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INTRODUC TION

In the study of acoustics, the term ultrasonics is defined as those
wave motions that have frequencies greater than about 20, 000 cycles
per second. The characteristics of a sound wave at any point in a med-
ium can be regarded as completely defined when the amplitude, fre-
quency, and phase of its Fourier components are known, *

Sound measurements at their best are difficult. In the last few years
sensitive linear microphones and electronic amplifiers have become
available. Still, there are two difficulties of prime importance with
their use in a sound field. First, there is the pre.cise, absolute calibra-
tion of the equipment over a wide range of sound‘ frequencies and intensi-
ties. In addition, any detection device whose dimensions are compar-
able to the wave length of the sound introduces a disturbing effeclg upon
the field of sound itself. Also, there is always the possibility of reflected
sound being picked up by the detector. .

Intensity or pressure measurement of audible sound and ultrasonic
sound contains many experimental errors and great care is necessary
in order to secure an accu;rate determination.

All known measuring devices are limited in that their indic'ai:ions are
dependent on the dimensions relative to the wave length of the incident

sound. Any type of detector is dependent among other influences on

*Wood, A. B., A Textbook of Sound. London; G. Bell and Sons,
Ltd., p. 461.




* the following factors: (a) wave length of the incident sound, (b) the law
of pressure volume variation assumed in the neighborhood of the obstacle,
(c) the scattering and diffraction of sound energy from the obstacle. *
Most pressure or inténsity measuring devices such as radiometers
or Rayleigh discs, are inconvenient and laborious to use, Yet, in some
types of research work in physics, chemical engineering, and other phases
of the physical and biological sciences, it is desirable to measure ultra-
sonic pressure at various points in liquids. Relative intensity measure-
ments as well as absolute intensity measuremez;ts‘are needed.
It is the purpose of this investigation to design, construct, and cali-
brate an ultrasonic probe for measuring ultrasonic pressures. With
this probe, measurements of the sound pressures in the ultrasonic field

can be obtained and the ultrasonic field can be mapped.



REVIEW OF LITERATURE

The study of intensity of ultrasonic waves may be divided into
three main experimental methods; i.e., (a) mechanical methods,
(b) thermo-acoustic methods, and (c) electrical methods;

A method quite often used for experimental measure of ultrasonics
is shown in Figure 1. The apparatus is a radiometer which works on
the principle of a torsion balance. *

It is so arranged that the ultrasonic energy impinges on a mica disc.
The disc is balanced by a weight and the radiometer is rotated by thé
unidirectional pressure.

The pressure of the ultrasonic wave on its face depends on the amount
of reflection from the disc, and it is therefore important that the disc
reflect a large percentage of the total energy. Since the reﬂectiox‘l between
a solid and air is practiéally 100 per cent, most of the discs consist of
two thin sheets of mica with an air space imprisoned between them. The
pressure on this disc is then indicated by the amount of angular rotation
of the radiometer.

A simple method for determining relative intensity measurements of
ultrasonics was developed by Richards. ** In this experiment, a thick-walled
glass funnel with an approximate exponential opening is dipped in the liquid

in which the field of sound is to be investigated. To the funnel is joined a

*Carlin, Benson., Ultrasonics. First edition, New York; McGraw-
Hill Book Company, p. 29.

*¥Richards, W. T., An Intensity Gauge for Supersonic Radiation in
Liquids. Proc. Nat. Acad. Sci. Wash., pp. 15, 310 (1929).
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AN ULTRASONIC RADIOMETER



capillary of about 1 to 2 millimeters in diameter, When the funnel is
dipped in the liquid, the liquid rises in the capill#ry. If the sound‘ waves
meet the funnel opening at right angles, the radiation pressure causes
the surface of the liquid in the capillary tov rise. This rise is a measure
of the sound intensitf.

A method similar to the one above is that by Gruetzmacher.* A
diagram of this method is shown in Figure 2. A glass rod G dips ~at one
end into the ultrasonic field. In this instance, the' sound waves are travel-
ing in a vertical direction in a container fillefl with oil. There is a glass
bulh‘K at the other end of the glass rod. The interior of the bulb is in
connection with the manometer through a rubber tube S. The glass rod is
held by a rubber thread, The ultfasonics are lead to the bulb by the glass
rod even around the bend since its radius is large compared with.the wave
length. | This gives rise to an increase of temperature of the air in ;ixe
bulb which produces a change in the manometer reading and thus indicates
a measure of the sound intensity.

A small Rayleigh disc made out of mica or some other ex;tremely thin
material will respéﬁd to the f»article velocity when introduced into a sound
field from a suspension. An illustration of this e&ect is shown in Figure 3.

Here a plane lamina is introduced into a stream at an angle of 45° “
with respect to the stream. The points Q é,nd R where the hyperbo.lic' arcs
meet the lamina are points of maximum pressure. The fluid pressures on

the lamina act like a couple setting itv\perpendicuhr to the stream.

*CGreutzmacher, J., Piezoelektrischer Kristall mit Ultraschallkon-
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GRUETZMACHER APPARATUS FOR

MEASURING SOUND INTENSITY



Figure 3

STREAMLINES OF FLOW PAST A RAYLEIGH DISC



Therefore, the sound field exerts a torque which.wili cause the disc to
rotate about a diametrical axis. A small mirror can be attached to the
suspension or to the disc itself in order to measure the deflection. How-
even, the diameter of the disc must be small compared with the wave
length and this makes the disc impractical for most ultrasonic work,
Thermal receivers have been developed by a number of investigators
during .the past few years. These thermal receivers are sometimes called
thermo-microphones. These receivers depend upon the change in resist-
ance of thin wires, heated by a current, when thé receivers are placed in
an ultrasonic field, . According to Bergmann‘,’.* this phenomena has three
main effects. In a stationary sound wave the particles of the medium
are at rest at the nodes., Due to fhe adiabatic changes of pressure, the
particles are subject to changes of temperature and thus, a metal wire
placed in the node is cooled and heated relative to a fixed temperature and
this results in periodic changes in its electrical resistance. This is called
the '"node effect.' For the loops of a sound wave, the conditions are
different. In this case, the particles of the medium have the temperature
of their surroundings, but a directed velocity. Therefore, they exert a
cooling effect on a heated wire, causing periodic reductions in its resist-
ance of double the frequency of the sound., This is called the ''vibration
effect." In the third case, the alternating current of air is combined with
a unidirectional current which may be formed by a component of the con-
vection current formed by the heated wire and having the direction of the

sound vibrations. This case, where the cooling effect of the convection

*Bergmann, L. » Ultrasonics., New York; John Wiley and Sons, Inc.,
1938.




current is alternately increased and decreased by the vibration of the air,

is called the '"‘convection current effect.' In ultrasonic work the high fre~
quencies in general prevent the periodic temperature changes from being
directly observed because vof the thermal capacity of the wires. There-
fore, it is necessary to determine the steady difference between the mean
temperatures of the wire with and without sound. This is called the "'steady
‘cooling effect" and for this purpose, the wire forms one arm of a sensitive
Wheatstone bridge.

Piezoelectric crystals are the only electrical receivers suitable for
use in ultrasonics. Ordinary forms of microphones are too insensiti?e
for high ultrasonic frequencies because of their great mass.

Sacerdote* has constructed a very small condenser microphone which
has an aluminum diaphragm 0.8 centimeter in diameter and a few microns
thick. This microphone is sensitive up to frequencies of 90 kilocycleés,

The first to suggest the use of piezoelectric receivers was Langevin, ¥*
He proposed that the resulting alternating voltage put out by the receiver
should be amplified and detected by a beat method.

The first quantitative ultrasonic measurements with piezoelectric

crystals as receivers were done by Hehlgans, *** The quartz receivers

used by him were in the form of rods and Figure 4 shows the quartz receiver

and his arrangement for calibrating this quartz receiver. As shown in

this figure, a crystal detector D was put in parallel with a highly sensitive

*Sacerdote, G., Microfoni per ultrasoni. Acta Frequenza 2, p. 516 (1933).
**Langevin, M. P., Sondage par le son spec. Publ. Intern. Hydrogr.
Bureau Monaco No. 3, p. 34 (1924).
***Hehlgans, F. W,, Uber piezoquarzplatten als sender und empfanger

hochfrequenter akustischer schwingungen. Anal. Phys., Lpz. IV 86, p.
587 (1928).
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galvanometer G;. It was possible to calibrate this receiving circuit by
replacing the quartz Q by a resistance R by meané of a changeover switch

S. This resistance R is then traversed by an alternating current having

the natural frequency of the quartz. This éurrent is niea._sured by a thermo-
couple T and galvanometer G,. An oscillator in the coil L produced

this current. The deflection of the galvanometer G; is proportional to the
mean square of the current delivered by the quartz receiver. The mean
square of the current is proportional to the pressui'e amplitude of the

sound waves received. The deflection of the galvanometer G, is propor-
tional also to the mean square of the pressure amplitude, hence the intensity

of th_e wave received,
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THE PROBE

Several small polarized barium titanate elements were obtained from
Brush Electronics Company, Cleveland, Ohio. These elements are in
the shape of hollow cylinders 1/16 inch long by 1/16 inch wide with a
wall thickness of 1/100 inch. The cylinders were open at both ends and
were silver plated inside and out.

The problem essentially consisted of mounting this cylinder at the
end of the probe which is immersed in the oil media carrying the ultra-
sonic field. When the crystal element is operating successfully, the
ultrasonic wave strikes the crystal wall and the wa.il is set into vibration.
This mechanical vibration produces electrical ch;rges on the inside and
outside surface of the cylinder because of the piezoelectric properties
of the barium titanate crystal. When leads are attached to the inside and
outside walls of the cryétal and then connected to a vacuum tube voltmeter,
an alternating current voltage should be detected.

Several factors are of extreme importance in the design of a probe;
(a) the probe and the receiving crystal should be small, preferably several
times smaller than the wav;: length of the ultrasound so that the distortion
of the field is not too great; (b) it is necessary to take great care in screen=-
ing the receiving barium titanate crystal and its circuit connections from
the high frequency electromagnetic field of the quartz crystal transducer;
(c) the leads and probe itself must not be attached too tightly to the receiv-
ing crystal or else damping may occur and the crystal will not operate

properly.
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A probe was designed and built with the previously mentioned factors
in mind, A dia:gram of this probe is shown in Figure 5.

The main body of the probe was a hypodermic needle secured from a
veterinarian. Very fine '"litz'" wire extended down the center of the needle
and was scraped at the end and brushed out into the centér of the ceramic.
The '"litz'" wire was then pulled up slightly to provide tension. A brass
ferrule was fitted into the ends of the needle similar to an ""O" ring and the
crystal was pushed into the fitting with ordinary finger pressure. The steel
needle itself then served as the other lead away -from the crystal., A ruby
jewel was sealed into the end of the crystal t§ prevent oil from seeping up
and shorting out the ''litz'" wire. A small brass cylinder was placed around
the top of the needle for shielding purposes and a coaxial fitting was placed
at the top of the brass cylinder. A coaxial cable led from the coaxial
fitting to the vacuum tube voltmeter.

The probe, however, proved very unsatisfactory and would not work
piezoelectrically. An amplifier with a gain of approximately 160 was
connected into the circuit but failed to imprdve the response in any way,

It appeared that this probe was unsatisfactory due to the damping and poor
electrical contact.

The second probe is shown in Figure 6 and Figure 7. Here- the ceramic
is suspended completely below the needle. A thin stretched watch spfing
wire was extended down the center of the needle. The end of the wire was
bent and placed in the ceramic cylinder in the manner shown in Figure 6.

The wire was held in place by friction between the wall and wire.
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Two turns of thin copper wire were wrapped around the outside surface
of the ceramic cylinder. The copper wire was then soldered to the needle
itself. No solder was used on the ceramic cylinder as it would be ruined
by the heat.

The wire which extended down the center of the needle was soldered
to the inside of a coaxial fitting. The needle was connected to the coaxial
fitting by two copper. wires and from the coaxial fitting, a coaxial cable led

to the vacuum tube voltmeter, This probe worked in a satisfactory manner,
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OSCILLATOR AND RESONANT CIRCUIT

Ultrasonic energy for the crystal oscillations was suppiied to the
crystal transducer by a radio frequency generator manufactured by the
Ultrasonic Engineering Company of Maywood, .Illinoié. The circuit for
the oAscillator is shown in Figure 8.

This generator used two 304 TL vacuum tubes operated as a tickler
feed-back oscillator, The fundamental resonant frequency of the crystal
transducer controls the frequency. In this case, it is 490 kilocycles.

The radiation resistance of the crystal transducer is reflected into
the plate tank circuit of the oscillator by link coupling. This link coup-
ling then provides a mutual inductance between the oscillator plate tank
circuit and the resonant circuit associated with the crystal transducer.
The oscillator and the resonant circuit associated with the crystal are
connected by means of a coaxial cable. A diagram for the resonant
circuit is shown in Figure 9.

The tuned circuit as shown in Figure 9 associated with the crystal
transducer is tuned to parallel resonance by the shunt capacitance of the
shielded cable going to the crystal transducer and to the vari#ble capacitor
across it. In order to reduce the voltage drop across the tuning capacitor? :
and therefore, reduce the chance of arcing between the plates or to the
ground, a fixed capacitor was placed in series with fhe variable capacitor,

Although a high Q and therefore a' high L/C ratio is desirable in this
tuned circuit, it was considered that the convenience of the tuning capacitor

overshadowed the loss of Q caused by the extra capacitance,
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Resonance was determined in the following manner. The transducer
was placed in the oil in the tank and the radiometer was put in line with
the transducer. Resonance was determined by varying the tuning capacitor

until the maximum deflection of the radiometer was observed.
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THE CRYSTAL HOLDER AND TANK

The crystal holder used was that from Breazeale's work* which
was adapted from Carlin, ** |

The crystal holder shown in-Figﬁre 10 was designed to radiate the
ultrasonic beam in a horizontal direction. The back of the holder was
grounded and the front face was the high voltage side. The holder was
held together by braés bolts. - A small copper wire was attached to one
of the bolts so that if an arc occﬁrred between the parts of the holder, it
would occur between the copper wire and the ground side and reduce the
possibility of damaging the crystal. A plate of polystyr.ene was slipped
over the backing cylinder and rested on flanges on the backing cylinder.

The high voltage lead of the coaxial cable was soldered to the front
of the plate. The backing cylinder is hollow in order to increase the
intensity of radiation in the forward direction. The entire holder was
surrounded by a box which is described elsewhere in this paper.

The supporting rod of the crystal holder was mounted on a gear mech-
anism that gave the crystal holder movement with three degrees of free-
dom. This gear mechanism was mounted on two parallel rods which
made it possible to move the crystal holder from éne end of the tank to

the other by means of a long threaded brass rod with a handle on the end,

*Breazeale, Mack, The Velocity of Ultrasonics in Liquids. Thesis,
Missouri School of Mines, 1954, p. 24.

**Carlin, Benson, Ultrasonics. First edition. New York; McGraw=-
Hill Book Company, p. 105, 1949,
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The dimensions of the tank itself were approximately 16 inches long
by 6 inches wide and 9 inches deep. Masonite slabs covered with spun
glass were put on the bottom, and three sides of the tank to reduce

reflection to a minimum.
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THE RADIOMETER

A calibrating device was necessary to use with the probe. A
radiometer was designed and made, uéing ideas obtained from Vigour-
eux, *

‘When sound waves hit a plate, they are either wholly or partially
absorbed or reflected, and they exert a pressure on the plate.

If waves of meaﬁ energy density E are normally incident on a plate
which reflects a proportion y and absorbs a proportion B of the energy,
the pressure on the plate is equal to the difference between the energy
densities on the two sides; that is 2(y + B) E. Thus, if the plate is a per~
fect reflector, p vanishes and y is unity; hence the radiation’ pressure
P, equals 2E. For this reason, the radiometer discs used in the oil were
made of thin mica discs with a layer of air between, as almost perfect
reflection is obtained from liquids to air.

The two mica discs were att:;xched to a very light brass ring. The
counter-weight used was another mica disc of the same construction
and dimensions. The counter-weight was turned at a right angle with
respect to the radiometer disc so that the chanceé of the ultrasonic beam
impinging on the counter-weight was minimized. The radiometer is
illustrated in Figures 11 and 12.

As shown in Figure 11, the two radiometer discs are attached to a

*Vigoureux, P., Ultrasonics. New York; John Wiley and Sons,
Inc., 1951, pp. 73-74.
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Figure 12

THE RADIOMETER USED IN THE EXPERIMENT
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long plastic stem. The top of the stem is connected to a suspension

wire. Near the top of the stem a small mirror is attached. A curved
centimeter scale is placed 50 centimeters away from the tniil.'ror. A
telescope is then focused on the imagt‘erf the centimeter scale in the mirror.

When the ultrasonic wave impinges on the radior.ﬁeter disc, t'he' disc
will be pushed back, twisting the radiometer and its suspension wire,
The deflection of the centimeter scale as determined By the telescope is
proportional to the twist of the suspension wire.

A heavy steel disc was attached to the bottom of the radiometer.
This was necessary since the plastic rod and mica platep are so light
that they would be forced out of position by the buoyant force of the oil.
Also, the pressure of the ultrasonic wave was such that the radiometer
would be displaced from its neutral position and would be pushed up in an
arc similar to a ballistic pendulum.

The torsional constant of the suspension wire was determined by
rotating the radiometer and heavy steel disc as a torsional pendulum

and determining the period. Applying the torsional pendulum equation

: : 2
27 /1 : 4r 1
ve 2 anars A

where: 7" is the torsional constant in dyne - cm/radian.

for the period gives:

T is period in seconds.
I is moment of inertia in gm - cm?,

The moment of inertia of the systém was calculated, using the heavy

steel disc only, since it was approximately forty times the mass of the
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radiometer. The axis of rotation was normal to the disc through the

mrz

2

center. For this case I = 5
The radiometer gives an indication of the radiation pressure at a
point in the liquid, but Schaefer* esta_biished that the pressure on the
plate is equal to the mean energy density in front of it.
According to Vigoﬁreu:?,*intensity I is the energy crossing unit area
in unit time and is equal to Ec where E is the energy density and c is the
propagation velocity of the wave in the medium,

2
1 ;
E 1 — and t f r.m. s. , E = .
is equal to — and in terms of r.m. s. pressure —P;-

Where: pis the sound pressure. /o
/ois the density of the medium,
c is the propagation velocity.
Solving for sound pressure p from this equation gives: p2 =/0c2 E.
If the radiometer plate is a perfect reflector, the radiation pressure
(P,) = 2E, so E = _I_DZI_ . Substituting this value for E in the equation for

sound pressure gives:

p= ’p
2

This is the equation that was used for computing the sound pressure
when the radiation pressure, the density of the medium, and the propagation

velocity were known.

*Schaefer, C., Zur Theorie des Schallstrahlungsdruches.
Anal., Phys. Lpz. 35, p. 473, (1939).
*%Vigoureux, OE° Cit., p. 74.
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SCREENING

Since the output of the probe for the measurements taken was of the
order of 100 millivolts or less, screening the receiving barium titanate
and its circuit connections from the high frequency electromagnetic field
of the transducer and oscillator was very important.

The oscillator and the resonant circuit of the crystal transducer were
well shielded, sihce fhey were contained in metal cabinets.

The outlet from the resonanf circuit to the transducer was surrounded
by an aluminum plate..

The leads from the resonant circuit to the transducer were made into
a type of coaxial cable. The high voltage lead was placed in a short
piece of plastic water hose which was then enclosed in several layers of
aluminum foil.

The shielding of the holder of the transducer i8 extremely important
for this holder acts as an excellent antenna. The crystal holder was com-
pletely surrounded by a box made of Masonite. The outside surface of the |
Masonite was covered with aluminum foil.

A hole: was bored in one side of the box to allow passage of the ultra-
sonic wave, The hole was covered with a small piece of bronze window
screen. The screen served the purpose of shielding the high frequency
electromagnetic field, but permitted the passage of the ultrasonic wave
since the wire of the screen was small compared to the wave length of the
ultrasonics. The shielding arrangement used for the crystal holder is

illustrated in Figure 13.
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The probe had a coaxial fitting at its base and coaxial cable from
the fitting to the vacuum tube voltmeter. In addition, the oscillator,
the resonant circuit, the crystal holder, and the vacuum tube voltmeter

were all well grounded.
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EXPERIMENTAL PROCEDURE

To calibrate the probe, it was necessary to determine the probe
output voltage at a point in the oil and to measure the ultrasonic pressure
at the same point. ,

As a preliminary step, the probe was introduced at various points in
the tank in a direction perpendicular to the ultrasonic beam. It was dis-
covered that the vproi)e was extremely sensitive when brought close to the
transducer and a very slight movement laterally across the beam caused
a change of 20 to 30 millivolts in the probe output. However, when the
probe was removed farther away from the transducer to the far end of
the tank, a slight lateral movement caused very little change (about 5
millivolts) in the output voltage and for this reason, calibration readings
were taken as far away from the transducer as possible. The ultrasonic
beam spreads out as a cone from its source and, therefore, at the far end
of the tank a lateral movement of the probe causes less change of probe
voltage.

Readings were taken as follows: The radiometer was lowered into
one end of the tank in line with the transducer. The plate current of the
oscillator was set at 70 milliamperes and the maximum deflection of the
radiometer was read by means of the mirror, telescope, and scale. The
plate current was then turned up to 100, 120, and 150 milliamperes
respectively, and readings were taken in a similar way.

The radiometer was then kept in the same position, but the transducer

mechanism was moved back 0.5 centimeter and radiometer deflections
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were again taken for plate current settings of 70, 100, 120, and 150
milliamperes respectively,

In order to secure a calibration, it was then necessary to place the
probe in the same position as the radiometer. The horizontal distance
of the probe ahd radiometer with respect to the transducer is not criti~
cal since the o0il medium has a low absorption coefficient. It was import-
ant, however, that the probe be at the same position as the radiometer
with respect to its transverse and vertical positions in the tank.

A small spot of metal layout ink was painted on the center of the radio-
meter disc. A mirror with a long handle (somewhat similar to that used
by dentists) was lowered into the oil. The probe was then lowered into
the oil and the ceramic crystal was centered in front of the radiometer
spot by means of the mirror. The radiometer was then removed from
the tank, leaving the probe in the correct position as far as the transverse
and vertical position was concerned and within about 1 or 2 millimeters of
the horizontal position that the radiometer held witix respect to the transducer.

The plate current of the oscillator which controlled the intensity of
the ultrasonic wave was then turned to 70, ‘100, 120, and 150_ milliamperes
respectively and probe output voltages were read on the vacuum tube volt-
meter. Then the transducer was again moved back 0.5 centimeter and
readings were repeated in a similar fashion.

A second series of readings were taken in the following manner: The
radiometer was placed in the far end of the tank again, but this time it was

placed as far off center with respect to the ultrasonic beam as the width of
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the tank would permit, Its linear position with respect to the transducer
was approximately the same, but no attempt was made to make it exactly
so, as this was not desirable for good calibration, Readingbs for the radio-
meter and probe for this new setting §ve_re taken in exactly the same manner
as before, | |

Figure 14 shows the experimental equipment with the metal enclosed
resonant circuit, the vacuum tube voltmeter, the probe, and the tank
containing the oil. In spite of careful shielding, there was a éood chance
that the probe output voltage was not due entirely to the pitez.oelectric
action of the crystal. Always there is the possibility of thé presence of the
high frequency electromagnetic field.

To determine the amount of probe output that was due to the high
frequency electromagnetic field, the following was done. A Masonite plate
covered with a thick layer of rock wool was placed into the tank of oil
between the transducer and the radiometer. The power was turned up to
150 milliamperes of plate current on the oscillator' and no deflection was
observed due to the motion of the radiometer device. This indicated that
the rock wool plate was not permitting the vpassage of ultrasonic waves,'
which could bé detected by the radiometer.

The probe was then lowered behind the rock wool plate.and placed in
several different positions and the power was varied from 20 milliamperes
of plate current up to 150 milliamperes. The aver#ge probe output was
on the order of 4 millivolts,

In order to map the ultrasonic field with the probe, readings were
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Figure 1
THE EXPERIMENTAL EQUIPMENT FOR

MEASUREMENTS WITH THE PROBE
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taken in a plane perpendicular to the ultrasonic beam. The probe was
placed at the center of the beam and then was moved horizontally off to
one side and then the other at approximately 1/8 inch intervals. Readings
of probe output were taken at these intervals. The probe was also moved

up and down vertically in the same plane and readings taken,
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-DATA AND RESULTS

The data on the next two pages has the following meaning:

a.

g‘

i.

Je

The position of the transducer column indicates a reference
point on a scale which was glued to the top of the tank.
Readings were taken 0.5 centimeter apart for the various plate
currents of the oscillator,

Radiometel; deflection is converted into radians.

The radiation pressuré is the pressure on the radiometer disc.
Sound pressure is computed from the equation as developed in
the radiometer section.

The corrected probe reading is determined by subtfacting the
voltage that was due to the high frequency electromagnetic
field. This background voltage amounted to 4 millivolts,

With the radiometer and probe in the center of the t;lltrasonic
beam, the average calibration for the probe is 0,225 micro-
volts/ dyne/cmz.

With the radiometer and probe off toward the edge of the ultra-
sonic beam, the average calibration for the probe is 0,141
microvolts/dyne/c mz.

There is some ciifference between the two calibrations, The
probe and radiometer were moved by hand and not being able
to put them in the exact identical position causes error.

On Page 41 is a polar distribution pattern of sound intensity for

the ultrasonic field in the oil, The graph marked vertical is
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Radiation Sound
Position of Radiometer , Pressure Pressure Probe Calibration
Transducer Plate Current deflection 1] (dynes I dynes Millivolts Mic rovolts)
{cm) Milliamperes (cm) (radians) Py cm? ) P'cm ) |Observed Corrected dyne/cmz
7 black 70 2.2 0. 022 7.39 2.43 x 10° 66 6B 0.255
7.5 black 70 2.0 0. 020 6.71 2.32 x 105 55 51 0.219
7 black 100 3.9 0. 039 13.1 3.24 x 10° 76 72 0.222
7.5 black 100 3.8 0. 038 12.8 3.20 x 105 76 72 0. 225
7 black 120 5.4 0. 054 18.1 3.81 x 10° 88 84 0,221
7.5 black 120 5.4 0. 054 18,1 3.81 x 105 89 - 85 0.223
7 black 150 7.9 0.079 26,53 - 4,67 x 105 105 101 0.217
7. 5 black 150 8. 2 0. 082 27. 54 4.69x10° | 105 101 0.215

Radiometer and probe in center of the ultrasonic beam.

Approximate temperature

30° C..
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Radiometer and probe off toward the edge of the ultrasonic heam.

Approximate temperature = 30° .,

Radiation Sound

Position of Radiometer Pressure Pressure Probe Calibration
sl reiassell il g I - DI S O
7 black 70 1.3 0. 013 4,51 1.9x 10° 32 28 0.147
7.5 black 70 1,3 0.013 4,51 1.9 x 10° 31 27 0.142

7 black 100 2.3 0.023 7. 97 2.53x100 | 44 40 0.158
7.5 black 100 2.3 0. 023 7.97 2.53x10° | 40 36 0.142

7 black 120 3.3 0.033 11. 44 3,02x10° | 48 44 0.146
7.5 black 120 3.3 0.033 11, 44 3,02x10° | 45 41 0.132

7 black 150 5,0 0. 050 17, 33 3.72x10° | 54 50 0.134
7.5 black 150 5, 1 0, 051 17. 65 3,76 x 107 52 48 0,128
:
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based on measurements which were taken by moving the
probe up and down at points in a straight line in a plane and
securing probe output readings for these points, The graph
marked horizontal is basedén measurements in the same
plane, but taken at horizontal points in a straight line, .

The radius vector in the graphs represents probe output in
millivolts which is proportional to intensity.

The slit width from which the ultrasonic wave emerges is
approximately one inch and the wave length of thg tiltrasonic
wave is approximately 3 millimeters.

These curves compare favorably to the usual polar distribution
pattern for the case where the slit width is considerably

greater than the wave length,

42
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LIMITA TIONS

The probe was calibrated for only one frequency (490 K.C.) and at
room temperature.

The diameter of the probe needle used in this experiment was 3
millimeters. The diameter of the receiving crystal was approximately
1. 6 millimeters. The probe should be small compared to the wave
length of the ultrasoﬁic wave in order to insure minimum disturbance
of the field being measured. The wave length of the ultrasonic wave in
the oil at a frequency of 490 kilocycles was approximately 3 millimeters.

The diameter of the radiometer disc should be large compared with
the wave length. In this experiment, the diameter of the disc was approx-
imately eight times the wave length.

The calibrating readings were done at low intensities, i.e,, between
70 and 150 milliamperes of plate current. This was done to avoid
cavitation which occurs at high intensities since the bubbles that are
formed during cavitation may scatter and absorb some of the sound

energy and would make measurements difficult and inaccurate.
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RECOMMENDA TIONS

A much larger tank (at least twice the length and width of the present
tank) should be built. This will enable one to take data at more points in
the oil medium to give a better probAe calibration and a more definite
picture of the field. Also, the possibility of reflection from the tank walls
would be reduced.

A transducer of lower frequency should be used, A transmitter fre-
quency on the order of 100 kiloéycles would be quite suitable. This will
increase the wave length by a factor of about five and thus increase the
effectiveness of the present probe by making its dimensions small com-
pared with the wave length.

The probe and radiometer should be put on a driving mechanism so
that their position in the tank can be accurately determined to within 0.1
centimeter. This will increase the accuragy of the probe calibration and
also enable one to secure an accurate plot of the ultrasonic field.

For intensity measurements with a piezoelectric probe, it is absolutely
necessary that the high frequency electromagnetic field of the transmitter
and oscillator be screened. Accordingly, the back plate of the crystal
holder in the transmitting medium should be the high voltage side and the
front plate should be grounded. The crystal holder serves as one large
antenna. In so far as possible, the crystal holder should be made of

non-conducting material,
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CONCLUSIONS

It appears that the probe will serve as an excellent device for
relative intensity measurements since there is a linear relationship
between probe output and sound pressure.

The probe also is excellent for mapping of the ultrasonic fiel(i. When
the probe is put in the center of the ultrasonic beam and then moved
horizontally away from the center, there is a linear decrease in probe
output. Also, when the probe is moved up and down vertically across the
beam, there is a linear decrease in probe output as the distance from the
center of the beam increases,

For situations where approximate pressures or intensities are
desired, the probe will serve well. The average value for the calibrated
probe is 0.183 microvolts/dyne/cmz.

For measurements where ab‘solute determination of ultrasonic pres-

sure is desired, the probe would have to be recalibrated as stated in

the recommendations.
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APPENDIX A
MATERIALS

The insulating oil used in the tank was Westinghouse "Wemco C"
obtained from Westinghouse Electric ‘Supply Company in St. Louis,
Missouri,

Dupont "Duco'' cement was used to seal the mica to the radiometer
disc and also to seal the absorbing material to the Masonite boards,

Ordinary aluminum '"Reynolds Wrap'' was used as a material in the
coaxial cable.

The plates on which the absorbing material was placed were thin
slabs of Masonite, The Masonite should be o0il treated.

Glass wool was glued to the Masonite plates as an absorber. Rock
wool was used on one of the plates and seemed to be a better absorber
than the glass wool, and in addition, would not break loose and fall into
the oil,

The wire used for suspending the radiometer i‘n the oil was approx-
imately 0, 32 millimeter diameter Chromel-C as manufactured by the

Hoskins Manufacturing Company, Detroit, Michigan,
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