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INTRODUCTION

The use of operational mathematics in the solution of engineering
problems has grown tremendously in the last two decades, particularly
during the last woer. This has come about becavse of the facility with
which problems which would be almost impossibly complicated or tedious
to solve by classical methods can be solved using operational calculus.

The operational calculus, particularly the Laplace transform meth-
od, has become especially useful in the field of servomechanisms and
controls. Here the constantly increasing complexity of systems used
has resulted in very high order differential equations. The fact that
the Leplace transform method makes it possible to inject the boundary
conditions into the initial equations is often a great advantagé in
their solution. In addition, the fact that much can often be learned
about the behavior of a system by a study of its operational equations,
without having to resort to an actual solution, makes this approach
even more valu2ble.

This paper proposes to develop the complete operational solution,
or transfer function, of a specific control system, namely, the modi-
fied Kramer system for speed control of induction motors. This trans-
fer function is derived as a basie for further study of the performance
of the system, or of its components.

First, a brief qualitative discussion of the original Kramer sys—
tem seems in order., This system has been in use for many years in steel
mill power apvplications. It has been applied chiefly in situations
where the amount of power wasted in the rotor circuit of an induction
motor by use of resistances to control speed became large enough that

it was economically feasible to recover this power and return it to the



line.

Figure 1 shows & block diagram of'the Kramer system. In operation
the power developed in the rotor of the main machine, A, is converted
to DC by the synchronous converter, B, and fed into the DC motor, C
which in turn drives machine D as an induction generator; returning to
the system the otherwise wested rotor power. This is of course minus
the losses of machines B, C, and D.

Speed variation is accomplished in the following manner. It is
well known from induction motor theory that the speed is a function of
the resistance of the rotor circuit. This rotor resistance of course
represents a voltage drop. Whether this drop is caused by a passive im—
pedance, or by 2n active element in opposition to the induced rotor
voltage makes no difference as far as the induction machine is concerned.
In the Kramer system a synchronous converter is inserted in the rotor
circuit of the induction machine, The voltage developed by the converter
affects the main machine's speed just as would a rotor resistance. The
DC machine represents a load supplied by the DC side of the converter,
By varying the excitation of the DC machine, therefore, the voltage of
the DC side of the converter can be caused to vary. The voltage of the
AC side of the converter is in fixed ratio to that of the DC side. Thus
a variable voltage is inserted in the rotor circuit of the induction ma-
chine by varying the excitation of the DC machine, thereby causing var-
iation in the induction motor's speed. Since the frequency of the con-
verter must always equal the slip frequency of the induction motor, i.e.,
the frequency of the supvly for the converter stator, it is apparent
that the speed variation of B will be equal and opposite to that of ma~-
chine A, Automatic speed control can be accomplished by providing the

prover feedback link from the speed of machine A to the field of machine
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A block diagram of the modified Kramer system is shown in Figure
2. In operation it is very similar to the Kramer system. The modified
system, however, utilizes & synchronous motor-generator set instead of
the synchronous converter; and a second synchronous motor—generator
set instead of the induction generator-DC motor set of the original
Kramer system. The chief advantage of the modified system is that in
general synchronous motor—generator sets are more readily available,
cheaper, ond require less auxiliary equipment than, for example, & con-
verter. Also, the DC side of the MG set S;~DC; is no longer rigidly
tied, voltage-wise, to the AC side, 2s in the converter; and set SZ-DGZ
is of necessity a constant speed set.

Due to saturation, hysteresis, and non-uniform air gaps, electrical
machinery is inherently non-linear in behavior. Therefore in order to
obtain a mathematical analysis of its performance, it is conventional to
make certain simplifying assumptions. These will be made in the devel-
opment which follows, and will be tabulated at the very beginning of the
discussion.

The development will be carried forward in three main sections, the
last two of which will be further subdivided. In the first section the
general assumptions will be discuesed. In the second, relations for
each of the individual machine groups will be developed. In the third,
these relations will be matched at their boundaries to obtain the final

solution.



REVIEW OF LITERATURE

There is very little in the literature concerning the specific
subject of this peper. Very brief cualitative mention of the Kramer
systefn is made in most of the standard college texts on electrical
machinery. The modified Kramer system made its first appearance about

1941, in 2 Wright Air Force Base wind tunnel application. (1).(2) The

(1) Dickey, A. D., Laffon, C. M., and Kilgore, L. A., Variable Speed
Drive For USAAC Wind Tunnel, Wright Field, Dayton, Ohio, AIEE
Trensactions, Vol. 61, 1942, pp. 126-130.

(2) Clymer, C. C., Large Adjustable—-Speed Wind Tunnel Drive, AIEE
Transactions, Vol. 61, 1942, pp. 156-158.

only publication dealing directly with the problem in this paper is an

article by M. M. Liwschitz and L. A. Kilgore. (3) That article deals

(3) Liwschitz, M. M., and Kilgore, L. A., A Study of the Modified
Kramer or Asynchronous-Synchronous Cascade Variable—-Speed Drive,
AIEE Transactions, Vol. 61, 1942, pp. 256~260.

primarily with the steady-state stability of the system, and develops
complete equations only for the double~fed machine. This paper approa~
ches the problem from & somewhat different angle, and extends the ana-
lysis to obtain a transfer function for the complete system. The
Liwschitz~Kilgore article works in the Heaviside calculus, whereas
this paper uses the Laplace transforms.

Although as stated the literature dealing specifically with the
subject of this paper is very limited in quantiiy, this review would
be 1ncomialete without mention of the classic article on the operational

analysis of electrical machinery, namely, the "Park article', (%) vip

(4) Park, R. H., Two-Reaction Theory of Synchronous Machines-General-
ized Method of Analysis-Part I, AIEE Transactions, Vol. 48, 1929,
Pp. 716~727.



tually all the works listed in the Bibliography of this paper in some
way stem from or are based upon the above paper by Park. Noteworthy

among these succeeding papers are: the Waring and Crary (5) article,

(5) Waring, M. L., and Crary, S. B., The Operational Impedances of a
Synchronous Machine, G. E. Review, Vol. 35, 1932, pp. 578-582.

which presents Park's work on the basis of reciprocal mutual reactances;

the Stanley article, (6) which solves the induction machine by a trans-

(6) Stanley, Ho C., An Analysis of the Induction Machine, AIEE Trans~
actions, Vol. 57, 1938, »p. 751-755.

formation to a set of stationary «—@ axes; and the papers by Rankin

(8
(7).(8) which further correlate the work of Park with Waring and Crary

(7) Renkin, A. W., The Equations of the Idealized Synchronous Machine,
G. E. Review, Vol. 47, June, 1944, pp. 31-36.

(8) Rankin, A. W., Per~Unit Impedances of Synchronous Machines, AIEE
Transactions, Vol. 64, 1945, part I, pp. 569-573.

and others. This paper draws on all the above listed publications,

particularly the Stenley article.



DISCUSSION

1. Discussion of Complete Schematic Diagram and Tabulation of General
Assumptions

Refer to Fige 3. The symbols used in the figure are defined there-
on. It should be noted that the masses and frictional effects of each
complete motor-generator set have been lumped together as J, B2, J3,
133, respectively. All shafts have been assumed to be rigld. This is
generally valid because of their relatively large diameters and short
lengths in most electrical machines.

For simplicity in writing the equations, and because it 1s very
probably so in an actual application, synchronous machine Sl and S, as
well a2s machines DCy and DCp, will be assumed to be identical .

Since it is desired to control the system by varying the excita~-
tion of one of the DC machines, three of the four excitation voltages
shown on -Fig. 3 can be taken as constants. Ep has arbitrarily been
chosen as the variable excitation. k Therefore, Ef1, Efp, and E, are
constants. Furthermore, since the gystem is tied to a very large source
of supply, the line voltage and frequency apolied to motor M and synch-
ronous machine Sp are constants.

Finally, the presence of the two extra short circuited windings in
the rotors of Sl and S, is an approximate attempt to account for the
effect of amortisseur windings. More will be said of this last sssump—-
tion later on.

The general assumptions discussed above are listed below:

1. Masses and frictions of mechanically coupled elements are lumped

2, All shafts are rigid.

3. Machines S; and Sz are identical, as are D0, and DC».



4. Egy, BEgz, and By are constant.

5. Line voltage and freguency to M and S, are comstant.

6. Amortisseur windings can be represented by two short = circuited ro-
tor windings.

2. Z2rensfer Xunctions of Individual Machine Grouns

Induction Machine, M
The development in this section follows that of Stamley (9) very

s

(9) Stanley, H. C., OPe cites DPPe 751=755.

ey

closgely in form and notation, and draws on an earlier paper by Levine (10)

(16) Levine, S. J., An Analysis of the Induction Motor, AIEE Transac-
tions, Vol. 54, 1935, ppe 526~529.

for the initial egquations. However, there is an important difference
from the Stanley solution. This is that a reference frame rotating at
synchronous speed has been used rather than Stanley's fixed frame. As
will be drought out later in the dewdopment, this change of reference
is the key to the Laglace transformable solution obtained.

In addition to those already mentioned, the following assumptions

will be made:

l. Hysteresis, saturation, and eddy currents will be neglecteds.
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2.

3.

&,

where

10

Rotor and stator windings are balanced.

Rotor is smooth, i.e., self inductances of all windings are
independent of rotor position.

Coefficient of mutual inductance between rotor and stator
windings is a cosine function of the angle between the axes
of the two windings.

can be stated as a generel relation for any electric circuit

Q

e = instantaneous applied voltage
i = instantaneous positive current

r = resistance

Y = total instantaneous flux linkages
with the circuit, including those
with coupled circuits, such link-
ages being positive when they pro-

duce positive drop in the circuit.

By the fundamental definition for induced voltages

where

dy _, di_ dip _ d¥self | d¥mut
d't "‘Ld_t + ZMn

dt dt dt

&
]

circuit self-inductance

My — mtual inductance with the nth circuit



n instantaneous current in the nth circuit

Then

(1) e_.u’-}-‘_ +ZM'| dln

and

tynzMn‘.-n

kVself =L

Under the assumptions made, the three-phase induction motor can be re-
presented by six circuits, each ha,ving self and matual inductances as
shown in Fig. 4, but with the rotor circuit free to rotate with refer—
ence to the stator. On the basis of assumptions (2) and (3) the self
inductances of each phase and the mutual inductances between phases on

the stator and rotor are egual, i.e.,

Ls4.=L.s b= Ls<:
Msabt = Msbe = Msac
=L =ch

Mmb Mrbe = =Mrac

The following is actually an explanation of assumptioﬁ (4)e The
Msph represents the maximum value of mutual inductance between one ro-
tor phase and one stator phase, i.e., that inductance which occurs when
the magnetic axes of the given phases are opposite each other. Referr—
- ing to phases a and 1, Fig. 5, it can be seen that the mutual coupl-
ing between any stator phase and a given rotor phase is a function of

the cosine of the angle between them. With this in mind, and referring

11
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to Fig. 4 again, it may be written that

Y.= L,ia +M, (ib+i¢)+f’13p;, ﬁ': cos O+, cos(0+1200+ 1, cos(e-lzo)]

P |

Yo =Lty +M, (Lt ic) +Mson i,cos(e-120)+i, cosO+izcos(o+ Izo)]

[, cos(e+120)+i, cos(e-iz0)+i; cose]

(z) Yo =L ic+M(lati)+Ms,4 L

. . . P, - .
Vo= L + My (L#i,)+Ms k| iq cos 0+0, cos(@-120) +ic cos(euzo)]

tyl = [_ai‘z +M2(i,+é3)+M3P,, Lo cos(0+i20)+ cos O +i cos(9-/20)]

Y, =La iy #M, Gyt G )4Ms (. cos(e-120)+i,C05(64/20) +i,cos 9]

But it 1s also true that

lati, +ic=0
(3)

L, i, +iy =0
from which, referring to equations (2) above

Yat ¥, +y¥.=0
(&)

Y+, t¥3=0
The above equations quickly become unwieldy because of the involved
trigonometric relations they contaia., Therefore two successive simp-
1lifying transformations will be made. First, replace the three phase
machine of Fig. 4 with its equivalent two phase machine., To make this
equivalence it is iooessar; only to adjust the inductance values so that
the same flux linkage relations are maintained. In the equivalent ma~

chine of Fig. 6, let the following curreat relations de assumed: (1)
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(11) Kimbark, E. W., Two Phase Coordinates of a Three-Phase Circuit,
AIEE ’!r&nl&ctions. Vol. 58’ 1939. Pe 89“0

(5) L,=la= Rie=lozle

. . by - Le
(&) iy =jim te
, 20,- (> -L
7 =i, = ——=—
L i.z"'i-!
(8) g =#4 Vs
Then

\ilx= Lsi'x+M(Ld Cose—i? sin &)
(9) |
"‘3. =L, Ly +M (LJ sin6+ Li cos 9)

wd =LR‘.'4+M("'X cos6+4 Ly sine)
(10)
Yy =Lgig+M @y sinoti, cos®)

From the symmetry of equations (3) and (4) it may also be stated, an-
alagous to equations (5) through (8) thas

(11) Yy =Yq
_ %
(12) Yy = =

(13) \PJ = w|



4

Bow, the values of Lg, LR, and M can be determined by substituting in
{11) and (13) from (2), (9), and (10:

Loiy +M[i.a cose—i.*sinej =L,i.+M, Ci,+ic)
(15)
+ M.ap/. E-, cos 3+i-2 cos(0+120) +izcos (e—/Zo)]
Leig+M[iycoso+iy sind] =1, i, +M,(i +is)
(16)
+M3Ph Ea cos 6+1, cos (e—/zo) +i. cos(e + lzo)]

Using equations (3) and certain trigonometric identities, the right

hand sides of (15) and (16) simplify, sc that
Lsix+ M[iycos@ -iysing] = (Li-M,) ia

+ 23" M3 [L,Cose*v_-‘;” (iz-(3) sinGJ
LRLJ‘FME—x c.ose+i...,sino_]= (Lz."Ml) i

3 . | . .
+TZ— M3Pls [L‘_C059+ V3 (LL—LC) Sin 9]
which by the definition of the two phase quantities becomes

Lsix+M[igcoso—igsina]= (L;M,) ix
..}.:‘:- MSPlI E‘d cose—i’ s/'ne]
L i, +M[ixcos 0+iysine]=(1,-M,)i,

+ 2 Maph [Lxcoso+iysine]
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Inspection of these last two equations shows that the equivalent two

phase inductances must be

Ls = L,'— M‘
17) Leg=L,-M,

3
M =7 Mk
A complete family of equations can now be written for the two phase

machine. These will include equations (9) and (10) and the following:

€4 =lgRprS¥e

A further simplifieation, consisting of a transformation to a set
of right angle axes, o¢ and & , rotating at synchronous speed, will
next be made. TFig. 7—a shows the actual two phase machine at a given
instant. In the steady state the flux, current, and voltage in each
phase of the stator pulsate at synchronous freqguency, and are in space
and time quadrature with the corresponding quantities in the other phase.
The quantities in phase x lead those in phase y. It can readily be
shown that the resultant of each pair of pulsating quantities, e.g.,
iy and 1y' referred to a fixed reference is a vector of constant mag-
nitude rotating clockwise at synchronous speed, </, « The rotor turns

clockwise at a speed «/; » so that the stator vectors sweep past it at
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Wy~ =Ws or slip speed. By the converse of the relation which pro-
duces the rotating stateor vectors, the rotating vectors set up slip fre-
guency pulsating fluxes, currents and voltages in the rotor phases.

These quantities in turn may be resolved into constant amplitude vectors,
rotating clockwise at slip speed with reference to the rotor, or at sy-
nchronous speed relative to a fixed reference frame. Thus it is seen
that both the stator and rotor quantities resolve into constant magni=
tude synchronously rotating vectors. Then if the system is viewed from
a reference frame which is alsc rotating clockwise at synchronous speed,
it reduces to a set of stationary constant magnitude vectors. If a get
of right angle coordinate axes, o« and & 4is set up on this synchron-
ously rotating reference frame, each vecter can be broken up into com=
ponents along these axes. There will then be in the o axis, for in-
stance, constant components of the stator vectors, T« s ‘Px » and Eo
respectively. A little consideration will show that three identical quan-
tities would be present in a hypothetical ceil oriented in the o« axis
with voltage E o applied, current I o flowing, and flux linkages ‘Fu
present due to T L 5 and to currents in any mmtually coupled coile.
Identical reasoning can be used for stator components in the » axis, T o »
Y« , and Es ; &nd for corresponding o and & axis rotor components,
locs¥x s @cr ondlig ,¥s ,2¢. Thus the actual two phase machine can
be rcplacoil. using the synchronously rotating o—.& axes, by four station-
ary coils as shown in Fig. 7=b. In the steady state these colls will
carry direct current and be linked by steady fluxes. The linkage rela-
tions are immediately very much simplified, in each case reducing to a
self and mutual direct current component. (See equations 21). As will
be seen when the specific transformation relations are introduced and the

solution carried out, all unwieldy trigonometric relations are ultimstely
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eliminated.

The preceding has been a more or less qusiitative discussion of
the o« - & axis transformation. It will now be necessary to develop
specific relations between the two phase quantities and the « - < ’ quan-
tities. These can be brought out by referring to Fig. 7=¢c, which is an
instantaneous picture of the stator and rotor current vectors in refer-
ence to the synchronously rotating « - 8 axes. BEach current vector is
actually aligned with the physical axis of the coil indicated by its
subscripte Thus vectors ( , and {y rotate counterclockwise at synchr-
onous speed w,. ; vectors Ly and {4 rotate counterclockwise at slip
speed W, o O, &and 6, are defined respectively as the instantan—-
eous angles between L, and the o axis and iy ond the oc axis. The
stator current I.c is then the projection of i, and i.y on the oc
axis; I ¢ 1s the projection of l'.x and I'.J on the & axis, so that

T = i’X cos O +i'] sin &y
(19-a)

Te =lx sin@;+iy cos 6,
Also, by exact analogy

Ex= e, cos O+ e, sine,

Es =—€,5in€stey cos &
(19-b)

P =Wy CosEc+ ¥y sin &

VY, =% sin 9f+‘f3 cos &
Similarly, the rotor current (_ 1s the projection of ly and L,, on
the o< axis and ('.‘ the projection of ‘:d and i.i on the <4 axis,
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Lu = i.d cos 9¢+L1, Sinée
(20-a)

and, as for the stator,

By = éd cos G5 +e% sin 6,

€g =—€_,Sin e,.-f-e?, Cos6y
(20-b)

lyu = qu cos 66+ q"% Sl.f'l 96‘

As was stated earlier, very simple flux linkage relations exist in
this reference system. Referring to Fig. 7=b, and remembering that there

can be no linkage between coils oriented 90° apart it can be written that

¥, =I.Ls+Mix

Ye=IsLs+Mig
(21)

Ag the first step in solving relations (19), (20) and (21), take

the time derivative of Ve :

d Y . d e d ¥,

S d d b Jd¢. .
a9t --—‘Pd $Ined.__£dt +-—._.dt cos 8q + ‘l’,_coséc e +§ﬁs,ne¢
o d6s ( @ n & d ¥ dW -

il Gk Sin ‘+%cose€)+ _-—1dt Cos 04 + -’-4—;# 5in6s
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But from equation (18)

JYy

e%— + RR L?
so that, since ¢ 5 =—Y, 5in6s + Yy cos o5
dés . . )
d6es e cos B+ 6s)

_____q/'e Tt +Ced c°596-+e%$ln ,-) R (Ld L?SI" '
—_ d 6, :
—q{g d'ﬁ¢+ - RRLK

or, solving for
dW¥ee dcsx,~

(22-8) E€x=

By an identical process, it can be shown that

dt
d da
(22-v) E, = :‘_%_ Vo yr —= 41 I
Jd¥e de
E,e— \Pat —= +r3 Iﬂ

To get equations (22) into terms of curremts and voltages only, substi-

tute equatiens (21) into them:

E (LRL«+MI¢) (LRL,8+M15) de"'+l? Lo

(23)



Euw=gr (LeTctMic)=(LsI+Mig) SF + I

d . .
E.a =’&?(L51,¢+ML,3) +(LSI°C+MLK)§%+’; 1:6

One more equation can be written relating to the performance of
the machine, namely, the electrical torgque equation. Maxwell's equa~
tion for mechanical ferce between electric circuits can be stated for

two circuits as

JLI 2 dL dMl
(2 T=zL 5 +7z IS +1, L, 50"

Since the circults are rigid, and since the rotor and stator have been

assumed to be smooth, the self inductances, Iy and Lp, are not functions
db, _ dia

of the angular position. Therefore = O and
de d8
dMia
(25) T=1I,1,—5

or, expressed in terms of the actual machine quantities

It has been shown (see Fig. 5) that M is a cosine function of © .

Therefore —di-g- is a sine function of © , or

) Ir

(27) T, = ZIR IsM (‘5"‘9><Is
Then from Fig. 6, and eguation (27)

—lyly sin® —lylg sin (8,+ 90°)

T=M

—Lyiy sin(e,—90°) — Lyi_,.sin 8,
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“Ux Ld sin (6;—66.) - ‘L)( L%C“(Sf - 6s)

I
<
M

+ LyLJ C°$(6f~a‘~)—'éy“.' Sln(ef—e‘)

M cos (ef-e,,-)[—— Lxl. +1 LJ]

+ M sin Cor-8s) E'ide—LJ iy

M(Cos Ox ~ Cos O +5in 8 5/n &) E‘LXL;';'Ly ‘:d]

u
St Ve

+M(s1‘n9fc°so‘_ Cos 6, s/h 85) ELX Ld-i_',i,%j
LX 5/'1 (‘:d COSGG-—‘-L*S/.’) 96‘)
-L»\ cos%(—- Ld 51"156.',' L;COSGC)

Ly Sin 8, ( i’d Sin 85 + Li Cos Q‘)
+M

n
=
AN

+LJ Cos O, (igq cose 4+ L%sin &s)

(i.d C°596 'I‘i.% Sin 66‘) (" '-.XS‘;‘I ef-'l‘ l:y Cos @‘)

~(~iy s+ ig cosq)(ixoos &+ iy singr)

and
(28) -r, =M CI,e i«*IK‘:A)
from equations (19-a) and (20-a). This relation could have been written
directly, using equation (27) and referring to Fig. 7-(b).

Inspection of equations (23) and (28) shows that each equation con-
tains terms involving the product of two time functions, i.e.,
'Lp ) 8 (t), Lo (t) ix(t) » etce In general it is not practical
to attempt to take the Laplace transform of such products. Unless both

time functions are kmown and their product is directly transformable,
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the transform of & product is a complex convelution integral. This is an
implicit transform, and the integration may be difficult or impossible

to carry out. However, the input and output disturbances encouhtored in
control systems, &as opposed to those in servomechanisms, are usually
small, Therefore it will be permissible to carry out the analysis on
the basis of incremental variations of currents, voltages, and speeds.
Then each of the variables in egquations (23) and (28) can be written as

a steady state plus an incremental term. Accordingly
Cuxot aeg=2 [Lg(inotaic)+M(Top +I.)]
~[La(iaotbis) + M(ZgotATe)] =% (050+A04)
+ Re(imo T2 L)

57 (Laloco + Mo ) = (Lg b+ MLao) S22 4 R oo |

+ ["—' (LRA Lx"l" MAIK)—' de‘o(LﬁA L‘ +MAI‘)" ‘(LR ‘”°+MI‘O)]
-+ RRALg

+[555* (Laoig+MAaLs)]

The steady state terms can be cancelled directly. Then, since in-
crements are very small changes, the products of increments become neg-
1igibly small, and may be dropped. The first term of the above equation
is the steady state portion, and the third is the product of two incre-

mental quantities. !horoforo

Aex= 3 (LRAL“+MAIK)— S

(29-a)

dA9¢-
(LR ’-,so‘I‘MI,eo)"f' RR Ale
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By the same process

Aeg= z‘-’t—(LRA+MAI,,) ' 3 ‘Let“

(Lraic+MATI)

+ dAes(LR L oo +MI°C6) + RR ALA

LBy = ‘c'ftl‘ (LsAIoc+MA‘:K)—%%?(LSAIJ+MAL€)
(29-b)

~ ZA% (1 ;T o0 +Mig,) +15 AT

dAef(L sLxo + M‘AO)'*' rsAlg

dt
But ‘:i"‘o—— Weo » and id‘%.ed‘ = A wWws o Farthermore, since the
line voltage and frequency are constant, = B °=a_)f. » and AFE,.=AEg
= dae. = e Also
dt

e = Glp —w,
(30)

Weo T AWg = Clp~ /)= AL
and

Aay=—Aw,
which is to say, the variation of slip speed is equal in magnitude and

opposite in sign to the variation of rotational speed. Also, from eque~

tion (21)



LR i-O(o"' MIa(o =‘Pp(°
(31)
LrigoTMIg, = Yo

Then equations (29) reduce to

Ay =L (LgAic+MAT<) ~ro(lg Aig +MALL)
tWooAw +Rg A ic
Aeg=(LrAig*MALL) +Weo (LaA i +MALL)
(32) ~ VYo AW, +RebDig
0 =3 (LsATo+ MAL) ~t (LsAL +MAL) +H AT

0=t (LsALs +MAL) + s (LsAT+MBig) +1 AL,

Inspection of equations (29) and (32) will now show that time fun-
ction products are no longer present, since as was shown in the discus-
sion of transformation to the -~ 8axis system, steady state currents,
voltages, and fluxes are constants in this systeme These equations may
now be Laplace transformed very simply. The notation (5) to indicate
that the variables are now functions of 5§ will be omitted for convenience

in writing. Then
(33) A ex=(Lgs5+Rg)Alx+MSATxc~lpo (Lgdiat MALDt Va0 5w,

(W) Aes=(Lgs+Rg)ALy+MsATg+ Wsy (LAl MAL o)+ Yo AW,
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(35) O=(Ls5+%) ATa +MSA i~ (LsATs+MAig)

(36) O=(Ls5+r) ALg+MsAig+tp(LsATa+MAi)
The torque equation (28) can be handled in the same manner. Thus

Ty0 +0T,= M[(T oo+ ALa)(imo+A in) ~(Twot+ AToc) (Lastin)]

+M(Tpolig~igoATu)+M(AL Al —ATuxDig)

from which

(37) AT, =MTg0DixtinoPis—Tuo g~ o ATu)

The transformed equation has the same form as (37), therefore i1t will
not be necessary to rewrite it.

Since the rotor of the induction machine feeds the stator of the
synchronous machine 83, the equations of the two machines must be match-
ed through the common parameters, ., €< s Loc s L<s e Therefore Al
and AL are of mo interest, and may be eliminated from equations (33)

through (37). Accordingly, regroup equations (35) and (36)

(35) (L55+rs) A-Iot-'ijSAI,e =&)fMAL/e-M5AL°(

(36) Ul ATot (Les+E)ATg=p MAinc~Msdig
Then, by determinants



M(WsDig—S58ix) —elg

MW ic+5AL) (Ls54r3)
CLSS"I"':) N
W e Ls (L.SS+’:S)

(38) A1 =

M(WrAlg—S5AL)(LsSH+0)- W LsM(W Al — SAL)
(LSS-I-l;)ﬁ-gfz_:'

(X e Z5=~Xs,MS) Al g — (X0 Xpy et MZ, 5) AL,

8,
where
A
Z, = Lystrs
A —
X er =W L= 60-cycle stator self reactance.
L o M_
X msr= @£ =60-cycle rotoer-stator mtual reactance.
A 2 2
Sl = ZS “'Xsf
Similarly
(9) AT, == (X X g +MZ,S) D io~ (XppZ ~Xer MS) Al

$,
The above values for AL, and AT _, may be substituted in equations
(33), (34) and (37), resulting in three equations involving rotor cur-
rents, voltages, speed, and electrical torque. After some regrouping,

those equations are given below.
X meo (X mpZs =X or M5)

"MscxstMf"l'MZsS) Al
8

Ae, =LK Z .+ <+
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+)(m¢-o (Xsf fo‘I‘Mzs 5)

$

I

~XreopAigty,,

Ms (mezs—xsfMS)

+ X X :
Aveg Meo ( Sf’(mf""Msz)_XR“ Alo
Sl
(#1) Xmoo (X mgZs — Xy M)
- Ms (X +MZ_S
+ {Z 4 s( Xnr TM2:5) L i et

where
X - é @ go LR =steady-state slip frequency rotor self reactance.

Xuso "é‘weo M =steady-state slip frequency rotor-stator matual

reactance.

‘.',60 (XstMf—l' Mzs S)

— o (XmgZs—Xsp MS) ,
(42) A‘r’ =M Id°+ p ( MFf =5 f A ly—
]




oo (Xsr Xy +MZ;8)

t lgo (X mpZ, — Ms
ML Toot ,e;( mrZs—Xsr MS) Al
|

In order to simplify subsequent manipulations, equations (40), (41),

and (42) are now rewritten as follows:
(43) Aex=9GC)ait9, G)Dig+ ¥g, A w,
(4) Aeg=—9,(Al+8, (5)Aig — Yxo Aw,

(#5) AT, = 9;(s)Atx~q,(s)Aig

30

where g, (8), g (8), ) (s), g, (8) are defined by the brackets in equ-

ations (40), (41), and (42).

By reference to Fig. 3, it is seen that Ty is the electrical torque

of machine M. However, since disturbances must originate at the load,

Ty, is the variable of chief interest. It can then be written that
_ a6, - da),
(46) T, =8,—/7 o ~}-.T———~*chtz +T,=8w +T, + T,

Again taking increments

#7) AT, =B Aw+T, 24 AT
Transformed, equation (47) becomes
AT, =B a0, +T saw,+a1.=(3,5+8) a0, + AT,
(48)
=Z AW, +OTL

where

= 4 J, 5+ B =mechanical impedance of machine M,

Substituting equation (45) into (48) and rearranging, there results
(49) ATL—"-' 33 (5)A l:x'j4 (5)Ai»ﬁ—Z'AG)'
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Bquations (43), (44), and (49) completely describe the performance of
the main machine, M, in terms of load torque and rotor quantities. These
equations are perfectly general for small variations of input and out-
put, and can be applied to an ordinary induction motor tied to a large
source simply by making A e, and A e < equal to zero in equations

(43) and (44). If the source cennot be comsidered infinite, AE. and
AE s cannot be considered equal to zero and slightly different equa~
tions will result.

5 ronou i

The assumptions made for the induction machine will again be made,
In addition, it will be assumed that all rotor circuits in addition to
the main field winding can be adequately represented by two short-circuit~
ed windings, one in the direct, or main-field axis, the other in the qua-
drature axis., The ordinary synchronous mechine may have, in addition to
the main field winding, &n amortisseur winding, a field collar, and cir-
cuits through the spider iron. In general, the amortisseur winding is
a contimous ladder-like circuit completely encircling the rotor. Each
bar forms a loop with every other bar, and all loops are mutually linked
with each other and with 21l other rotor and stator circuits. The result
is an extremely complex group of short circulited windings, each of which
under transient cenditions éontrilmten a decaying exponential term to
the disturbance effect. Exact analysis of such a circuit would dbe al-
most impossibly complicated. A notion of the complexity of the circuits

encountered can be gotten by reference to & paper by Linville (12). in

(12) Linville, T, M., Starting Performance of Salient-Pole Synchronous
Motors, AIEE Transactions, Vel. 49, 1930, pp. 531-547.




which some relatively exact rotor equivalent circuits are developed. Fig.
8 shows the decrement curve of a simple RL circuit superimposed on & ty-
pieal decrement curve of an actual machine. The two curves actually co-
incide at only three times, O, T, and oo , However, by proper selec-
tion of R and L the approximation can be made fair enough to meke the
mathematical simplification thus achieved more than worthwhile.

Making the assumption jJust discussed, the three-phase equivalent
circuit of the synchronous machine can be represented as in Fig., 9. Im-
pedances, currents, etc., used in writing the initial equations will bde
as indicated in the figure. Mgs) Mgg, and M, are the maximum values of
matual inductance between the stator and the main field, the short—cir-
cuited direct axis circuit, and the short-circuited quadrature axis cir-
cult, respectively. Rotation is clockwise and at a speed <&, which in
the steady state is equal to the &, , of induction machine M since the
synchronous machine is fed by the induction machine retor.

Then, in a menner exactly similar to that for the induction machine,

the following equations may be written:

\F&I = L,os i.,+ M4'3 (!’2-‘-"3) +I-F M.a.fs Cos 9,1

+Id M&JZ cos eZ_I?MA'ﬂ'3 sin 92’

Yoz =L s +Mys(i+i)+I M ars cos(ez - /20)

+I4Modscos (6,-120)—TgMagssm (6,-122)

(50) (PA 3:L4.3 { 3 +M4-3 (L"I‘Lz)"'I_F Mo-fg cos (62+ 12_0)

+ I, Mays cos (6,4120)— T g Maga Sin (+12)
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T.F';L.fr,c +Mfd1d+':l M,a-f_a Cos &,

' o ‘2_ MA»fs Cos (92—120)4- L‘3 Mo-fs Cos (924' IZO)

?J =LyTqy+Muls +i, Moy, cos62

+ iy Moy, Cos(8,—120)4i3 M 3 Cos(0,+/20)

iy Megs sy (ea+129)

where e, is the angle between phase a and the rotor direct axis. The
same two simplifying transformations will again be made. Accordingly
the stator is first replaced by its equivalent two phase stator, result=

ing in the circuit of Fig. 10, in which

2["—[2—[3

i‘d= 3 =‘.'l
(51)
R Y
Lg = 753 7
2YVa;— Vaz— Yas
‘.VA-J= 5 =(P4»l
(52) ;{1"2__(};"3

= "7" ‘kc—/




Actual curren$ decay

/‘"-“ Approximation by one circuit
I
ﬁx =S —————

Time

FIGURE 8 = Comparison of Transient Current Curve for One Rstor Circuit
wish the Curve of & Possible LcNAT Circuit.

lil | Ig I L

FIGURE 9 « Synchronous Machine Circuits.

FIGUEE 10 - Equivalent Two Phase Machine.
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Then the linkage equations become

\PA? =L4.i.?+I_F Mag sin ©2 +1g Mad s1h6; +I$MA_$COSGJ_
(53) \f{- = LgLe+Iyg Mgg +ig Mafcoso, + L%_M‘.f sin 6z

\f d = LJIJ"'I,L M.[J 'f'.LJMAJ cas 62+LZ,MA.J S;’H e&
Pq = Lol —lgMegsm @ +igMag <352

As was the case for the induction mechine, the values of the inductances
mst be altered in order to make the two phase machine exactly equivalent.
From equations (52), Lli d*= \ka;l e Therefore substituting the preper
values from equations (50) and (53) for “V,‘J and Yo, , there is, after
cancellations

Lty = Loyl +Maz(atis)
But from equations (51)

L, ={Jd
then

Lalyg= Lagly~ Maztd
and

(5“’) L_‘_-'—‘ L,oa3 == MA—B
Since the field circuits are unchanged, 1t follows that 1 , ¥, , ama

Y. % mst remain unchanged. Therfore again equating the appropriate
terms from equations (50) and (53), there results



Maf (i cose, *ig 5in 6z)

=M A.f:[l'..“‘ 82 +(; cos (8,~ |20) +i3 cos(el+120)‘7
3 . (ai )
=z Ma+f; [ll cos G+ -—"3#—9 S 32_]

-3 . p
=3 M4~F3 (LJ “"az"“g- Sin 6y )
from equations (51). Thus
(55) Maf =% Maops
and since the Y, equations are idemtical in form
(56) Mad = 7 Mads

In & similar manner

- ”M,o.;s E., s 6, + izsi»(ez_— 120)+L3 sin (Q-HZO)]

The right hand side of the above equation can be shown to De equal to

Mags {[i- G2 sme, - BF @u-ia)] one)
vhick, again from eguations (51) reduces so that

~Mag (Lg sin 63~ lg c0s6z)=—F Magy (i, Sin 6.~ LgCosey)

(57) M""i- = "23‘ MA;?
Bquations (54) through (57) completely prescribe the relations which must
hold between the three phase and the equivalent two phase machine,
Referring everything to 2 rotating referemce frame, this time rot~
ating clockwise at rotor speed <), o the synchronous machine reduces te
a static network in the same mammer as did the induction machine. This
network is shown in Fig., 11, 8Since in this case the rotor is turning at
reference frame speed, the direct and guadrature axes of the rotor may

be taken directly as references, and the rotor quantities remain unchanged,



The stetor of the originsl machine is rotating counterclockwise at a
speed (W in the new referemce system. Then the new stator equations are

lw=1Ly c"-"ez'l-i,&s:'n 8,
LF =-1y4 Sin 6, +L? Cos 6

€ = &4 Cos 62_+e3_ S/n 6
(58)
ep = —€y S/n 62 -f—ei_ Cos O

\PA;G =—Vaod Sin 61"'\}’47. 505%
The rotor relations are unchanged, but will be repeated here for easy

reference:
I.=I;
Egu= Ef
Y =Y,

Idu = IJ
(59)

\fdx = %
Ise = 1g
Yi,ﬁ =1y

I = Esp=Ysa=Tup=Euu=Eap=Tup=Ige=Epu=Eqp=Tou=O



By a procedure identical<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>