 • airconc • airconc) + (2 • airconc) -2; 

c[ 4] = (-0.41 • inipH • inipH) + (4.9 • inipH) -13; 

c[ 5) = (-17 • nitrateconc • nitrateconc) + (8.4 • 
if1itrateconc)- 0.004; 

ic[ 6] = (-0.01 • temp •temp) + (0.69 •temp)- 7.8; 

c[7) = -1; 
} 

Figure 6.3 Constraints Used in Fermentor Analysis 
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Once the constraints were defined, the next step was to add the properties of the 

various subsystems defining the actual system model and the simulation model which is 

comprised of experiment specific information. The actual systems model is the fermentor 

model structure described previously; the simulation model includes input and output 

parameters and time constraints to run the experiment. Figure 6.4 shows the structure of 

the fermentor analysis model using a BDD of SysML. 



bdd (Package( Fermentor Analysis[ calculat ing acid concentratio~JJ 

«block» 
Simulation 

values 
timelnput: double 

> 

acid yieldOutput : double 
agitationlnput: double 
air_conclnput : double 
Nitrate_conclnput : do ... 
Templnput: double 

«block» 
Fermentor Analysis 

I 
«block» 

Fermentor 

) 

«constraint» 
Eqnstocalc ulateacid icyie lc 

--.-

Figure 6.4 BDD Showing Fermentor Analysis Model 
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Developing a system structural model separately and then introducing it in the 

analysis context gives the advantages of having a modular design. The analysis can be 

changed by varying the constraints and simulation properties while keeping the primary 

system model unaffected. Thus, different analyses involving the same system model 

properties can be undertaken easily. Value properties defined in the simulation block 

must be constrained by the value properties of the actual system model in order to 

maintain consistency throughout the model. Such constraints are imposed by a parametric 

model that relates value properties of both the blocks using an equality constraint. Figure 

6.5 shows the parametric diagram developed to constrain the simulation block properties. 



par [block) F ermentor Analysis j 

cparb 
[Simulation] : Simulation 

cparb 
[Fermentor] : Fermentor 

cparb 
: lmpellerdrivesystem 
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I. timelnput : double Jl 
!acid yieldOutput : doubl~l 

~>c~'aSgrt;af~1on~in~r;pm~:~do;u~ble~~~~--. l 
cparb J 

Sim ~itation : double Femnentoragrtation : d / : Feedingsystem 

I agrtationlnput : double il . tJ ~ 
~~~~~~ji i~::::·~S~im~NC~:~d~ou~blbtJ 1 !fermentorNC : double I nitrateconc : double 1: 
I Nitrate_conclnput : Jr ._,c1J~==J~~~~;;;=;;;;;;;;~ 

double , SimAC : double [Equal) : Equal fermentorAC : double 1 Ill ·. 
~~~~~~f-~~;~;gr--::::;:;:;::;:---rti===::::j~----t--j airconc : double r I J COnstraints I.., I. 
I air_conclnput : double •·1 C: . ~rmentoragrtation= I=~~~~~~~JI Jl ~ :n Temp . double agnation; ~ 

rmentorNC = s·.lmNC; r' lfermentorTe np : double cparb I I ll L. : Tank I Templnput : double s· H . d bl FermentorAC = S1mAC; 

~~~~~~~~~b~m~p==. ;ou~e ~l.EermentorTemp = SimTemp;} r IJ r. ermentorpH : double I temperature : double h 
I inrtialpHinput : double Jl L1F:::::::::_~--~~~=~~~~ J 

I inrtialpH : double 

Figure 6.5 Parametric Diagram Relating Structural and Simulation Properties 

6.4. ADDING VE MODELS 

This section describes the creation of a VE-Suite model in the MBSE tool. First, 

the three main components representing the VE model are created (see Section 3.2). Each 

VE-Suite module in the MBSE environment is composed of operations specific to the 

plugin that it is creating. The FermentorUI block represents the user interface module that 

will control the simulation; the FermentorUnit represents the backend computational unit, 

and the FermentorGP stores the operation to create the display. In order for the VE 

models to have analysis-specific information, relationships are established with the model 

already developed using SysML. Thus, the FermentorUI inherits the simulation-specific 

properties from the simulation block, and the FermentorUnit has a reference to the 

constraint block that stores the operation to calculate the concentration of citric acid. 

One of the key advantages of using a virtual engineering model is that 

information can be presented in a manner readily understood even by a non-expert. This 
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is due in part because of the use of CAD models to represent a system. Subsystem models 

can be represented by individual CAD models. VE-Suite's graphical engine provides the 

capacity to create such a model architecture using OpenSceneGraph libraries. To exploit 

this option, part properties of the fermentor system model are referenced with individual 

CAD files that replicate their structure using an UML operation. This operation reads 

data from the CAD file using an OpenSceneGraph function. Each subsystem associated 

with a CAD file has a member function to read the CAD data and store it in the form of 

an OpenSceneGraph node. These part properties are then referenced in the FermentorGP 

module using relationship semantics. The module has operations to create a complete 

scene graph composed of individual nodes by calling the member function defined in the 

part properties using the reference handle. Figure 6.6 shows the organization of the 

complete fermentor analysis model. It represents VE models in the diagram explicitly 

using the < <VES> > stereotype. 

bdd [Package] Fermentor Analysis( calculating acid ~JI 

«block» 
Fennentor Analysis 

/ 
~ -..... ~_ _ ...... 

/ l l «constraint» ~1 
f/ ' Eqnstocalculateacidicyiel «block» 

«block» Fennentor 
Simulation 1 

values 1 ~ 'i ~~ I timelnput : double 
1 I. '< I acid yieldOutput : double 

«block» «block» >. 
agitation Input: double «block» Feedingsystem Gauges «block» 

ll 
air_conclnput: double lmpellerdrivesystem «VES» 
initialpHinput : double 

operations 
operations operations FennentorUnit 

Nitrate_conclnput : do ... 
ReadCADdataandl ... 

ReadCADdataa ... ReadCADdataa ... II Templnput : double 

-T ' .1 

\ 
I 

«block» 
Tank 

I 

operations <l 
I 

«block» ReadCADdataandlntialize () I 
«block» «VES» 

FennentorUI «VES» 
./' FermentorGP - "< - -- ---

·-~ 

Figure 6.6 Fermentor Analysis Model Structure with YES Modules 
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7. EXPERIMENTAL RESULTS 

This section describes the output from the MBSE tool and its compilation to 

create the VE-Suite model. The auto code synchronizer (ACS) function in Artisan was 

used to generate and synchronize the C++ code with the SysML model. The objective 

here was to convert a model developed from one language (SysML) to another (C++) so 

that it can take advantage of the execution capabilities provided by the virtual 

engineering tools. The advantage of using the ACS while generating output is that the 

code in the IDE (Visual Studio, in this case) remains synchronized with the model at all 

times. In this way the code and the model can be updated whenever a change is made. In 

addition, the code generated as an output of this process remains consistent with the 

relationships defined in the SysML model. For example, the FermentorGP module has 

references with both the constraint block and the structural components of the fermentor 

system; therefore, when we output the code for the GP module it will have information 

access to the related files. The following pseudo code of the FermentorGP module 

explains how reference pointers provide access to the CAD data defined individually in 

the structural components and to the constraint information. 

//FermentorGP . h 

class VEFermentorGraphicalPlugin : inheriting f r om VE-Suite Xpl ore r b a se 
c lass 
{ 

publ i c : 

II PubliciPackage operations 
Con s tructor for the FermentorGP clas s 
Destru c tor f o r t he FermentorGP class 

//Base class operations 

virtual void Initi a lizeNode( os g :: Gr oup * ve worldDCS ) ; 
virtual void Pr eFrame Update (}; 
virtual void Pr ocessOnSubmit J ob() ; 

p r ivate : 



II Private attributes 

II Reference pointers 

//Pointer to access constraints information 

Eq ntocalculateconc* cons tra int; 

//Pointer to access CAD data from the system model 

} ; 

endif 

I mpelle rdrivesy s t e m* i mpe l ler; 
Tank* tank ; 
Feedings yste m* f eed i ngs ystem; 
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The complete C++ output code is presented in the appendix. Each structural component 

of the fermentor system has an associated CAD file that is read using OSG functions and 

stored in a node accessed by the Fermentor GP module. This process creates a tree 

structure to display all the elements in the Xplorer interface. The following pseudo code 

represents the feeding system: 

II File : . \Feedingsystem.cpp 

# i nclude <Feeding system header file> 

# i nclude <Osg header file to read CAD data> 

II Operation implementation of the read CAD data function 

osg:: r e f _ p t r< osg :: Node > Feedi ngs ys t e m: : ReadCADdata () 
{ 

II ## OperationBody [llfeb10e-328a- 4f94 - a6c9 - 473b14683f60) 

1/feedingsystem . ive is the CAD file passed as argument to the OSG 
function ; output of the function is in the form OSG node 

_ferme n t o r Ge ometry = o s gDB::readNodeFile( "Models/feedingsystem . ive " 
) ; 

II The return type is in the form of OSG node 



II FermentorGP module has access to this OSG node through the pointers 
defined in its header file 

return fermentorGe ometry ; 
II ## OperationBody End 
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The .1ve file is the CAD file which is read and stored in an OSG node defined as 

_fermentorGeometry. This process is repeated for all other structural components and the 

OSG nodes are available to the GP module to access. 

The simulation block in the fermentor analysis model defines the experimental 

data elements and their value types. The FermentorUI module inherits this information 

from the simulation block. Shown below is the pseudo code of the simulation block 

followed by the FermentorUI module: 

II File: . \Simulation .h 

#ifndef 
#define 

simulation 
simulation 

class simulation 

Public: 
//user defined experimental parameters 

double agitationinput; 
double air_concinput; 

double Tempinput 
//All these parameters are defined in the simulation block using 

SysML value properties 

} ; 

endif 

I I File : . \FermentorUI . h 

#ifndef 
#define 

FermentorUI 
FermentorUI 

#include <header file to provide access to simulation block properties> 

#include <header file of the conductor base class> 



class FermentorUI 
class 

inherits from conductor base class and simulation 

public: 

II PubliciPackage operations 

FermentorUI constructor 
FermentorUI destructor 

lives conductor base class operations 

virtual double GetVersion(); 

virtual ves: :conductor::UIDialog* UI( wxWindow* parent); 

virtual wxString GetConductorName(); 

wxString GetName(); 

} ; 

#endif 
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Once the output C++ code of the fermentor analysis model has been generated, 

the next step is to generate the dll files that can be plugged into the virtual engineering 

software to run the experiment. The code was compiled using SCons [43], a software 

construction tool used to build the VE-Suite source code. Before compiling, the 

SConscript files were created with the software environment necessary for VE-Suite. The 

output of the compilation process was in the form of dll files that VE-Suite can read and 

execute in its environment. Figure 7.1 shows a screenshot of the fermentor model in VE

Suite as the final output. The user interface can be used to change the design parameters, 

run the simulation, and view the results in the Xplorer window. 
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Figure 7.1 Fermentor Analysis Model in VE-Suite 
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8. DISCUSSION AND CONCLUSION 

The power of using . Model based design has been known to the engmeenng 

community for quite some time. It provides a scope to enhance the traditionally used 

relatively inflexible form of doing engineering design by introducing modularity, 

reusability, and easy maintainability of design information. Model-based systems 

engineering has been introduced to utilize these opportunities to solve more complex 

engineering problems confronted while undertaking systems engineering projects. 

Additionally, the activities involved in designing complex systems demand that different 

modeling formalisms work together synergistically. This increases the importance of 

having an effective model integration approach that satisfies multiple requirements. This 

paper has introduced an approach that integrates formal system models with detailed 

engineering models using the profiles and relationship constructs offered by an MBSE 

tool. 

As a language supporting MBSE, SysML has gained attention for both the 

capability it offers and its limitations. It addresses various aspects of systems engineering 

activity and provides an easy-to-use library of graphical constructs to facilitate those 

activities. In addition, SysML permits the use of relationships to maintain consistency 

and coherence in models. However, its lack of self-execution capability forces it to rely 

on external analytical tools to solve mathematical models. This work proposes the use of 

virtual engineering as a means of analysis that retains the formal system models 

developed using SysML as the source of information. By integrating virtual engineering 

models with SysML, the potential of SysML to manage information complexity can be 

used in conjunction with executable detailed design models. The example model 

developed here demonstrates the effectiveness of this approach for: 

• creating an executable model of a simulation that is synchronized with the 

systems engineering information, 

• using CAD data to create a realistic view of the system, thus creating an effective 

decision making environment, 
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• understanding the effects of changing design parameters on system performance. 

The integration of an MBSE tool with the virtual environment brings high-level 

formal models closer to detailed engineering models so that decisions can be made with 

the help of interactive engineering analysis. The model integration approach illustrated 

here also maintains information consistency throughout the process. Thus system models 

in both the environments remain synchronized so that changes can be tracked and 

information can be updated dynamically. In addition, the manner in which SysML model 

is defined allows for extensive model reuse. System structural components can be tested 

by performing different types of analyses without making major changes to the original 

model. For example, if the user decides to change the type of analysis for the fermentor 

from calculating the concentration of citric acid to a different product, they can 

manipulate the model structure without destroying the original one. Also, the VES 

modules defined above can be reused to support the new analysis. Once the first model is 

created and executed, amount of rework required to test the system for a different set of 

parameters and constraints is much reduced. 

The objectives accomplished in this research demonstrate our efforts towards 

larger integration of software tools for systems engineering management and engineering 

decision making. The example model demonstrates the creation of a user-defined 

computational unit, which is one of numerous capabilities that VE-Suite offers. 

Furthermore, external analytical tools such as CFD and FEA packages can be 

synchronized with the virtual platform to vary the levels of fidelity. The use of high 

fidelity models in conjunction with systems engineering information in a virtual 

environment can provide an interactive, user-centered, and thorough working 

environment for the stakeholders to work in. In addition, the open interfaces offered by 

the virtual engineering tool permit for integration of different software tools used in 

systems development in a single, comprehensive design environment. The work 

presented here represents the preliminary steps required to use the capabilities of the 

virtual engineering platform to create an integrated development environment. Also, a 

template giving basic information on using the methodology for creating engineering 

models is presented in Appendix B. By providing this template we demonstrate the 
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breadth of the methodology described in this thesis in developing newer engineering 

models using a combination of model-based and virtual engineering domains. Thus, 

future users can use this as a guide in developing executable models relevant to their 

needs. 

The next step in this research will be to use the MBSE tool API and integrate it 

with the VE-Suite open interface. A linkage of this kind will provide a more seamless 

integration between the two tools for data exchange and could minimize the amount of 

manual work required to create the dll files after generating the C++ code. Additionally, 

the access to the MBSE tool API would allow component traceability between the two 

domains. Thus, if an engineer decides to change the composition of the system model by 

replacing a component, the outcome ofthis decision can be instantaneously visualized in 

the corresponding virtual environment. This would also help in analyzing the effects of 

changing requirements on the system architecture as the model traceability will span from 

requirements to the detailed engineering models. 



APPENDIX A 

OUTPUT CODE 



II File . \FermentorUI . h 

#ifndef FermentorUI 
#define FermentorUI 

#include "sirnulation .h" 
#include <ves/conductor/UIPluginBase .h> 
#include <wx/image .h> 
#include <string> 

class FermentorUI 
simulation 

public ves::conductor::UIPluginBase, public 

DECLARE DYNAMIC_CLASS( Fermentor ) 

public: 

} ; 

II PubliciPackage operations 

FermentorUI(); 
virtual -FermentorUI(); 

virtual double GetVersion(); 

virtual ves::conductor::UIDialog* UI( wxWindow* parent); 

virtual wxString GetConductorName(); 

wxString GetName(); 

long cycle_ ID; 
long rotation ID; 
long xray_ID; 
long loop_ID; 

double rot_speed; 
d oubl e sim_speed; 

#endif 

II File : . \FermentorUI . cpp 

//#include " StdAfx . h" 
#include "Fe rmentorUI . h " 
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#include " FermentorUIDialog.h ~ 

#include <wx/wx . h> 
#include <iostream> 
#include <fstream> 
#include <wx/wx . h> 

IMPLEMENT_DYNAMIC_CLASS( FermentorUI, ves::conductor::UIPluginBase) 

II Operation implementations 

FermentorUI::FermentorUI() 
{ 

II## OperationBody [8e8d3b2c-2lad- 4003- 8726- 7350lbafa0e2] 
RegistVar( ~ agitation~ , &agitation); 

RegistVar ( ~a ir_conc ~, &air_conc ) ; 
RegistVar( " ini_ph ~, &ini_ph); 
RegistVar( " nitrate_conc ~, &nitrate_conc ); 
RegistVar( "temperature ~, &temperature) ; 
RegistVar( " hours" , &hours); 
RegistVar( " cycle_ID", &cycle_ID ); 
RegistVar( "rotation_ID", &rotation_ID ) ; 
RegistVar ( "xray_ID", &xray_ID ) ; 
RegistVar( " loop_ID", &loop_ID ); 
RegistVar( "rot speed", &rot_speed ); 
RegistVar ( " sim_speed" , &sim_speed ) ; 

mPluginName = wxString( ( ~Fermentor" ); 

wximage my_img ( ( "Icons/fermentor. jpg" ) ) ; 
Setimage( my_img ) ; 

II## OperationBody End 

double FermentorUI: : GetVersion() 
{ 

II ## OperationBody [0456d9c9 - la98 - 408a-bead-lb2b5fd3769d] 
double result = 1.0; 

//Your code 

return result; 
II ## OperationBody End 

wxString FermentorUI: :GetConductorName() 
{ 

II ## OperationBody [55012352 -f872 - 4996 - b77b- 7056cb46363b] 
//Your name 

wxString result( "IHCC Fermentor") ); 
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return result; 
II ## OperationBody End 

wxString FermentorUI::GetName() 
{ 

II ## OperationBody [25b85835 - f0b8-4750-941b-lf7f2b55148f) 
return mPluginName; 

II ## OperationBody End 

ves::conductor::UIDialog* FermentorUI::UI( wxWindow* parent) 
{ 

II ## OperationBody [128919dl - 2502-4a6c-9d46- 05b1 16cf3bd8] 
if( dlg ) 

{ 

return dlg; 

dlg new FermentorUIDialog( parent, wxiD_ANY, &agitation, 
&air_conc, 
&ini_ph, 
&nitrate_conc, 
&temperature, 
&hours, 
&cycle_ID, 
&rotation_ID, 
&xray_ID, 
&loop_ID, 
&rot_speed, 
&sim_speed ); 

ConfigurePluginDialogs( dlg ); 

return dlg; 

II ## OperationBody End 

FermentorUI: :-FermentorUI() 
{ 

II ## OperationBody [196070f4 -e928-41 28 - 8e08-a8aa6646adb9) 

II ## OperationBody End 
} 

II File 

#ifndef 
#define 

. \Simulation . h 

simulation 
simulation 
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//# include "C : \Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ . . \Program2\double .h " 

class simulation 
{ 

public: 

} ; 

double agitation; 
d ouble air cone ; 
double ini_ph; 
double nitrate cone ; 
double temperature ; 
double hours ; 

#endif 

II File : . \Eqntocalculateconc . h 

#ifndef EQNTOCALCULATECONC_H 
#define EQNTOCALCULATECONC_ H 

class Eqntocalculateconc 
{ 

public : 
Eqntocalculateconc(); 
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double 
calculateacidyield(int,double,double,double, double,double) ; 

} ; 

double c[ 8 ]; 
int time; 
double agitation; 
double airconc; 
double iniph; 
double nitratconc; 
double temp ; 

II File : . \Eqntocalculateconc . cpp 

#include "Eqntocalculateconc.h" 

Eqntocalculateconc::Eqntocalculateconc() 
{ 
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double Eqntocalculateconc:: calculateacidyield(int t, double ag, double 
ac , double iph, double niconc, double tempture) 

time =t ; 
agitation=ag; 
airconc =ac; 
iniph = iph; 
nitratconc =niconc; 
temp tempture; 

c[ 0 ] = 1; 
c[ 1 ] = ( -0.000036 *time *time* time ) + ( 0.0092 * 

time * time ) - ( 0.072 * time ) + 1; 
c[ 2 ] ( -0 . 000091 * agitation* agitation ) + 0 . 035 * 

agitation- 2.56 ; 
c[ 3 ] -1 * airconc * airconc) + ( 2 * airconc) - 2 ; 
c[ 4 ] -0 . 41 * iniph * iniph) + ( 4 . 9 * iniph) - 13 ; 
c[ 5 ] -17 * nitratconc * nitratconc ) + ( 8.4 * 

nitratconc ) - 0 . 004 ; 
c[ 6 ] ( -0.01 *temp* temp) + ( 0 . 69 * t emp) - 7 . 8 ; 
c[ 7 ] = -1; 

for ( int i 1; i < 8; ++i 
{ 

c[ 0 c [ 0 * c[ i l ; 

if ( c[ 0 l <= 0 ) 

c[ 0 l = 0.0; 



II File 

#ifndef 
#define 

return c[O]; 

. \Feedingsystem . h 

Feeding system 
Feeding system 

//#include "C : \Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ .. \Program2\double . h" 
#include <osg/ref_ptr> 
#include <osg/MatrixTransform> 

class Feedingsystem 
{ 

public : 

II PubliciPackage operations 

osg : :ref_ptr< osg::Node > ReadCADdata(); 

osg : :ref_ptr< osg : :Node > fermentorGeometry; 

double airconc; 

double nitrateconc ; 

} ; 

#endif 

II File : . \Feedingsystem . cpp 

//#include "StdAfx.h " 
#include "Feedingsystem . h" 

#include <osgDB/ReadFile> 

#include <iostream> 
#include <iomanip> 

II Operation implementations 

osg : :ref_ ptr< osg : :Node> Feedingsystem: : ReadCADdata() 
{ 

II ## OperationBody [llfebl0e-328a- 4f94 - a6c9 - 473bl4683f60] 
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_ fermentorGeometry = osgDB::readNodeFile( 
"Models/fermentor_noimpeller .ive " ); 

return fermentorGeometry; 
II ## Ope rationBody End 
} 

II File . \Impellerdrivesystem.h 

#ifndef __ Impellerdrivesystem 
#define Impellerdrivesystem 

//# include "C : \Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ . . \Program2\double.h" 
#include <osg/ref_ptr> 
#include <osg/MatrixTransform> 

class Impelleidrivesystern 

public : 

II PubliciPackage operations 

osg: : ref_ptr< osg : :Node > ReadCADdataandinitialize() ; 

osg: : ref_ptr< osg: : Node > _ impellerGeornetry; 

double agitation in_rprn; 

} ; 

#endif 

II File : . \Impellerdrivesystem .cpp 

// #include "StdAfx. h " 
#include "Impellerdrivesystem .h" 

#include <osgDB/ReadFile> 

#include <iostream> 
#include <iomanip> 

II Operation implementations 

osg : : ref_ptr< osg : : Node > 
Impellerdrivesystern : :ReadCADdataandinitialize() 
{ 
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II ## OperationBody [6d290d37-6f08 - 46ea-a108 - bf56d44ca489] 
impellerGeometry = osgDB :: readNodeFile ( "Models/impeller fixed. ive " ) ; 

return _impellerGeometry; 

II ## OperationBody End 

II File 

#ifndef 
#define 

. \Tank . h 

Tank 
Tank 

//#include "C:\Documents and Settings\askz82\Desktop\SysML - VESuite 
Fermentor model\ . . \Program2\double.h" 
#include <osg/ref_ptr> 
#include <osg/MatrixTransform> 

class Tank 

public : 

II PubliciPackage operations 

osg: : ref_ptr< osg: :Node> ReadCADdata(); 

osg::ref_ptr< osg: : Node> _ tankGeometry ; 

double initialpH; 

double temperature; 

} ; 

#endif 

II File : . \Tank.cpp 

//#include "StdAfx.h" 
#include "Tank.h" 
#include <osgDB/ReadFile> 

#include <iostream> 
#include <iomanip> 

II Operation implementations 

osg :: ref_ptr< osg : : Node> Tank::ReadCADdata{) 
{ 



II ## OperationBody [a90 f 6320 -fa65-4ae 9- 9913 - 0b9 f 75 103d84] 

_tankGeometry = osgDB: :readNodeFile( "Models lopaque_tank . ive" ); 

return _tankGeometry; 

II ## OperationBody End 

II File . \ FermentorGP . h 

#ifndef 
#define 

FermentorGP 
FermentorGP 

class Shaders; 

#include "Eqntocalculateconc . h " 
#include "Impe l lerdrivesystem.h" 
#include " Tank.h" 
#include "Feedingsystem . h " 

n amespace display 
{ 

class DigitalGauge; 

#include <ve s lxplorer lplugin iPluginBase .h> 

namespace ves 
{ 

namespace xplorer 
{ 

namespace scenegraph 
{ 

class DCS ; 

#i n clude <map> 

class VE USER PLUGIN_EXPORTS VEFermentorGraphicalPlugin 
ves : :xplorer::plugin: :PluginBase 
{ 

public: 
II PublicJPackage operation s 

VEFermentorGraphicalPlugin(); 
virtual -VEFermentorGraphicalPlugin(); 

virtual void InitializeNode( osg : :Group* veworldDCS ); 
v irtual void PreFrameUpdate(); 
virtual void ProcessOnSubmitJob( ) ; 

public 

void UpdateGauges( double , double, double , double , double, double , 
double); 
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private: 

} ; 

II Private attributes 
bool mSimulationStart; 

int frame count; 
int frame speed_control; 

double _agitation; 
double air cone; - -
double _ini_ ph; 
double _nitrate_conc; 
double temperature; 
double hours; 
double rot_speed; 
double sirn_speed; 

long 
long 
long 
long 

cycle_ID; 
rotation_ID; 

_xray_ID ; 
_loop_ID; 

std : :vector< double> time_steps; 
std::vector< double> result_steps; 

Shaders* shader; 
Eqntocalculateconc* constraint; 
Impellerdrivesystem* impeller; 
Tank* tank; 
Feedingsystem* feedingsystem; 

std::map< int, osg::ref_ptr< display : : DigitalGauge >>_gauges ; 

osg::ref_ptr< osg: :Sequence> capsule_sequence; 

llosg : :ref_ptr< osg : :Node> _fermentorGeometry ; 
llosg : :ref_ptr< osg: :Node > impellerGeometry; 
osg : : ref_ptr< osg : :Node > tankGeometry; 

osg :: ref_ptr< osg : : MatrixTransform > roomGeometry; 
osg : : ref_ptr< osg: : MatrixTransform > fermentorGroup; 

osg : :ref_ptr< osg : :MatrixTransform >transform ferm; 
osg::ref_ptr< osg : :MatrixTransform > transform_ imp; 
osg : :ref_ptr< osg: :MatrixTransform >transform tank; 

CREATE_VES_XPLORER_PLUGIN_ENTRY_POINT( VEFermentorGraphicalPlugin ) 

#endif 
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II File : . \FermentorGP .cpp 

#include "FermentorGP.h" 
#include "DigitalGauge.h" 
#include "Shaders.h" 
#include "Eqntocalculateconc .h" 
#include "Impellerdrive s y stem.h" 
#include "Tank.h" 
#include "Feedingsystem. h " 

#include <veslopen lxml /mode l /Model.h> 
#include <ve s lopen/xml/Comma nd . h> 
#include <ve s lopen /xml /shader iShader.h> 
#include <veslopen/xml/DataValuePair.h> 

#include <veslxp l orer l scenegraphiSceneManager.h> 

#include <osgiMatr i xTransfo rm> 
#i nc lude <osgiAnimationPath> 
#include <osgiShapeDrawable> 
#include <osgiSequence> 

#i n clude <osgTextiText> 

#include <o s gDB/Rea d File> 

#include <osgSim/ColorRange> 

II Operation implementations 
VEFermentorGraphicalPlugin::VEFermentorGraphicalPlugin() 

PluginBase (), 
agitation( 200 ), 
air_conc( 1.25 ), 
ini_ph( 6 ) , 

_nitrate_conc( 0.1 ), 
temperature( 37 ) , 

_hours( 240 ), 
_cycle_ID( 0 ) , 

rotation_ID( 0 ), 
_xray_ID( 0 ) , 

loop_ID( 0 ), 
rot_speed( 0 ), 
sim_speed ( 0 ) , 

frame_count( 0 ), 
frame_speed_control( 0 ), 

shader( new Shaders() ), 
constraint( new Eqntocalculateconc() ), 
impeller( new Impellerdrivesystem() ), 
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tank (new Tank() ) 1 

feedingsystem ( new Feedingsystem() ) 1 

capsule sequence( new osg::Sequence() ) 1 

fermentorGeometry( 0 ) 1 

impellerGeometry( 0 ) , 
tankGeometry( 0 ) 1 

roomGeometry( new osg ::MatrixT ransform() ), 
fermentorGroup( new osg: : MatrixTransform() ) 1 

transform_ferm( new osg::MatrixTransform() ), 
transform_imp( new osg: : MatrixTransform() ), 
transform_tank( new osg::MatrixTransform() ), 
mSimulationStart( false ) 

mObjectName = "FermentorUI"; 

VEFermentorGraphicalPlugin::-VEFermentorGraphicalPlugin() 
{ 

if( !mSceneManager 
{ 

return; 

osg: :ref_ptr< osg::Group > rootNode 
mSceneManager->GetRootNode(); 

if ( ! rootNode. valid () 
{ 

return; 

rootNode->removeChild( _roomGeometry.get() ); 

for( std: :map< int 1 osg::ref_ptr< display::DigitalGauge > 
> : :iterator 

itr = _gauges.begin(); itr != _gauges.end(); ++itr 

rootNode->removeChild( itr->second.get() ); 

gauges. clear() ; 

delete shader; 
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void VEFermentorGraphicalPlugin::InitializeNode( osg::Group* veworldDCS 
) 

{ 

PluginBase::InitializeNode( veworldDCS ); 

osg::ref_ptr< osg::Group > rootNode = 



ves::xplorer: :scenegraph::SceneManager::instance()
>GetRootNode(); 

osg: :ref_ptr< osg::Node >temp= osgDB::readNodeFile( 
"Models / fermentor_room.ive" ); 

_roomGeometry- >addChild( temp.get() ); 
rootNode->addChild( _roomGeometry.get() ); 
mDCS->addChild( fermentorGroup.get() ); 

osg::ref_ptr< osg::Node > Feedingsystemnode 
>ReadCADdata (); 

II fermentorGeometry = osgDB: : readNodeFile( 
"Models /fermentor_noimpeller.ive" ) ; 

//_impellerGeometry = osgDB::readNodeFile( 
"Models / impeller_fixed.ive" ) ; 

feedingsystem -

osg: :ref_ptr< osg::Node > impellernode 
>ReadCADdataandinitialize(); 

impeller-

* 

tankGeometry = osgDB: : readNodeFile ( "Models / opaque tank. i ve " ) ; 

//osg : :ref_ptr< osg::Node > tanknode = tank->ReadCADdata(); 

shader->XRay( _tankGeometry.get() ); 

//shader - >XRay( tanknode.get() ); 

transform_ ferm->addChild( Feedingsystemnode.get() ); 

transform_imp->addChild( impellernode.get() ) ; 

I / transform_ imp- ·>addChild ( impellerGeometry. get () ) ; 

//transform_tank->addChild( tanknode . get() ) ; 

transform_tank->addChild( _tankGeometry . get() ); 

fermentorGroup->addChild( capsule_sequence.get() ); 

fermentorGroup->addChild( transform_ferm.get() ); 

fermentorGroup->addChild( transform_imp.get() ); 

fermentorGroup->addChild( transform_tank.get() ); 

double trans[ 3] = { 0 . 8, 13.5, 0.15 }; 
mDCS->SetTranslationArray( trans); 

roomGeometry->setMatrix( osg : :Matrix::scale( 3.28, 3 . 28, 3.28 ) * 
osg::Matrix: :translate( -4.5, 0.0, -3.4) 

osg::Matrix::rotate( 0.0, 0, 1, 0) ); 
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transform_ferm- >setMatrix( osg ::Matrix::scale( 3.28 , 3 . 28 , 3 . 28) * 
osg :: Matrix :: translate( - 0 . 67 , 0.8 , -

1.36) ); 

transform tank->setMatrix( osg ::Matrix ::scale( 3 . 28 , 3 . 28 , 3.28) * 
osg ::Matrix :: translate( 0 . 005 , - 0 . 02, -

0 . 05 ) ) ; 

_ gauges . insert ( std : :make __pair ( 0 , new display::DigitalGauge( 
" Time : Hours " ) ) ) ; 

_gauges. insert ( std : :make _pair( 1 , new display :: DigitalGauge( " Acid 
Yield" ) ) ) ; 

gauges . insert ( std: : make _ pair( 2, new display::DigitalGauge( 
" Agitation : rpm" ) ) ) ; 

_ gauges. insert ( std: :make _ pair( 3, new display : : DigitalGauge( "Air 
Cone : vvm" ) ) ) ; 

_gauges. insert ( std : : make__pair ( 4 , new display :: DigitalGauge( 
" Initial pH " ) ) ) ; 

gauges . insert ( std: :make pair( 5 , new display: : Digital Gauge( 
"Nitrate : g/L " ) ) ) ; 

gauges . insert ( std: : make _pair( 6, new display ::DigitalGauge( 
" Temp: C" ) ) ) ; 

for ( std : : map< int , osg :: ref_ptr< display: : DigitalGauge > 
> :: iterator 

itr = _gauges .begin (); itr != _gauges . end() ; ++itr 

rootNode - >addChild( itr- >second . get() ); 

itr->second->GetNameText()->setCharacterSize( 0 . 12 ); 
itr- >second- >GetDigitalText() - >setCharacterSize( 0 . 22 ) ; 
itr->second->GetNameText ()->setColor( osg :: Vec4 ( 0 . 3, 0 . 3 , 0 . 3 , 

1. 0 ) ) ; 
itr- >second- >GetDigitalText()->setColor( osg : :Vec4( 0 . 0 , 1 . 0 , 

0 . 0 , 1. 0 ) ); 
} 

_ gauges[ 0 ]->SetPrecision( 0 ) ; 

_ gauges[ 1 ] - >SetPreci sion ( 0 ) ; 

_ gauge s[ 2 ] ->SetPrecision ( 0 ) ; 

gauges[ 3 ] - >SetPrecision( 1 ) ; 

- gauges[ 4 ] - >SetPrecision( 1 ) ; 

_ gauges[ 5 ] - >SetPrecision( 2 ) ; 

_ gauges[ 6 ]->SetPrecision( 1 ) ; 

_ gauges[ 0 ] ->set Mat rix ( osg : :Ma trix:: t ranslate ( 2 . 5, 6 , 3 . 5 ) ; 

_ g a uges [ 1 ] - >setMa trix ( osg : :Matrix:: t r a nslate( 2 .5, 6 , 2 . 9 ) ; 

gauge s[ 2 ] ->s e tMa trix( osg ::Matrix :: translate( -2 . 5 , 6 , 4 . 7 ) ; 

gauges[ 3 ]->setMatrix( osg: :Matrix: : translate ( - 2 . 5, 6 , 4 . 1 ) ; 

gauges[ 4 ]->setMatrix( osg: :Matrix::translate( -2 . 5, 6 , 3.5 ) ; 

gauges[ 5 ] - >setMatrix ( osg : :Matrix::translate( - 2 . 5, 6 , 2 . 9 ) ; 

_ gauge s[ 6 ]->setMa trix( osg : : Mat r ix :: translate ( - 2 . 5 , 6 , 2 .3 ) ; 

voi d VEFe rme n torGraph icalPlugin : :ProcessOn Submit J ob (} 



mXmlModel->Getinput( "agitation" )->GetDataValuePair( "agitation" 
)->GetData( _agitation); 

mXmlModel->Getinput( "air_conc" )->GetDataValuePair( "air_conc" )
>GetData( air_conc ) ; 

mXmlModel->Getinput( "ini_ph" )->GetDataValuePair( "ini_ph" )
>GetData( _ini_ph ); 

mXmlModel - >Getinput( "nitrate cone" )->GetDataValuePair( 
"nitrate_conc" )->GetData( _nitrate cone); 

mXmlModel - >Getinput( "temperature" )->GetDataValuePair( 
" temperature " )->GetData( temperature); 

mXmlModel->Getinput ( "hours" ) - >GetDataValuePair ( "hours " ) -
>GetData( hours ) ; 

mXmlModel->Getinput( "cycle_ID" )->GetDataValuePair( "cycle_ID" )
>GetData( cycle_ID ); 

mXmlModel - >Getinput( "rotation_ID" )->GetDataValuePair( 
"rotation_ID" )->GetData( _rotation_ID ); 

mXmlModel->Getinput( "xray_ID" )->GetDataValuePair( "xray_ID" )
>GetData( _xray_ID ); 

mXmlModel - >Getinput( "loop_ID" )->GetDataValuePair( "loop_ID " )
>GetData( loop_ID ); 

mXmlModel->Getinput( "rot speed" )->GetDataValuePair( "rot_speed" 
) - >GetData( _rot_speed ); 

mXmlModel->Getinput( "sim_speed" )->GetDataValuePair( "sim_speed " 
) - >GetData( sim_speed ); 

rot_speed _rot_speed I 10.0£; 

sim_speed = 1.1 - ( sim speed I 10.0 ); 
std:: cout << "Sim speed will be " << sim_speed << std: :endl; 

std :: fstream results; 
results.open( "results.txt", std::ios::out ); 

double acidyield; 

double min 
double max 

1000000000; 
- 1000000000; 

time_steps.clear(); 
result_steps.clear(); 

if( rotation ID == 0 
{ 

fermentorGroup->setUpdateCallback( new 
osg: :AnimationPathCallback( 

osg :: Vec3( 0, 0, 0 ), osg: : Z_AXIS , O. Of) ); 

else if( rotation ID 1 
{ 

fermentorGroup - >setUpdateCallback( new 
osg: :AnimationPathCallback( 
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osg: :Vec3( 0, 0, 0 ), osg::Z_AXIS, rot_speed) ); 

if( cycle ID == 0 ) 
{ 

time steps.push_back( 0 ); 
result steps.push_back( 0 ); 

capsule_sequence->removeChildren( 0, static cast< int >( 
capsule_sequence- >getNumChildren() ) ) ; 

capsule sequence->setMode( osg::Sequence::STOP); 

else if( cycle_ID == 1 ) 
{ 

capsule sequence->removeChildren( 0 , static cast< int >( 
capsule sequence->getNumChi1dren() ) ); 

results << "Agitation(rpm) : \ t" << _agitation << " \ n" ; 
results << "Air Co nc(vvm) : \ t" << air cone << " \ n"; -
results << "Initial pH: \ t" << ini ph << 
results << "Nitrate(g/ L) : \ t" << nitrate 
results << "Temp(C) : \ t" << 

results << "t (hours) : \ t \ t "; 
results << "Acid Yie1d: \ n" ; 

-
_temperature 

for( int t = 0 ; t <=_hours ; ++t ) 
{ 

" \ n" ; 
cone << " \ n" ; -
<< " \ n \ n "; 

acidyield = constraint->calculateacidyield( t , 
_agitation, air cone, _ini_ph, nitrate cone, _temperature) ; 

results << t << " \ t \ t \ t"; 
results << acidyield << " \ n "; 
time_steps .push_back( t ) ; 
result_steps.push_back( acidyield ); 

if( max min 
{ 

min O. Of ; 
max 0.0000001 ; 

//Create a custom c o lor set 
std :: vector< osg : : Vec4 > cs; 
cs.push _back( osg: : Vec4 ( 0 . Of , O.Of, 1. Of, 
cs. push - back( osg:: Vec4 ( 0 . Of , 1.0f, 1 . Of , 
cs.push _back( o sg: :Vec4 ( O.Of, 1.0f, O. Of , 

0 . 4f ) ; 

0 . 4f ) ; 

0 .4f ) ; 

//Blue 
//Cy an 
//Green 
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cs . push back( osg : :Vec4 ( 1. Of I 1.0f, 0 . Of I 0 . 4f ) ; I /Yellow -
cs.push back( -

o sg: :Vec4 ( 1. Of, 0. Of I 0 . Of I 0.4f ) ; //Red 

osg: :ref_ptr< osgSim::ColorRange > cr = new osgSirn ::ColorRange( 
min, max, cs ) ; 

for( int t = 0; t <= hours; ++t 
{ 

//Create c o ncentrati o n color capsules 



osg: :ref_ptr< osg::Geode > geode_O =new osg : :Geode; 

osg : :ref_ptr< osg: :Capsule > capsule 
osg :: Vec3( 0. 0 , 0 .0, 1.95 ), 0 .75, 2 . 7 ); 

new osg::Capsule( 

osg: :ref_ptr< osg: :TessellationHints > hints = new 
osg: :TessellationHints(); 

osg: :ref_ptr< osg : : ShapeDrawable > sd =new 
osg : :ShapeDrawable( capsule.get(), hints.get() ); 

hints->setDetailRatio( 1.0f ) ; 

sd->setColor( cr->getCo1or( result steps . at( t) ) ); 

osg: :ref_ptr< osg : :StateSet > stateset 0 =new 
osg: :StateSet(); 

stateset_O->setMode( GL_BLEND, osg: : StateAttribute::ON ); 
stateset_O ->setRenderBinDetails( 8, std: : string( 

"DepthSortedBin " ) ) ; 
sd->setStateSet( stateset_O.get() ); 

geode 0->addDrawable( sd.get() ); 

capsule sequence->addChild( geode_O.get(), sim speed); 

double imp speed= O.Of; 
if( sim_speed > O. Of ) 
{ 

imp_ speed _agitation I 30 . 0£; 

transform imp->setUpdateCallback( new 
osg: :AnimationPathCallback( 

osg : : Vec3( 0, 0, 0 ), osg::Z_AXIS, imp_speed) ); 

mSimulat i onStart = true ; 

if ( sim speed == 0 ) 
{ 

capsule_sequence->s.etMode ( osg:: Sequence: : PAUSE ) ; 

r esults . close(); 

capsule_ sequence->setinterval ( osg::Sequence :: LOOP , 0 , -1 ); 

i f ( loop_ID == 0 ) 
{ 

capsule_ sequence- >setDuration( 1.0f, 1 ); 

if ( loop_ID 1 ) 
{ 
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capsule sequence->setDuration( 1.0f, -1 ); 

if( _xray_ID == 0 ) 
{ 

shader->Phong( _tankGeometry.get() ); 

else if( _xray_ID == 1 ) 
{ 

shader- >XRay( _tankGeometry.get() ); 

void VEFermentorGraphicalPlugin::PreFrameUpdate() 
{ 

if( time_steps.empty() I I result_steps.empty() 
{ 

return; 

if( mSimulationStart ) 
{ 

capsule_sequence- >setMode( osg::Sequence: :START); 
mSimulationStart = false; 

int seqVal capsule_sequence->getValue(); 
if( seqVal > -1 ) 
{ 

UpdateGauges( tirne_steps[ seqVal ], 
result_steps[ seqVal ], 
agitation, 

_air_conc, 
ini_ph, 

_nitrate_conc, 
_temperature); 

if( seqVal == hours && loop_ ID == 0 
{ 

transform imp- >setUpdateCallback( 
new osg: :AnimationPathCallback( osg: :Vec3( 0, 0, 0 ), 

osg :: Z_AXIS , O. Of) ); 

capsule sequence->setMode( osg::Sequence: :STOP); 

void VEFermentorGraphicalPlugin: : UpdateGauges( double time_ for_update, 
double 

result for_update, 
double agitation , 
double air_conc , 
double ini_ph, 
double nitrate_ conc , 
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double temperature ) 

_gauges[ 0 ]->UpdateText( time_for_update ) ; 
gauges[ 1 ]->UpdateText( result_for_update ) ; 

_gauges[ 2 ] - >UpdateText( agitation); 
_gauges[ 3 ]->UpdateText( air_conc); 
_gauges[ 4 ] - >UpdateText( ini_ph ); 
_gauges[ 5 ]->UpdateText( nitrate_conc); 

gauges[ 6 ]->UpdateText( temperature); 
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GUIDELINES 
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To help users in creating the virtual engineering interface in the MBSE tool, basic steps 

and cautions that are important in the model development are mentioned below. 

Basic steps for creating the user interface: 

• Stepl : Decide the type of analysis that you want to perform using information 
available in the system formal model. This is important because depending on the 
type of analysis it will be decided whether a CFD package will be required or a 
custom-made computational unit capable of running differential equations be 
enough. 

• Step2: Select the parameters that will be used in the analysis. These parameters 
will be the ones that will be used while running the experiment in the virtual 
environment; thus both the input and output parameters of the experiment will 
have to be determined. 

• Step 3: Create a simulation block to store these experimental parameters. 

• Step 4: Specify value types of all the parameters using UML datatypes library. 
This is important because VE-Suite is C++ based, thus SysML value types cannot 
be used directly in the IDE. 

• Step 5: Once the parameters are defined in the simulation block the next step is to 
link these parameters with value properties defined in subsystem blocks. This 
linkage can be created using a parametric diagram and by defining an equivalent 
constraint in it. This also helps to establish traceability between the simulation 
model and the system model. 

• Step 6: Define a new block in the MBSE tool to represent the user interface 
module (conductor) of the virtual engineering software. Establish parent-child 
relationship between simulation and VE-UI block using inheritance association. 
At this point, apply the C++ profile to the entire model. Information on inserting a 
profile can be found in the help section of the MBSE tool (Artisan Studio in this 
case). Development of the virtual engineering interface in the MBSE environment 
depends on the specification of information about the header files and operations 
that will be required to create the plugins. Operations will have to be specified 
using UML operations construct whereas header information is provided using 
C++ stereotype applied to the newly created VE-UI block. The developer has to 
specify the body of the operations. The type of header files required for the UI 
module can be found in the code provided in Appendix A. 
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Basic steps for creating the graphical interface: 

• Stepl : Creating a graphical interface in the MBSE tool requires a thorough 
definition of the structural components in the system model. Each component or 
subsystem to be represented in the graphical engine of the virtual engineering 
software requires a CAD file associated with it. Thus, the first step in developing 
the graphical interface is to have the CAD files in place for the entire system. 

• Step2: The way VE-Suite works with these files is by using · OSG libraries to 
create a tree structure composed of OSG nodes. Each node can be used to 
represent a structural component/subsystem of the SysML model. Thus for each 
subsystem block define a UML operation to read and store the CAD file in the 
form of an OSG node. An <OSGDB/Readfile> header file is required to perform 
this operation. 

• Step3: Once these individual CAD files are associated with the relevant structural 
elements of the system, the next step is to create the graphical interface block in 
the MBSE tool. This block will store operations and header information that is 
required to generate the VE-Suite graphical plugin. 

• Step 4: Connect each structural element of the system to this block using 
reference association construct. By doing this, the graphical interface block will 
have access to the CAD files stored as OSG nodes. The formation of the tree 
structure to bring these nodes together is done using an initialize operation. This 
operation will specify the root node and its association with the display coordinate 
system. 
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