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ABSTRACT

The Point Collocation Non-Intrusive Polynomial Chaos (NIPC) method was

applied to a stochastic synthetic jet actuator problem to demonstrate the integration

of computationally efficient uncertainty quantification to the high-fidelity CFD mod-

eling of Synthetic Jet Actuators. The uncertainty quantification approach was first

implemented in two stochastic model problem cases for the prediction of peak exit

plane velocity using a Fluid Dynamic Based analytical model of the Synthetic Jet

Actuator, which is computationally less expensive than CFD simulations. The NIPC

results were compared with direct Monte Carlo sampling results. To demonstrate

the efficient uncertainty quantification in CFD modeling of synthetic jet actuators, a

test case, Case 1(synthetic jet issuing into quiescent air),was selected from the CFD-

Val2004 workshop. In the stochastic CFD problem, the NIPC method was used to

quantify the uncertainty in the long-time averaged u and v-velocities at several loca-

tions in the flow field, due to the uncertainty in the amplitude and frequency of the

oscillation of the piezo-electric membrane. Fifth order NIPC expansions were used to

obtain the uncertainty information which showed that the variation in the v-velocity

is high in the region directly above the jet slot and the variation in the u-velocity is

maximum in the region immediately adjacent to the slot. Even with a ten percent

variation in the amplitude and frequency, the long-time averaged u and v-velocity

profiles could not match the experimental measurements at y = 0.1mm above the

slot, indicating that the discrepancy may be due to other uncertainty sources in CFD

or measurement errors. A global sensitivity analysis using linear regression approach

indicated that the frequency had a stronger contribution to the overall uncertainty

in the long-time averaged flow field velocity for the range of input uncertainties con-

sidered in this study. Overall, the results obtained in this study showed the potential

of Non-Intrusive Polynomial Chaos as an effective uncertainty quantification method

for computationally expensive high-fidelity CFD simulations applied to the stochastic

modeling of synthetic jet flow fields.
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NOMENCLATURE

Symbol Description

v(t) applied voltage in (V )

F (t) driving force (N)

F amplitude of the driving force (N)

U(t) orifice flow velocity (m/s)

pi(t) cavity internal pressure (Pa)

A0 orifice area (m2)

Aw wall area (m2)

CI Inertia Coefficient

CLeff effective loss coefficient

cw diaphragm damping coefficient

ca added diaphragm damping co-efficient

cwt ca+cw

Da effective acoustic piezo-electric co-efficient

d0 orifice diameter (m)

dw diaphragm/wall diameter (m)

fh hemholtz frequency (Hz)

fw diaphragm/wall natural frequency (Hz)

kw diaphragm/wall stiffness (N/m)

le effective length of air slug (m)
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mw diaphragm/wall mass (kg)

ma added diaphragm/wall mass (kg)

mwt ma+mw

pi gauge internal pressure (Pa)

P0 ambient pressure (Pa)

∆V volume displaced by the diaphragm (m3)

xw wall displacement (m)

ω 2πf (rad/s)

ωw 2πfw (rad/s)

ωh 2πfh (rad/s)

US speed of sound (m/s)

ui velocity component where (i = 1, 2, 3)

ūi mean component of the velocity

u′i fluctuating component of the velocity

µt turbulent viscosity

k turbulence kinetic energy

ω specific dissipation rate

G̃k generation of turbulence kinetic energy

Gω generation of ω

Γk diffusivity of k

Γω diffusivity of ω

Yk dissipation of k



xii

Yω dissipation of ω

Dω cross-dissipation term

σk turbulent Prandtl number for k

σω turbulent Prandtl number for ω

S strain rate magnitude

D displacement of the membrane (m)

a0 amplitude of displacement (m)

f frequency of oscillation (Hz)

U velocity of the membrane (m/s)

A0 amplitude of membrane velocity (m/s)



1. INTRODUCTION

In this section a brief introduction is presented on the use of synthetic jet actu-

ator for flow control, their working principle and some previous studies that focused

on computational modeling of synthetic jet actuators. This is followed by a brief

discussion on the need for integrating uncertainty quantification, in particular, the

Non-Intrusive Polynomial Chaos approach, with high-fidelity CFD modeling of syn-

thetic jet actuators. Finally, the contributions of the current study and the general

outline of this manuscript are listed towards the end of this section.

1.1. SYNTHETIC JET ACTUATORS

Flow control involves active or passive devices that produce beneficial changes

in wall bounded or free shear flows. Effective flow control can be employed to either

delay or advance transition, suppress or improve turbulence or prevent or provoke flow

separation depending on the application and the associated flow field. The potential

benefits of realizing efficient flow control include drag reduction, lift enhancement,

better mixing and noise suppression to name a few[1].

Among the flow control devices, synthetic jet actuators are one of the most-

frequently studied configurations since they are highly promising in terms of realizing

actual flow control system on an aircraft. In a typical synthetic jet actuator configu-

ration, the jet is produced by a moving membrane that is built into the wall of the

cavity. This jet is ejected out through an orifice that can be directly mounted on the

control surface. The simplicity of the design obviates the need for complex ducting

and packaging and hence a more attractive solution.

Unique to synthetic jets, is also the fact that, they are formed by the working

fluid in the flow system in which they are employed. This results in addition of

momentum to the system without adding any mass, hence the name zero-net-mass-

flux jets. During the ejection half of the membrane motion, for a two-dimensional
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orifice, the flow separates at the sharp edges of the orifice and rolls into a pair of

counter rotating vortices. These vortical structures then move away from the orifice

under their own self induced velocity. In the presence of a cross-flow, these vortex pairs

convect downstream entraining fluid from the free stream, resulting in favorable local

displacement of the streamlines and pressure distribution changes at these regions.

In recent years there have been a number of experimental and numerical in-

vestigations of the pulsating synthetic jets. A good reference of these works can be

found in a review paper by Glezer and Amitay[2]. Among CFD studies involving

synthetic jets, Rizzetta et.al [3] have investigated numerically the flow characteristics

of a synthetic jet issuing into quiescent air. They noted that the internal geometry

of the actuator had a huge influence on the jet profiles at the exit. Mittal et al. [4]

modeled numerically an isolated synthetic jet with a flat plate boundary layer and de-

scried the dynamics of the synthetic jet in the presence of external cross-flow. They

also found that the synthetic jet was capable of altering the effective shape of the

body by forming a recirculation bubble. Cui et.al [5] performed 2-D simulations of

a synthetic jet in turbulent boundary layer. They used an unsteady RANS solver

with Spalart-Allmaras turbulent model and compared their results with experiments.

Although the results compared well qualitatively, there were significant quantitative

difference between the CFD and experimental results.

1.2. MOTIVATION FOR UNCERTAINTY QUANTIFICATION

The high-fidelity Computational Fluid Dynamics (CFD) simulations that can

accurately predict the synthetic jet behavior are important to understand the flow

physics and be able to design robust actuators that can work efficiently in various

operating conditions. In order to assess the state-of-the-art CFD modeling of these

actuators, a validation workshop for synthetic jets and turbulent separation control

(CFDVAL2004)[6] was held at NASA Langley Research Center in 2004. The workshop

focused on numerical formulation of a number of synthetic jet configurations, which

were selected as test cases for participants. Summary of the workshop results can be
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found in Rumsey et al [7]. One of the conclusions of the workshop was that, due to

the uncertainty involved in modeling the unsteady boundary conditions, CFD was

only able to qualitatively predict the flow physics but failed to consistently achieve

quantitative predictions [8]. Several parameters such as the amplitude and angular

frequency of oscillation of the diaphragm, the geometric dimensions such as width

and height of the cavity and the slot, characterize the time dependent diaphragm

deflection and the cavity flow. In real life applications, the performance of a synthetic

jet actuator will be affected by the uncertainties in these parameters as well as the

variation in the operating conditions such as the free stream velocity of the cross

flow. In addition, the uncertainties in the physical models (i.e., turbulence models),

boundary, and initial conditions used in CFD simulations will affect the accuracy of

the results, which emphasizes the need for uncertainty quantification in numerical

simulations.

1.3. OBJECTIVE OF THE CURRENT STUDY

The objective of the current study is the integration of uncertainty quantification

(UQ) to the CFD modeling of synthetic jet actuators. The uncertainty information

obtained for the selected output quantities of interest will be important for the as-

sessment of the accuracy of the results and can be used in the robust and reliability

based design of a synthetic jet actuator.

There have been several studies on the application of non-intrusive spectral tech-

niques to quantify the uncertainty in CFD simulations ranging from low-order models

to Large-Eddy Simulations (e.g., Lucor et. al. [9]). In a recent paper, Najm [10] gives

a comprehensive review on the theory and application of polynomial chaos techniques

for CFD simulations. A review on the application of non-intrusive polynomial chaos

methods to fluid dynamics problems is given by Hosder and Walters [11].

An important aspect of the current study is to demonstrate the application of

the Point-Collocation Non-Intrusive Polynomial Chaos (NIPC) Method to propagate

the input uncertainties in the computational modeling of synthetic jet actuators. In
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general the NIPC methods, which are based on spectral representation of the uncer-

tainty, are computationally more efficient than the traditional Monte Carlo methods

for stochastic fluid dynamic problems with moderate number of uncertain variables

as shown in studies by Hosder et. al. ([11] and [12]) and can give highly accurate esti-

mates of various uncertainty metrics. In addition, they treat the deterministic model

(e.g. the CFD code) as a black box and the uncertainty information in the output

is approximated with a polynomial expansion, which is constructed using a number

of deterministic solutions, each corresponding to a sample point in a random space.

Therefore, NIPC methods become a perfect candidate for the uncertainty quantifica-

tion in the high-fidelity modeling of synthetic jet actuators, since these simulations

require the numerical solution of viscous, turbulent, unsteady flow fields, which can

be computationally expensive and complex.

1.4. CONTRIBUTIONS OF THE CURRENT STUDY

One of the main contributions of this research project is that, this was the

first study to integrate uncertainty quantification to high-fidelity CFD modeling of

synthetic jet actuators. The uncertainty metrics so obtained can be used for ro-

bust and/or reliability based design of synthetic jet actuators in future studies. The

methodology used for uncertainty quantification in this work is highly efficient com-

pared to conventional Monte Carlo methods. Hence this study serves an example for

efficient uncertainty quantification using Non-Intrusive Polynomial Chaos approach

in computationally expensive high-fidelity flow simulations.

1.5. THESIS OUTLINE

In this study, the uncertainty quantification approach is applied to a fluid dy-

namics based analytical model and the CFD modeling of the synthetic jet actuator.

The test case (Case 1 used in the CFDVAL2004 workshop) was chosen for CFD

modeling since sufficient experimental and numerical results were available. The fol-

lowing section describes the categorization of the types of uncertainties and explains
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the Polynomial-Chaos method, in particular, the Non-Intrusive Polynomial-Chaos

approach.

The third section describes the analytical formulation used to represent the syn-

thetic jet actuator. The governing equations of this fluid-dynamics-based model is

outlined. This section also describes the implementation of the uncertainty quan-

tification approach. Since the analytical model is computationally inexpensive to

evaluate, the results from the NIPC approach are compared with that from Monte

Carlo simulation which serves as a validation for this approach.

The fourth section details the uncertainty quantification approach applied to

computational modeling of the synthetic jet actuator. All details of the computational

modeling as well as the stochastic CFD modeling is discussed in this section. The

results of the uncertainty quantification are presented towards end of this section.

Finally, Section five presents the relevant conclusions from the current study and the

intended future work.
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2. UNCERTAINTY QUANTIFICATION APPROACH

In this section, the methodology used to propagate and quantify the uncer-

tainties in in the current study is presented. In particular, the Point-Collocation

Non-Intrusive Polynomial Chaos method has been described in detail. Before dis-

cussing the NIPC method a brief introduction is presented on the categorization of

the types of uncertainties followed by some basic insights into the Polynomial Chaos

theory.

2.1. CHARACTERIZATION OF UNCERTAINTIES

Uncertainty based design methods require that the various uncertainties arising

in the computational modeling be characterized and managed and the analysis and

optimization methods incorporate these characterization. As discussed in Oberkampf

et.al [13], uncertainties in computational simulations can be categorized into three

main categories: (1) aleatory uncertainty, (2) epistemic uncertainty and (3) numerical

error. Aleatory or parametric uncertainty is defined as “inherent variation associated

with the physical system or the environment under consideration”. These uncer-

tainties can be attributed to the randomness associated with initial and boundary

conditions imposed on the model. Depending on the application, there are several

examples for aleatory uncertainties. In case of CFD modeling of synthetic jet actua-

tor, some of the possible aleatory uncertainties could be, variation in the amplitude

and frequency of the oscillating membrane, the free stream velocity of the cross-flow

or the geometric tolerances. Aleatory uncertainties are generally represented mathe-

matically as probability distributions if sufficient experimental data for estimating the

statistical distribution are available. The common types of statistical distributions

are uniform, normal(Gaussian), lognormal, etc. Since these uncertainties are always

present in the model owing to the stochastic nature of the input parameters, these

uncertainties are also called as irreducible uncertainties.
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Epistemic uncertainty is defined as “any lack of knowledge or information in

any phase or activity of the modeling process”. Their source lies in the fact that

there is incomplete information or incomplete knowledge available on some phase

or activity of the modeling process. Unlike aleatory uncertainties, the epistemic

uncertainties can reduce once enough knowledge or information becomes available.

Hence this type of uncertainty is also referred to as reducible uncertainty. Also,

another important distinction between epistemic and aleatory uncertainties is that

the epistemic uncertainty cannot be represented using a statistical distribution due to

lack of information or knowledge. Hence the common practice is to use intervals. An

upper and lower bound is assigned to the uncertain variable based on experimental

data or expert judgment. Since no statistical distribution can be assigned, all values

within this range are assumed to have equal probability of occurrence.

Numerical error is defined as “a recognizable deficiency in any phase or activity

of modeling and simulation that is not due to lack of knowledge.” In most engi-

neering scenarios mathematical models usually involve systems of non-linear partial

differential equations (PDEs). The solution of these PDEs are associated with spa-

tial and temporal discretization errors due to iterative convergence of approximation

algorithms. It is very important to minimize the numerical errors in computational

simulations since they can easily propagate through the simulation along with aleatory

and epistemic uncertainties. Consequently one cannot estimate the individual contri-

butions of the input uncertainties on the overall uncertainty of the output parameter

of interest. In the current study, we focus on modeling and propagating only aleatory

uncertainties.

2.2. BASICS OF POLYNOMIAL CHAOS

For the uncertainty quantification of synthetic jet actuator formulation, the

Point-Collocation Non-Intrusive Polynomial Chaos (NIPC) [14] method was used to

propagate the input uncertainty to the output quantities of interest. The Point Collo-

cation NIPC is derived from polynomial chaos theory, which is based on the spectral
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representation of the uncertainty. An important aspect of spectral representation of

uncertainty is that one may decompose a random function (or variable) into separa-

ble deterministic and stochastic components. For example, for any random variable

(i.e., α∗) such as velocity, density or pressure in a stochastic fluid dynamics problem,

we can write,

α∗(~x, t, ~ξ) ≈
P∑
j=0

αj(~x, t)Ψj(~ξ) (1)

where αj(~x, t) is the deterministic component and Ψj(~ξ) is the random basis function

corresponding to the jth mode. In the most general case, α∗ can be a function of

deterministic independent variable vector ~x, time t, and the n-dimensional standard

random variable vector ~ξ = (ξ1, ..., ξn). In theory, the polynomial chaos expansion

given by Equation 1, should include infinite number of terms, however in practice a

discrete sum is taken over a number of output modes (or total number of terms, Nt)

with

Nt = P + 1 =
(n+ p)!

n!p!
(2)

which is a function of the order of polynomial chaos (p) and the number of random

dimensions (n). The basis functions used in the stochastic expansion given in Equa-

tion 1 are polynomials that are orthogonal with respect to a weight function over the

support region of the input random variable vector. The basis function takes the form

of multi-dimensional Hermite Polynomial to span the n-dimensional random space

when the input uncertainty is Gaussian (normal), which was first used by Wiener[15]

in his original work of polynomial chaos. To extend the application of the polynomial

chaos theory to the propagation of continuous non-normal input uncertainty distribu-

tions, Xiu and Karniadakis[16] used a set of polynomials known as the Askey scheme

to obtain the “Wiener-Askey Generalized Polynomial Chaos”. The commonly used

Hermite, Legendre, and Laguerre polynomials and the associated probability density

functions (PDF) are listed in Table 2.1. The Legendre and Laguerre polynomials,

which are among the polynomials included in the Askey scheme are optimal basis

functions for bounded (uniform) and semi-bounded (exponential) input uncertainty
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distributions respectively in terms of the convergence of the statistics. The optimal

choice of the basis function is derived from the inner product weighting functions

of the PDFs of the continuous input uncertainty distributions represented in their

standard form. The constant multiplicative factor between the density function and

the weight function originates from the fact that the integral of the PDF over the

support range must be exactly one.

Table 2.1. Univariate Hermite, Legendre, and Laguerre polynomials and the associ-
ated continuous probability distributions.

Distribution Density Polynomial Weight Support
Function Function p(ξ) Range (R)

Normal 1√
2π
e

−ξ2
2 Hermite Hn(ξ) e

−ξ2
2 [−∞,∞]

Uniform 1
2

Legendre Len(ξ) 1 [−1, 1]
Exponential e−ξ Laguerre Lan(ξ) e−ξ [0,∞]

The multivariate basis functions can be obtained from the product of univariate

orthogonal polynomials (See Eldred et. al[17]). For example a multivariate Hermite

polynomial can be calculated by

Hn(ξi1 , ..., ξin) = Hn(~ξ) = e
1
2
~ξT ~ξ(−1)n

δn

δξi1 ...δξin
e−

1
2
~ξT ~ξ (3)

which can also be obtained by the product of one-dimensional Hermite Polynomials

(ψmji
(ξi)) with the use of a multi-index mj

i as shown by Eldred et. al [?]:

Hn(ξi1 , ..., ξin) = Ψj(~ξ) =
n∏
i=1

ψmji
(ξi) (4)

If the probability distribution of each random variable is different, then the op-

timal multivariate basis functions can be again obtained by the product of univariate

orthogonal polynomials employing the optimal univariate polynomial at each random

dimension. This approach requires that the input uncertainties are independent stan-

dard random variables, which also allows the calculation of the multivariate weight
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functions by the product of univariate weight functions associated with the probabil-

ity distribution at each random dimension. The detailed information on polynomial

chaos expansions can be found in Walters and Huyse[18], Najm[10], and Hosder and

Walters[12].

The objective of the stochastic methods based on polynomial chaos is to deter-

mine the coefficient of each term (αj(~x, t), (j = 0, 1, .., P )) in the Equation 1. Once

the coefficients are known the statistics of the stochastic output at a spatial location

and time can then be calculated using the coefficients of the basis functions. Hosder

et al. [11] have shown that the mean of the random solution is given by

ᾱ∗(~x, t) = EPC

[
α∗(~x, t, ~ξ)

]
=

∫
R

α∗(~x, t, ~ξ)p(~ξ)d~ξ = α0(~x, t) (5)

This means that the expected value(mean) of the output α∗(~x, t, ~ξ) corresponds to

the zeroth mode of the expansion. They also express the variance of the distribution

as:

V arPC

[
α∗(~x, t, ~ξ)

]
=

∫
R

(
α∗(~x, t, ~ξ)− ᾱ∗0(~x, t)

)2
p(~ξ)d~ξ =

P∑
j=1

[
α2
j (~x, t) < Ψ2

j >
]

(6)

Above two equations are based on the fact that 〈Ψj〉 = 0 for j > 0 and 〈ΨiΨj〉 =〈
Ψ2
j

〉
δij, where the inner product of Ψi(~ξ) and Ψj(~ξ) in the support region R is defined

as 〈
Ψi(~ξ)Ψj(~ξ)

〉
=

∫
R

Ψi(~ξ)Ψj(~ξ)p(~ξ)d~ξ (7)

with p(~ξ) being the weight function.

To model the uncertainty propagation in computational simulations via polyno-

mial chaos with an intrusive approach, all dependent variables and random parame-

ters in the governing equations are replaced with their polynomial chaos expansions.

Taking the inner product of the equations, (or projecting each equation onto jth ba-

sis) yield P + 1 times the number of deterministic equations which can be solved

by the same numerical methods applied to the original deterministic system. Al-
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though straightforward in theory, an intrusive formulation for complex problems can

be relatively difficult, expensive, and time consuming to implement. To overcome

such inconveniences associated with the intrusive approach, non-intrusive polynomial

chaos formulations have been considered for uncertainty propagation.

2.3. POINT-COLLOCATION NON-INTRUSIVE POLYNOMIAL
CHAOS

The Point-Collocation NIPC method starts with replacing the uncertain vari-

ables of interest with their polynomial expansions given by Equation 1. Then, P + 1

vectors (~ξi = {ξ1, ξ2, ..., ξn}i, i = 0, 1, 2, ..., P ) are chosen in random space for a given

PC expansion with P + 1 modes and the deterministic code is evaluated at these

points. With the left hand side of Equation (1) known from the solutions of deter-

ministic evaluations at the chosen random points, a linear system of equations can

be obtained:

Ψ0(~ξ0) Ψ1(~ξ0) · · · ΨP (~ξ0)

Ψ0(~ξ1) Ψ1(~ξ1) · · · ΨP (~ξ1)

...
...

. . .
...

Ψ0( ~ξP ) Ψ1( ~ξP ) · · · ΨP ( ~ξP )





α0(~x, t)

α1(~x, t)

...

αP (~x, t)


=



α∗(~x, t, ~ξ0)

α∗(~x, t, ~ξ1)

...

α∗(~x, t, ~ξP )


(8)

The spectral modes αj(~x, t) of the random variable, α∗(~x, t, ~ξ), are obtained by

solving the linear system of equations given above. The solution of linear problem

given by Equation 8 requires P + 1 deterministic function evaluations. If more than

P +1 samples are chosen, then the over-determined system of equations can be solved

using a Least Squares approach. Hosder et al.[19] investigated this option by increas-

ing the number of collocation points in a systematic way through the introduction of

a parameter nps defined as

nps =
number of samples

(P + 1)
(9)
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Their results on model stochastic problems showed that using a number of col-

location points that is twice more than the minimum number required (np=2) gives

a better approximation to the statistics at each polynomial degree. The Point-

Collocation NIPC has the advantage of flexibility on the selection of collocation

points in random space (i.e., random, Latin HyperCube, Hammersley, importance

sampling etc.) and possible re-use of collocation points for higher-order polynomial

construction (i.e., selection of collocation points with incremental Latin Hypercube

sampling). With the proper selection of collocation points, it has been shown that

Point-Collocation NIPC can produce highly accurate stochastic response surfaces with

computational efficiency in various stochastic fluid dynamics problems[12, 19].

2.4. IMPLEMENTATION OF POINT-COLLOCATION NIPC IN
THE CURRENT STUDY

The above described method has been applied for uncertainty quantification of

the output maximum velocity in the case of the model problem (i.e, Fluid Dynamics

Based (FDB) formulation of the synthetic jet actuator) and the long-time averaged

velocity components in case of the CFD formulation. Therefore, to construct the

polynomial chaos expansions via Point-Collocation NIPC, the FDB model as well

as the deterministic CFD code were evaluated with the input corresponding to the

collocation points sampled from the random space of input uncertain variable vector.

For example, to construct a 5th degree polynomial chaos expansion with two uncertain

input variables (Equation 2) with a oversampling ratio of 2 (Equation 9), a total

number of 42 collocation points were required. Hence the model and the deterministic

CFD code were evaluated at these 42 locations in the sample space. In case of the

CFD simulations, each time dependent CFD simulation was run until the periodicity

in the output quantity of interest was achieved. The long-time averaged or phase

averaged value of the output quantity was calculated from each CFD simulation. Then

using these values (the RHS vector in Equation 8), the coefficients of the polynomial

chaos expansion were obtained following the procedure described above. Since the

approach is non-intrusive, the deterministic solver can be treated as a black-box.
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Hence, the outputs from Fluent were exported as data files and the co-efficients of

the polynomial chaos expansion were evaluated externally using a MATLAB routine,

that we developed, without the need to integrate this routine with the CFD solver.

From the polynomial chaos expansions, various statistics such as the mean, standard

deviation, the cumulative density function (CDF), and 95% confidence interval for the

output quantity of interest which can be a point quantity (pressure, velocity, vorticity,

etc.) anywhere in the flow field or an integrated flow quantity (such as the lift and

drag coefficients) can be calculated (See Hosder at al.[11, 12] for details). It is also

important to note that for a moderate number of input uncertainties, non-intrusive

polynomial chaos methods are computationally more efficient than the traditional

sampling-based methods such as Monte Carlo for uncertainty propagation.

The Point Collocation NIPC method has been previously applied to various

stochastic fluid dynamics problems including low speed viscous flows, supersonic ex-

pansions, transonic 3-D wing flow fields and hypersonic re-entry vehicle configurations

for uncertainty quantification (See Hosder et al, [12],[20] and Bettis et.al [21] for de-

tails). The stochastic results of these studies have shown good agreement with Latin

Hypercube Monte-Carlo results of the same cases, which were obtained for the valida-

tion of the Point-Collocation NIPC method. The same procedure has been followed

in the current study to validate the NIPC method with direct Monte Carlo sampling

for the two model problem cases.
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3. UNCERTAINTY QUANTIFICATION APPLIED TO MODEL PROBLEM

Before applying the Point-Collocation NIPC approach to the high fidelity CFD

problem, the method was first applied to two model problem cases which included the

prediction of the orifice exit plane centerline velocity . The first case was application

of the Fluid-Dynamics-Based Model to compare its predictions with the results of

Case 1 from Gallas et.al [22]. Second case was the extension of the Fluid-Dynamics-

Based Model to predict the orifice exit plane centerline velocity for the experimental

setup used in Case 1 of CFDVal2004 workshop. It should be noted here that this same

case was used for stochastic CFD modeling which has be discussed in detail in chapter

four. Also, in all the above mentioned cases the synthetic jet issued into quiescent

air medium. Analytical models, unlike CFD simulations, are very economical to run

several thousand simulations. Hence, these cases were used to compare the results

from NIPC approach with that from Monte Carlo.

3.1. MODEL DESCRIPTION

The model by Sharma [23] is based on the laws of fluid dynamics,(unlike the

Lumped Element Model, which uses electrical circuit analogy) to represent the syn-

thetic jet flow and hence the name Fluid-Dynamics-Based Model (FDB). Along with

predicting the velocity on the orifice exit plane it also estimates the cavity internal

pressure and the phase relationship between the different variables [23]-[24]. The syn-

thetic jet is produced by a moving membrane that is built into the wall of a cavity

as shown in Figure 3.1. This membrane is a piezoelectric membrane. The motion of

the membrane can be controlled by the application of an input voltage.

The model develops a relation between the applied input voltage v(t), thus the

applied driving force F (t), to the orifice flow velocity U(t) and the cavity internal

pressure pi(t). For simplicity the motion of the membrane was assumed to be piston

type and was modeled as a mass-damper-stiffness system having a mass mw, damping
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co-efficient cw and a stiffness kw. An additional mass term ma is added for light weight

membranes. Also an aerodynamic-acoustic damping corresponding to caẋw is also

expected to act on the system. When actuated the guage pressure inside the cavity

fluctuates about a mean value. The membrane oscillates against this fluctuating

pressure under the influence of the applied driving force. The membrane dynamics

under these forces can be written as:

ẍw + 2ζwωwẋw + ω2
wxw =

F

mwt

− piAw
mwt

(10)

This wall oscillation causes the air inside the cavity to undergo alternative com-

pression and expansion causing an oscillatory flow through the orifice. The continuity

equation in that case can be written as:

V0(dpi/dt)/(γP0)− Awẋw = −A0U (11)

Applying the unsteady form of the Bernoulli’s equation between a point inside

the cavity and the vena-contracta leads to

pi = CLeff
1

2
ρa|U |U + ρale (dU/dt) (12)

 

 

 

 

 

 

 

 

 
Figure 3.1. Schematic of the Synthetic Jet Actuator used in FDB formulation [23]
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Eliminating the orifice flow velocity U first and then the internal pressure pi from

Equation 12 will result in two separate equations defining the dynamics of the internal

pressure and dynamics of the mean orifice flow velocity expressed as below

p̈i + V0K/ (2γA0P0le) |ṗi − (γAwP0/V0)ẋw|(ṗi − (γAwP0/V0)ẋi) + ω2
hpi

= (γAwP0/V0)ẍw + ω2
hpe (13)

Ü + (K/le)|U |U̇ + ω2
wpi = (Aw/A0)ω

2
hẋw (14)

A more detailed discussion on the derivation of these equations can be found in

references [23], [25] and [24]. The Equations (10), (13) and (14) represent a coupled

mechanical - Hemholtz resonator system with two degrees of freedom. These coupled

equations form the synthetic jet actuator model. A forth order Runge-Kutta scheme

was used to solve this system of non-linear ordinary differential equations. A built in

MATLAB function, ODE45, was used to implement this scheme. ODE45 is set up to

handle only first-order equations and so a method was needed to convert this second

order equation into first-order equations which are equivalent. The conversion was

accomplished through a technique called “reduction of order” as shown below:

ṗi = P (15)

U̇ = T (16)

Ṗ + V0K/ (2γA0P0le) |P − (γAwP0/V0)ẋw|(P − (γAwP0/V0)ẋi) + ω2
hpi

= (γAwP0/V0)ẍw + ω2
hpe (17)

Ṫ + (K/le)|U |T + ω2
wpi = (Aw/A0)ω

2
hẋw (18)

These four equations along with Equation 10, needs to be solved simultaneously

to obtain the flow field parameters (internal pressure, exit plane velocity and mem-

brane displacement). The input to the model is a sinusoidal force on the diaphragm.

From the available amplitude of the voltage and the acoustic piezoelectric co-efficient

Da of the diaphragm, the maximum driving force F available at the membrane needs



17

to be estimated. For this the magnitude of the volume displaced was obtained as

∆V = DaV . The volume displacement so obtained was equated to the equivalent

volume displacement i.e. ∆V = Awxw. Dividing both sides by the area of the mem-

brane gave the amplitude of the membrane displacement. The driving force was

then calculated by combining this displacement with the stiffness of the diaphragm

kw. The solution was advanced in time by initializing all variables to zero and by a

proper selection of the time step based on the frequency.

3.2. APPLICATION OF MODEL PROBLEM TO DETERMINISTIC
SYNTHETIC JET CASES

3.2.1. Case 1. Case 1 corresponds to the first case studied by Gallas et.al [22]

in their LEM model validation. Sharma has used this case to validate the fluid-

dynamics-based model in [23], [25] and [24]. The same case was used here to validate

the reproduction of the FBD model for this study. The Figures 3.2(a)and 3.2(b)

compare the LEM prediction and the experimental measurements of the orifice exit

plane velocity with the FDB model as a function of operating frequency. There is a

good agreement between the present model and the experiment, except in the mid

frequency range, where the model over predicts the maximum velocity. A similar

trend was found in Sharma [23].
 

 

 

 

 

 

(a) LEM and experimental results
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Figure 3.2. Comparison LEM and FDB prediction for Case 1 from Gallas et.al [22]
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Table 3.1 lists all the properties of the piezoelectric-driven synthetic jet actuator

setup of Case 1 from Gallas et.al [22] and [26].

Table 3.1. Properties of Piezoelectric-driven synthetic jet actuator from [22] and [26]

Case I

Brass Shim
Density (kg/m3) 8700
Thickness (mm) 0.2
Diameter (mm) 23.5

Piezoceramic
Density (kg/m3) 7700
Thickness (mm) 0.11
Diameter (mm) 20.5

Diaphragm

Compliance (s2.m4/kg) 6.53E-13
Acoustic Mass (kg/m4) 8.15E03
Acoustic piezoelectric coefficientDa (m3/V ) 5.53E-11
Mechanical damping ratio 0.03
Natural frequency Hz 2114

Cavity
Volume (m3) 2.50E-06
Equivalent cylindrical diameter (mm) 23.5
Equivalent cylindrical length (mm) 5.76

Orifice

Diameter (mm) 1.65
Length (mm) 1.65
Effective loss coefficient 0.78
Inertia coefficient 0.705
Helmholtz frequency (Hz) 977

Forcing
Voltage amplitude (V) 25
Force amplitude (N) 0.9925

3.2.2. Case 2. Case 2 corresponds to the first case studied at the CFDVal2004

workshop [7]. The FDB model was extended to predict the maximum output velocity

at the orifice exit plane of the synthetic jet actuator. Table 3.2 lists all the properties

of the piezoelectric-driven synthetic jet actuator setup of Case 1 from CFDVal2004

workshop [7]. Since the FDB model was not applied to this case before, the validity of

the model was established by comparing the predictions with that from LEM model.

The Figures 3.3(a)and 3.3(b) compare the LEM prediction of the orifice exit plane

velocity with the FDB model as a function of operating frequency. Note that the

output is normalized with the experimentally measured exit plane velocity.
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(a) LEM prediction
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Figure 3.3. Comparison LEM and FDB prediction for CFDVal2004 Workshop Case 1

Table 3.2. Properties of Piezoelectric-driven synthetic jet actuator used in CFD-
Val2004 Case 1 [6]

Brass Shim
Density (kg/m3) 8700
Thickness (mm) 0.15
Diameter (mm) 49

Piezoceramic
Density (kg/m3) 7700
Thickness (mm) 0.31
Diameter (mm) 24.4

Diaphragm

Compliance (s2.m4/kg) 5.80E-11
Acoustic Mass (kg/m4) 2.06E+03
Acoustic piezoelectric coefficient da (m3/V ) 1.28E-10
Natural frequency Hz 2114

Orifice
Diameter (mm) 1.27
Helmholtz frequency (Hz) 977

Forcing
Voltage amplitude (V ) 101.8
Force amplitude (N) 0.9925

It can be seen from these figures that there is a good agreement between the

present model and LEM.

3.3. STOCHASTIC PROBLEMS

3.3.1. Case 1. The stochastic model problem for Case 1 was formulated

by introducing uncertainties in the amplitude F and frequency f of the input force

F (t).The parameters F = F (ξ1) and f = f(ξ2) are modeled as uniform uncertain
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variables with a mean value of F = 0.574N and f = 2184Hz. The uncertainty range

chosen for force amplitude was [0.5453,0.6027] and that for frequency was [2074.8,

2293.2] corresponding to ±5% variation from the mean. Here ξ1 and ξ2 are standard

uniform random variables defined in the interval [-1, 1], which have a constant PDF of

0.5. Due to the uniform nature of the input uncertainties, the Legendre polynomials

were used as the basis functions in the polynomial chaos expansions. The convergence

of the NIPC expansion was studied up to fifth order expansion. With an oversampling

ratio of two and two input uncertain variables this required 42 evaluation in the sample

space. Figure 3.4 shows the Latin Hypercube sample points at which the model was

evaluated.
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Figure 3.4. Model Problem Case 1 sample points

Figure 3.5(a) and 3.5(b) shows the convergence of the Mean and Standard de-

viation with increasing order of the polynomial expansion and Figure 3.6 shows the

convergence of the CDFs. It is clear from these figures that the solution is converged

at 5th degree.

Table 3.3 compares the results from the NIPC method with direct Monte Carlo

sampling of the model problem. The Mean and Standard Deviations compare very

well between the two approaches.
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Figure 3.5. Convergence of Mean and STD with increasing polynomial order-Case1
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Figure 3.6. Convergence of CDF with increasing polynomial order Case 1

Note that 100,000 samples have been used in the Monte Carlo sampling. Hence it

can be seen that the NIPC method offers an efficient way of estimating the uncertainty

statistics requiring just 42 evaluations of the model. Figures 3.7(a)and 3.7(b) also

show the comparison of the maximum output velocity distribution from the two

models. As can be seen, the two distributions compare very well.
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Table 3.3. Comparison of NIPC with MC for Case 1

Mean %Difference STD %Difference

NIPC 23.83691
0.06022362

4.421428
0.32954742

MC 23.82257 4.436047

A Global sensitivity analysis was performed to measure the importance of in-

dividual uncertain random variables on the overall uncertainty in an output variable

of interest. A total of 100,000 samples were created using the 5th order stochastic

response. Figures 3.8(a) and 3.8(b) show the scatter plot of exit plane Umax with

respect to frequency and amplitude, respectively. Qualitatively, it can be seen from

Figures 3.8(a) and 3.8(b) that Umax is highly sensitive to the frequency and not

as much to the amplitude. The narrow band in 3.8(a) indicates that for a constant

frequency the variation in the output due to the variation in amplitude is relatively

less. On the other hand, the wide scatter in the Figure 3.8(b) indicates that for con-

stant amplitude, the variation in frequency causes a relatively higher variation in the

output.

3.3.2. Case 2. The stochastic problem in the CFDVal2004 test case was again

formulated by introducing uncertainties in the amplitude F and frequency f of the

input force F (t). The parameters F = F (ξ1) and f = f(ξ2) are modeled as uniform

uncertain random variables with a mean value of F = 0.9925N and f = 460.2Hz. The

uncertainty range chosen for the amplitude was [0.9428,1.0421] and that for frequency

was [437.19, 483.21] corresponding to ±5% variation from the mean. Here again ξ1

and ξ2 are standard uniform random variables defined in the interval [-1, 1], which

have a constant PDF of 0.5. Due to the uniform nature of the input uncertainties,

the Legendre polynomials were used as the basis functions in the polynomial chaos

expansions. The convergence of the NIPC expansion was studied up to fifth order

expansion. With an oversampling ratio of two and two input uncertain variables this

required 42 evaluation in the sample space. Figure 3.9 shows the sample points at

which the model was evaluated.
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Figure 3.7. Comparison of Umax distribution between NIPC and direct MC Case 1.

Figures 3.10(a) and 3.10(b) show the convergence of the Mean and Standard

deviation and Figure 3.11 shows the convergence of the CDFs with increasing order

of polynomial expansion. It is clear from these figures that the solution is converged

at 5th degree.

Table 3.4 compares the results from the NIPC method with direct Monte Carlo

sampling of the model problem. As in Case 1, 100,000 points in the sample space

were used to perform Monte Carlo.
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Figure 3.8. Sensitivity Analysis of Umax with respect to Frequency and Amplitude for
stochastic model problem-Case 1.

The results compare very well indicating that the 5th degree polynomial is suffi-

cient to generate the same quality statistics as Monte Carlo. Figures 3.12(a)and 3.12(b)

also show the comparison of the maximum output velocity distribution from the two

models. The two distributions again compare well.
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Figure 3.10. Convergence of Mean and STD with increasing polynomial order-Case 2

A similar Global Sensitivity Analysis as described for Case 1 was performed for

Case 2. Figures 3.13(a) and 3.13(b) show the scatter plot of exit plane Umax with

respect to frequency and amplitude, respectively, for Case 2. As in Case 1, it can be

seen from figure 3.13(a) and 3.13(b) that Umax is highly sensitive to the frequency

and not as much to the amplitude. The narrow band in 3.13(a) indicates that for

a constant frequency the variation in the output due to the variation in amplitude

is relatively less. On the other hand, the wide scatter in 3.13(b) indicates that for

constant amplitude, the variation in frequency causes a relatively higher variation in

the output.
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Figure 3.11. Convergence of CDF with increasing polynomial order Case 2

Table 3.4. Comparison of NIPC with MC for Case 2

Mean %Difference STD %Difference

NIPC 22.0297
0.0553

3.0458
0.2036

MC 22.0401 3.0395
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Figure 3.12. Comparison of Umax distribution between NIPC and direct MC Case 2
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4. UNCERTAINTY QUANTIFICATION IN CFD SIMULATIONS

This section introduces the basics of computational modeling and the govern-

ing equations used in formulating the synthetic jet actuator case. The k − ω model

used for solving the turbulent RANS equations is also briefly discussed. Section 4.2

explains the geometry of the actuator used in the CFDVal2004 workshop test case

followed by the description of the CFD case setup and the boundary conditions ap-

plied. The formulation of the stochastic CFD problem is described in Section 4.6

and the convergence study and results and discussion are presented in the subsequent

sections.

4.1. INTRODUCTION TO CFD

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid

flow, heat transfer and associated phenomena by means of computer-based simulation.

The physical aspects of any fluid flow are governed by the three fundamental principles

of conservation of mass,momentum and energy.These fundamental principles can be

expressed in terms of mathematical equations, which are usually partial differential

equations. In Anderson [27], computational fluid dynamics is defined as “the art of

replacing the integrals or the partial derivatives (as the case may be) in these equations

with discretized algebraic forms, which in turn are solved to obtain numbers for the

flow field values at discrete points in time and/or space.”

4.1.1. Governing Equations. Since the evolution of the vortical structures from

the Synthetic Jet Actuator is turbulent in nature, it becomes computationally very

expensive to directly solve the governing equations. In the current study Reynolds-

Averaged Navier-Stokes were solved to model the transport of the averaged flow

quantities. In this technique the instantaneous flow variables in the Navier-Stokes

equation is decomposed into mean and fluctuating components. For example the
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velocity in the flow field is decomposed as

ui = ūi + u′i (19)

where ūi and u′i are the mean and fluctuating velocity components (i = 1, 2, 3).

Similarly, for pressure and other scalar quantities:

φ = φ̄+ φ′ (20)

where φ denotes a scalar such as pressure, energy, or species concentration. Thus by

substituting instantaneous flow quantities with expressions of the form Equations 19

and 20 in the exact Navier-Stokes equation and taking a time average of it will result

in the Reynolds-Averaged Navier-Stokes equations which can be represented as below:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (21)

∂

∂t
(ρui) +

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xi

[
µ(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ul
∂xl

]
+

∂

∂xj
(−ρu′iu′j) (22)

Please note that the over-bar on the mean component has been dropped to keep the

equation simple. Also the energy equation was not solved hence it is not included

here. The Reynolds stresses, −ρu′iu′j, must be modeled in order to close these equa-

tions. A common method to estimate this quantity is by applying the Boussinesq

Hypothetis which relates the Reynolds stresses to the mean velocity gradients as fol-

lows:

−ρu′iu′j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
ρk + µt

∂uk
∂xk

)
δij (23)

4.1.2. k-ω Turbulence Model. The Boussinesq hypothesis is used in the Spalart-

Allmaras model, the k- ε models, and the k- ω models. The current study utilizes the

Menter Shear-Stress-Transport k- ω model [28] to solve the RANS equations. Along

with the RANS equations, the SST k- ω model solves the following two additional
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equations for k and ω so that µt can be computed as a function of k and ω [29]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k

∂xj

)
+ G̃k − Yk + Sk (24)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω +Dω + Sω (25)

where the effective diffusivity is given by

Γk = µ+
µt
σk

(26)

Γω = µ+
µt
σω

(27)

The turbulent viscosity is computed as follows:

µt =
ρk

ω

1

max
[

1
α∗ ,

SF2

a1ω

] (28)

σk =
1

F1/σk,1 + (1− F1)/σk,2
(29)

σω =
1

F1/σω,1 + (1− F1)/σω,2
(30)

The coefficient α∗ that damps the turbulent viscosity causing a low-Reynolds-

number correction is given by

α∗ = α∗∞

(
α∗0 + Ret/Rk

1 + Ret/Rk

)
(31)

The blending functions F1 and F2 are given by

F1 = tanh
(
Φ4

1

)
(32)

Φ1 = min

[
max

( √
k

0.09ωy
,
500µ

ρy2ω

)
,

4ρk

σω,2D+
ω y

2

]
(33)
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D+
ω = max

[
2ρ

1

σω,2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−10

]
(34)

F2 = tanh
(
Φ2

2

)
(35)

Φ2 = max

[
2

√
k

0.09ωy
,
500µ

ρy2ω

]
(36)

The term G̃k represents the production of turbulence kinetic energy, and

is defined as:

G̃k = min(Gk, 10ρβ∗kω) (37)

where the turbulent kinetic energy production term is given by

Gk = µtS
2 (38)

and S, the strain rate tensor is given by

S ≡
√

2SijSij (39)

The mean strain rate tensor is defined as

Sij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(40)

The term Gω represents the production of ω and is given by

Gω =
α

νt
Gk (41)

The term Yk representing the dissipation of the turbulent kinetic energy

is given by

Yk = ρβ∗kω (42)

The term Yω represents the dissipation of ω and is given by

Yω = ρβω2 (43)
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The SST model is based on both k − ω and k − ε models. Hence in order to blend

the two models a cross-diffusion modification term is defined that is given by

Dω = 2 (1− F1) ρσω,2
1

ω

∂k

∂xj

∂ω

∂xj
(44)

The remaining model constants are listed below

σk,1 = 1.176, σω,1 = 2.0, σk,2 = 1.0, σω,2 = 1.168

a1 = 0.31, βi,1 = 0.075 βi,2 = 0.0828

α∗∞ = 1, α∞ = 0.52, α0 = 1
9
, β∗∞ = 0.09, βi = 0.072, Rβ = 8

Rk = 6, Rω = 2.95, ζ∗ = 1.5, Mt0 = 0.25, σk = 2.0, σω = 2.0

4.2. GEOMETRY

This case uses the geometry used in Case1 of CFDVal2004 [30] and models a

synthetic jet issuing into quiescent air out of a rectangular slot 0.05” wide and 1.4”

long. The actuator is flush mounted on an aluminum plate, 0.25” thick, enclosed by

a 2’x2’x2’ glass enclosure. The enclosure helps to isolate the jet from the ambient air

and also contains the seeding particles for the flow measurement. The slot is located

at the center of the plate. Jet is produced by a circular piezo-electric diaphragm, 2” in

diameter mounted on one side of the cavity beneath the plate. An O-ring seal clamps

the diaphragm to the cavity, reducing the effective diameter available for oscillation,

to 1.85”. The diaphragm displacement is offset such that the displacement is less

inwards and more outwards.

4.3. COMPUTATIONAL MODELING

The commercial CFD software, Fluent 6.3 [29], was used for the simulations.

The unsteady Reynolds-Averaged Navier-Stokes (RANS) equations coupled with two-

equation eddy viscosity SST k-omega turbulence model [28] were solved to compute

the unsteady, turbulent, two dimensional flow both in the cavity and the main flow

domain of quiescent air. The CFD validation workshop results indicated that a
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two-dimensional flow assumption gave reasonable solutions in the near-field up to

a location of 8 mm measured from the slot exit. Therefore in this study we also

focused on the quantification of uncertainty in the near-field flow properties with a

two-dimensional approach. A pressure-based solver was used in the computations

with SIMPLE algorithm for velocity-pressure coupling. The inviscid fluxes were ap-

proximated with a second order upwind scheme in space and the viscous terms were

approximated with second-order central differencing. A secondorder accurate implicit

time-integration was used to advance the solution in time.

4.4. BOUNDARY CONDITIONS

Outflow boundary condition was imposed on the left, right and top boundaries

of the domain (Figure 4.1(a)). The aluminum plate and the wall of the cavity were

treated as non-slip wall boundaries. From the experiments, the diaphragm oscilla-

tion was available in terms of a time-dependent displacement profile measured at

the center of the diaphragm [30]. For computations, a cosine curve was fit to this

data and the velocity was obtained by taking a time derivative of the resulting dis-

placement profile.In Equation 45, D represents the displacement of the center of the

piezo-electric membrane, a0 represents the amplitude of displacement (0.2863 mm)

and C is a constant to account for the offset in the displacement (-0.125 mm). In

Equation 46, A0 is the amplitude and f is the frequency of the membrane velocity.

This unsteady velocity information was then used as a time-dependent inlet velocity

boundary condition in the CFD simulations. It should be noted that, the current

study modeled the membrane as a piston with a uniform velocity imposed on the

entire face given by Equation 46.

D = a0cos(2πft) + C (45)

U = A0sin(2πft) (46)
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4.5. GRID AND TEMPORAL RESOLUTION

In order to accurately reproduce the experimental and CFD results from the

workshop, this study used the grid made available on the CFDVAL2004 website [30].

The grid is made up of nine zones. Two levels of grid densities (coarse and fine)

were available from the workshop. The current study utilized the fine mesh with a

total number of 198,545 grid points (Figure 4.1(a)). As for the time step size, each

cycle of the membrane oscillation was divided into 1000 time steps with each time

step corresponding to 2.248710−6 seconds. To achieve convergence at every time step,

15 inner iterations were performed. Figure 4.2 shows the u-velocity contour plot at

90 deg phase angle with the baseline configuration which gives a snapshot of the

counter rotating vortex pairs, generated by the membrane oscillation, rising into the

quiescent air domain. The periodicity in the output quantities were achieved after

two complete cycles. The average was taken over the next cycle to obtain all the long-

time averaged quantities.The Baseline results and the results from the CFDVal2004

workshop have been included in APPENDIX B. The results agreed well with the

experimental measurements at most of the locations and the trends were similar to

the results submitted at the workshop. A step-by-step procedure of the CFD case

setup in FLUENT is explained in APPENDIX C.

4.6. DESCRIPTION OF THE STOCHASTIC PROBLEM

The stochastic problem was formulated by introducing uncertainties in the am-

plitude (A0) and frequency (f) of the unsteady velocity inlet boundary condition

used to model the oscillation of the piezo-electric membrane in the cavity (Equa-

tion 46). The parameters A0 = A0(ξ1) and f = f(ξ2) were modeled as uniform

uncertain variables with the mean values of 0.8 (m/s) for the amplitude and 444.7

Hz for the frequency. The uncertainty range was chosen to be [0.76, 0.84] (m/s) for

the amplitude and [422.465, 466.935] (Hz) for the frequency.
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(a) Full Domain (b) Descretized Cavity

Figure 4.1. Descretized Domain 

 

 

 

 

 

 

Figure 4.2. Instantaneous u-velocity contour plot above the slot exit at 90 deg phase
angle (baseline case) after the periodicity in u-velocity is achieved.

This corresponds to a ±5% change from the corresponding mean values to demon-

strate the application of the NIPC method for uncertainty quantification. The same

procedure can be followed when specific uncertainty information from experiments

becomes available. Here (ξ1) and (ξ2) are standard uniform random variables de-
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fined in the interval [-1, 1], which have a constant PDF of 0.5. Due to the uniform

nature of the input uncertainties, the Legendre polynomials were used as the basis

functions in the polynomial chaos expansions. For the construction of the stochastic

response surface with Point Collocation NIPC, 42 collocation points were selected in

random space by Latin HyperCube sampling (Figure 4.3), which corresponds to an

oversampling ratio of 2 for a 5th degree polynomial of two random variables.
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Figure 4.3. LHS Samples for 2 input variables CFD case

For uncertainty quantification, long-time averaged u and v velocity components

at three different stations were considered (y = 0.1mm, y = 1mm and y = 4mm above

the slot exit) . To obtain the statistics, polynomial chaos expansions at each point

were evaluated with 10,000 uniform random samples (ξ1, ξ2)i, i = 1, , 10000).Note that

there is no relation between the number of samples used to evaluate the statistics and

the deterministic CFD simulations, which were used to obtain the coefficients of the

polynomial chaos expansion given by Equation 1. Once the expansion is available

one can perform a separate, large number of sampling to calculate the uncertainty

statistics since evaluating the polynomial chaos expansion will be computationally

inexpensive.

4.7. CONVERGENCE STUDIES

Figure 4.4(a) through 4.4(d) shows the convergence of Mean and Standard devi-

ation at the location x = 0, y = 4mm for both long-time averaged u and v-velocities.
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Figure 4.4. Convergence of Mean and STD of u and v-velocity at (x = 0, y = 4mm)

It can be seen from these plots that the both the mean and standard deviation are

completely converged to the 5th degree polynomial. The percentage error in Mean

between the 4th and the 5th degree polynomial for v-velocity at this location was

found to be 0.01% and that for STD was found to be 3.42%. The percentage error

in Mean between the 4th and the 5th degree polynomial for u-velocity at the same

location was found to be 2.05% and that for STD was found to be 0.38%. Similar

trends can be seen at all the other locations.
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Figure 4.5(a) through 4.5(d) show the convergence of CDFs of the long-time

averaged v and u-velocities for different polynomial orders. It can be seen from these

figures that the CDFs for the forth and fifth order polynomials lie almost exactly

on top of each other. The convergence of the 95% confidence intervals for long-

time averaged v and u velocities at y = 0.1mm and y = 4mm lines are given in

Figure 4.6(a) through 4.7(a). Again the confidence interval bars overlap each other

as the polynomial order increases. Based on these convergence studies, fifth order

polynomial chaos expansion was used to generate all the uncertainty statistics.
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(b) CDF of u-velocity at (x = 0, y = 0.1mm)
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Figure 4.5. Comparison of CDFs for different polynomial orders at x = 0, y = 0.1mm
and at x = 0, y = 4mm
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(b) CI convergence of u-velocity

Figure 4.6. Comparison of CIs for different polynomial orders at x = 0, y = 0.1mm
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Figure 4.7. Comparison of CIs for different polynomial orders at x = 0, y = 4mm
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4.8. UNCERTAINTY QUANTIFICATION RESULTS AND
DISCUSSION

Figures 4.8(a) through 4.10(b) show the mean and 95% CIs for the long-time

averaged u and v velocities at three y stations (y = 0.1mm, y = 1.0mm, and y =

4.0mm) obtained with the 5th order polynomial chaos expansions at each point. It can

be seen from Figures 4.8(a), 4.9(a) and 4.10(a) that the uncertainty in the v velocity

profile is higher directly above the slot exit compared to the regions to the left and

right of the slot for all y stations studied. On the other hand, the uncertainty in the

u velocity (Figures 4.8(b), 4.9(b) and 4.10(b)) is minimum at the centerline (x=0.0

mm), which is consistent with the motion of the vortices above the slot. The u-velocity

profiles at these locations are least uncertain due to the fact that the vortex pairs are

symmetric about the center of the slot. The uncertainty in u-velocity is higher just

adjacent to the slot on either sides. It can be seen from Figure 4.10(b) that there

is a large variation induced in the region adjacent to the slot at y = 4mm, above

the slot exit, as a result of the uncertainty in the input amplitude and frequency.

The experimental results obtained from the PIV measurements are also included for

reference. For the v velocity distribution at y = 0.1mm, even with a relatively large

uncertainty introduced to the amplitude and the frequency of the membrane motion,

the discrepancy between experiment and the simulations above the slot exit cannot

be captured. The same observation can be made for the u velocity especially away

from the slot exit at y = 0.1mm location. Similar trends were seen in all the other

results from the CFDVal2004 workshop. This may indicate that the discrepancy at

this location may be due to the other uncertainty sources in CFD (e.g., turbulence

modeling or the boundary conditions) and/or the uncertainties in the measurements.
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(a) CI of v-velocity at 0.1mm
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(b) CI of u-velocity at 0.1mm

Figure 4.8. 95% Confidence Interval of u and v-velocity on y = 0.1mm line
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(a) CI of v-velocity at 1mm
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(b) CI of u-velocity at 1mm

Figure 4.9. 95% Confidence Interval of u and v-velocity on y = 1mm line

−3 −2 −1 0 1 2 3

x 10
−3

−4

−2

0

2

4

6

8

10

x (mm)

v−
ve

lo
ci

ty
 (

m
/s

)

 

 

PIV
CFD

(a) CI of v-velocity at 4mm
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(b) CI of u-velocity at 4mm

Figure 4.10. 95% Confidence Interval of u and v-velocity on y = 4mm line
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Figures 4.11(a) through 4.13(b) show the standard deviation distribution at

three different locations. As expected, the standard deviation is higher at the center

of the slot for the v-velocities indicating that the variation of the long time averaged

v-velocity profiles from the mean, in the region spanning the jet width, is much more

compared to the regions to the left and right of the slot. Notice that the two lesser

peaks on either sides of the slot width, in Figure 4.12(a), are at locations where

the length of the 95% CI bars momentarily increases and then gradually fades out

(Figure 4.9(a)). A similar trend can be seen in Figure 4.13(a). Also, it can be seen

from plots 4.11(b), 4.12(b) and 4.13(b) that the peaks of the standard deviation curves

for the u-velocity are on either sides of the slot width and the standard deviation is

minimum at the center of the slot. This is also an acceptable trend since we have

seen from the 95% CI plots (Figure 4.8(b), 4.9(b) and 4.10(b)) that the variation in

u-velocity is more on either sides of the slot width regions and is very less at the

center of the slot.

Figures 4.14 through 4.16 show the histograms for long-time averaged v-velocity

at three different heights directly above the slot exit. It can be seen that the depen-

dency of the v-velocity on the input stochastic variables (amplitude and the frequency

of the piezo-electric membrane) is highly non-linear since the shapes of the histograms

are quite different than a typical uniform distribution of both input variables.
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Figure 4.11. STD of u and v-velocity on y = 0.1mm line
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Figure 4.12. STD of u and v-velocity on y = 1mm line
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Figure 4.13. STD of u and v-velocity on y = 4mm line

The scatter plots of the various uncertain output parameters can be easily ob-

tained by evaluating the corresponding polynomial chaos expansions (P (~ξ)) with a

large sample of scaled input uncertain variables (~ξ). Figures 4.17 to 4.20 show the

scatter plot of longtime averaged v-velocity with respect to frequency and amplitude,

respectively, at (x = 0, y = 0.1mm).
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Figure 4.14. Histograms of long-time averaged v-velocity at (x=0,y=0.1mm)
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Figure 4.15. Histograms of long-time averaged v-velocity at (x=0,y=1mm)
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Figure 4.16. Histograms of long-time averaged v-velocity at (x=0,y=4mm)
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With the help of these plots a Global Sensitivity Analysis can be performed

using linear regression method to determine the sensitivity of the long-time averaged

v-velocity (output parameter) to the variation in the input. It can be seen from Fig-

ure 4.17 and 4.18, that the long-time averaged v-velocity at this location is highly

sensitive to frequency and not as much to the amplitude. The narrow band in Fig-

ure 4.17 indicates that for a constant frequency the variation in the output due to

the variation in amplitude is relatively less. On the other hand, the wide scatter in

Figure 4.18 indicates that for constant amplitude, the variation in frequency causes a

relatively higher variation in the output. This fact is reinforced by comparing the cor-

relation coefficients between the output and the two input parameters. In Figure 4.17

the correlation coefficient between v-velocity and frequency was found to be -0.7856

where as in Figure 4.18 the correlation coefficient between v-velocity and amplitude

was found to be 0.1319. Correlation coefficient between long-time averaged v-velocity

and frequency is higher in magnitude compared to that of amplitude indicating a

higher sensitivity of the output to frequency at this location.

Figures 4.19 and 4.20 show the scatter plots of the long-time averaged v-velocity

with frequency and amplitude respectively, at x = 0, y = 4mm location. Here, it

can be seen that both distributions are comparable. The correlation coefficient in

figure 4.19 was found to be -0.7053 and that in figure 4.20 was found to be 0.7167.

Hence it can be concluded that at this location both the input parameters have almost

equal influence on the output.
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Figure 4.17. Sensitivity of long-time averaged v-velocity to frequency at
(x=0,y=0.1mm)

Figure 4.18. Sensitivity of long-time averaged v-velocity to Amplitude at
(x=0,y=0.1mm)



48

Figure 4.19. Sensitivity of long-time averaged v-velocity to frequency at
(x=0,y=4mm)

Figure 4.20. Sensitivity of long-time averaged v-velocity to Amplitude at
(x=0,y=4mm)
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5. CONCLUSIONS AND FUTURE WORK

5.1. CONCLUSIONS

The Point Collocation Non-Intrusive Polynomial Chaos method has been ap-

plied to two stochastic model problems and the CFD analysis of a synthetic jet prob-

lem that was used as a test case in the CFDVAL2004 workshop. The model problems

were used to validate the Point-Collocation NIPC method with direct Monte Carlo

sampling method. In both the model problem cases the NIPC results matched very

well with that from Monte Carlo indicating the efficiency of the NIPC method in

predicting the uncertainty statistics with very few number of sample evaluations.

The uncertainty quantification technique was applied to the CFD modeling of

the synthetic jet actuator case to demonstrate the integration of computationally

efficient uncertainty quantification to the high-fidelity CFD modeling of synthetic

jet actuators. In this case, a synthetic jet issued into quiescent air and the long-

time averaged u and v-velocity profiles were monitored at several locations above

the slot exit. The amplitude and frequency of oscillation of the membrane in the

cavity generating the synthetic jet were expected to have significant influence on the

velocity profiles in the flow field. Therefore, the estimation of the uncertainty in long-

time averaged velocity components, caused by the variation in these two parameters

within the specified limits, was performed. Both uncertain variables (amplitude and

frequency of the velocity of the membrane) were treated as uniform random variables.

A fifth degree NIPC expansion obtained with Latin Hypercube sampling was found

to be capable of estimating the statistics after a detailed convergence analysis. 42

deterministic CFD simulations were carried out with an oversampling ratio of two

for the fifth degree polynomial of two uncertain variables. The stochastic results

of this case showed that the uncertainty in the long time averaged v-velocity was

maximum at the region directly above the slot and decreased as we moved away from

the center on either side. Conversely, the u-velocity variation was maximum in the

region immediately adjacent to the slot and least in the region directly above the slot
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exit. Although both input uncertainties were modeled as uniform uncertain variables,

their interaction and propagation in the flow field was found to be highly non-linear.

This proves the ability of NIPC method in estimating the uncertainty statistics in

non-linear problems with fewer number of CFD simulations, making it highly cost

effective. It was also found that the discrepancy between the experimentally measured

values and the CFD simulations was very high at location x = 0, y = 0.1mm above

the slot. This could not be explained even with a relatively large uncertainty (±5%

change from the mean values) introduced in the input parameters (amplitude and

frequency). Hence it can be concluded that this discrepancy may be due to the other

uncertainty sources in CFD (e.g., turbulence modeling and boundary conditions)

and/or uncertainties in the measurements.

5.2. FUTURE WORK

Overall, the results obtained in this study showed the potential of Non-Intrusive

Polynomial Chaos as an effective uncertainty quantification method for computation-

ally expensive high-fidelity CFD simulations applied to the stochastic modeling of

synthetic jet flow fields. Future work will include the investigation of the other uncer-

tainty sources such as geometric uncertainties and turbulence modeling parameters

(such as model coefficients and wall functions), for the same test case studied in this

paper. In addition, the future work will include the consideration of synthetic jet cases

with cross-flow, which will focus on the uncertainty sources associated with both the

main flow and the cavity region actuating the synthetic jet. The current study focused

primarily on quantifying the effects of input uncertainty on the long-time averaged

velocity profiles in the flow field. Our future work will include the evaluation of the

effects of input uncertainties on higher order statistics like urms, vrms and Reynold

stresses.
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In the current study linear global sensitivity analysis has be performed to evalu-

ate the relative importance of each of the input uncertainties on the output parameter.

Future work will include non-linear sensitivity analysis. Sobol indices will be calcu-

lated to determine higher-order correlation between the input and the output as well

as the estimation of the effects due to mixed contributions of the input variables.

It is hoped that the uncertainty quantification results obtained for various syn-

thetic jet cases will help the researchers to understand the effect of different un-

certainty sources on the performance of the synthetic jet actuators. Efforts will be

focused towards integrating the uncertainty quantification methodology into a design

framework that will help in the design of robust and reliable synthetic jet actuators.



APPENDIX A
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Appendix A compares the long-time averaged u and v-velocity profiles from the

CFDVal2004 workshop with the base-line CFD results in this study. The CFDVal2004

workshop had invited researchers to submit their results for the test case that they

had conducted experiments on. The Figure A shows the four different locations in

the flow field where the velocity profiles were compared.

 

 

 

 

 

 

Figure A.1. Locations in the flow field where the velocity profiles were compared
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 (a) v-velocity profile at y = 0.1mm

 

 

 

 

 

 

 

 

 

 (b) v-velocity profile at y = 0.1mm

 

 

 

 

 

 

(c) u-velocity profile at y = 0.1mm

 

 

 

 

 

 

(d) u-velocity profile at y = 0.1mm

Figure A.2. CFDVal2004 workshop results long time averaged u and v-velocity profiles
at y = 0.1mm line
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 (a) v-velocity profile at y = 1mm

 

 

 

 

 

 

 

 

 

 (b) v-velocity profile at y = 1mm

 

 

 

 

 

 

(c) u-velocity profile at y = 1mm

 

 

 

 

 

 

(d) u-velocity profile at y = 1mm

Figure A.3. CFDVal2004 workshop results long time averaged u and v-velocity profiles
at y = 1mm line
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 (a) v-velocity profile at y = 2mm

 

 

 

 

 

 

 

 

 

 (b) v-velocity profile at y = 2mm

 

 

 

 

 

 

(c) u-velocity profile at y = 2mm

 

 

 

 

 

 

(d) u-velocity profile at y = 2mm

Figure A.4. CFDVal2004 workshop results long time averaged u and v-velocity profiles
at y = 2mm line



57

 

 

 

 

 

 

 

 

 

 (a) v-velocity profile at y = 4mm

 

 

 

 

 

 

 

 

 

 (b) v-velocity profile at y = 4mm

 

 

 

 

 

 

(c) u-velocity profile at y = 4mm

 

 

 

 

 

 

(d) u-velocity profile at y = 4mm

Figure A.5. CFDVal2004 workshop results long time averaged u and v-velocity profiles
at y = 4mm line
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(a) Base Line v-velocity profile at y = 0.1mm
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(b) Base Line u-velocity profile at y = 0.1mm

Figure A.6. Base Line long time averaged u and v-velocity profiles at y = 0.1mm line
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(a) Base Line v-velocity profile at y = 1mm
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(b) Base Line u-velocity profile at y = 1mm

Figure A.7. Base Line long time averaged u and v-velocity profiles at y = 1mm line
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(a) Base Line v-velocity profile at y = 2mm
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(b) Base Line u-velocity profile at y = 2mm

Figure A.8. Base Line long time averaged u and v-velocity profiles at y = 2mm line
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(a) Base Line v-velocity profile at y = 4mm
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(b) Base Line u-velocity profile at y = 4mm

Figure A.9. Base Line long time averaged u and v-velocity profiles at y = 4mm line
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MATLAB CODES
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Appendix B lists the MATLAB and PYTHON routines that were used in this

study. The MATLAB code that implements the FDB model solves for the set of non-

linear ODEs that forms the synthetic jet actuator model to give the internal pressure,

exit plane velocity and the membrane displacement of the synthetic jet actuator.

The uncertainty quantification routine is written in PYTHON and is listed

here. This code generates the the legender basis functions based on the order of the

polynomial, reads in the long-time averaged velocity profiles obtained from FLUENT

and uses the least square approach to solve for the coefficients of the polynomials.

The uncertainty statistics are then extracted from these coefficients.

Fluid-Dynamics-Based Model Implementation in Matlab

%Author : Sr ikanth Adya

%Synthet i c Jet Actuator Model Equation So lve r

%So lve s the coupled ODEs o f a Synthet i c Jet Flow Formulation f o r

%i n t e r n a l pres sure , o r i f i c e f low v e l o c i t y and membrane disp lacement

func t i on X=model ( f r e ,Amp)

%%%%%%%%%%%%%%%%%%%%%% SECTION ONE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C l e f f =0.78; %E f f e c t i v e Loss C o e f f i c i e n t

CI =0.705; %I n e r t i a C o e f f i c i e n t

dw=0.0235; %Brass Shim Diameter

Aw=pi ∗dwˆ2/4 ; %Wall Area

A0=pi ∗0 .00165ˆ2/4 ; %Or f i c e Area

l 0 =0.00165+CI∗ s q r t (A0) ; %O r i f i c e Length

P0=101325; %Ambient Pressure

V0=2.50e−6; %Nominal Cavity Volume

gama=1.4; %S p e c i f i c Heat Ratio

Us=343.0; %Speed o f Sound

f=f r e ;%1 0 0 : 5 0 : 3 0 0 0 ; %Frequency

fw=2114; %Diaphragn/Wall Natural Frequency

fh =977; %Hemholtz Frequency

F=Amp;%0 . 5 7 4 ; %Force

cw=0.03; %Damping C o e f f i c i e n t from LEM
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kw=1.8831 e +005; %Diaphragm S t i f f n e s s

mw=(8700∗ pi ∗0 .0235ˆ2∗0 .0002/4) +(7700∗ pi ∗0 .0205ˆ2∗0 .00011/4) ;

%Diaphragm/ wal l mass

mwt=kw/(2∗ pi ∗ fw ) ˆ2 ;

%%%%%%%%%%%%%%%%%%%%%%%% SECTION TW%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This uses the b u i l t in ODE45 s o l v e r to s o l v e the coupled ODEs by %

%c a l l i n g the ode t e s t func t i on s e q u e n t i a l l y u n t i l l the r equ i r ed %%%%

%t o l e r a n c e l e v e l i s ach ieved f o r i n t e g r a t i o n over the s p e c i f i e d time

f o r i=1%:59

omegah=Us∗ s q r t (A0/( l 0 ∗V0) ) ;

ma=1.225∗Aw∗Us/(2∗ pi ∗ f ( i ) ) ∗(4/ p i ) ∗ ( (2∗ pi ∗ f ( i ) ∗dw/Us) /3−(2∗ pi ∗ . . .

f ( i ) ∗dw/Us) ˆ3/(9∗5) +(2∗ pi ∗ f ( i ) ∗dw/Us) ˆ5/(3ˆ2∗5ˆ2∗7)−(2∗pi ∗ . . .

f ( i ) ∗dw/Us) ˆ7/(3ˆ2∗5ˆ2∗7ˆ2∗9) ) +(2∗ pi ∗ f ( i ) ∗dw/Us) ˆ 9 / ( 3 ˆ 2∗5 ˆ . . .

2∗7ˆ2∗9ˆ2∗11) ; %added diaphragm/ wal l mass

ca =1.255∗Aw∗Us∗ ( (2∗ pi ∗ f ( i ) ∗dw/Us) ˆ2/(2∗4)−(2∗pi ∗ f ( i ) ∗dw/Us) ˆ 4 / . . .

(2∗4ˆ2∗6) +(2∗ pi ∗ f ( i ) ∗dw/Us) ˆ6/(2∗4ˆ2∗6ˆ2∗8) ) ;

%added diaphragm damping c o e f f i c i e n t

cwt=cw+ca ;

dt =(1/( f ( i ) ∗1000) ) ;

c y c l e s =20;

tspan =0: dt : c y c l e s ∗(1/ f ( i ) ) ;

x0=[0 0 0 0 0 0 ] ; %I n i t i a l Condit ions

[ t , x]=ode45 ( @odetest , tspan , x0 , [ ] , Aw, A0 , C l e f f , l0 , P0 , V0 , omegah , . . .

gama , F ,mwt, cwt , kw , fw , f ( i ) ) ;

count =1;

f o r k=1000∗( cyc l e s −1) :1000∗ c y c l e s

y ( count , 1 )=x (k , 3 ) ;

y ( count , 2 )=x (k , 1 ) ;

y ( count , 3 )=x (k , 5 ) ;
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count=count +1;

end

X( i )=max( y ( : , 1 ) ) ;

Y( i )=max( y ( : , 2 ) ) ;

Z( i )=max( y ( : , 3 ) ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION THREE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This s e c t i o n conver t s the second order ODEs in to f i r s t order and puts

%i t in a form s u i t a b l e o f the ODE45 s o l v e r . The three model equat ions

%r e s u l t s i n to s i x f i r s t order ODEs one each f o r i n t e r n a l pres sure , %%%

%i n t e r n a l p r e s su r e grad ient , o r i f i c e v e l o c i t y , o r i f i c e v e l o c i t y %%%%%%

%gradient , diaphragm disp lacement and diaphragm v e l o c i t y %%%%%%%%%%%%%

func t i on xprime=ode t e s t ( t , x ,Aw, A0 , C l e f f , l0 , P0 , V0 , omegah , gama , F ,mwt, cwt ,

kw , fw , f )

% Since the s t a t e s are passed in as a s i n g l e vector , l e t

% x (1) = p

% x (2) = p ’

% x (3) = u

% x (4) = u ’

% x (5) = x

% x (6) = x ’

xprime (5 , 1 )= x (6) ;

xprime (6 , 1 )= (F∗ s i n (2∗ pi ∗ f ∗ t ) /mwt)−(x (1 ) ∗Aw/mwt) −2∗0.03∗2∗ pi ∗ fw∗x (6 ) . . .

−(2∗pi ∗ fw ) ˆ2∗x (5 ) ; %Membrane Dynamics

xprime (1 , 1 )= x (2) ;

xprime (2 , 1 )= −((V0∗C l e f f ) /(2∗gama∗A0∗P0∗ l 0 ) ) ∗abs ( x (2 )−(gama∗Aw∗P0 ∗ . . .

x (6 ) /V0) ) ∗( x (2 )−(gama∗Aw∗P0∗x (6 ) /V0) )−omegahˆ2∗x (1 ) + . . .

(gama∗Aw∗P0/V0∗ ( (F∗ s i n (2∗ pi ∗ f ∗ t ) /mwt)−(x (1 ) ∗Aw/mwt) − . . .

2∗0.03∗2∗ pi ∗ fw∗x (6 )−(2∗pi ∗ fw ) ˆ2∗x (5 ) ) ) ;

%Dynamic I n t e r n a l Pressure
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xprime (3 , 1 )= x (4) ;

xprime (4 , 1 )= −( C l e f f / l 0 ) ∗abs ( x (3 ) ) ∗x (4 ) − omegahˆ2∗x (3 ) +(Aw/A0) ∗ . . .

omegahˆ2∗x (6 ) ; %O r i f i c e Flow Ve loc i ty

model.m

Uncertainty Quantification Routine in Python

from sympy import ∗

import sympy

from numpy import ∗

import math

import numpy

import Gaus s i an In t e rg ra t i on

#i f i l e = open (” LHSample5 . txt ” , ’ r ’ )

f=open ( ’ output model problem NIPC . txt ’ , ’ r ’ )

f=f . r e a d l i n e s ( )

Mean=[ ]

std =[ ]

f o r l in range (5 ) :

T=[3 ,6 ,10 ,15 ,21 ,28 ]

P=T[ l ]

p=P∗2

alpha=numpy . z e r o s ( [ p , 1 ] )

a =[ ]

b =[ ]

f o r i in range (p) :

dummy=f [ i ] . s p l i t ( )

alpha [ i ] [ 0 ] =dummy[ 2 ]

a . append (dummy [ 0 ] )

b . append (dummy [ 1 ] )

A=[ ]

B=[ ]

C=[ ]

s i=numpy . z e r o s ( [ p ,P ] )

x=Symbol ( ’ x ’ )
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y=Symbol ( ’ y ’ )

f o r i in range (7 ) :

A. append ( l egendre ( i , x ) )

f o r i in range (7 ) :

B. append ( l egendre ( i , y ) )

#f i r s t order expansion

count=0

C. append (A[ 0 ] ∗B[ count ] )

f o r i in range (1 ,−1 ,−1) :

C. append (A[ i ]∗B[ count ] )

count+=1

#second order expansion

count=0

f o r i in range (2 ,−1 ,−1) :

C. append (A[ i ]∗B[ count ] )

count+=1

#th i rd order expansion

count=0

f o r i in range (3 ,−1 ,−1) :

C. append (A[ i ]∗B[ count ] )

count+=1

#four th order expansion

count=0

f o r i in range (4 ,−1 ,−1) :

C. append (A[ i ]∗B[ count ] )

count+=1

##f i f t h order expansion

count=0

f o r i in range (5 ,−1 ,−1) :

C. append (A[ i ]∗B[ count ] )

count+=1

##s i x t h order expansion

count=0

f o r i in range (6 ,−1 ,−1) :

C. append (A[ i ]∗B[ count ] )
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count+=1

f o r i in range (P) :

f o r j in range (p) :

s i [ j ] [ i ]=C[ i ] . subs (x , a [ j ] ) . subs (y , b [ j ] ) . e v a l f ( )

#So lv ing f o r the c o e f f i c i e n t s#

c , r e s id , rank , s=l i n a l g . l s t s q ( s i , alpha )

#Computing Standard Deviat ion

var iance=numpy . z e ro s ( [ 1 , 1 ] )

f o r i in range (1 ) :

dummy=c [ : , i ]

f o r k in range (1 ,P) :#P

inner product=C[ k ]∗C[ k ]

X=Gaus s i an In t e r g ra t i on . gauss quad Int ( inne r product )

X=Gaus s i an In t e r g ra t i on . gauss quad Int (X)

var iance [ i ] [ 0 ] = var iance [ i ] [ 0 ] + 0.25∗X∗dummy[ k ]∗∗2

Mean . append ( c [ 0 , 0 ] )

dummy=s q r t ( var iance [ i ] [ 0 ] )

std . append (dummy)

s t r i n g=s t r ( ’ coe model ’ )+s t r ( l )+s t r ( ’ . txt ’ )

coe=open ( s t r i ng , ’w ’ )

f o r i in range (P) :

coe . wr i t e ( s t r ( c [ i , 0 ] )+’ \n ’ )

coe . c l o s e ( )

legendre UQ.py



APPENDIX C

COMPUTATIONAL MODELING CASE SETUP PROCEDURE
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Grid Generation

The grid for this case was taken from CFDVal2004 workshop website hence the

geometry and the mesh was already readily available. The mesh on the website was

in PLOT3D format. GAMBIT

Fluent Case Setup

For the purpose of parallel processing, the cases were run on a high performance

computing cluster. The following sub-section describes the procedure to launch a

parallel FLUENT job on the cluster using multiple nodes.

Launching Parallel FLUENT

FLUENT can be launched either interactively or can be submitted as a job on

the cluster. To run a parallel FLUENT application interactively an interactive ses-

sion must first be requested using a PBS scheduler. The following is an example for

requesting multiple nodes tor interactive FLUENT processing:

qsub -I -X -l nodes=8:ppn=2 -l walltime=50:00:00 -q hos cpu@nic-cluster.mst.edu

This will assign 16 processors for a wall time of 50hours on hos cpu nodes that are

dedicated to Computational Fluid Dynamics and Aerospace Research Lab. It can

take a couple of minutes before the requested nodes become available. Once the

nodes are assigned to the requested job, FLUENT can be launched for interactive

parallel processing using the following command line

fluent 2ddp -t16 -pethernet -cnf=$PBS NODEFILE -g -ssh /nethome/users/user-

name/path to fluent file

Alternatively FLUENT case can also be submitted as a job. A typical job file

is as follows:

#/bin/bash

#PBS -q hos cpu@nic-cluster.mst.edu

#PBS -m abe

#PBS -M username@mst.edu
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#PBS -l nodes=8

#PBS -l walltime=50:00:00

#PBS -d /nethome/users/username

fluent 2ddp -t8 -pethernet -cnf=$PBS NODEFILE -g -ssh /nethome/users/username/flu-

ent command file

The above job file needs a command file that tells FLUENT to run the desired case.

The command file for an unsteady case looks like below:

/file/rcd /nethome/users/username/casefile.cas

/file/autosave/data-frequency 50

/solve/set/time-step 0.0000022487

/solve/dual-time-iterate

15000

15

/file/wd /nethome/users/username/datafile.dat

/exit

Solver Settings

The following snapshots illustrate the step by step procedure to set up the solver.
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Step 1: A pressure based solver was selected. Since the membrane motion is time
dependent, the solver type was set to transient. Velocity formulation was set as
absolute and planar 2D space option was selected.
Step 2: Once the grid was fully setup in GAMBIT, the mesh file was imported into
FLUENT. Grid check (Mesh> Check) was performed to ensure that there are no
negative volumes or skewed cells.

 

 

 

 

 

 

 

(a) Case setup Step 1

 

 

 

 

 

 

 

(b) Case setup Step 2
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Step 3: The two equation Menter SST k-omega turbulence model was selected
(Define> Models) to solve the RANS equations.
Step 4: The material properties for air (working fluid) was updated based on
CFDVal2004 workshop inputs.

 

 

 

 

 

 

 

(c) Case setup Step 3

 

 

 

 

 

 

 

(d) Case setup Step 4
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Step 5: Next, boundary conditions were assigned to the boundaries of the mesh. The
left and right side of the cavity except the membrane were assigned as wall.
Step 6: The aluminum plate was assigned as wall.

 

 

 

 

 

 

 

(e) Case setup Step 5

 

 

 

 

 

 

 

(f) Case setup Step 6
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Step 7: The left, right and top boundaries of the outflow domain were assigned outflow
boundary condition.

 

 

 

 

 

 

 

(g) Case setup Step 7
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Step 8: The oscillating membrane on the left side of the cavity has a time dependent
motion. To simulate this motion the membrane was assigned a time dependent ve-
locity inlet boundary condition. This was done using a user defined function. A UDF
was written in C and was compiled using Define>User defined>Functions>Compiled.
Here it should be noted that while assigning the libudf directory name, the complete
path to the directory has to be mentioned for FLUENT to successfully compile the C
file and build the libudf directory. Once the program is compiled successfully it was
loaded to the solver by clicking on load.
Step 9: All the elements of the membrane were assigned the time dependent udf
defined velocity profile.

 

 

 

 

 

 

(h) Case setup Step 8

 

 

 

 

 

 

(i) Case setup Step 9
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Step 10: The residual monitor for continuity equation was set at
10e6(Solve>Monitors>Residual).

 

 

 

 

 

 

(j) Case setup Step 10
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Step 11: Points and lines were created in the flow field were the convergence had to
be monitored.
Step 12: To monitor the convergence of the solution, surface monitors were initial-
ized at the points and lines created in the previous step(Solve>Monitors>Surface
Monitors).

 

 

 

 

 

 

(k) Case setup Step 11

 

 

 

 

 

 

(l) Case setup Step 12
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Step 13: Solution was initialized by assigning the initial values to all the zones.
Step 14: Data was saved at every 50 iterations. The time step size and number of
iterations per time step were assigned and the solution was allowed to run for the
desired number of cycles(Solve>Run Calculations).

 

 

 

 

 

 

(m) Case setup Step 13

 

 

 

 

 

 

(n) Case setup Step 14
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