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ABSTRACT 

 

This thesis presents case-based reasoning approach for estimating the cost and 

modeling cost uncertainty of a new product in the concept selection stage. Case-based 

reasoning (CBR) is an approach which uses old cases/experiences to understand and 

solve new problems. The CBR approach consists of creating a knowledge-base (or 

database) containing past cases (products), defining a new case (concept), retrieving 

cases similar to the new case, and adjusting the solution of the retrieved cases to the new 

case. The first paper compares case-based reasoning, in studying the effects of varying 

design attribute specifications on cost estimation accuracy and cost distribution 

reliability. Case-based reasoning with cost estimation is compared with three methods: 

analogy-based cost estimation, case-based reasoning without cost adjustment, and 

regression analysis. Four automobile concepts with similar performance attribute 

specifications but varying design attribute specifications are defined and the comparison 

is made using leave-one-out cross-validation technique to a knowledge-base of 345 

automobiles. The second paper further establishes case-based reasoning with cost 

adjustment by studying the optimum number of design attributes for specifying a 

concept. The results show that case-based reasoning with cost adjustment performed best 

for cost estimation accuracy and cost distribution reliability when one design attribute is 

specified for the concept in addition to performance attributes. 
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ABSTRACT 

 

This paper studies case-based reasoning approaches for estimating the cost and 

modeling cost uncertainty of a new product in the concept selection stage.  Case-based 

reasoning is a procedure to use past cases (experiences) to understand and solve new 

problems.  The case-based reasoning approach consists of creating a knowledge base of 

past and current products (cases), defining a new product concept, retrieving products 

similar to the concept, and adjusting costs of the retrieved products to estimate cost and 

generate cost distribution of the concept.  This paper compares case-based reasoning and 

regression analysis approaches for accuracies of cost estimations and reliabilities of cost 

distributions.  These approaches are compared and effects of defining a concept with a 
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design attribute, in addition to performance attributes, are studied by applying leave-one-

out cross-validation to a knowledge base of automobiles.   

 

KEYWORDS: Case-based reasoning, regression analysis, cost, concept, 

hierarchical clustering, distribution, leave-one-out cross-validation 
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1. INTRODUCTION 

 

Product cost is one of the most important factors that determine profitability of a 

new product.  Although accurate cost estimation is essential when selecting a new 

product concept in the early product development stage, lack of detailed design and 

assembly process information creates a large degree of uncertainty about product costs 

and makes accurately cost estimation challenging.   

Detailed cost modeling and regression analysis are two widely used methods for 

estimating a cost of a new product.  Cost modeling calculates a product cost by adding 

part costs, assembly costs, and overhead costs estimated from detailed product 

information such as bill of materials, design specifications, and assembly process 

specifications (Ulrich and Eppinger 2004; Otto and Wood 2001; Pahl and Beitz 1996).  

Because this detailed information is not available in the concept selection stage, cost 

modeling may not be the optimal approach to estimate the cost of a concept.  

Regression analysis (Hamaker 1995; Wyskida 1995) can estimate a product cost 

using product-level information (i.e., product specifications), and does not necessarily 

require detailed design and assembly process information.  Regression analysis generates 

a cost estimation relationship (CER), which describes a cost (a dependent variable) as a 

function of one or more cost-relevant product attributes (independent variables).  The 

cost of a new product is estimated by substituting its product information into the CER.  

Although regression analysis has a strong theoretical foundation (Neter et al. 1996) and 

has been widely used in design research (Michalek et al. 2004; Williams et al. 2008; 

Shiau and Michalek 2009), Braxton and Coleman (2007) identify various challenges in 
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applying regression analysis in practice.  One of these challenges is a poor quality of real 

world cost data (e.g., missing data and outliers), which can lead to inaccurate cost 

estimations. 

 Analogy-based cost estimation is a relatively new method that has been proposed 

to apply case-based reasoning to estimate cost of software projects (Shepperd and 

Scofield 1997; Angelis and Stamelos 2000; Mendes et al. 2003; Auer et al. 2006; Jeffery 

et al. 2000) and more recently to estimate costs of construction projects (Kim et al. 2004; 

An et al. 2007).  Corresponding to a case-based reasoning procedure, which is to use past 

cases (experiences) to understand and solve a new problem (Kolodner 1993), analogy-

based cost estimation creates a knowledge base that contains past projects (cases), defines 

features of a new project, retrieves up to three past projects that have similar features as 

the new project, and estimates the cost of the new project from the costs of the retrieved 

projects (Shepperd and Scofield 1997; Mendes et al. 2003).   

When applied to product cost estimation, analogy-based cost estimation can 

estimate cost of a concept only from product-level specifications without relying on 

detailed design and assembly process information; however, when applied to cost 

uncertainty modeling, it may have two limitations.  First, it only retrieves up to three 

projects.  The use of a small number of similar projects allows accurate cost estimations; 

however, three data points may not be sufficient to construct reliable cost distributions 

(Fox and Safie 1992).  Second, most of the analogy-based cost estimation applications do 

not adjust costs of retrieved projects for the differences between the attribute values of 

the retrieved projects and those of a new project (Shepperd and Scofield 1997; Mendes et 

al. 2003); therefore, analogy-based cost estimation may not be fully utilizing information 
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available in the retrieved projects when modeling cost uncertainty.  Jeffery et al. (2000) 

propose linearly adjusting costs of retrieved projects with respect to a project attribute 

that has the largest correlation with cost; however, linear adjustment on a single attribute 

may still fail to take into account all the attribute information available from the retrieved 

projects.  

This paper presents a case-based reasoning approach that utilizes hierarchical 

clustering to retrieve as many products similar to the concept as possible and adjusts 

these costs parallel to the regression model obtained from the retrieved products.  This 

paper compares case-based reasoning approaches with analogy-based cost estimation and 

regression analysis on the basis of accuracy of cost estimation and reliability of cost 

uncertainty modeling. Jeffery et al. (2000) compare the accuracy of cost estimation 

between analogy-based cost estimation and ordinary least squares regression using data 

from company-specific data as well as multi-company data. Although no significant 

differences are observed between these two techniques when they are applied to the 

company-specific data, ordinary least squares regression performs significantly better 

than analogy-based cost estimation when they are applied to the multi-company data.  

Takai (2009) compares accuracies of cost estimations in a case-based reasoning approach 

and analogy-based cost estimation with and without a linear adjustment using to a 

heterogeneous knowledge base (i.e., with missing data). Case-based reasoning provides 

slightly more accurate cost estimations than analogy-based cost estimations. Because 

regression analysis may not be able to provide accurate cost estimations when a 

heterogeneous knowledge base is used, the case-based reasoning approach is not 

compared against regression analysis.  Furthermore, while this study proposes to 
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represent a concept and products with binary indices (zero or one depending on whether 

data exist for each product attribute), a similarity measure based on availability of 

information is not useful when a knowledge base is homogeneous (i.e., when there are no 

or few missing data).  In this study, reliabilities of cost distributions have not been 

compared. 

Case-based reasoning has been used in solving design problems (Bardasz and 

Zeid 1991; Bardasz and Zeid 1993; Roderman and Tsatsoulis 1993; Maher and Zhang 

1993; Shiva Kumar and Krishnamoorthy 1995; Rosenman 2000; Wood and Agogino 

1996; Lee and Lee 2002; Al-Shahibi and Zeid 1998).  Bardasz and Zeid (1991, 1993) 

have used it to solve mechanical design problems.  Roderman and Tsatsoulis (1993) have 

created the Pumper Apparatus Novice Design Assistant (PANDA), a case-based design 

system to assist firefighters who wish to design their pumper engines.  Maher and Zhang 

(1993) have proposed a case-based design process model, CADSYN, to solve new design 

problems.  Cost estimation of a new product in the concept selection stage, however, has 

not been the scope of these research projects.  

This paper illustrates case-based reasoning approaches for a homogeneous 

knowledge base and compares accuracies of cost estimations and reliabilities of cost 

distributions against those of analogy-based cost estimation and regression analysis.  

Furthermore, this paper studies effects of a design specification on accuracies of cost 

estimations and reliabilities of cost distributions.  The remainder of this paper is 

organized as follows: Section 2 describes a case-based reasoning approach for cost 

uncertainty modeling; Section 3 illustrates cost estimation and cost uncertainty modeling 

by case-based reasoning, analogy-based cost estimation, and regression analysis using a 
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knowledge base of automobiles; Section 4 compares these approaches on the basis of 

accuracies of cost estimations and reliabilities of cost distributions using leave-one-out 

cross-validation; Section 5 concludes the paper with discussions for future work. 
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2. CASE-BASED REASONING APPROACH FOR COST UNCERTAINTY 

MODELING 

 

Figure 1 schematically illustrates four steps of case-based reasoning approach for 

cost uncertainty modeling: construction of a knowledge base that contains past and 

current products (cases), definition of a concept, retrieval of products similar to the 

concept, and generation of a cost distribution for the concept.   

    

 

 

Fig. 1 Case-Based Reasoning Process Flow 

 

 



        9 

 

 

2.1 Knowledge Base Construction 

The first step is to construct a knowledge base of past and current products.  The 

knowledge base should contain products, together with their attributes and specifications.  

Product attributes define properties of a product, and product specifications determine 

specific values of product attributes that a product needs to achieve.  In the case of an 

automobile, fuel efficiency is an attribute for which 25 miles per gallon is a specification.  

An attribute may be categorical or numerical. 

A product attribute may be classified into a performance attribute or a design 

attribute.  Performance attributes describe performance requirements of a product, and 

they directly affect customers’ purchasing decisions.  In contrast, design attributes 

describe design characteristics that enable a product to achieve its performance 

specifications.  For example, ―0–60 mph acceleration time‖ may be defined as a 

performance attribute and ―engine capacity‖ may be defined as a design attribute.   

 

2.2 Concept Definition 

The second step is to define a concept by performance attributes that influence 

customers’ product purchasing decisions.  These attributes are identified for example, by 

first collecting customer needs by interviewing customers and then translating 

representative needs to corresponding performance attributes.  Once performance 

attributes are identified, performance specifications may be defined. 

In addition to performance attributes and specifications, designers may further 

define a concept by cost-relevant design attributes and specifications.  Design 

specifications enable designers to define a concept in more detail and may provide more 
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accurate cost estimations and more reliable cost distributions.  On the other hand, 

specifying a concept by too many design attributes may create a risk of biased cost 

estimations and cost distributions if the design specifications of the final product change 

from those of the concept.  If cost estimations and cost distributions are biased, the 

initially-selected concept may no longer be an optimum one. 

 

2.3 Product Retrieval 

The third step is to retrieve products similar to the concept from the knowledge 

base using hierarchical clustering.  Hierarchical clustering procedure consists of data 

matrix modification, distance matrix generation, and product retrieval.  First, in order to 

identify products in the knowledge base that are similar to the concept, a data matrix of 

the initial knowledge base is modified by including the concept in an additional first row.  

For example, if the knowledge base contains I number of products and J number of 

attributes, then the data matrix will have I rows for products and J columns for attributes.  

Initially, the identification number of row of the knowledge base varies from i=1 to I.  

After including the concept as row i=0, the modified data matrix consists of I+1 rows 

(i=0 to I) and J columns (j=1 to J).   

Second, a distance matrix is generated from the modified data matrix by 

calculating Euclidian distances between the concept and each product, and between each 

pair of products.  A Euclidian distance,  between two products, p and p’ is defined as 

 

 , ,

2

1

( , ') 'j i j i j

J

j

p p w s s


                                                                        (1) 
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where si,j is the standardized specification of product p (explained later in Equation 3), 

s’i,j is the standardized specification of product p’, and wj is the weight of attribute j.  In 

this paper, weights of all attributes are set to 1. 

Finally, hierarchical clustering is applied to the distance matrix in order to retrieve 

products similar to the concept.  Hierarchical clustering generates upside-down tree-like 

figures (called dendrograms) based on the distances calculated in the distance matrix.  In 

a dendrogram, the height at which two products, two clusters, or a product and a cluster 

are grouped together indicates the distance between them.  The smaller distances between 

products/clusters indicate that they are more similar and, therefore, they are grouped 

together at the lower linkage height in the dendrogram.  Hierarchical clustering has been 

used to group similar cases in the knowledge base before retrieving the most similar case 

from the group (Reich and Kapeliuk 2004).  In this paper, all the products (cases) in the 

group similar to the concept is retrieved and used to estimate costs and to construct cost 

distributions.     

The three methods that may be used to group similar objects in hierarchical 

clustering are the single-linkage method, the complete-linkage method, and the average-

linkage method.  The single-linkage method calculates, element by element, a distance 

between an element in one cluster and an element in another cluster, and defines a 

distance of two clusters as the smallest element-by-element distance.  On the contrary, 

the complete-linkage method defines a distance of two clusters as the largest element-by-

element distance, and the average-linkage method defines a distance of two clusters as 

the average element-by-element distance.  In this paper, the average-linkage method is 
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used because of a statistical consistency property that is violated by the other two 

methods (Kelly and Rice 1990; Hastie et al. 2001).   

Figure 2 shows an example dendrogram obtained from applying hierarchical 

clustering to a knowledge base that consists of a concept (C) and nine products (P1–P9).  

In Fig. 2, linkage heights at which concept C is grouped with other products or clusters 

are labeled H1, H2, and H3.  Heights H1, H2, and H3 correspond to the linkage height in 

which the concept is grouped with other products for the first time, for the second time, 

and for the third time.  The differences of these linkage heights are denoted as ΔH; for 

example, H1 represents the difference in linkage heights between H2 and H1 

(ΔH1=H2-H1), and so on.  The largest incremental distance (difference of linkage 

heights) ΔH is used to decide which products are similar to the concept and retrieved 

from the knowledge base.  In this example, because ΔH1 is larger than ΔH2, the 

dendrogram is cut at the largest distance ΔH1 (for example, at the dashed line in Fig. 2), 

which indicate two products P2 and P3 are grouped with concept C and retrieved from 

the knowledge base.   

 

 

H1

H2 H3

∆H1

∆H2

H
e

ig
h

t

 

Fig. 2 Example Dendrogram 
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2.4 Distribution Generation 

The final step is to generate cost distributions after adjusting costs of the retrieved 

products.  For cost adjustment, three methods may be used: no adjustment, linear 

adjustment, and parallel adjustment.  In the case of no adjustment, the costs of the 

retrieved products are used to estimate a cost and generate a cost distribution of a 

concept.  In the case of linear adjustment, one attribute of the retrieved products that is 

most closely correlated with their costs is identified first.  Then, ratios of attribute 

specifications between the concept and the retrieved products are calculated.  Finally, the 

costs of the retrieved products are adjusted in proportion to these ratios.  These adjusted 

costs are used to estimate the cost and generate the cost distribution of the concept.  In the 

case of parallel adjustment, a regression model is obtained by applying a regression 

analysis to the retrieved products first, then, the costs of the retrieved products are 

adjusted parallel to the regression model.  These adjusted costs are used to estimate the 

cost and generate the cost distribution of the concept.  The regression model could be a 

line (in the case of a single cost-relevant attribute) or a surface (in the case of multiple 

cost-relevant attributes).  Figure 3 illustrates these three cost adjustment methods in the 

case of a single numeric cost-relevant attribute.  This paper fits normal distributions to 

generate cost distributions, but other distributions may also be used.   
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Fig. 3 Cost Adjustment 
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3. COMPARISON OF COST ESTIMATION AND COST UNCERTAINTY 

MODELING APPROACHES 

 

Using a knowledge base of automobiles, this section 1) presents case-based 

reasoning approaches for estimating costs and modeling cost uncertainties of automobile 

concepts, 2) compares these approaches with analogy-based cost estimation and 

regression analysis approaches, and 3) studies an effect of a design specification on cost 

estimation and cost uncertainty modeling when a design attribute is used to define a 

concept in addition to performance attributes.  The reference method is analogy-based 

cost estimation (ABCE), which retrieves three automobiles most similar to the concept 

based on the smallest Euclidian distances from the concept.  If there are automobiles with 

same distances from the concept, more than three automobiles may be retrieved.  The 

costs of the retrieved automobiles are not adjusted.       

The second method is case-based reasoning without cost adjustment (CBR).  In 

contrast to analogy-based cost estimation, case-based reasoning retrieves as many similar 

automobiles as possible from the knowledge base by applying a hierarchical clustering 

with average-linkage method.  Automobiles similar to the concept are defined and 

retrieved from the knowledge base as a result of the largest incremental distance ΔH as 

discussed in section 2.3.  As in analogy-based cost estimation, the costs of the retrieved 

automobiles are not adjusted.       

The third method is case-based reasoning with cost adjustment (CBR-A).  In 

contrast to the case-based reasoning without adjustment, the costs of the retrieved 
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automobiles are adjusted parallel to a regression model obtained from applying a 

regression analysis to the retrieved automobiles.   

The last method is regression analysis (RA).  In contrast to case-based reasoning 

with adjustment, a regression analysis is performed on all automobiles in the knowledge 

base and the costs of all automobiles are adjusted parallel to the regression model.   

After the costs of the retrieved automobiles (or of all automobiles in the 

knowledge base in the case of regression analysis) are adjusted if necessary, a cost of the 

concept is estimated by averaging these costs and a cost distribution is generated by 

fitting a normal distribution to these costs.   

To study effects of design specifications on a cost of a concept, a concept defined 

by only performance specifications is considered as a reference concept.  Three concepts 

that are defined with a design specification in addition to the same performance 

specifications are compared to the reference concept for accuracies of cost estimations 

and reliabilities of cost distributions. 

 

3.1 Knowledge Base Construction 

A knowledge base is constructed by benchmarking automobiles sold in the U.S. 

from 2003 through 2009 and contains 345 automobiles, with 86 attributes and estimated 

costs.  The automobile attributes and specifications are gathered from a product-

evaluation firm’s website, and include automobile type (SUV, small car, sedan, minivan, 

wagon, pickup and sports car), number of cylinders, engine capacity, number of side 

airbags, acceleration, braking, fuel efficiency, and roadside aid.  These attributes are 
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further classified as either performance or design attributes.  There are 51 performance 

attributes and 35 design attributes.  

Because product costs are proprietary information, a cost of an automobile is 

estimated by subtracting a profit margin from a price similar to the approach used by 

Williams et al. (2008).  In Eq. 2, annual automotive revenue and a total cost are collected 

from individual automobile company’s annual financial reports. 

 

 1Cost Price Average profit marging      

       1
Revenue Total cost

Price
Revenue

 
   

 
 

       
Total cost

Price
Revenue

                (2) 

 

Figure 4 shows a portion of the complete knowledge base used in the analysis.  

Cost data are used only for estimating a cost and generating a cost distribution of the 

concept and are not used for calculating distances between the concept and an automobile 

or between two automobiles in the hierarchical clustering process.   
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Automobile 

Type

 Fuel 

Efficiency 

(Miles per 

Gallon)

Engine 

Capacity 

(Liters)

Cost ($)

Automobile 1 Convertibles 22 2.7 21,554

Automobile 2 SUV 23 2.4 20,994

Automobile 3 SUV 21 2.4 17,483

Automobile 4 Small Cars 25 2 14,332

Automobile 5 Sedans 29 3 53,100

Automobile 6 Minivans 17 4 37,595

Automobile 7 Wagons 42 1.5 22,575

Automobile 8 Pickups 14 4.7 29,053

Automobile 9 Sporty 20 4.6 27,413
 

Fig. 4 Portion of the Complete Knowledge Base 

3.2 Concept Definition 

When defining a concept by performance and design attributes, performance 

attributes need to be important for customers to make automobile purchasing decisions 

and design attributes need to be important for designers to estimate automobile costs.  

Automobile type and fuel efficiency are selected as performance attributes of the concept 

because they influence customers’ purchasing decisions.  For example, McCarthy (1996) 

proposes that vehicle size and type have a direct impact on customers’ purchasing 

decisions.  Train and Winston (2007) discuss how Japanese automakers gained an edge 

over the US manufacturers because of the higher fuel efficiency of their vehicles.  Berry 

et al. (1995, 2004) have proposed that a higher fuel efficiency and vehicle size drive 

customer demand.  Engine capacity is chosen as a design attribute of the concept because 

it is the most cost-relevant design attribute (design attribute with the smallest p value) 

identified in a regression analysis that regresses cost against complete set of design 

attributes in the knowledge base.  Vehicle type is a categorical attribute and fuel 

efficiency and engine capacity are numerical attributes.   
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Table 1 summarizes a reference concept (Concept 0) and three concepts (Concept 

1, 2, and 3) studied in this paper.  All concepts are described by two performance 

attributes (automobile type and fuel efficiency) and their specifications (SUV and 25 

miles per gallon).  In addition, Concepts 1, 2, and 3 are described by one design attribute 

(engine capacity) and its specification (2.4, 3.6, and 5.8 liters respectively) in order to 

study the effects of design specifications.  For the purpose of illustration, SUV is 

arbitrarily chosen as the specification of automobile type and 25 miles per gallon is 

chosen as the specification close to the maximum fuel efficiency of the SUVs in the 

knowledge base.  Three levels of engine capacity are chosen so that they approximately 

represent five percentile, median, and 95 percentile of the engine capacity of SUVs in the 

knowledge base.   

 

 

Table 1 Concept Definition   

  Vehicle Type Fuel Efficiency 
(Miles per Gallon) 

Engine Capacity 
(Liters) 

Concept 0 (Reference) SUV 25 - 

Concept 1  SUV 25 2.4 

Concept 2  SUV 25 3.6 

Concept 3  SUV 25 5.8 

 

 

 

3.3 Product Retrieval 

To calculate distances among the concept and automobiles in the knowledge base, 

the original knowledge base is coded as shown in Fig. 5, which is demonstrated for 
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Concept 1.  Corresponding to the four concepts in Table 1, there are four knowledge 

bases; i.e., one knowledge base for each concept (Concept 0, 1, 2, and 3).  These 

knowledge bases differ only for the concept in the first row.  In the first attribute, 

automobile type is broken down into eight categories: convertibles, SUVs, small cars, 

sedans, minivans, wagons, pickups, and sports cars.  One is used if an automobile is of a 

particular type and zero if otherwise.  By using ones and zeros, a Euclidean distance 

between two automobiles due to automobile type is zero if they are of the same type and 

1 if otherwise. 
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Concept 1 0 1 0 0 0 0 0 0 25 2.4

Automobile 1 1 0 0 0 0 0 0 0 22 2.7

Automobile 2 0 1 0 0 0 0 0 0 23 2.4

Automobile 3 0 1 0 0 0 0 0 0 21 2.4

Automobile 4 0 0 1 0 0 0 0 0 25 2.0

Automobile 5 0 0 0 1 0 0 0 0 29 3.0

Automobile 6 0 0 0 0 1 0 0 0 17 4.0

Automobile 7 0 0 0 0 0 1 0 0 42 1.5

Automobile 8 0 0 0 0 0 0 1 0 14 4.7

Automobile 9 0 0 0 0 0 0 0 1 20 4.6

Type

 Fuel 

Efficiency 

(Miles per 

Gallon)

Engine 

Capacity 

(Liters)

 

Fig. 5 Portion of the Modified Knowledge Base 

 

 

All the attributes are then standardized using Eq. 3 so that each attribute has the 

same degree of influence in the Euclidean distance in Eq. 1.   
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In Eq. 3, the subscript i represents a concept and the automobiles in the 

knowledge base, which varies from 0 to 345 (i=0 for the concept).  The subscript j 

represents the column of the modified knowledge base in Fig. 5.  The value si,j is the 

standardized specification, xi,j is the coded specification, and μa and σa are the average 

and the standard deviation of specifications of an attribute a, where a varies from 1 to 3 

(a=1 for type, a=2 for fuel efficiency, and a=3 for engine capacity).  The mean and 

standard deviation are calculated only for the automobiles in the knowledge base (i.e., 

excluding the concept) in order to be consistent when specifications of various concepts 

are standardized.  For the first attribute type (a=1), average and standard deviation are 

calculated for the first eight columns because they all belong to the same attribute; i.e., 

automobile type.  The remaining two numerical attribute averages and standard 

deviations are calculated across their respective columns.  Figure 6 shows the 

corresponding knowledge base with the standardized values.  

For each concept (Concept 0, 1, 2, and 3), distances between a concept and each 

automobile and between each pair of automobiles are calculated from the standardized 

knowledge base in Fig. 6; however, for Concept 0, only first two attributes are used 

(automobile type and fuel efficiency) because the engine capacity is not defined for 

Concept 0. 
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Concept 1 -0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 0.6 -0.6

Automobile 1 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 0.1 -0.4

Automobile 2 -0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 0.2 -0.6

Automobile 3 -0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.1 -0.6

Automobile 4 -0.4 -0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 0.6 -0.9

Automobile 5 -0.4 -0.4 -0.4 2.6 -0.4 -0.4 -0.4 -0.4 1.3 -0.1

Automobile 6 -0.4 -0.4 -0.4 -0.4 2.6 -0.4 -0.4 -0.4 -0.8 0.7

Automobile 7 -0.4 -0.4 -0.4 -0.4 -0.4 2.6 -0.4 -0.4 3.5 -1.3

Automobile 8 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 2.6 -0.4 -1.3 1.3

Automobile 9 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 2.6 -0.3 1.2

Type

 Fuel 

Efficiency 

(Miles per 

Gallon)

Engine 

Capacity 

(Liters)

 

Fig. 6 Portion of the Standardized Knowledge Base 

 

 

Hierarchical clustering is applied to four distance matrices (one for each concept) 

and four dendrograms in Fig. 10 in the appendix are generated.  The incremental 

distances ΔH (the differences between every two consecutive linkage heights) are 

calculated from the dendrograms as illustrated in Fig. 7.  As discussed in section 2.3, 

automobiles similar to the concept are identified based on the largest incremental 

difference ΔH and retrieved from the knowledge base.  For example, in the case of 

Concept 0, automobiles belonging to H1 through H3 are considered similar because the 

highest bar ΔH3 (=H4-H3) indicates that the distance is largest between H3 and H4.  

Similarly, for concepts 1, 2 and 3, automobiles belonging to H1 through H6, H1 through 

H4, and H1 through H2, respectively, are considered similar.  

 

 



        23 

 

 

0

1

2

3

∆H1 ∆H2 ∆H3 ∆H4 ∆H5

D
if

fe
re

n
c
e

 V
a

lu
e

Linkage Height Difference
 

(a) Concept 0 
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(b) Concept 1      
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(c) Concept 2 

       Fig. 7 Automobile Selection Criteria Graphs 
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(d) Concept 3 

Fig. 7 (Continued) Automobile Selection Criteria Graphs 

 

 

 

3.4 Distribution Generation 

Once automobiles similar to the concept are identified and retrieved from the 

knowledge base, the next step is to construct a histogram and fit a normal distribution to 

the costs of the retrieved automobiles (with or without adjustment depending on the 

method, ABCE, CBR, CBR-A, or RA, outlined at the beginning of section 3).  Figure 11 

in the appendix summarizes 16 cost distributions obtained from applying four methods 

(ABCE, CBR, CBR-A, and RA) to four concepts (Concept 0, 1, 2, and 3).   

 

3.5 Observations of Various Approaches 

Table 2 summarizes six statistics--the number of retrieved automobiles (n), 

average (Ave), standard deviation (SD), minimum (Min), maximum (Max), and range 

(Range) of the costs of the retrieved automobiles (after adjustments if necessary)—in the 
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four methods (ABCE, CBR, CBR-A, and RA) for four concepts (Concept 0, 1, 2, and 3).  

Figure 8 plots four statistics: Ave, SD, Min, and Max. 

Comparing four methods, standard deviation is very small in ABCE in two cases 

(Concept 1 and 3), which indicates that ABCE may generate unreliable (too narrow) 

distributions for cost uncertainty modeling.   

Average costs do not change in CBR because the same sets of automobiles are 

retrieved for all concepts and no adjustment is performed on the costs of the retrieved 

automobiles.  This indicates that CBR may provide inaccurate cost estimations.  ABCE 

does not adjust costs of retrieved automobiles; however, a set of retrieved automobiles 

and, therefore, statistics of the costs, can be different for each concept.   

Except for CBR, average costs increase as an engine capacity increases from 2.4 

to 3.6 and to 5.8 liters; thus, defining the concept by an additional design attribute may 

provide a more accurate cost estimations.  For RA of Concept 1 (engine capacity 2.4 

liter), the minimum cost after an adjustment is negative, which indicates that distributions 

obtained in RA may be too wide. 

Except for CBR, both ranges and standard deviations are the largest when a 

design specification is not defined (Concept 0) compared to when a design specification 

is defined (Concept 1, 2, and 3).  Defining a concept by an additional design attribute 

(e.g., engine capacity) may provide narrower distributions; however, whether a narrower 

distribution results in a more reliable cost uncertainty modeling needs further study.     
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Table 2 Data for the Cost Distribution Curves  

Statistics Concept Methods 

  ABCE CBR CBR-A RA 

n Concept 0 4 85 85 345 

 Concept 1 4 85 85 345 

 Concept 2 3 85 85 345 

 Concept 3 3 85 85 345 
      

Ave Concept 0 31,717 33,482 17,886 22,110 

 Concept 1 20,426 33,482 23,593 20,699 

 Concept 2 37,519 33,482 33,108 32,279 

 Concept 3 51,330 33,482 50,551 53,510 
      

SD Concept 0 12,671 10,471 8,942 11,293 

 Concept 1 1,179 10,471 6,935 8,724 

 Concept 2 9,077 10,471 6,935 8,724 

 Concept 3 1,885 10,471 6,935 8,724 
      

Min Concept 0 20,826 16,816 3,157 2,513 

 Concept 1 18,673 16,816 12,934 -5,438 

 Concept 2 27,508 16,816 22,448 6,143 

 Concept 3 49,154 16,816 39,891 27,374 
      

Max Concept 0 45,212 64,987 45,290 79,751 

 Concept 1 21,211 64,987 48,886 65,081 

 Concept 2 45,212 64,987 58,400 76,662 

 Concept 3 52,419 64,987 75,843 97,893 
      

Range Concept 0 24,386 48,171 42,133 77,238 

 Concept 1 2,538 48,171 35,952 70,519 

 Concept 2 17,704 48,171 35,952 70,519 

 Concept 3 3,265 48,171 35,952 70,519 
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(a) Analogy-Based Cost Estimation (ABCE) 
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(b) Case-Based Reasoning without Adjustment (CBR) 

Fig. 8 Comparison of Various Approaches 
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(c) Case-Based Reasoning with Adjustment (CBR-A) 
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(d) Regression Analysis (RA) 

Fig. 8 (Continued) Comparison of Various Approaches 



        29 

 

 

4. LEAVE-ONE-OUT CROSS-VALIDATION FOR ACCURACY OF COST 

ESTIMATION AND RELIABILITY OF COST DISTRIBUTION 

 

To quantitatively verify observations in section 3.5 and evaluate how the four 

methods (ABCE, CBR, CBR-A, and RA) accurately estimate costs and reliably generate 

cost distributions of an SUV concept, a leave-one-out cross-validation is performed.  In 

the leave-one-out cross-validation, one of the 85 SUVs is removed from the original 

knowledge base of 345 automobiles, assuming it is a new concept, and each method 

(ABCE, CBR, CBR-A, or RA) is applied to the remaining 344 automobiles.  To study the 

effects of design attributes, for each method, leave-one-out cross-validation is performed 

once with a knowledge base consisting of only with two performance attributes 

(automobile type and fuel efficiency) and once with a knowledge base consisting of the 

same two performance attributes and an additional design attribute (engine capacity).   

To evaluate an accuracy of a cost estimation, an estimated cost of each concept 

(ĉk, k=1, …, 85) is compared with the actual cost (ck).  To evaluate a reliability of a cost 

distribution, a cost distribution is constructed and evaluated by how well this distribution 

contains the actual cost ck.  This procedure is repeated 85 times (k=1, …, 85), each time 

assuming a new SUV as a concept. 

The accuracy of a cost estimation is compared in terms of ―mean magnitude of 

error‖ (MME) in Eq. 4 and ―mean magnitude of relative error‖ (MMRE) in Eq. 5.  Cost 

estimation is more accurate if both MME and MMRE are close to zero. 
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The reliability of a cost distribution is evaluated in terms of frequency that a 95% 

data range (a range between 2.5 and 97.5 percentiles) of a normal distribution captures 

the actual cost ck. ―Reliability of distribution‖ (R) is defined in Eq. 6, in which Ik=1 if ck 

is within the 95% range and Ik=0 if otherwise.  Reliability is compared by ―magnitude of 

reliability‖ (MR) in Eq. 7. Cost distribution is more reliable if R is close to 95% or when 

MR is close to 0 because, by definition, 95% range should contain only 95% of data.  If R 

is larger than 95%, the distribution is wider than the optimum, and if R is smaller than 

95%, the distribution is narrower than the optimum.   
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Table 3 summarizes leave-one-out cross-validation results and Fig. 9 plots two 

evaluation measures: MMRE to evaluate accuracies of cost estimations and MR to 

evaluate reliabilities of cost distributions.   
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Table 3 Leave-One-Out Cross-Validation Results 

Design  Evaluation Measure Methods 

attribute   ABCE CBR CBR-A RA 

None 

Cost estimation 
MME ($) 7,800 8,500 6,279 6,074 

MMRE (%) 22.2 28.3 19.0 18.4 

Cost distribution 
R (%) 50.6 96.5 92.9 94.1 

MR (% point) 44.4 1.5 2.1 0.9 

       

Engine capacity 

Cost estimation 
MME ($) 5,578 8,500 5,276 5,494 

MMRE (%) 16.3 28.3 15.9 16.4 

Cost distribution 
R (%) 71.8 96.5 94.1 92.9 

MR (% point) 23.2 1.5 0.9 2.1 
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(a) Mean Magnitude of Relative Error (MMRE) 

Fig. 9 Leave-One-Out Cross-Validation Result 
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(b) Magnitude of Reliability (MR) 

Fig. 9 (Continued) Leave-One-Out Cross-Validation Result 

 

 

4.1 Discussion of the Leave-One-Out Cross-Validation Results 

The results of leave-one-out cross-validation in Table 3 and Fig. 9 indicate that 

case-based reasoning with adjustment (CBR-A) performs best in both accuracy of cost 

estimation and reliability of cost distribution when a design attribute (engine capacity) is 

specified for the concept in addition to performance attributes (automobile type and fuel 

efficiency).  On the other hand, regression analysis (RA) performs best in both accuracy 

of cost estimation and reliability of cost distribution when only performance attributes are 

specified for the concept.   

Although analogy-based cost estimation (ABCE) provides reasonably accurate 

cost estimations, cost distributions generated by analogy-based cost estimation are not 
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reliable; i.e., MRs are large whether or not the design specification (engine capacity) is 

defined.  This indicates that retrieving up to three automobiles similar to a concept (or 

four if there are automobiles with the same distance) may be too few to construct reliable 

distributions.   

Although case-based reasoning without adjustment (CBR) provides reasonably 

reliable cost distributions, cost estimation is not accurate; i.e., MMREs are large whether 

or not the design specification (engine capacity) is defined.  This indicates that in 

addition to retrieving a large number of automobiles similar to a concept, costs of 

retrieved automobiles need to be adjusted in order to accurately estimate the cost of a 

concept.   
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5. CONCLUSION AND FUTURE WORK 

 

This paper studied advantages of case-based reasoning approaches to estimate 

cost and model cost uncertainty of a new product concept when a knowledge base is 

homogeneous (i.e., no or few missing data).  The comparison of analogy-based cost 

estimation (ABCE), case-based reasoning without cost adjustment (CBR), case-based 

reasoning with cost adjustment (CBR-A), and regression analysis (RA) using the leave-

one-out cross-validation indicated that case-based reasoning with adjustment performed 

best when a design attribute (engine capacity) was specified for the concept in addition to 

performance attributes (automobile type and fuel efficiency).  

Analogy-based cost estimation provided reasonably accurate cost estimations, but 

it generated unreliable cost distributions. Case-based reasoning without adjustment 

provided inaccurate cost estimation although it generated reasonably reliable cost 

distributions.   

To further establish case-based reasoning with cost adjustment, optimum product 

retrieval methods (other clustering and classification methods) and their product retrieval 

criteria need to be studied together with the optimum number of design attributes for 

specifying a concept.  These case-based reasoning conditions need to be compared with 

regression analysis for accuracies of cost estimations and reliabilities of cost 

distributions.  These studies are left for future work. 

To estimate cost and model cost uncertainty of a product concept that does not 

exist in the past and the current marketplace (e.g., an innovation), further research is 

needed to improve the current case-based reasoning approach.  This avenue of research 
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may need to examine functionally similar but physically different products in multiple 

product categories and determine whether the costs of these products may be used to 

estimate the cost of the concept.  This is another topic for future work. 
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ABSTRACT 

 

Case-based reasoning (CBR) is an approach which uses old cases/experiences to 

understand and solve new problems. In CBR, a previous case similar to the current case 

is used to generate a solution for the current case and usually involves adaptation of the 

generated solution to suit the current case. The CBR approach consists of creating a 

knowledge-base (or database) containing past cases (products), defining a new case, 

retrieving cases similar to the new case, and adjusting the solution (cost) of the retrieved 

cases to the new case. This paper compares CBR approach with regression analysis 

approach in studying the effects of varying design attribute specifications on cost 

estimation accuracy and cost distribution reliability.  These approaches are compared and 
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effects of defining a concept with varying design attribute specifications are studied by 

applying leave-one-out cross-validation to a knowledge-base of automobiles. 

 

KEYWORDS: Cost, concept, case-based reasoning, clustering, histogram, 

distribution, leave-one-out cross validation 
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1. INTRODUCTION 

 

Product development involves a sequence of decision making steps that must be 

taken under uncertainty, including selection of a product concept. Factors influencing the 

choice of a concept include market size, market share, and cost.  

Two popular approaches are available to determine the cost of a product, the cost 

modeling approach and the regression analysis (RA) approach. The cost modeling 

approach estimates product cost by adding costs associated with various product 

attributes and processes. This estimate takes into account part costs, assembly costs, and 

overhead costs calculated from detailed product information such as the bill of material 

(BOM) and the design specifications [Ulrich and Eppinger 2004; Otto and Wood 2001; 

Pahl and Beitz 1996]. This approach requires detailed product design and manufacturing 

process information that is treated as an uncertainty in the concept selection stage; thus it 

may not be the optimal method to estimate and model the cost of the final concept.  

Different from the cost modeling approach, RA [Hamaker 1995; Wyskida 1995] 

estimates product cost from product-level information (i.e., product specifications), and 

does not necessarily require detailed design and manufacturing process information such 

as BOM, part costs, and assembly costs. RA approximates a cost estimation relationship 

(CER) in the form of an equation between one dependent variable (cost) and one or more 

independent variables (attributes influencing cost) [Michalek et al. 2004; Williams et al. 

2008; Shiau et al. 2009a]. Once the CER is established, the estimated cost of a concept is 

calculated by substituting its product information into the CER. Although, RA has a 

strong theoretical foundation [Neter et al. 1996], a study [Braxton and Coleman 2007] 
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identified various challenges in applying RA in practice. One of the many challenges is 

the poor quality of the database (e.g., missing data and outliers) which could lead to 

inaccurate cost estimates. 

 Analogy-based cost estimation (ABCE) is a relatively new approach that has 

been proposed to apply case-based reasoning (CBR) [Kolodner 1993] in cost estimation. 

Similar to CBR methodology, ABCE consists of creating a database containing past 

cases, defining a new case (concept), retrieving up to three cases similar to the new case, 

and adjusting the solution of the retrieved cases to the new case. ABCE does not rely on 

detailed design and manufacturing information and is thus particularly suitable for 

estimating the cost of a new product in the concept selection stage.  

ABCE has been used to estimate the cost of new software projects [Shepperd and 

Scofield 1997; Angelis and Stamelos 2000; Mendes et al. 2003; Auer et al. 2006; Jeffery 

et al. 2000] and to estimate costs of construction projects [Kim et al. 2004; An et al. 

2007]. ABCE has also been used in design problems [Bardasz and Zeid 1991; Bardasz 

and Zeid 1993; Roderman and Tsatsoulis 1993; Maher and Zhang 1993; Shiva Kumar 

and Krishnamoorthy 1995; Rosenman 2000; Wood and Agogino 1996; lee and Lee 2002; 

Al-Shahibi and Zeid 1998]. Lately, CBR (more than three similar retrieved cases) has 

been used to estimate cost of concept products [Takai 2009, Banga and Takai 2010].  

It has been a matter of great debate as to which is a better method for cost 

estimation, CBR or RA. Jeffery et al. 2000 compared the differences in accuracies of cost 

estimations between ordinary least squares regression and analogy-based estimation 

using data from multiple companies as well as company-specific data. Although no 

significant differences were observed between the two techniques as applied to  



        47 

 

 

company-specific data, ordinary least squares regression performed significantly better 

than analogy-based estimation in the case of multi-company data. Takai 2009 compared 

the accuracies of cost estimations between CBR approach and analogy-based cost 

estimation with and without a linear adjustment using a heterogeneous knowledge-base 

(i.e., with missing data).  The results showed that CBR provided slightly more accurate 

cost estimations than analogy-based cost estimations. Since a heterogeneous knowledge-

base was used, it was possible that RA was not able to provide accurate cost estimations 

and thus, no comparison was made between the two approaches. Banga and Takai 2010 

compared CBR approaches (with and without cost adjustment) with ABCE and RA. The 

analysis was carried out with a homogeneous knowledge-base (i.e., with no missing data) 

and the comparison was carried out using leave-one-out cross-validation technique. The 

accuracy of cost estimation and reliability of cost uncertainty modeling using the 

different methods was then established. The results showed that CBR with cost 

adjustment (CBR-A) performed better than RA when a design attribute (engine capacity) 

was specified for the concept in addition to performance attributes (automobile type and 

fuel efficiency). ABCE provided reasonably accurate cost estimations, but it generated 

unreliable cost distributions. CBR without adjustment provided inaccurate cost estimation 

although it generated reasonably reliable cost distributions.  

To further establish CBR with cost adjustment (CBR-A), this paper studies the 

optimum number of design attributes for specifying a concept. A comparison is made 

between CBR-A and RA approaches in studying the effects of varying design attribute 

specifications on cost estimation accuracy and cost distribution reliability. The CBR 

approach uses hierarchical clustering to retrieve from the knowledge-base as many 
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products as possible that are similar to the new concept. It also uses RA to parallel adjust 

the cost of the retrieved products and thus constructs a distribution for the cost of a 

concept.  

The remainder of this paper is organized as follows: Section 2 proposes a CBR 

methodology: constructing a knowledge-base, defining a product concept, retrieving 

similar products, adjusting the cost to specific attributes, and fitting a distribution to the 

adjusted costs; Section 3 compares the accuracy between CBR approach and RA using 

leave-one-out cross validation; Section 4 validates the results obtained in Section 3 using 

an example. Finally, Section 5 discusses directions for future work. 
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2. METHODOLOGY: CASE-BASED REASONING 

 

Figure 1 illustrates the four steps to the CBR methodology: construction of a 

knowledge-base that contains past and current products, definition of a concept, retrieval 

of products similar to the concept, and generation of a cost distribution for the concept.    

    

 

1. Construct knowledge-base

3. Retrieve 
    similar 
    cases 

4. Construct 
    distribution

2. Define automobile concept 
    

Concept with design 1 Concept with design 2

 

Fig. 1 Case-Based Reasoning Process Flow 

 

 

2.1 Knowledge-Base Construction 

The first step is to construct a knowledge-base of all the past and current products. 

The knowledge-base includes the products, together with their attributes and 

specifications. Attributes are the properties defining a product, and specifications are the 

specific values of those attributes. For example, in the case of an automobile, fuel 

efficiency is an attribute for which 25 miles/gallon is the specification. The attributes may 
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be numerical (quantitative) or categorical (qualitative). They may also be classified as 

performance or design attributes. Performance attributes describe the product 

functionality which directly influences customers’ purchasing decision. In contrast, 

design attributes describe the design characteristics and manufacturing methodology that 

makes the functionality possible. For example, fuel efficiency is defined as a performance 

attribute, and engine capacity is a design attribute. Table 1 shows a portion of the 

complete knowledge-base used in the analysis. 

 

 

Table 1 Portion of the Complete Knowledge-Base 

Automobile 

Type

 Fuel 

Efficiency 

(miles/gallon)

Engine 

Capacity 

(liter)

Cost($)

Porsche Boxster Convertibles 22 2.7 21,554

Toyota RAV4 4-cyl. SUV 23 2.4 20,994

Honda CR-V SUV 21 2.4 17,483

Mitsubishi Lancer ES Small Cars 25 2.0 14,332

Mercedes-Benz E320 Sedans 29 3.0 53,100

Chrysler Town & Country 

Limited
Minivans 17 4.0 37,595

Toyota Prius Touring Wagons 42 1.5 22,575

Dodge Dakota Pickups 14 4.7 29,053

Ford Mustang V8 Sporty 20 4.6 27,413  

 

 

The knowledge-base was constructed by benchmarking automobiles sold in the 

U.S. from 2003 through 2009. The knowledge-base contained 345 automobiles, with 86 

attributes. The attributes included automobile type (SUV, small car, sedan, minivan, 

wagon, pickup and sports car), number of cylinders, engine capacity, number of side 

airbags, acceleration, braking, fuel efficiency, roadside aid, and many more. The data on 
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the automobiles and their attributes were gathered primarily from credible sources on the 

internet, and the data on costs were collected from the annual reports of individual 

automobile companies available online. The annual automotive revenue and operating 

income were gathered directly from the annual reports and subsequently, automotive cost 

to the company was found by subtracting the operating income from the annual revenue. 

Automobiles costs were calculated as follows: 

 

           
revenuetotal

Costtotal
pricexCost                                                                          (1) 

 

Costs, although recorded in the knowledge-base, were not used in the initial CBR 

analysis. Costs were used only to construct a distribution for the concept once the 

automobiles similar to the concept were retrieved.  

 

2.2 Product Concept Definition 

The next step in the CBR approach is to define a product concept by attributes 

and corresponding specifications. These attributes could be identified by first conducting 

market surveys and hence, identifying customer needs and then converting these needs to 

corresponding performance attributes and specifications. In addition, the design attributes 

and specifications may be defined by designers.  

 

2.3 Product Retrieval 

The CBR method in this paper relies on hierarchical clustering analysis to retrieve 

products similar to the concept. Hierarchical clustering permits retrieval from the 
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knowledge-base of all products similar to the concept. It can be broken down into three 

steps: (1) Data matrix creation: If the knowledge-base contains I number of products and 

J number of attributes, then the data matrix, will have I rows and J columns. Initially, 

knowledge-base varies from i=1to I. When it is used for the purpose of cost estimation, 

however, an additional row is added for the concept; this row becomes i=0. Ones and 

zeros are used for the categorical attribute (type of automobile) to quantify whether types 

match or not between two automobiles. Table 2 shows a portion of the modified 

knowledge-base. 

 

 

Table 2 Portion of the Modified Knowledge-Base 
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i=0 Concept 0 1 0 0 0 0 0 0 25 2.4

i=1
Porsche 

Boxster 
1 0 0 0 0 0 0 0 22 2.7

i=2
Toyota RAV4 

4-cyl.
0 1 0 0 0 0 0 0 23 2.4

i=3 Honda CR-V 0 1 0 0 0 0 0 0 21 2.4

i=4
Mitsubishi 

Lancer ES 
0 0 1 0 0 0 0 0 25 2.0

i=5
Mercedes-

Benz E320
0 0 0 1 0 0 0 0 29 3.0

i=6

Chrysler 

Town & 

Country 

Limited

0 0 0 0 1 0 0 0 17 4.0

i=7
Toyota Prius 

Touring 
0 0 0 0 0 1 0 0 42 1.5

i=8
Dodge 

Dakota
0 0 0 0 0 0 1 0 14 4.7

i=9
Ford 

Mustang V8
0 0 0 0 0 0 0 1 20 4.6

Row 

Number

Type

 Fuel 

Efficiency 

(miles/gallon)

Engine 

Capacity 

(liter)
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(2) Distance matrix creation: The distance matrix is created from the data matrix 

by calculating the Euclidian between the concept and each product, and between each 

pair of products. To make sure that the process is not biased toward the units used and so 

that all the attributes have the same degree of influence for similar automobile retrieval, 

all the attributes are standardized. Table 3 shows the corresponding portion of the 

knowledge-base with the standardized values.  

 

 

Table 3 Portion of the Standardized Knowledge-Base 
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Concept -0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 0.6 -0.6

Porsche 

Boxster 
2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 0.1 -0.4

Toyota RAV4 

4-cyl.
-0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 0.2 -0.6

Honda CR-V -0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.1 -0.6

Mitsubishi 

Lancer ES 
-0.4 -0.4 2.6 -0.4 -0.4 -0.4 -0.4 -0.4 0.6 -0.9

Mercedes-

Benz E320
-0.4 -0.4 -0.4 2.6 -0.4 -0.4 -0.4 -0.4 1.3 -0.1

Chrysler 

Town & 

Country 

Limited

-0.4 -0.4 -0.4 -0.4 2.6 -0.4 -0.4 -0.4 -0.8 0.7

Toyota Prius 

Touring 
-0.4 -0.4 -0.4 -0.4 -0.4 2.6 -0.4 -0.4 3.5 -1.3

Dodge 

Dakota
-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 2.6 -0.4 -1.3 1.3

Ford 

Mustang V8
-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 2.6 -0.3 1.2

Type

 Fuel 

Efficiency 

(miles/gallon)

Engine 

Capacity 

(liter)
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The following equation expresses the standardization technique. 

       

              
a

aji

ji

x
s






,

,                                                            (2)    

 

where jis , is the standardized attribute value, jix ,  is the original attribute value, and 

a and a  are the average and standard deviation values respectively across an attribute a, 

where a varies from 1 to 3. For the first attribute type (a=1), the average and standard 

deviation values were calculated for the first eight columns because they all belong to the 

same attribute, type of automobile. For the remaining two attributes, the same were 

calculated across their respective columns. The total number of products in the 

knowledge-base, including the concept, is denoted by i, where i varies from 0 to 345 (i=0 

for the concept).  

Once the knowledge-base is standardized, the Euclidian distance,  between two 

products, 'p  and p is calculated as: 

 

 



J

j

jijij sswpp
1

2
,',)',(                                                                              (3) 

 

where jis ,  is the standardized attribute value of product p , jis ,' is the standardized 

attribute value of product 'p , and jw is the weight of attribute J. Here, weights for all 

attributes were set to 1. 
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(3) Similar product retrieval: Finally, hierarchical clustering is applied to the 

distance matrix to group products with similar attribute information and thus, obtains 

products similar to the concept. Hierarchical clustering is used to generate tree figures, 

also called as dendrograms, based on the distances calculated in the distance matrix. In a 

dendrogram, the height at which two products, two clusters, or a product and a cluster are 

grouped together indicates the distance between them. The smaller the distances between 

products, the more similar the products, and therefore, the lower their group level.  

The three methods most commonly used for hierarchical clustering are: the single 

linkage method, the complete linkage method, and the average linkage method. The 

single linkage method calculates, element by element, the distances between two clusters 

and uses the smallest distance as the distance between two clusters. On the contrary, the 

complete and average linkage methods use the largest and the average distances as the 

distance between two clusters respectively. In this analysis, average linkage has been 

used as it has been claimed to have a statistical consistency property which is violated by 

the other two methods [Kelly and Rice 1990].  

Figure 2 shows an example dedrogram for some Concept C. The linkage heights 

are labeled H1, H2, and H3. Height H1 corresponds to the linkage height of the similar 

automobiles grouped one level below the concept; H2 corresponds to the linkage height 

one level above the concept; and H3 corresponds to the linkage height two levels above 

the concept. The term H1 represents the difference in linkage heights between H2 and 

H1 (∆H1=H2-H1), and so on. The largest differences in linkage heights, ∆H is used to 

determine products similar to the concept and are thus retrieved from the knowledge-base 

for cost estimation purpose. In figure 2, ΔH1 is larger than ΔH2 and thus, the two 
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products P2 and P3 are grouped with concept C and are thus retrieved from the 

knowledge-base.   

 

 

  

       

 

 

 

Fig. 2 Example Dendrogram 

 

 

2.4 Cost Adjustment and Distribution Fitting 

The final step in the CBR is to generate cost distributions after adjusting costs of 

the retrieved products. Three cost adjustment methods may be used to estimate the cost of 

a concept: no adjustment, linear adjustment, and parallel adjustment. In the past, the CBR 

applications have used no adjustment. They have calculated point estimates (or averages) 

from the cost of retrieved products without first adjusting the cost. Linear adjustment first 

identifies the attribute of the retrieved products that is most closely correlated with the 

cost, and then calculates a ratio of the attribute specification between the new concept to 

that of a retrieved product. Finally, it adjusts the cost of the retrieved product in 

proportion to this ratio. Point estimates are then obtained from these adjusted costs. 

H1

H2 H3

∆H2

∆H1
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  The CBR proposed here uses parallel adjustment. In this, a regression model is 

obtained by applying a regression analysis to the costs of the retrieved products, and then, 

these retrieved costs are adjusted parallel to the regression model.  Finally, these adjusted 

costs are used to estimate the cost and generate the cost distribution of the concept. The 

regression model could be a line (in the case of a single cost-relevant attribute) or a 

surface (in the case of multiple numeric cost-relevant attributes).  Figure 3 illustrates 

these three cost adjustment methodologies in the case of a single numeric cost relevant 

attribute. In this paper, normal distribution has been used, but other distributions may also 

be used.   
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Fig. 3 Cost Adjustment 

 

 

Once the costs of the retrieved products are adjusted, a distribution must be fitted 

to the adjusted costs. Generally, histograms of the desired property are constructed first, 
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and a distribution is then fitted to them. Normal distribution is used most often, but other 

distributions may also be used. The present analysis uses normal distribution to explain 

the distribution of the concept cost. 
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3. COMPARISON OF CBR-A AND RA FOR COST ESTIMATION AND     

COST UNCERTAINTY MODELING 

 

Using a knowledge-base of automobiles, CBR-A is compared with RA for 

accuracies of cost estimations and reliabilities of cost distributions for four levels of 

design specifications: no design attribute, one design attribute, two design attributes and 

three design attributes. The design attributes chosen for the analysis were engine capacity 

(liter), accident alert system (available, not available), and type of supercharging (turbo, 

super, non-turbo and non-super). While the first design attribute is numerical, the 

remaining two are categorical.  

The design attributes were chosen as a result of stepwise regression analysis. The 

costs were regressed against the complete set of design specifications to find the most 

significant design attributes. The p values of these attributes were then checked. Finally, 

the attributes with the lowest three p value, in this case engine capacity followed by 

accident alert system and finally, type of supercharging were identified. The purpose of 

using a design attribute with the lowest p values (i.e., the attribute that is the most 

significantly associated with cost) was to eliminate subjective judgment in design 

attribute selection.  

However, the performance attributes, namely, automobile type and fuel efficiency 

were chosen because they had been identified as critical to modeling consumer demand 

for automobiles in the past. McCarthy 1996 proposed that vehicle size and type have a 

direct impact on customer decisions. Train and Winston 2007 have discussed how 

Japanese automakers gained an upper hand over US manufacturers because of the higher 
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fuel efficiency of their vehicles. Berry et al. 1995, 2004 have proposed that higher fuel 

efficiency and vehicle size drive customer demand. These studies suggest, therefore, that 

these two performance attributes have significant impact on customers’ automobile 

purchasing decisions.  

The reference method was regression analysis (RA). It was performed on all 

automobiles in the knowledge-base and the costs of all automobiles were adjusted 

parallel to the regression model.  The second approach used CBR with cost adjustment 

(CBR-A). CBR analysis was applied to the complete knowledge-base, similar 

automobiles were retrieved, and finally the costs of the retrieved automobiles were 

adjusted parallel to a regression model obtained from applying a regression analysis to 

the retrieved automobiles.   

 

3.1 Leave-One-Out Cross-Validation for Accuracy of Cost Estimation and         

Reliability of Cost Distribution 

 

To compare cost estimations and cost, a leave-one-out cross-validation method 

was used. A leave-one-out is a validation technique whereby each data-point is removed 

from the knowledge-base and the remainder of the data-points are used to predict the 

desired property (i.e., cost) of the removed data-point. The data-point is then returned to 

the knowledge-base and the next data-point is removed. The procedure is repeated until 

all the data-points have been covered.  

In this study, an automobile batch consisting of 85 SUVs was used. One of the 85 

SUVs was removed from the original knowledge-base consisting of 345 automobiles, 

assuming it was a new concept, and CBR-A and RA was applied to the remaining 344 

automobiles. To study the effects of varying design specifications for each method, leave-
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one-out cross-validation was performed on the same knowledge-base four times (four 

conditions) as shown in table 4. First, it was performed with no design attributes and just 

the two performance attributes, automobile type and fuel efficiency. Second time, it was 

performed with the same two performance attributes and an additional design attribute, 

engine capacity (lowest p value). Third time, it was performed with the same two 

performance attributes, engine capacity and an additional design attribute, accident alert 

system (second lowest p value). Finally, it was performed with the same two performance 

attributes, engine capacity, accident alert system and an additional design attribute, type 

of supercharging (third lowest p value). 

 

 

Table 4 Leave-One-Out Cross-Validation Conditions 

Performance Attributes Used Design Attributes Used

Condition 1 Automobile Type, Fuel Efficiency None

Condition 2 Automobile Type, Fuel Efficiency Engine Capacity

Condition 3 Automobile Type, Fuel Efficiency Engine Capacity, Accident Alert System

Condition 4 Automobile Type, Fuel Efficiency
Engine Capacity, Accident Alert System, 

Type of Supercharging
 

 

 

To evaluate the accuracy of a cost estimation, estimated cost of each concept Ĉ n 

(n=1 through 85) is compared with the actual cost Cn. To evaluate the reliability of a cost 

distribution, cost distribution is constructed and evaluated by how well this distribution 
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contains the actual cost Cn.  This procedure is repeated 85 times (n=1 through 85), each 

time assuming a new SUV as the concept. 

The accuracy of a cost estimation is compared in terms of ―mean magnitude of 

relative error‖ (MMRE) in Eq. 5.  The closer the MMRE is to zero, the more accurate is 

the cost estimation. 
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MMRE                                                                                (4)  

 

The reliability of a cost distribution is measured in terms of a frequency that 

whether the actual cost of the concept, Cn falls within a 95% data range (2.5 and 97.5 

percentile values) of a normal distribution constructed using the remaining data-points. 

―Reliability of distribution‖ (R) is defined in Eq. 5, in which In=1 if Cn is within the 95% 

range and In=0 if otherwise. The distribution is said to be wider than optimum if R is 

greater than 95% and the distribution is said to be narrower than the optimum if R is 

lesser than 95%. Also, ―magnitude of reliability‖ (MR) in given Eq. 6 and is used as the 

main parameter to compare reliability. By definition, the closer the MR is to zero, the 

more reliable is the cost distribution.  

 

   100
85

1 85

1

 


n

n

IR                                                                            (5) 

   95MR R                                                                                  (6) 
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Table 5 summarizes the leave-one-out cross-validation results and Fig. 5 shows 

two plot measures: MMRE to evaluate accuracies of cost estimations and MR to evaluate 

reliabilities of cost distributions. Also, fig. 5 in appendix shows the dendrograms (for one 

concept) obtained for CBR-A for the different cases. The similar automobiles retrieved 

for CBR-A for all the cases were of type SUV. For the first two cases with no design 

attributes and one design attribute, all the 85 SUVs similar to the concept were grouped 

together. However, for the remaining two cases with two and three design attributes, the 

similar SUVs were grouped into two and three clusters respectively. It is interesting to 

note that the individual reliability for cluster three was the lowest (zero), in case of 

analysis with three design attributes. 

 

 

Table 5 Leave-One-Out Cross-Validation Results 

CBR-A RA

MMRE (%) 19.03 18.39

MR (%) 2.06 0.88

MMRE (%) 15.90 16.42

MR (%) 0.88 2.06

MMRE (%) 15.00 15.36

MR (%) 2.06 1.47

MMRE (%) 14.33 14.74

MR (%) 5.59 1.47

Two Design 

Attributes

Engine Capacity, 

Accident Alert System

Three Design 

Attributes

Engine Capacity, 

Accident Alert System, 

Type of Supercharging

No Design Attribute None

One Design 

Attribute
Engine Capacity

Number of Design 

Attributes
Design Attributes Added Measure

Methods
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Fig. 4 leave-One-Out Cross-Validation Result 

 

 

3.2 Discussion of the Leave-One-Out Cross-Validation Results  

The results of the leave-one-out cross-validation in Table 3 and Fig. 4 indicate 

that CBR-A performs best in both accuracy of cost estimation and reliability of cost 

distribution when one design attribute (engine capacity) is specified for the concept in 
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addition to performance attributes (automobile type and fuel efficiency). On the other 

hand, RA performs best in both accuracy of cost estimation and reliability of cost 

distribution when only performance attributes are specified for the concept.   

Furthermore, CBR-A performs better in accuracy of cost estimation when 

compared to RA with each successive addition of a design attribute.  
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4. EXAMPLE 

 

To validate the results obtained in Section 3, an automobile was considered from 

the batch of 85 SUVs as shown in Table 6.  

 

 

Automobile Type
Fuel Efficiency 

(miles per gallon)

Engine Capacity 

(liter)

 Accident alert 

system

Type of 

Supercharging

Concept SUV 18 2.3 None Turbo
 

Fig. 5 Concept Definition 

 

 

The fuel efficiency and engine capacity for the considered automobile were close 

to the median values for the complete batch (85 SUVs), therefore it was chosen as an 

ideal concept.  

The next step was to apply CBR-A (explained earlier) to the chosen concept 

varying the design attribute selection. The hierarchical clustering analysis was applied 

and products similar to the concept were retrieved. Figure A of the Appendix shows the 

resulting dendrograms. Once similar automobiles were identified, the next step was to 

adjust the costs and fit a distribution to those costs. Figure B shows the distribution 

curves obtained for the two methods for the four design attribute selection conditions. 

Table 6 summarizes five statistics: the number of retrieved automobiles (n), average 

(avg), standard deviation (SD), minimum (min), and maximum (max), of the costs of the 
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retrieved automobiles (after cost adjustment) in the two methods for four design attribute 

selection criteria. Figure 6 plots four statistics: avg, SD, min, and max. 

 

 

Table 6 Data for the Cost Distribution Curves 

Number of Design 

Attributes
Design Attribute Selection

n = 85 n = 345

avg = 31,745 avg = 29,763

No Design Attributes None SD = 8,977 SD = 12,115

min = 16,945 min = 6,826

max = 59,101 max = 89,879

n = 85 n = 345

avg = 21,629 avg = 17,372

One Design Attribute Engine Capacity SD = 6,958 SD = 9,242

min = 10,882 min = -7,107

max = 46,926 max = 63,402

n = 60 n = 345

avg = 20,692 avg = 16,673

Two Design Attributes Engine Capacity SD = 5,484 SD = 8,549

Accident Alert System min = 12,687 min = -10,880

max = 34,540 max = 59,773

n = 3 n = 345

Engine Capacity avg = 23,541 avg = 21,673

Three Design Attributes Accident Alert System SD = 1,224 SD = 8,226

Type of Supercharging min = 22,317 min = -4,835

max = 24,765 max = 65,717

CBR-A RA
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(a) Case-Based Reasoning with Cost Adjustment (CBR-A) 
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(b) Regression Analysis (RA) 

Fig. 6 Comparison of Various Approaches 
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Comparing the two methods for cost distribution reliability, standard deviation is 

smaller in CBR-A for all the cases, especially for the last two cases (two and three design 

attributes), which indicates that CBR-A generates unreliable distributions (too narrow) 

for cost uncertainty modeling. This is because the number of retrieved automobiles is 

much smaller compared to the first two cases. This result can also be observed from the 

cost distribution curves for CBR-A for the last two cases (Figure B in appendix). It is 

interesting to note that the individual reliability for cluster three was the lowest (zero), in 

case of analysis with three design attributes. 

Comparing the two methods for cost estimation accuracy, we observe negative 

minimum values in RA for all the design cases except for the first case (Figure B). Since 

the complete knowledge-base was used for the analysis and some of the data-points could 

be qualified as potential outliers, RA was unable to cope with it [Braxton and Coleman 

2007]. On the other hand, CBR-A retrieved the similar automobiles before adjusting the 

costs, and thus avoiding the under-adjustment.  
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5. CONCLUSION AND FUTURE WORK 

 

This paper studied the optimum number of design attributes in defining a concept 

using case-based reasoning with cost estimation (CBR-A) to estimate cost and model cost 

uncertainty of a new product concept. A comparison was made between CBR-A and 

regression analysis (RA) approaches using a homogeneous (i.e., no or few missing data) 

knowledge-base and a leave-one-out cross-validation technique was used for the 

comparison. The results showed that CBR-A performed best when one design attribute 

(engine capacity) was specified for the concept in addition to performance attributes 

(automobile type and fuel efficiency). Further, it was observed that CBR improved at cost 

estimation but became worse at cost distribution reliability with each successive addition 

of a design attribute.   

To further establish CBR-A, other product retrieval methods (other clustering and 

classification methods) and their product retrieval criteria need to be studied together 

with the optimum number of design attributes for specifying a concept.  These case-based 

reasoning conditions need to be compared with regression analysis for accuracies of cost 

estimations and reliabilities of cost distributions.  These studies are left for future work. 

To estimate cost and model cost uncertainty for a new product of a type not yet 

introduced to the market, further research in the current CBR approach is needed.  The 

next step would be to examine functionally similar but physically different products in 

multiple product categories and determine whether the cost of these products may be 

used to estimate cost of the new product.  This is another topic for future work. 
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(a) Concept 0           (b) Concept 1                 (c) Concept 2              (d) Concept 3 

Fig. A Dendrograms for Automobile Retrieval 
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Fig. B Cost Distributions 
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