
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1970

Next-state equation generation for asynchronous sequential Next-state equation generation for asynchronous sequential

circuits - normal mode circuits - normal mode

Gregory Martin Bednar

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Bednar, Gregory Martin, "Next-state equation generation for asynchronous sequential circuits - normal
mode" (1970). Masters Theses. 5467.
https://scholarsmine.mst.edu/masters_theses/5467

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229276388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5467?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5467&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

NEXT-STATE EQUATION GENERATION

FOR ASYNCHRONOUS SEQUENTIAL CIRCUITS - NORMAL MODE

BY

GREGORY MARTIN BEDNAR, 1944-

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

1970

Approved by

ABSTRACT

This paper describes the known methods of generating

next-state equations for asynchronous sequential circuits

operating in normal fundamental mode. First, the methods

that have been previously developed by other authors are

explained and correlated in a simple and uniform language

in order that the subtle differences of these approaches

can be seen. This review is then followed by a develop-

ment of a new method for generating minimal next-state

equations which has some advantages over the previous

methods.

From the comparison of the previous known methods,

it is noted that any one of these methods may be desirable

for certain designs since each has some advantages that

the others do not have. However, these methods also have

limitations in that some methods can only be used with

particular types of assignments. Also, as flow tables

become larger the amount of work required to use some of

these methods becomes excessive and tedious.

The method developed here is a simple and straight­

forward approach which can be used for any unicode, single

transition time assignment and will easily lend itself to

computer application. The heart of this method emanates

from the role that the Karnaugh map plays in the conven­

tional approach for generating the next-state equations.

ii

iii

The main advantage of this method seems to be its capability

and proficiency in handling large flow tables.

iv

ACKNOWLEDGEMENT

The author wishes to express his appreciation and

extend his thanks to Dr. James H. Tracey for his assistance

and guidance throughout this project.

The author also wishes to express his gratitude to

his family for their interest and constant encouragement

rendered during the writing of this paper.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

LIST OF ILLUSTRATIONS

I. INTRODUCTION

II. BASIC CONCEPTS AND TERMINOLOGY

A. Description of Asynchronous
Sequential Circuits

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.

Flow Table
Fundamental Mode
Normal Mode
Internal State Assignment
Transition
Direct Transition
Critical Race
Uni-code Single Transition
Time Assignment
State Table
Transition Table

B. Conventional Approach of Generating
Next-State Equations

III. REVIEW OF THE KNOWN METHODS FOR GENERATING
NEXT-STATE EQUATIONS

A. Method # 1- G. K. Maki, J. H. Tracey
and R. J. Smith

B. Method # 2 - D. P. Burton and
D. R. Noaks

c. Method # 3 - C. J. Tan

1. Basic Theory of Tan's Procedure
2. Tan's Specific Iterative

Procedure

v

Page

ii

iv

vii

1

3

3

5
6
6
7
7
7
7

8
8
8

9

14

14

28

46

47

58

IV. NEW METHOD OF GENERATING NEXT-STATE
EQUATIONS

V. CONCLUSION

VI. BIBLIOGRAPHY

VII. VITA

vi

Page

76

94

101

102

Figure

1

2

3

4 (a)

4(b)

5

6

7

8

9

10

11

12

13

14

15

16 (a)

16(b)

17

18

LIST OF ILLUSTRATIONS

Model of an Asynchronous Sequential
Circuit

Flow Table for an Asynchronous
Sequential Circuit

Flow Table

State Table

Transition Table

Karnaugh Maps for Y1

Karnaugh Map Showing a Transition Pair
Subspace

Calculating Destination Set Subspace

Calculating the Unspecified State

Flow Table Without a State Assignment

Karnaugh Map for Y1 Under I 2

Columnar Karnaugh Map Showing Next-State
Entries Under Input I 1 of the Flow Table
in Figure 12

Flow Table

Determination of Relevant Dichotomies

Complete Cover of Relevant Dichotomies

Flow Table

Serial Decomposition

Parallel Decomposition

Flow Table

Karnaugh Map

vii

Page

3

6

9

10

10

11

17

18

19

29

33

53

54

56

57

60

71

71

78

78

I. INTRODUCTION

Sequential switching circuits are those circuits

whose operation and output depend on both the present and

previous inputs. These circuits can be further classified

into two categories called synchronous and asynchronous

sequential circuits. Synchronous circuits are those

circuits whose operation is timed or synchronized by

clock pulses. Conversely, asynchronous circuits are not

timed by clock pulses and offer the advantage of faster

operation, being limited only by the speed of the circuit

components involved in any particular operation.

In recent years, considerable work has been done in

the area of generating next-state equations for asynchro­

nous sequential circuits. Although this work has been

accomplished by a number of people, it has been primarily

done on an individual basis without knowledge of each

other's efforts. The intent of this paper will be twofold.

First, the major works of other authors in this area will

be explained in a simple and uniform language so that the

subtle differences of these approaches can be seen and

correlated. Although the developments of the methods

presented here may differ somewhat from the original

presentations, the basic ideas of the credited authors

are used. Second, a development of a new method for

1

generating next-state equations will be given which has

advantages over the other methods.

The next section of this paper will review the basic

concepts of asynchronous sequential circuit theory. A

reader who is qualified in this area may skip this section.

2

II. BASIC CONCEPTS AND TERMINOLOGY

A. Description of Asynchronous Sequential Circuits

Asynchronous sequential circuits are usually repre-

sented by a block diagram of the type shown in Figure 1.

i

i
Inputs

i

Present

State

Vari-

ables

1

2

p

0

0

0

yl

Y? .
0

y 0

Pure

Combinational

Logic

i Delay I
I .

0

•
I Delay I
I

J Delay I
L I

Outputs

{ Delay I _9

I 1

J
1 Delay I

0
0

0

{Delay I
J

yl

Y,..,
0

0

- Next
0 y

n Stat e

Vari ables

3

Figure 1. Model of an Asynchronous Sequential Circuit

The delay shown in Figure 1 is the time required for the

signals to propagate through the combinational logic and

is inherent in the physical circuit components. Since pure

combinational logic (i.e., logic with no delay) can be

represented mathematically by Boolean algebra in the form

of output and next-state equations, the delay is considered

4

to be removed from the logic and lumped separately as shown.

In a simple mathematical model of an asynchronous circuit,

the delay associated with the output logic is ignored

while the delay of the next-state logic must be kept,

since it is part of a required feedback loop. It is this

lumped delay in the feedback loop that provides the

interpretation or physical distinction between the next­

state and present-state variables. The value of the next­

state variable will become the present state after some

delay in time.

Attention will now be directed toward obtaining the

next-state equations for the model shown in Figure 1. If

there are n internal-state variables and m input states

for such a model, the general form for the next state

equations will be:

Yl = fll(yl,y2,···,yn)Il + fli(yl,y2,···,yn)I2 +

+ flm(yl,y2,···,yn)Im

Y 2 = f 21. (Y 1 'Y 2 ' • • • 'Y n) I 1 + f 2 2 (Y 1 'Y 2 ' · • • 'Y n) I 2 + • • •

+ f2m(yl,y2,···,yn)Im

Yn = fnl(yl,y2,···,yn)Il + fn2(yl,y2,··· ,yn) 1 2 +

+ fnm(yl,y2,···,yn)Im (1)

where y 1 ,y 2 ,···,yn are the present state varia~les;

Y1 , Y2 , ···, Yn are the next-state variables; r
1

, r
2

,

Im are the input states; and f 11 , f 12 ,

tions of the internal-state variables.

f are func­nm

From hereafter

the next-state equations will be written in this form.

In this paper, minimization of these equations will be

done with respect to the function of the internal-state

variables only and will not consider codings of the input

states.

General information on this class of circuits can be

found in references [1] and [2].

1. Flow Table

The flow table is one of the principal means of

describing the operation of an asynchronous sequential

circuit. As shown in Figure 2, it is a two-dimensional

array consisting of next-state entries, with its columns

representing the input states and its rows representing

the internal states of the circuit. (The flow table

usually shows the output states, too, but in this paper

the output states are not relevant and therefore will

not be shown in the flow table.) The row in which the

circuit is currently operating is often referred to as the

present internal state or just the present state. For

example, if the present state of the circuit described by

Figure 2 is c and then an input of r 2 is applied, the next

state or state that the circuit will go to is e.

5

6

Il I2 Input States

a c 0
Internal b c 0
States c 0 e

d 0 a

e d 8
Figure 2. Flow Table for an Asynchronous Sequential Circuit

If a next-state entry is found to be the same as

the internal state representing that row, then the internal

state is said to be stable with respect to that input

column and is denoted by a circled next-state entry.

Similarly, uncircled entries denote unstable internal

states.

2. Fundamental Mode

An asynchronous sequential circuit is said to be

operating in fundamental mode if the inputs are never

changed unless the circuit is in a stable state.

3. Normal Mode

An asynchronous sequential circuit is said to be

operating in normal mode if each unstable state leads

directly to a stable state.

4. Internal-State Assignment

An internal-state assignment is a binary coding for

the internal states of a sequential circuit. For an

asynchronous circuit is must be constructed in a manner

such that the circuit will function according to flow

table specifications, independent of variations in trans­

mission delays within the circuit.

5. Transition

The change of values of state variables from the

internal-state code associated with the present state to

the code associated with the next state is said to be a

transition from the present state to the next state.

6. Direct Transition

A transition whereby all state variables that are to

undergo a change of state are simultaneously excited is

direct transition.

7. Critical Race

A critical race is an undesirable feature of an

internal-state assignment which occurs when the binary code

of the next internal state differs from the code of the

present state in two or more bit positions, and there is

a possibility that unequal transmission delays may cause

the circuit to reach a stable state other than the one

intended.

7

8. Uni-code Single Transition Time Assignment

A state assignment is called a single transition

time (STT) assignment when all transitions are direct

transitions without critical races. Further, if only a

single coding is associated with each state, it is

called a uni-code single transition time (USTT)

assignment.

9. State Table

A state table differs from a flow table in that a

state table shows all of the internal states that a

sequential circuit can assume along with corresponding

next-state entries, whereas a flow table indicates only

the initial and final states. For example, a flow table

that has seven internal states and is coded with a four­

variable internal-state assignment may have a correspond­

ing state table with sixteen internal states. Of these

sixteen states, those which are not involved in any tran­

sitions in the state table are referred to as the don't­

care or unspecified states.

10. Transition Table

A transition table has the same form as the state

table except that the next-state entries are replaced with

their respective codes.

8

B. Conventional Approach of Generating Next-State Equations

Assume that the flow table with the USTT assignment

shown in Figure 3 describes the operation of a normal

fundamental mode asynchronous sequential circuit.

yl y2 y3 Il I2 I3

0 0 0 a 0 b 0
1 1 0 b c C0 C0
1 0 0 c 0 b a

0 0 1 d a 0 e

0 1 1 e 0 d 0
Figure 3. Flow Table

In using the conventional approach of generating the

next-state equations [1] it is necessary to first con-

struct the state and transition tables as shown in Fig-

ure 4. As previously mentioned, when constructing these

tables all possible internal-state codings must be listed

along with their corresponding next-state entries. Also

since all transitions must be direct and hence carried out

in a single transition time, it is necessary to insure

that no critical races can occur. Therefore, to prevent

a critical race during the transition from states a to b

under input I 2 , the intermediate state coded as 010 in the

state table must have state b as its next-state entry

under I 2 •

9

10

yl y2 y3 Il I2 I3

0 0 0 a 0 b G
l l 0 b c @ ~
l 0 0 c 0 b a

0 0 l d a 0 e

0 l l e 0 d 0
0 l 0 b

l 0 l

l 1 1

(a)

yl y2 y3 Il I2 I3

0 0 0 a 8 110 ~
l 1 0 b 100 GB @
l 0 0 c ~ 110 000

0 0 1 d 000 G£Y 011

0 1 l e @ 001 @)
0 1 0 110

1 0 1

1 1 1

(b)

Figure 4. (a) State Table, (b) Transition Table

The next step is to construct Karnaugh maps from

the transition table and then derive the next-state

equations, Y. 's, where i represents the ith state variable.
l

The Karnaugh maps for Y1 are shown in Figure 5.

Y1 under I 1
(denoted as Y1 , 1)

0

1

00

0 - 1 0

0 0 ~ -
Y1 under I 3

(denoted as Y1 , 3)

Y1 under I 2
(denoted as Y1 , 2)

Figure 5. Karnaugh Maps for Y1

By grouping the ones in the Karnaugh maps the sum-of-

products form of a Boolean expression for Y1 can be

derived:

yl = Yl,l + yl 2 + Yl,3
I

Yl,l = ylil

Yl,2 = y3I2

Yl,3 = yly2I3

Therefore,

11

Similarly, the equations for Y2 and Y3 are:

Definition: A y-variable expression is said to

cover a set of states if for those states the expression

is true (logical 1) and for all other states the expres­

sion is false (logical 0).

This definition implies that the above next-state

equations cover those states whose corresponding next-

state variable, Y., has a value of one in some input
l

column.

It would now be good to analyze the foregoing pro-

cedure to determine what has actually taken place and

why it works. The construction of the state and transi-

tion tables introduce the unspecified (or don't-care)

states which are later used in the Karnaugh maps to

obtain a reduced form of the next-state equations.

Another main point that should be noted from these tables

is that all states which lead to the same stable state

12

under a particular input have identical next-state entries.

This observation plays a prominent role in some of the

other procedures to be discussed later. Next, it is

observed that by using the Karnaugh map two important

feats are accomplished:

13

1) It permits the grouping of all ''1" next-state

variable entries into subcubes which can easily

be covered by subsets of internal-state variables.

These subcubes are the largest possible sub-

cubes which can be selected, such that they do

not contain any ''0" next-state variable entries.

(However, they may contain don't-care entries.)

Intuitively speaking, these groupings represent

the states involved in those transitions in

which the corresponding y-variable of the stable

state is one.

2) It provides a minimal y-variable expression that

covers those states which have a ''1" for their

Y. entry.
l

This expression is formed from the

internal-state variables that cover the subcubes

obtained in 1) above.

Keeping these basic ideas in mind will provide

insight in the development of the more sophisticated methods

to be discussed later.

The main disadvantage of using the conventional

method to generate the next-state equations is the amount

of time needed to construct the state table, transition

table, and Karnaugh maps, especially for large flow tables.

III.

A. Method # l

REVIEW OF THE KNOWN METHODS FOR

GENERATING NEXT-STATE EQUATIONS

G. K. Maki, J. H. Tracey, and R. J. Smith

Maki, Tracey and Smith [3] jointly developed a means

to obtain the next-state equations directly from the flow

table and the internal state assignment. The advantage

of this method over the conventional approach is that the

state table, transition table, and Karnaugh maps do not

have to be explicitly formed.

Definition: A destination set of a flow table

column is the set of all unstable states leading to the

same stable state, together with that stable state.

This definition implies that a destination set is

a collection of all those states under a particular input

that have the same next-state entry.

for the flow table in Figure 3 are:

DI
1

a d

b c

e

DI
2

a b c

d e

The destination sets

14

where Dr. deontes the set of destination sets under input
l

I. and the stable state of each destination set is
l

underlined.

Definition: Each pair of states consisting of one

unstable state and the stable state of the destination

set is called a transition pair, since there is a transi-

tion from the unstable state to the stable state.

Note that a destination set may contain one or more

transition pairs. For example, the destination set a d

under r
1

only contains one transition pair while the

destination set a b c under r 2 consists of two transition

pairs, a b and c b.

Definition: An internal state s is said to be an
r

15

intermediate state between states s. and s. of a transition
l J

pair if the state variables may assume the value associated

with the internal states during the transition from s. r 1

to s ..
J

Definition: A transition pair subspace is a portion

of the total state space having a span that consists of

all possible internal states, both terminal and inter-

mediate, which can be assumed by the circuit during a

transition. This subspace is represented by a product

function of the internal state variables.

16

Consider the transition pair a b from the destination

set a b c under input I
2

. The internal state coding for

states a and b are 0 0 0 and l l 0 respectively. During

the transition between states a and b, any of the internal

states 0, where the dashes represent all combinations

of l's and o•s, could be assumed momentarily due to

possible unequal transmission delays. To insure that the

circuit reaches the proper terminal state, all the states

represented by - - 0 must have the next-state entry of

l l o. It can be seen that this is the case in the transi-

tion table of Figure 4(b). These states form the transition

pair subspace which is expressed as y 3 .

The method developed by Maki, Tracey and Smith [3]

for representing the transition pair subspace as a product

of internal-state variables is as follows:

l) List the codes assigned to the states of the

transition pair.

2) The function that will represent the transition

pair subspace will be a product of the internal-

state variables. If the internal-state variable

y. is a l for both states of the transition pair,
J

it will appear uncomplemented in the product

function. If the internal-state variable yj

appears as a 0 in both of the states of the

transition pair, its complement will appear in

the product function. If the internal-state

variable y. appears as both a l and a 0 in the
J

states of the transition pair, it is considered

a don't-care variable and does not appear in the

product expression.

Therefore, using these rules, - - 0 is expressed as y
3

.

The transition pair subspace is equivalent to the

subcube spanned by the transition pair in a Karnaugh map.

From the Karnaugh map of Figure 6, it is seen that the

transition a to b will take place within the subcube

covered by y 3 , where states 0 l 0 and l 0 0 could be inter-

mediate states of the transition. This agrees with the

result obtained earlier for the transition pair subspace.

00 01 11 10

0 (a - b c)

l d e - -

Figure 6. Karnaugh Map Showing a Transition Pair Subspace

17

Definition: A destination set subspace is that portion

of the total state space consisting of all possible internal­

states that the circuit could assume during transitions

between states within the destination set.

The expression covering a destination set subspace

is equal to the sum of the transition pair subspaces, where

each transition pair subspace is represented as a product

of the internal-state variables. Using the destination set

18

a b c under input r 2 , Figure 7 shows the steps 1n finding

the destination set subspaces. Whereas the destination

set itself represented all terminal states of a flow table

Destination Transition
Set Pairs

- --
a b c a b
~

c b

Transition Destination
Pair Sub spaces Set Subspace

- --~

0 - - or y3
~ ~

1 0
~ y3 + yly3 - or yly3

Figure 7. Calculating Destination Set Subspaces

column that have the same next-state entry, the destination

set subspaces represent all specified internal states of

a particular input column, both terminal and intermediate

states, that have the same next-state entry. Therefore,

destination set subspaces perform one of the functions

of the state table in the conventional approach since the

state table also designates all specified internal states.

Another main function of the state table, which will now

be considered, is the designation of all the unspecified

states (don't-cares) of the circuit. In order to obtain

19

the reduced form of the next-state equations, it is necessary

to use the unspecified states.

A sum-of-products expression which logically repre-

sents all the specified states of an input column can be

obtained by summing the expressions for the destination

set subspaces of that column. It then follows that the

unspecified states of that column would simply be the

logical complement of this expression. The simplified

expression for the unspecified states under input column r 2
is shown in Figure 8.

d e

Destination Set
Sub spaces

Specified States
under r 2

Unspecified
States under r 2

Figure 8. Calculating the Unspecified States

The essential information contained in the state table of

the conventional approach is now available in the form of

logical y-variable expressions.

To find the next-state equation Y., only those group­
l

ings of internal states which have a "l'' next-state entry

with respect toY. are considered.
l

These groupings of

internal states correspond just to those destination set

subspaces in which the yi variable in the binary coding

for the stable state is a l. Again. this is true because

all next-state entries of the internal states represented

by the destination set subspaces are the same, namely that

of the stable state. So for example, if y 1 in the stable

state is 1, then all entries of the next-state variable

Y will be 1 for those states represented by the respec-
1

tive destination set subspaces.

Definition: A destination set will be called a

1-destination set with respect to variable y. of y. = 1
l l

for the stable state and a a-destination set if y. = 0
---- l

for the stable state.

To complete the construction of the next-state

equations it is only necessary to sum the logical expres-

sions representing the subspaces of those 1-destination

sets that are in the same input column along with the

expression representing the unspecified states of that

column. This will insure that the resulting next-state

expression representing that column will be in reduced

form after a simplification procedure is applied. Retain-

ing the identity of the input column with the simplified

expression, the process is then repeated for the remain-

ing input columns at which time the final equation will

be complete.

The process of combining the expressions represent-

ing the subspaces of the 1-destination sets with the

expressions representing the unspecified states of each

column is analogous to the function of the Karnaugh maps

20

in the conventional approach. With the Karnaugh map,

those states which had 1-entries for Y. were grouped with
l

unspecified states in order to obtain the most minimal

form of the next-state expression.

To help provide a better understanding, a more

succinct picture of the foregoing method will be given by

first summarizing the steps of the procedure and then

following with an example.

1.

Maki-Smith-Tracey
Procedure

List the destination sets

for each input column.

Meaning

Represents groupings of

internal states of flow

21

table that have same next-

state entries in a column.

2. Find y-variable expres- Equivalent to the subcube

sions for the transition of the Karnaugh map in

pair subspaces of each which the transition takes

destination set. place.

3. Form the y-variable Represents the groupings

expressions representing of the specified internal

the destination set sub- states in a state table

spaces by summing the which have the same next-

expressions representing state entries.

the transition pair sub-

spaces of each destination

set.

4. Find a y-variable expres­

sion for the specified

states of each column by

summing the expressions

for all destination sets

subspaces in a column.

5. Find a y-variable expres­

sion for the unspecified

states of each input

column by taking the

logical complement of the

expression representing

the specified states of

that column.

6.

7.

List the 1-destination

sets and their subspaces

for each input column.

Combine the expressions

representing the sub­

spaces of the 1-destination

sets with the expression

representing the unspeci­

fied states for each input

column to find the minimal

22

Steps 4 and 5 provide the

same information that is

found in the state table

of the conventional

approach.

Analogous to information

found in the transition

table and the Karnaugh

maps.

Equivalent to using

Karnaugh maps to find

minimal next-state expres­

sions by selecting

groupings with maximum

1-entries and don't

cares.

23

form of next-state expres-

sions. Retain the identity

of each input state with

the resulting expression

for that column.

Example Problem

yl y2 y3 Il I2 I3

0 0 0 a 0 b 0
1 1 0 b c G G
1 0 0 c G b a

0 0 1 d a 0 e

0 1 1 e 0 d 0
The results of this method should be the same as the

results obtained in the conventional approach.

Following the steps of the above procedure:

1. The destination sets are:

DI
1

DI
2

DI
3

a d a b c a c

b c d e b -
e d e

2. The transition pair subspaces are:

Input

Input

Destination
Sets

a d

b c

e

a b c

d e

a c

b

d e

Transition
Pairs

a d

b c

e

a b

b c

d e

a c

b

d e

Transition Pair
Subspaces

0 0 - or y1y2

1 - 0 or y1y3

0 1 1 or Y1Y2Y3

- - 0 or y3

1 - 0 or y1y3

0 - 1 or y1y3

- 0 0 or y2y3

1 1 0 or y1y2y3

0 - 1 or y1y3

3. The destination set subspaces are:

Destination Sets Destination Set Subspaces

a d

b c

e

a b c

d e

a c

b

d e

24

25

4. Expressions for specified states of each input

column are:

Input Specified States

Note: The above expressions are not simplified.

5. Expressions for unspecified states of each column

after simplification are:

Input Unspecified States

6. The 1-destination sets and their subspaces are:

y-variable Input 1-Destination Sets Sub spaces

Il b c yly3 -

I2 a b c y3 + yly3

I3 b yly2y3

26

y-variable Input 1-Destination Sets Subs paces

e yly2y3 -

a b c y3 + yly3

b yly2y3

d e yly3 -

e yly2y3 -

d e yly3

d e yly3 -

7. Combining the subspaces for the 1-destination

sets with the expressions for the unspecified states yields

the following next-state equations:

y3 = [yly2y3 + d(yly3 + Y1Y2Y3)]Il

+ [yly3 + d(yly3)]I2

+ [yly3 + d(yly3 + Y1Y2Y3)]I3

where d(represents the subspaces of the unspecified

states. After simplifying:

yl = ylil + y3I2 + yly2I3

y2 = yly2Il + y3I2 + (y2 + y3)I3

y3 = Y1Y2I1 + y3I2 + Y3I3

When simplifying, only those don't-care states are used

which help simplify the next-state expressions. It is

seen that the equations obtained with this method are

identical to those of the conventional approach.

As mentioned earlier, the Maki, Tracey, and Smith

method generates a minimal set of next-state equations

without explicitly constructing the state and transition

tables. It sould also be pointed out that this method

will work for any satisfactory USTT assignment, i.e., no

matter whether the assignment has been developed from a

transition pair basis or a destination set basis. This

is true because transition pairs make up destination sets,

and this method uses transition pairs for its basic

building blocks as opposed to other methods that use

27

destination sets. Also, a computer program implementing

this method has been developed by Smith et al. [4].

B. Method # 2 D. P. Burton and D. R. Noaks

Burton and Noaks [5] recognized that for large flow

tables the derivation of next-state equations is a major

difficulty. The motivation for their method was to

establish a systematic procedure of obtaining a satis­

factory USTT assignment for a normal-fundamental mode

flow table that would lead to relatively simple next-

state equations. The technique used to accomplish this

goal involves generating the next-state equations in a

semi-parallel fashion with the construction of the USTT

assignment. The next-state equations have the character­

istics that no product terms contain more than one state

variable and no product terms contain any complemented

state variables.

Definition: A product term in the next-state equa-

tion is said to be a simple product term if it contains

only one internal-state variable.

Again, for correlation purposes, the same flow table

that was used in the previously discussed procedures will

be considered here and is repeated in Figure 9 for con-

venience.

unknown.

In this case, though, the USTT assignment is

28

Il I2 I3

a 0 b 0
b c ® ®
c 0 b a

d a 0 e

e 0 d 0
Figure 9. Flow Table Without a State Assignment

As in the Maki, Tracey and Smith method, the first

step in this procedure is to list the destination sets

for each input column. In addition, associate with each

destination set an internal-state variable, y., such that
l

y. = 1 for those states in the destination set and y. = 0
l l

for all other states. To help clarify the following

discussion, the destination sets associated with a y.
l

state variable will sometimes be referred to as the y.
l

destination set. The destination sets and associated

y-variables for the flow table in Figure 9 are:

DI
1

DI
2

DI
3

yl -+ {a d} y4 -+ {a b c} y6 -+ {a c}

y2 -+ {b c} Ys -+ {d e} y7 -+ {b}

y3 -+ {e} Ys -+ {d e}

29

30

This association of the state variables with the destination

sets provides the following initial USTT assignment for

the flow table:

yl y2 y3 y4 Ys y6 y7 Yg Internal States

1 0 0 1 0 1 0 0 a

0 1 0 1 0 0 1 0 b

0 1 0 1 0 1 0 0 c

1 0 0 0 1 0 0 1 d

0 1 1 0 1 0 0 1 e

In the previously ~iscussed methods, the next-state

equations consisted of y-variable expressions covering

those states ln which the next-state entries were 1. The

same is true in Burton and Noaks' method. From the above

assignment the next-state equations could be derived by

constructing the Karnaugh maps as in the conventional

approach, or by finding the expressions for the subspaces

of the 1-destination sets as in the Maki, Tracey and Smith

approach. But that would defeat the purpose of making a

larger assignment in the manner shown, sirtce it is supposed

to make thP construction of the next-state equations easier

than in the previous methods.

It was stated previously that in Burton and Noaks'

method each y. state variable will be a 1 for only those
l

states in its associated y. destination set.
l

Since all

next-state entries for the states in a destination set are

the same and equal to the stable state, the states of

those destination sets whose stable states are contained

in the y. destination will have y. = 1 for their next-
l l

state entry. Therfore, to derive the next-state equation

for some Y. 1 the stable states of all destination sets
l

are compared with the states in the y. destination set.
l

If the stable state of some destination set, say the y.
J

destination set, is also a member of the y. destination
l

set, then theY. equation must include a simple produce
l

term y.I 1 where I is the input under which they.
J m m J

destination set is located. Of course, if more than one

destination set under the same input have their stable

states contained in the y. destination set, the resulting
l

equation for Y. will contain more than one simple product
l

term with the same input. For instance, theY. equation
l

may contain two simple product terms like yjim + ykim

which equals (y. + yk) I .
J m

To illustrate the above ideas, the next-state equa-

tion for y 1 will be derived. Since the y 1 destination set

is {ad}, Y1 will equal one for all states in destination

sets whose stable states are either "a" or "d". The

destination sets under each input column which satisfy

this condition are:

-+ {a d} -+ {d e} y -+ {a c}
6

31

Therefore, the next-state equation for Y1 can easily be

written as

As previously noted, this same expression could be

obtained using the conventional approach by finding the

largest groupings of 1-entries and don't cares in a

Karnaugh map, and with the Maki, Tracey and Smith method

32

by combining the expressions of the subspaces for the

1-destination sets with the expressions for the unspecified

states. But with such a large assignment these methods

would require an excessive amount of work. For example,

consider the derivation of the term y 5r 2 of the above

equation, when using the conventional approach. The

Karnaugh map for Y1 and input column r 2 , which would be

constructed from the transition table, is shown in Fig-

ure 10. By circling the largest possible subcubes of the

map which contains only "1" and don't-care entries, an

expression for Y1 under input r 2 can be obtained. As

illustrated in this case, all 1-entries can be grouped into

one subcube which is covered by the state variable y 5 .

Therefore, from the Karnaugh map we can write the expres­

sion y
5

r
2

which agrees with the result obtained above.

This example also illustrates that the use of don't-care

states in the derivation of the y-variable expressions

is inherent in Burton and Noaks' method.

33

y1y2y3y4

or--i r--i 0 0.--i.--i 0 0 r--i r--i 0 0 r--i r--i 0
00 r--i" r--i r--ir--i 0 0 0 0 r--i r--i r--i r--i 0 0

Ys y6 y7 Ys 00 0 0 r--ir--ir--i r--ir--i r--i r--i" r--i 0 0 0 0
00 0 0 0 0 0 0.--i r--i r--i r--i r--i" r--i r--i r--i

0 0 0 0 - 0 - - 0 - - 0 - - - - 0 -
0 0 0 1 - - - - - - - - - - - -
0 0 1 1 - - - - - -
0 0 1 0 0 - - - - 0 0 - - - - 0 -
0 1 1 0 - 0 0 0 - - - - 0 -

0 1 1 1 - - - - - - -
0 1 0 1 - - - - - - - - - - - -
0 1 0 0 - 0 0 0 - - - - 0 -
1 1 0 0 ~

1 1 0 1 - - - - - - - - - -
1 1 1 1 - - - - - - - - - - - - - -
1 1 1 0 - - - - - - - - - -
1 0 1 0 - - - - - - - - - - - - - -
1 0 1 1 - - - - - - - - - - - - - -
1 0 0 1 1 1 - - - - - - 1 1

1 0 0 0 - - - - - - - - - -

Figure 10. Karnaugh Map for Y1 under r 2

The foregoing discussion explains the heart of

Burton and Noaks' method. The remaining portions of their

method deal with minimization techniques for eliminating

redundant y-variables from the initial assignment and for

simplifying the corresponding next-state equations. The

description of these techniques will be stated in a

narrative fashion with an informal plausible proof given.

A more rigorous mathematical presentation and proof can

be found in the reference cited [5].

Simplification Test I:

The first test which is applied to check for

redundancy involves examining all terms in the next-state

equations of the form (y. + y. +···)I .
l J m

If the union of

the destination sets associated with the y-variables of

this term is equal to:

1) some other ys destination set, then the term

(y. + y. + •••)I is replaced by y I .
l J m s m

2) the total state set (i.e., the set of all

internal states in the flow table) , then the

term (y. + y. + ···)I is replaced by 1 • I
l J m m

or just I .
m

The reasoning behind these rules can be explained in the

following manner:

1) If there exists the term (y. + y.)I ln a
l J m

next-state equation and if this term is true

34

(logical 1), then either y. or y. is true.
l J

This

implies that the circuit is operating in a state

of they. destination set or in a state in the
l

35

y. destination set.
J

If the union of they. andy.
l J

2)

destination sets equal the y destination set, s

then all the states of y. andy. destination sets
l J

are in the ys destination set too. Therefore,

whenever y. or y. is true, y will also be true
l J s

and the term (y. + y.)I can be replaced by y I .
1 J m s m

If there exists the term (y. + y.)I and the
1 J m

union of they. andy. destination sets equal
l J

the total state set, then the circuit will always

be operating in a state of the yi destination

set or in a state of they. destination set.
J

This implies that either y. or y. will always
l J

be true and therefore the expression (y. + y.)
l J

can be replaced by the constant 1. (Note: in

the term (y. + y.)I both y. andy. could not
1 J m 1 J

be true at the same time since this would imply

that two destination sets under the same input

shared a common state which is the condition of

a critical race.) These ideas can be extended

to any term in the next-state equations of the

form (y. + y. + yk + •••)I .
1 J m

An example of Test I can be given by considering

the next-state equation for y 4 of the preceding assignment.

Remembering the method of derivation, the equation for y
4

can be written as:

It is observed that there are two compound terms in the

equation. First, looking at the term (yi + y
2
)I

1
, the

union of the associated destination sets yields the set

{a b c d} which is not the same as any one destination set.

Therefore, the expression (y 1 + y 2) cannot be reduced.

Now looking at the other term (y 6 + y
7
)I 3 , the union of

the y 6 and y 7 destination sets yield the set {a b c}

which corresponds to the y 4 destination set. Therefore,

by Test I, the expression (y 6 + y
7

) can be replaced by

y 4 . The reduced equation for Y4 is now:

Simplification Test II:

If two or more destination sets contain identical

states, whether or not they have the same stable state,

then these destination sets are referred to as being equiv­

alent and the same y-variable can be assigned to both sets.

The reasoning behind this rule follows directly along the

same lines of Test I. If two different y-variables

represent equivalent destination sets, then both y-

variables will be true at the same time. Therefore, one

y-variable is redundant and can be eliminated. As an

36

37

example, the destination sets for the flow table in

Figure 9 will be considered. Under input I 2 , y 5 was

assigned to destination set (d e) and under input I
3

, y
8

was assigned to destination set (d e) . Since both of these

destination sets are equivalent (irrespective of which

states are stable), the y 8 variable can be eliminated and

the y 5 variable can be assigned to both destination sets.

This eliminates one y-variable of the initial assignment

and consequently one next-state equation.

Test II can also be restated in another way. If the

right hand side of two or more next-state equations are

identical, then only one of the y-variables associated with

the left hand side of these equations is necessary for the

assignment. This results from the fact that equivalent

destination sets will always give the same next-state

equations.

The next test in the minimization process is less

specific and clear-cut, but more important than the

previous tests. This test requires the construction of a

dependency diagram which is used to select a minimum set

of y-variables, from the remaining y-variables of the

initial assignment, that will provide a satisfactory USTT

assignment for the given flow table. Before listing the

steps of this test, it is necessary that a few fundamental

definitions and conditions for a satisfactory USTT assign­

ment be stated.

Definition: A partition TI on a set of states is a

grouping of the states into disjoint subsets called

blocks, such that every state belongs to exactly one

block.

For example, a two-block partition may be defined

on the state set {abc de} as TI ={(abc), (de)}.

Definition: The smallest partition of a set of

states is denoted as TI(O} and corresponds to the parti-

tion in which each block consists of a single state.

From the preceding example, TI(O} ={(a} ,(b} ,(c},

(d},(e)}.

Definition: The blocks of a partition TI corres­
g

pending to the greater lower bound (g.l.b.} of partitions

Til and TI 2 , written as Til • TI 2 , consist of all the non­

empty intersections that can be formed by intersecting a

block of Til with a block of TI 2 . The g.l.b. operation is

both commutative and associative.

For example, if

TI
1

= { (a b c} , (d e} } and TI 2 = { (a b d} , (c e} }

then

Tig =Til· TI 2 ={(a b},(c},(d),(e}}

Tracey [6] developed USTT assignment methods from

the idea that each binary valued state variable may be

thought of as inducing a two-block partition on the states

of a machine. Tracey [6] also proved in his Assignment

38

39

Method #2, that an USTT assignment will contain no critical

races if it has been made such that:

1) for every destination set D., if D. is another
l J

destination set in the same input column, then

at least one y-variable partitions the destination

sets D.
l

and D.
J

into separate blocks.

2) all internal states are distinguished from one

another by being in separate blocks of at least

one y-variable partition.

Since these conditions lead to the formation of the

well-known Liu type assignment [7], they will be referred

to hereafter as the Liu assignment conditions. Using this

terminology will also help distinguish these conditions

from the conditions of the well-known Tracey assignment [6]

which will be discussed later.

It should be obvious that the initial assignment of

Burton and Noaks will satisfy the Liu assignment condi-

tions since a unique y-variable is assigned to each

destination set. A dependency diagram is then used to

show that a smaller set of the initial y-variable may exist

that also satisfies the Liu conditions which would, there-

fore, result in a smaller USTT assignment.

Simplification Test III:

This test involves the simplification of the state

assignment with the use of a dependency diagram. The rules

for the construction of dependency diagrams are:

1) Let each y-variable of the assignment represent

2)

a node of the diagram.

Check each y-variable's next-state equation.

the next-state variable, Y., is dependent on
l

If

other y-variables draw arrows from the nodes of

the independent y-variables into the node of

the dependent next-state variable Y ..
l

40

No formal procedure is known for selecting the minimum

set of state variables from the dependency diagram, and the

trial and error method suggested here differs somewhat from

the method presented by Burton and Noaks [5].

It is necessary to select a set of state variables

which have next-state equations independent of all other

state variables. This set can be found by drawing boundary

lines through the dependency diagram. These lines must be

constructed such that all arrows that pass through them

are in the same direction. Although the boundary lines

will separate sets of state variables which are independent

of the remaining variables, this does not, however, imply

that each set of independent variables will necessarily

result in a satisfactory assignment. To determine whether

the set of independent state variables selected do form a

satisfactory assignment, the two-block partitions induced

by these variables must satisfy the Liu assignment condi-

tions mentioned earlier. First, it is necessary to insure

that all destination sets under the same input are in

separate blocks of at least one y-variable partition, and

second, it is necessary to insure that all states are in

separate blocks of at least one y-variable partition. The

second condition will be satisfied if the g.l.b. of the

y-variable partisions is equal to n(O). If the Liu

assignment conditions do not hold, the next larger set of

independent y-variables is selected and tested. This

process is continued until a set of y-variables are

selected which will satisfy the Liu conditions. This set

of variables will result in the minimal Burton and Noaks'

assignment with corresponding minimal next-state equations.

This concludes the description of the Burton and

Noaks' method. A brief summary of the procedure is given

by the following steps:

1) List all destination sets of the flow table and

assign to each set a unique state variable.

2) Construct the next-state equations for the

initial state variables by using the strategy

of simple product terms.

3) Apply minimization techniques.

a) Test I - Replace compound terms with simpler

terms.

41

b) Test II - Eliminate redundant y-variables

that represent the same destination set.

(Note: This test may be applied concurrently

with Step 1.)

c) Test III - Construct and use the dependency

diagram.

The complete method will now be illustrated for the

flow table in Figure 9.

Step 1.

The destination sets and associated y-variables are

listed for each input column.

DI
1

DI
2

DI
3

yl -+ {a d} y4 -+ {a b c} y6 -+ {a c}

y2 -+ {b c} Ys -+ {d e} y7 -+ {b}

y3 -+ {e} Ys -+ {d e}

Minimization Test II was applied concurrently with this

step by assigning y 5 to two equal destination sets.

Step 2.

The set of next-state equations, written ln matrix

form for clarity, is:

42

yl yl Ys y6

y2 y2 y4 y7

YJ y3 0 Ys Il

y4 = (yl +y2) y4 (y 6+y7) I2

Ys YJ Ys Ys I3

y6 (y 1 +y 2) 0 y6

y7 0 y4 y7

Step 3.

With minimization test I, only the expression (y
6

+y
7

)

is replaced and the resulting equations are:

yl yl Ys y6

y2 y2 y4 y7

y3 y3 0 Ys Il

y4 = (yl +y 2) y4 y4 I2

Ys y3 Ys Ys I3

y6 (y 1 +y 2) 0 y6

y7 0 y4 y7

Since test II was utilized during Step 1, test III will now

be applied. The dependency diagram for the above set of

next-state equations is:

43

J
I Boundary Line
I

Only one boundary line exists for this diagram. The

set {y 3 , y 5 } is the independent set because these variables

are not dependent on any of the other variables in the

diagram.

dependent on the set {y 5 , y 3 } because y 1 depends on y
5

and

y 5 in turn depends on y 3 . The direction of the arrows

crossing the boundary line will indicate which set of

variables is the independent set.

It is obvious that the set {y 3 , y 5 } is not sufficient

to identify the five states of the flow table, since two

binary valued variables can only code a maximum of four

distinct states. The next largest independent set of

y-variables to be tested is in this case the total state

set itself. Of course, this set of variables will form a

satisfactory assignment, since it is equivalent to the

initial assignment given in page 30 (the reader should be

convinced that the Liu assignment conditions hold for this

44

45

assignment) • Therefore, the minimum Burton and Noaks'

assignment and simplified next-state equations for the

flow table of this example are:

Assignment

yl y2 y3 y4 Ys y6 y7 Internal
States

l 0 0 l 0 l 0 a

0 l 0 l 0 0 l b

0 l 0 l 0 l 0 c

l 0 0 0 l 0 0 d

0 0 l 0 l 0 0 e

Next-State Equations

yl = ylil + Ys 1 2 + y6I3

y2 = Y2 1 1 + Y4 1 2 + Y7I3

y3 = Y3 1 1 + Ysi3

y4 = (yl+y2)Il + Y4 1 2 + Y4 1 3

Ys = y3Il + Ys 1 2 + y5I3

y6 = (yl+y2)Il + y6I3

y7 = Y4 1 2 + Y7 1 3

As seen in the example problem, this method required

only a seven-variable assignment while the previous

methods only used a three-variable assignment for the

same flow table. Although this method generally realizes

a larger than minimal assignment, the property that no

complemented variables are contained in the next-state

equations may be a desirable feature with respect to the

design and fabrication of the circuit.

The next method to be discussed will follow closely

with some of the ideas of Burton and Noaks.

c. Method#~ C. J. Tan

46

Tan [8] developed an iterative state assignment

procedure for normal fundamental-mode asynchronous machines.

Although one of Tan's goals was to try to realize low cost

machines in terms of the number of logic gate inputs

required in the realization of the next-state equations,

the main intent here is to present the basic procedure

used in the derivation of the next-state equations rather

than presenting a cost study for fabricating the machine.

As in the method of Burton and Noaks, Tan [8] derives his

state assignment and next-state equations in a parallel

fashion.

Before proceeding with the derivation and explanation

of Tan's specific procedure, a brief review of the theory

behind the iterative approach will be presented. It

should be pointed out, that although the following pre­

sentation is based on the concept of transition pairs,

since this is the most fundamental approach, it can easily

be extended to the concept of destination sets.

1. Basic Theory of Tan's Procedure

Definition: An unordered pair of disjoint subsets

of the states of the machine is referred to as a dichotomy.

The dichotomy is equivalent to a two-block partition

in which all the states of the total state set are not

necessarily specified. For example, if two transitions

under the same input are a + b and c + d, the dichotomy

associated with these transitions is (ab, cd).

Definition: A state variable y. is said to cover
1

a dichotomy if y. = 0 for all states in one block of the
1

dichotomy and y. = 1 for all states in the other block.
1

For example, y. is said to cover the dichotomy
1

(ab, cd) if y. = 0 in the binary coding of states a and b,
1

and yi = 1 in states c and d or vice versa.

Definition: A dichotomy consisting of two transi-

tion pairs is said to be relevant to a state variable yi'

if y. = 0 for the stable state of one transition pair and
1

y. = 1 for the stable state of the other transition pair.
1

For example, the dichotomy of transition pairs

(ab, cd) is relevant toy., if y. = 0 for b and y. = 1 for
1 l 1

d or vice versa. It should be noted that relevancy is

independent of the value of yi for the unstable states

a and c.

47

Definition: A transition a ~ b in some column of

a flow table will be called a 1-transition with respect

to state variable y., if y. = 1 for the stable state b
l l

and a a-transition if y. = a for b.
l

A relevant dichotomy is therefore a dichotomy con-

taining transition pairs involved in a 1-transition and

a a-transition with respect to some y ..
l

This definition

also implies that all 1-transitions with respect to y.
l

result from those transition pairs contained in the

1-destination sets of that y ..
l

Since the assignment and corresponding next-state

equations are going to be derived simultaneously, the

rules for the construction of both have to be observed.

Again, in this procedure, the Tracey [6] conditions

must hold in order to have a satisfactory USTT assignment.

Since transition pairs rather than destination sets are

being dealt with here, the conditions differ slightly

from those used in the Burton and Noaks method. From

Tracey's fundamental theorem [6] the necessary conditions

for a USTT assignment are:

1)

2)

If (Si' Sj) and (Sm' Sn) are transitions in the

same flow table column, then at least one

Y-variable must partition (S., S.) and (S , S)
1 J m n

into separate blocks.

If (S., S.)
l J

is a transition and Sk a lone

stable state in the same column, then at least

48

3)

one y-variable must partition

into separate blocks.

(S. I s .)
l J

Fori~ j, S. and S. must be in separate blocks
l J

of at least one y-variable partition.

Notice that the Tracey conditions stated in the

49

Burton and Noaks method are really an extension of these

conditions. If a y-variable partitions two destination

sets into separate blocks, then this same y-variable will

partition the transition pairs contained in these destina-

tion sets into separate blocks. However, the opposite

may not be true in cases where destination sets contain

more than one transition pair. Therefore, the above

conditions dealing with transition pairs have been accepted

as the fundamental theorem and all USTT assignments must

satisfy it. To restate this theorem more succinctly and

in terms used in Tan's procedure, a USTT assignment exists

if:

1) The dichotomies associated with every pair of

transitions (including lone stable states)

occurring in each column of the flow table should

be covered by some state variable.

2) Every state has a unique coding.

Condition 1 stated above is the same as conditions 1 and 2

of Tracey's Theorem. If a y-variable covers a dichotomy

of transition pairs, this implies that the transition pairs

will be in separate blocks of that y-variable partition.

The conditions for the construction of the next-state

equations using the concept of transition pairs will now

be discussed. As in the case of the state assignment, the

previous methods have primarily dealt with the next-state

equations from a destination set point of view.

50

In the conventional approach, the next-state equa­

tions resulted from circling the largest groups of 1-entries

and don't-cares in a Karnaugh map. These 1-entries in the

Karnaugh map came from the transition table and were the

next-state entries for those states in 1-destination sets.

Or it could be said that they were the 1-entries for those

states of the transition pairs contained in the 1-destina-

tion sets. This is also the case for the Maki, Tracey,

and Smith method, since it is the transition pairs subspaces

which make up the subspaces for the 1-destination sets.

Therefore, the expression resulting from a Karnaugh map is

actually a minimum variable cover which separates all

states involved ln 1-transitions of a flow table from those

states involved in a-transitions. If the expression is

true or false then the circuit is involved in a 1-transition

or a-transition respectively.

The preceding ideas will help explain the theory of

Tan's iterative approach. From the flow table the dicho­

tomies of all transition pairs in each input column are

listed. The first state variable, y 1 , with its corres­

ponding induced partition is then selected. Some guide­

lines for selecting good initial state variables will be

given later. All dichotomies are now examined and those

found to be relevant to y 1 are so designated. These

relevant dichotomies separate the !-transition pairs from

the a-transition pairs with respect to y
1

. This is what

circling the 1-entries in the Karnaugh map essentially

did. Now it is necessary to find the cover for the groups

of 1-entries or, in Tan's case, for the relevant dicho-

tomies. This cover will insure that the !-transitions

remain separated from the a-transitions. To find this

cover, additional y-variables are chosen until all relevant

dichotomies have been covered. From the set of state

51

variables that covers all dichotomies relevant to y 1 , a

simplified sum-of-products expression for Y1 can be written.

This procedure is repeated for each y-variable selected.

When enough y-variables have been selected to cover all

dichotomies, a satisfactory USTT assignment with corres­

ponding next-state equations will exist.

In Figure 11, a columnar Karnaugh map is used to help

illustrate the concepts of relevancy and cover by consider­

ing the dichotomy (ad, e) , under input r 1 of the flow

table in Figure 12. Since y 1 codes both stable states a

and e with the same value (i.e., a value of 0), the

dichotomy (ad, e) is not relevant to y 1 . Therefore, y 1

is not useful for separating !-transitions from a-transi­

tions as can be verified by noting that both transition

pairs of this dichotomy have a-entries for Y1 . Now looking

at y
2

it is seen that it codes stable states a and e of

the dichotomy (ad, e) differently. Hence the dichotomy

is relevant to y 2 and it does distinguish 1-transitions

from a-transitions as lS evident from the next-state

entries, Y2 = 0 for states a and d and Y
2

= 1 for e. A

cover for this relevant dichotomy must now be found.

Since y 2 itself is a 0 for states a and d and l for e,

y 2 covers the dichotomy (ad, ~). Finally, it is seen

that the dichotomy (ad, e) is also relevant to y
3

but

y 3 is not a cover for this dichotomy, because y 3 does not

code states a and d the same. Again, y 2 is the cover for

this case. The same procedure can be used to find and

verify the relevant dichotomies and covers for the remain­

ing dichotomies of transition pairs contained in the flow

table of Figure 12. The results for all dichotomies of

this flow table are tabulated in Figure 14.

As a final point, it should be noted that the

covers selected for the relevant dichotomies do implicitly

make use of don't-care states, in that the subcubes of

52

the Karnaugh map represented by the covers may contain some

don't-care states.

The sum of products expressions for the next-state

equations can be formed by following the implicit rules

of Karnaugh mapping. These rules put into words are:

l) If the y-variable that covers a dichotomy is a l

for the 1-transition pair of the dichotomy, it

will appear uncomplemented in a product term

Figure 11.

yl y2 y3 yl y2 y3

0 0 0 a 0 0 0

0 0 1 - d 0 0 0

0 1 1 e 0 1 1

0 1 0

1 1 0 b 1 0 0

1 1 1

1 0 1

1 0 0 c 1 0 0

Columnar Karnaugh Map Showing Next-State
Entries Under Input I 1 of the Flow Table

in Figure 12

of the next-state expression. Conversely, if

it is a 0 for the 1-transition pair, it will

appear complemented in the product term.

2) If only one relevant dichotomy appears under

a particular input, or if more than one relevant

dichotomy appears but are covered by the same

y-variable, then a simple product term of the

form v.I will occur in the next-state equation
"'-1 m

where ~i is the respective cover for the

dichotomies.

y.) •
l

(Note: ~i implies either yi or

3) If more than one relevant dichotomy appears

under a particular input, and each has a

53

54

different 1-transition pair then a product term

of the form (~i + ~j + ••• + ~n)Im will occur in

the next-state equation, where the state variables

in the term represent the respective covers for

the relevant dichotomies.

4) If the same 1-transition pair appears ln more

than one relevant dichotomy under a particular

input, then a product term of the form ~·~·
l J

v I will occur in the next-state equation. Ln m

Conversely, if no dichotomies under a particular

input are relevant toy., then no product term
l

for this input will occur in the equation for Y ..
l

As an example of Tan's theory, the flow table which

was used in the previous methods will again be considered

here and is repeated in Figure 12.

Il I2 I3

a 0 b 0
b c ® ®
c Q b a

d a 0 e

e 0 d 0
Figure 12. Flow Table

The first step would be to list all the destination

sets under each input.

DI DI DI
1 __ 2 3

a d a b c a c

b c d e b -
e d e

From the destination sets the dichotomies of transition

pairs that can be formed are:

Il I2 I3

(a d, b c) (a b, d e) (a c, b)

(a d, e) (b c, d e) (~ c, d e)

(b c, e) (b 1 d e)

For the selection of the initial state variable, let y 1
induce the partition {(ad e) ,(b c)} such that states in

block (a d e) are coded with a 0 and states in block (b c)

55

are coded with a 1. A searching procedure is now initiated,

as shown in Figure 13, to find those dichotomies which are

relevant to y 1 .

It is observed in Figure 13 that two relevant dicho-

tomies are not covered. To cover these dichotomies the

state variables y 2 and y 3 , which induce the partitions

{(a c d), (be)} and {(abc) ,(de)} respectively, are

chosen. Therefore, yl = fl(Im' 01) where 01 = {yl' y2,

The table in Figure 13 is extended to include y2 and y3

in Figure 14. Notice that all dichotomies of the flow

y3}.

table are now covered and each state has a unique coding.

This means that the Tracey conditions are satisfied and

56

Partial Assignment Input Dichotomies
yl States

0 a
(ad, be) X

1 b
Il (ad, e) -

1 c
(be, e) X

0 d I2 (ab ,de) I

0 e (be, de) X

(~c, b) I

I3 (ac, d~) -

(b 1 de) X

Legend

means not relevant

I means relevant to y. but not covered by y.
l l

X means relevant to y. and covered by y.
l l

Figure 13. Determination of Relevant Dichotomies

the USTT assgnment will also consist of the set {y1
, y 2

, y
3

}.

The equations for Y1 , Y2 , and Y3 can be written directly

from Figure 14 using the rules previously stated.

These equations are:

yl = ylil + y3I2 + Y1Y2I3

y2 = yly2Il + y3I2 + (y 2 + y3)I3

In some cases where two different variables cover the same

dichotomy either variable may be used in the product term.

57

Partial Assignment Input Dichotomies y
1

y
2

y
3

yl y2 y3 States
(ad, be) X - -

0 0 0 a
Il (ad, e) - X I

1 1 0 b (be, e) X I X - -
1 0 0 c

I2 (ab, de) I I X

0 0 1 d
(be, de) X I X -

0 1 1 e (ac, b) I X --
I3 (ac, de) - I X

(b' de) X - X

Figure 14. Complete Cover of Relevant Dichotomies

This is equivalent to having more than one choice in which

the 1-entries of a Karnaugh map can be circled.

It should now be pointed out that in the above

example the selection of the state variables was predeter-

mined. The state variables were chosen so that the

resulting assignment would be the same as the one used in

the conventional approach and in the Maki, Tracey and Smith

method. This was done to show that the same next-state

equations could be obtained with Tan's method as with these

other approaches.

This concludes the review of the fundamental theory

of Tan's iterative approach. A specific iterative procedure

developed by Tan [8] will now be discussed. This procedure

results in a Liu type assignment and so is only concerned

58

with destination sets and not with transition pairs. Hence,

the theory given above will be somewhat extended to a

destination set point of view.

2. Tan's Specific Iterative Procedure

In Tan's specific iterative procedure [8], the

derivation of the next-state equations is very similar

to the method used by Burton and Noaks. One difference

in the methods is that Tan does not start with a complete

initial assignment by assigning all destination sets a

unique y-variable. Instead, an initial partial-state

assignment is made by discreetly assigning only a few

y-variables to those destination sets which help minimize

the number of additional variables still needed for a

satisfactory USTT assignment.

Some guidelines for selecting this initial partial­

state assignment are listed in the following priority:

1) Select those y-variables that will partition

the destination sets of more than one input

column in the same manner. Each additional

input column partitioned will result in a

savings of one y-variable in the final assign-

ment. One way in which these y-variables may

be found is by assigning a y-variable to a

destination set which appears in more than one

input column, because y-variables assigned to

the same destination sets will induce identical

partitions. This rule is essentially the same

as the Simplification Test II of Burton and

Noaks, which said that y-variables assigned to

equal destination sets are redundant and only

one y-variable is needed for all such sets.

2) Select those y-variables which take on the

binary value 0 for all the stable states in a

particular input column. These y-variables can

be determined by finding those induced parti-

tions in which all of the stable states of an

input column will appear in the 0 coded block

of the partition. If y. = 0 for all stable
1

states in an input column then no product term

for this input column will appear in the equa-

tion for Y ..
1

3) Select those y-variables such that in their

respective next-state equations, most of the

product terms also appear in some other equa-

tions. Hence, the cost of these equations will

likely be small.

The third selection criterion is the least definite of the

three and would probably only be used when criteria one

and two failed to yield a sufficient number of state

variables for an initial partial-state assignment. In

many cases this criterion will yield more variables than

what is actually needed for a. satisfactory partial-state

assignment. Therefore, the set of variables obtained from

59

this selection technique should be examined and just those

variables that are needed for a partial-state assignment

should be selected. An example of a partial-state

assignment would be an assignment which only satisfies

two columns of a four-column flow table.

The flow table shown in Figure 15 will now be

considered.

Il I2 I3

1 0 2 0
2 0 0 3

3 4 0 G)
4 0 5 1

5 2 G) 3

Figure 15. Flow Table

The destination sets for this table are:

1 1 2 1 4

2 5 3 2 3 5

3 4 4 5

In examining these destination sets, it is seen that no

y-variable can be selected which will induce identical

partitions on the destination sets of more than one input

column. Hence, criterion one of the selection technique

given above cannot be satisfied. However, criterion two

60

is satisfied by three state variables, in which the first

two, y 1 and y 2 , induce partitions on the destination

sets under input r 2 and the third, y 3 , induces a partition

on the destination sets under r
3

.

their respective partitions are:

yl -r { (1 2 3) , (4 5) }

y2 -r { (1 2 4 5),{3)}

y3 -r { (2 3 5) , (1 4) }

Following the convention that the

These variables with

states in the first

block of the partition are coded with a 0 binary value

with respect to y. and in the second block a 1 binary
l

value, notice that for each partition y. = 0 for all stable
l

states of at least one input column, thus satisfying the

condition of criterion two. Also, these three state vari-

61

ables do form a partial-state assignment since they separate

the destination sets under input columns r 2 and r
3

.

Once the initial partial-state assignment has been

determined the next-state equations for these variables

are then derived. To expedite the derivation of these

equations, essentially the same theory that was used in

Burton and Noaks' method is used in Tan's method. As

previously noted in Tan's method, each y-variable takes on

the value 1 for all states in the second block (1-block) of

its respective partition, while in Burton and Noaks' method

each variable takes on a value 1 for the states in its

associated destination set. (The associated destination

set is actually a 1-block of its corresponding induced

62

y-partition.) Even though in Tan's method a 1-block of a

y-partition may contain more than one destination set, the

derivation of the next-state equations is performed in

the same fashion, i.e., with the 1-blocks of the respective

partitions being treated in the same manner as the assoc-

iated destination sets in Burton and Noaks' method.

In Burton and Noaks' method, the equations for Y.
l

consisted of product terms representing covers for those

destination sets having their stable states contained in

the associated y. destination set.
l

Since each destination

set was initially associated with a unique y-variable, all

product terms could be immediately written in the equation.

However, this is not the case in Tan's method, since a

partial assignment does not separate all destination sets

in the flow table. Therefore, there may exist destination

sets having stable states which are contained in the 1-blocks

of the initial y-variable partitions (some 1-destination

sets) , but have not yet been separated by at least one

y-variable partition from the other destination sets

(0-destination sets), in their corresponding input column.

(Note: Insuring the separation of the 1-destination sets

from the a-destination sets is the same as covering the

relevant dichotomies of destination sets or transition

pairs as discussed in Tan's basic theory.) It should now

be clear that if some of the covers for the 1-destination

sets with respect to y. are not initially known, then some
l

of the product terms in the equation for Y. cannot be
l

63

immediately written. To determine those destination sets

which still lack covers and to provide assistance in the

selection of additional y-variables, a symbolic repre-

sentation of the next-state equations can be given by:

Y. + [a b ••• q] = ••• +I [de
1 n r] + •••

[S] * +I f g •••
n (2)

where y. = 1 for states [a b ·•• q]; states [de ••• r]
l

are those contained in 1-destination sets with respect to

Yi under some input In, and are covered by at least one of

* they-variables of the initial set; [f g ••• s] are those

states contained in 1-destination sets under input I , but
n

are not covered by any y-variable that has already been

chosen. Equations of this form will be referred to as

state transition equations. The state transition equations

for the initial assignment found above will be:

yl + [4 5] = I 1 [3 4] * + I
2

[4 5]

y2 + [3] = I 2 [3] + I 3 [2 3 5]

* y3 + [1 4] = I 1 [1, 3 4] + I 3 [1 4]

Examining the above equations it is seen that the terms

* 4~J* I 1 [3 4] and I 1 [1, 3 are not covered by any one of

the variables of the initial assignment. The next step

is to assign new y-variables to those destination sets

that are contained in the starred product terms of the

state transition equations. In the example here, assign-

* and y 5 to I 1 [1, 3 4] will yield the

following partitions:

and

y4 + {(1 2 5) ,(3 4)}

y
5

+ {(2 5),(1 3 4)}

Y4 + [3 4] = I 1 [3 4] + I 2 [3] + I 3 [2 3 5]

Y5 + [1 3 4] = I 1 [i, 3 4] + I 2 [3] + I 3

64

Since no more starred products were introduced in the state

transition equations for Y4 and Y5 , it would appear that

our assignment is complete. To be sure, the assignment

should be checked to see if the Liu conditions of separat-

ing all destination sets in an input column and distin-

guishing each state uniquely are satisfied. In this

example these conditions are satisfied and therefore the

set {y1 , y 2 , y 3 , y 4 , y 5 } forms a satisfactory USTT Liu

type assignment [7].

Converting the state-transition equations into

next-state equations can be done in a relatively easy and

straightforward manner. The destination sets contained

in the product terms of the state-transition equations will

be replaced by the y-variables (either y. or y.) of the
l l

assignment, whose partitions have a block equal to these

destination sets. Following this rule, the next-state

equations can be written as:

yl = Ily4 + I2yl

y2 = I2y2 + I3y3

y3 = Ily5 + I3Y3

y4 = Ily4 + I2y2 + I3Y3

YS = Ily5 + I2y2 + I3

Although the final assignment obtained may not be

a minimal assignment, the resulting next-state equations

are minimal and consist of only simple product terms.

Tan [8] also showed that some of the simple product

terms can be replaced by compound product terms if the

overall effect was to reduce the total number of gate

inputs required to realize the next-state equations. For

example, the term r 1y 5 in Y3 could be replaced by r
1

(y
2

+y
3

)

since the sum of the 1-blocks of the y 2 and y 3 partitions

equals (1 3 4), the 1-block of the y 5 partition. However,

it can be shown that this replacement would not result in

a lower number of total gate inputs and therefore would

not be made (even though the replacement would eliminate

the need for y 5 in the assignment).

Reduced cost in terms of the number of gate inputs

required to logically realize the next-state equations is

a point that Tan [8] pursued very meticulously and

rigorously, by integrating a cost analysis with his

derivation of the next-state equations. With today's

technology in circuit packaging, especially in the areas

of integrated circuitry and module construction, it is

debatable whether the detailed cost study is worth increas­

ing the complexity of his method.

65

66

This completes the description of Tan's specific

procedure. A summary of the steps of this method is:

1) Using the criteria of the selection technique,

select a set of state variables for the initial

partial-state assignment.

2) Derive the state-transition equations for the

variables in the initial assignment.

3) From the equations derived in step 2, generate

new variables for the assignment.

4) After a sufficient number of state variables

have been generated for a valid USTT Liu type

assignment, form the next-state equations for

these variables.

As an assistance in comparing this method with the

other methods discussed, a final example will be given for

the same flow table used in the previous methods.

Given a machine represented by the following flow

table:

11 12 13

a G b 0
Internal b c ® ®
States c G b a

d a @ e

e 0 d 0

The destination sets for this flow table are:

DI
1

DI
2

DI
3

a d a b c a c -
b c d e b -

e d e -
By criterion one of the initial assignment selection

technique:

y 1 -+ {(abc) ,(de)}

By criterion 2:

y
2

-+ {(a b c d), (e)}

y
3

-+ {(a c de) ,(b)}

Since variables y 1 and y 3 will separate the destina­

tion sets under inputs r 2 and r 3 , let the initial partial­

state assignment consist of (y1 , y 3).

Next, the state-transition equations will be

67

constructed for the variables in the partial-state assignment.

* Y1 + [d e] = r 1 [e] + r 2 [d e] + r 3 [d e]

Y3 -+ [b] = r 2 [a b c] + r 3 [b]

* Now select a y-variable to cover the term r 1 [e] . Note

that this term will be covered by the partition

{(abc d), (e)} which is equal to the y 2 partition. There­

fore, add y 2 to the assignment and derive its state­

transition equation.

Since no more starred products have occurred, check to see

if the conditions for a valid Liu type assignment are

satisfied. In checking these conditions, it is found that

destination sets {a d} and {b c} under r 1 have not yet

been separated. Therefore assign:

y
4

+ {(a d e) , (b c)}

and

Y
4

+ [b c] = r 1 [b c] + r 2 [a b c] + r 3[b]

Again, no further starred products have been generated and

the conditions for a valid USTT assignment are now satis-

68

fied. Therefore, the assignment consists of {y1 , y 2 , y 3 , y 4 }

and the corresponding next-state equations generated from

the state-transition equations are:

yl = Y2 1 1 + Y11 2 + Y1 1 3

y2 = Y2 1 1 + Y1 1 3

y3 = Y1 1 2 + Y3 1 3

y4 = Y4 1 1 + Y1 1 2 + y3I3

Although the results will vary for each flow table,

the above example points out some interesting highlights

of Tan's method. The resulting assignment has three less

variables than the assignment obtained using Burton and

Noaks ' method. Since both methods use the destination set

approach, the difference in their results is primarily

attributed to the use of complemented variables in Tan's

method while none are permitted in Burton and Noaks'

method. Also note that even though the number of y-variables

• I • • 1n Tan s ass1gnment 1s one greater than the number of

variables in the minimal assignment used in the conven-

tional approach, Tan's next-state equations require less

gate inputs to implement than do the equations of the

conventional approach.

Depending on the specifications of the design, Tan's

specific procedure may or may not be desirable. However,

it is conceivable that his basic theory could be used to

develop other specific iterative procedures or it could

be used on conjunction with other USTT assignment methods,

which may better meet the specifications of the design.

For example, Tan, Menon and Friedman [9,2] jointly

developed a method for generating a USTT assignment and

next-state equations by parallel and serial decompositions

of asynchronous sequential circuits. The method used for

generating the next-state equations is the same as that

discussed in Tan's basic theory. Therefore, only a brief

description of the decomposition method will be given

here, since the main goal of this paper is to present the

different known methods of generating next-state equations

and not necessarily that of finding the state assignment

itself.

Definition: Two partitions TI and n' on the set of

states of a sequential machine M are a partition pair

denoted by P(n, n') if for all states in the same block

69

of TI, their next-states to which the machine goes, when

any input Im is applied, are in the same block of rr'.

Definition: A partition TI on the states of a

sequential machine M is called a preserved partition if

for all states in the same block of rr, their next-states

to which the machine goes, when any input I is applied,
m

are also in a common block of rr.

For a machine having the set of internal states

{a,b, c,d}, thepartitions,rr(O) ={(a), (b), (c), (d)}

and TI(l) = {(a,b,c,d)} always form preserved partitions

and are referred to as the trivial cases. Also from the

above definitions it should be apparent that a preserved

partition will form a partition pair with itself, i.e.,

P(TI, 'IT).

Each component machine of a decomposition is defined

by a partition pair P(TI, JT'), where the blocks of JT 1

correspond to the states of the submachine and the blocks

of 'IT correspond to the internal information required to

calculate the next-state of the submachine. In order to

obtain a decomposition resulting in a USTT assignment for

the component machines and therefore for the composite

machine, it is necessary that at least one non-trivial

preserved partition exists for the given flow table. This

preserved partition will form a partition pair with itself

which will define the first component machine of a serial

70

decomposition. The model of a serial decomposition is

shown in Figure l6(a) below.

I
m

I m

Figure 16.

(a)

.. M
l

- M2

(b)

(a) Serial Decomposition
Decomposition

I
J

..
:
_:::

z
Outpu~-­
Logic

Output z
Logic

{b) Parallel

The product of the partitions induced by the y-variables

71

of the assignment for submachine M1 will equal the preserved

partition. Since M1 feeds M2 , the preserved partition of

M1 is an input partition to M2 • Therefore, the partition

pair that defines M2 will be a combination of the preserved

partition of M1 and the y-variable partitions that are

needed to cover the dichotomies of transition pairs of the

given flow table that were not covered by the assignment

These y-variables will form the state assignment

72

If two or more non-trivial preserved partitions exist

for the given flow table such that their product equals

TI(O), then these partitions will define submachines of a

parallel decomposition as shown in Figure 16(b). The out-

put logic recognizes the overall internal state of the

composite machine as a function of the internal states of

submachines M1 and M
2

.

For flow tables that do not have any preserved

partitions, methods have been developed for decompositions

leading to multicode STT assignments and multiple transi­

tion time assignments, but these methods will not be

discussed here [9].

The procedure terminates when all component machines

have a valid assignment which implies that the product

of ally-variable partitions equals TI(O). It has been

shown that the assignments and next-state equations of the

component machines will combine to yield a satisfactory

non-critical race assignment and next-state equations for

the composite or given machine [9,2].

To help clarify the above description, an example

will be given for the following flow table:

Il I2 I3 I4

1 0 0 4 2

2 0 3 0 0
3 0 G) 4

4 0 G) 5

5 0 1 0
Two preserved partitions for this flow table are:

'TTl = { (13)' (245)}

7T'"l = {(1),(2),(34),(5)}
.:..

and

n 1 · n 2 = {(1),(2),(3),(4),(5)} = n(O)

Therefore, the preserved partitions n 1 and n 2 will form

partition pairs P(n1 ,n1) and P(n 2 ,n 2) which will define

component machines M1 and M2 of a parallel decomposition.

The flow tables representing the subrnachines M1 and

M2 are:

Subrnachine M1

Blocks Internal
of n 1 States Il I2 I3 I4

(13) a 0 0 b b

(24 5) b G) a G G

73

74

Subrnachine M
2

Blocks Internal
of TI 2 States Il I2 I3 I4

(1) A 0 0 c B

(2) B ® c ® ®
(34) c @ @) @) D

(5) D @ A @

The next step is to derive a USTT assignment and

corresponding next-state equations for each of the corn-

ponent flow tables. The most general approach which could

be used to accomplish this task is to derive the state

assignment for each component flow table using a known

state assignment procedure (e.g., the Tracey method [6]),

and then use Tan's basic theory to derive the corresponding

next-state equations. However 1 in this case, Tan's

specific iterative procedure was used to derive the follow-

ing state assignment and next-state equations simultan-

eously for each component flow table.

For subrnachine M1 :

State Assignment Next-State Equations

Internal
yl States

0 a (13)

1 b (245)

75

And for subrnachine M2 :

State Assignment Next-State Equations

y2 y y4
Internal

3 States

0 1 1

1 1 0

0 0 0

A -

B -

c -

(1)

(2)

(34)

y2 = y2Il + y2I3 + y3I4

y3 = y3Il + y4I2 + y2I3 + Y3I4

y4 = y4Il + y4I2 + Y3I3

0 0 1 D - (5)

Now the assignment and corresponding next-state

equations for the composite machine is obtained by corn-

bining the results of the component machines. Therefore,

the composite state assignment and corresponding next-

state equations are:

Composite State Assignment Next-State Equations

Internal
yl y2 y3 y4 States

0 0 1 1 1 yl = ylil + I3 + I4

1 1 1 0 2 y2 = y2Il + y2I3 + Y3 1 4

0 0 0 0 3 y3 = Y3 1 1 + Y4 1 2 + Y2 1 3 + Y3 1 4

1 0 0 0 4 y4 = Y4 1 1 + Y4 1 2 + Y3 1 3

1 0 0 1 5

This concludes the review of the presently known

methods for generating next-state equations. The remainder

of this paper will deal with a new method which was developed

from a study of the foregoing methods.

76

IV. NEW METHOD OF GENERATING NEXT-STATE EQUATIONS

Burton and Noaks' procedure and Tan's specific

procedure both have been directed toward the generation

of the next-state equations in parallel with the selection

of a USTT assignment. These methods may be desirable for

some designs since the Burton and Noaks method yields

next-state equations with no complemented variables, while

Tan's method may yield equations that require a low number

of gate inputs. However, in order to obtain the next-state

equations using these methods, their particular type of

assignments (Liu type) must also be used for the design.

Since methods have already been developed which

provide different types of USTT assignments for a flow

table (e.g., the Tracey method for a minimal variable

assignment) , a simple method for generating minimal next­

state equations that could be used for any USTT assign­

ment would be extremely valuable, especially for large

flow tables.

It has been shown that the Maki, Tracey and Smith

method and the basic theory of Tan can be used to obtain

next-state equations for any USTT assignment, but as flow

tables become larger the amount of work required to use

these methods becomes excessive and tedious. For example,

in Maki, Tracey and Smith's method the Boolean expressions

representing the specified states must be complemented to

obtain the expressions for the unspecified states. These

expressions in turn are combined with the expressions of

the 1-destination set subspaces to obtain minimal next-

state equations. It is obvious that much work and time

(computer time, too, if programmed) is required to perform

these manipulations and the necessary simplification to

obtain minimal equations. Also, when using Tan's basic

theory, all dichotomies of transition pairs must be

listed and then an exhaustive search for those state

variables that minimally cover the relevant dichotomies

must be carried out. Only after this is completed can

the heuristic rules be used to construct the next-state

equations. So again it is apparent that for large flow

tables an extreme amount of work and time is required,

since there would be many, many dichotomies of transition

pairs to examine. Therefore, the main intent here is to

develop a simple and straightforward method which will

require less work to generate minimal next-state equations

for any given USTT assignment and will easily lend itself

to computer application.

The heart of the following method of generating

next-state equations emanates from the role that the

Karnaugh map plays in separating the 1-destination sets

from the a-destination sets. It was believed that if

the operations performed with a Karnaugh map could some­

how be carried out implicitly in a simple and straight­

forward manner, a powerful means for generating the

77

78

next-state equations would result. To show why such a

method would be a powerful tool, the flow table used in

the previous methods, repeated in Figure 17, will again

be considered here.

yl y2 y3 Il I2 I3

0 0 0 a 0 b 0
1 1 0 b c G) G)
1 0 0 c 0 b a

0 0 1 d a 0 e

0 1 1 e 0 d 0
Figure 17. Flow Table

The destination sets for this table are:

a d a b c a c

b c d e b

e d e

The Karnaugh map of the USTT assignment for this

table is shown in Figure 16.

yly2
00 01 11 10

0 a - b c

1 d e - -

Figure 18. Karnaugh Map

79

Now suppose that the next-state equation Y
1

is to

be calculated. In order to successfully derive the minimal

equation for Y1 , minimal y-variable covers must be found

for each input column which separate the 1-destination sets

subspaces from the a-destination set subspaces. The

1-destination sets with respect to y 1 under each input

are:

b c a b c b

From the Karnaugh map it is seen that the state variable

y 1 separates the subspace of the 1-destination set (b c)

from the remaining a-destination set subspaces under I
1

.

Therefore, the minimal cover for this separation can be

written as the simple product term y 1 I 1 . It should be

noted that the don't-care states are again being used

implicitly here, since they are in the subcube covered by

y 1 . Similarly, the minimal cover for the subspace of

(a b c) under I 2 is the simple product term y 3I 2 and for

the subspace of (b) under I 3 the minimal cover can be

Therefore, from a knowledge of

the 1- and a-destination sets and with the use of the

Karnaugh map, the equation for Y1 can be written by

inspection as:

The above equation is a minimal next-state equation

and agrees with the results obtained in the conventional

sa

approach, the Maki, Smith and Tracey method and the approach

used in the basic theory of Tan. The reason the above

equation is in minimal form is because the y-variable

covers were selected in such a manner to separate the

largest possible subcubes containing the 1-destination

sets (thus inherently making use of don't-care states) from

the subcubes of the a-destination sets.

It should now be apparent that, by using the Karnaugh

map in the above manner, the derivation of the next-state

equations can be accomplished in a simpler and faster

manner than in the previous methods.

When working with the Karnaugh map in the above

example, the operations were performed either by hand or

were done mentally. The goal of the following method will

be to describe these same operations in a definite language

that would permit computer application for large flow

tables.

Definition: A two block partition a .. is called
l,J

the a-partition with respect toY. and input I. if the
- l J

left block contains all the internal states for which

Y. =a under input I. and the right block contains all
l J

the internal states for which Y. = 1 under input I ..
l J

This definition implies that the left-block of an

a-partition will contain the states in a-destination

sets while the right block will contain the states in

1-destination sets, all with respect to some y. and I ..
l J

For an example, the flow table in Figure 17 will again be

considered. The 0- and 1-destination sets with respect to

y 1 and under input I. are:
J

0-destination Sets 1-destination Sets

a d b c

e

Therefore, a 1 , 1 can be written as:

a 1 , 1 ={(ad e),(b c)}

Similarly,

a 1 2 ={(de) ,(abc)}
'

a 1 , 3 ={(a c d e),(b)}

Comparing with the conventional approach, it is

seen that the above a-partitions indicate which states

will have either 0- or 1-entries in the Karnaugh maps

that were derived from the transition table for Y
1

(see

Figure 5, page 11). Therefore, the a-partitions provide

part of the information attainable from the Karnaugh

81

maps. Of course, the remaining portion of information that

is obtained with the Karnaugh map is the selection of a

minimal y-variable cover that separates the a-destination

sets from the 1-destination sets.

Definition: A set A of· states is said to cover a

set B of states if B c A (read as set B is contained in

or equal to set A) .

It should be kept in mind that since the word ''cover"

takes on several different meanings, any particular mean-

ing must be derived from the context in which it is being

used.

It is known from the conditions for a valid USTT

assignment that all of the states in 1-destination sets

are separated from those in 0-destination sets. These

separations are provided by the state variables of the

assignment as was shown in the first example by the

Karnaugh map in Figure 18. Therefore, it follows that

the covers of the a-partitions can be obtained from the

partitions induced by the y-variables of the assignment.

Definition: A two block partition, T., is called
l

a T-partition with respect to yi' if the left block

contains all of the internal states for which y. = 0 and
l

the right block contains all the internal states for

which y. = 1.
l

The concept of this definition has already been used

in the previous methods of Tan and Burton and Noaks. The

definition implies that the states in the left block of

a T· partition are covered by they-variable expression
l

y. while the states in the right block are covered by
l

the expression yi. The T-partitions induced by the state

variables in the assignment of the example are:

82

83

yl yl

-r 1 ={(ad e) 1 (b c)}

y2 y2

T2 = {(a c d) 1 (b e) }

y3 y3

T = 3 {(a b c) 1 (d e)}

The y-variable covers for all blocks have been explicitly

shown.

The next step is to find which blocks of the

-r-partitions separate the blocks of the a-partitions.

This separation can be accomplished by selecting those

blocks of the -r-partitions that together cover the right

block (Y = 1 block) of the a-partition and do not contain

any states from the left block of the a-partition.

(Those blocks satisfying the second condition are referred

to as being disjoint from the left block of the a-partition.)

For example, to separate the blocks of a 1 , 1 =

{(ad e) 1 (b c)} a cover for the block (b c) is needed.

Examining the -r-partitions, it is observed that the right

block of -r 1 would be the most minimal cover because it

equals (b c) itself. Now, since the block (b c) is

covered by y
1

in the -r 1 partition, it can be concluded

that y
1

will separate the blocks of a 1 , 1 and Y111 can be

written as:

where Yi,j represents the next-state variable yi under

input I ..
J

84

Here again the use of unspecified states in obtaining

the y-variable cover is inherent in the T-partitions. For

example, from the Karnaugh map of Figure 18 (page 78) , it

is seen that T1 actually implies the partition

yl yl

T 1 = { (ade-) , (be--) } ,

where y 1 covers the subcube spanned by specified states

b and c and two unspecified states. It is this inherent

characteristic of T-partitions that enables a minimal

y-variable next-state expression to be obtained.

Similarly for a 1 , 2 ={(de) ,(abc)}, block (abc)

is covered by the left block of T
3

•

Yl,2 = y3I2

Therefore,

Now for a 1 3 ={(a c de) ,(b)}, there is no single block ,
of the T-partitions that covers block (b) and does not

contain any of the states in block (a d c e) . In other

words, under input I 3 , there is no single y-variable that

separates the 1-destination sets from the a-destination

sets with respect to y 1 . Therefore, it is necessary to

examine the product partitions of the form T. · T ..
l J

partitions will be the g.l.b. partition of T.
l

and T ..
J

In our example, the product partitions of the form

T. • T . are:
l J

These

yly2 yly2 yly2 yly2
'l · T 2 ={(a d),(e),(c ,(b)}

yly3 yly3 yly3 yly3
'l · T 3 = {(a),(d e),(b c),(0)}

Again the appropriate y-variable cover is associated with

each block. As an example, the first block of 'l • T 2 is

obtained by intersecting the y 1 block of 'l with the y 2

block of T 2 , i.e.:

yl y2
(a d e) () (a c d) = etc.

85

Now the blocks of the T.
l

• T. partitions are examined
J

to find a cover for block (b) of a 1 , 3 . It is seen that

block (b) can be covered by either block y 1 y 2 of 'l · T 2

or block y
2

y
3

of T 2 • ,
3

. This is the same choice of

covers that existed in the preceding example with the

Karnaugh map. Choosing y 1 y 2 as the cover, then:

The expressions for Yl,l' Y1 , 2 , and Yl,J can now be combined

to give:

The result is identical to the result obtained with the

Karnaugh map and is therefore the minimal next-state equa-

tion for Y
1

. Similarly for Y
2

and Y
3

:

a2,1 = { (a b c d),(e)} a3,1 = { (a b c d),(e)}

a2,2 = { (d e) , (a b c) } a3,2 = { (a b c) ' (d e) }

a2,3 = { (a c) , (b d e) } a3,3 = {(a b c) , (d e) }

From the T. and T.
l l

• Tj partitions derived above:

Now,

Y2,1 =

Y2,2

Y2,3

=

=

Y.
l

Y1Y2I1

y3I2

(y 2 +

m
I

j=l

y3)I3

Y ..
l,J

y 3 '1 =

Y3,2 =

Y3,3 =

Therefore,

y2 = yly2Il + y3I2 + (y2 + y3)I3

y3 = yly2Il + y3I2 + y3I3

Y1Y2I1

y3I2

y3I3

In some cases it is necessary to consider a union

of blocks from the T-partitions in order to find a satis-

factory cover for the right block of an a-partition. For

example, in finding Y2 , 3 it was necessary to take the

86

(3)

union of blocks y 2 of T2 and y 3 of T3 to cover block (b d e)

of a 2 , 3 •

In order to have minimal next-state equations it is

necessary that the covers which are selected for the

blocks of the a-partitions are the minimal covers for

those blocks. For instance, a union of two blocks from

some T-partitions would not be a minimal cover and hence

would not be used, if a cover exists which consists of

only one block from some other T-partition. The minimal

cover corresponds to the largest possible circling of "1"

and "don't-care" entries in the Karnaugh map. This can

be seen by comparing the minimal covers found for Y1 in

the above example with the circlings in the Karnaugh maps

that were used in the conventional approach (Figure 5).

87

Rules for selecting the minimal covers in a systematic

and orderly fashion can be established. One strategy

which could be formalized into such a set of rules is:

1) Check the blocks of the a-partition. If its

left block or its right block equals the empty

set, then the product term corresponding to

this partition in the equation for Y .. will l,J

just be I. or 0 respectively.
J

2) If neither block of the a-partition equals the

empty set, then select all blocks from the

T-partitions, that are disjoint from the left

block of the a-partition. Check these blocks

to see if any single block will cover the right

block of the a-partition. If one of these

blocks does cover the right block of the

a-partition, then the equation for Y .. can be l,J

written as a simple product term. If no single

block exists, check the union of the previously

selected disjoint blocks taken two at a time.

If still no cover exists, check the union of

these blocks taken three at a time, etc., until

a cover is found.

3) If none of the blocks of the T-partitions are

disjoint from the left block of the a-partition,

or if only a partial cover can be obtained with

step 2, then form the T. · T. partitions and
l J

follow the rules of step 2 until a complete

cover is found.

4) If still no complete cover has been obtained,

repeat the process with the product partitions

T. • T. • Tk' etc., until a complete cover is
l J

found.

Before proceeding with a final example, a summary of

the steps of this method is:

1) List all of the destination sets for each input

column of the flow table.

2) From the destination sets under each input,

form the a-partitions with respect to yi by

putting the a-destination sets in the left

block and the 1-destination sets in the right

block.

3) Form the T-partitions that are induced by the

state variables of the given assignment.

88

4) From the blocks of the T-partitions, find a

cover for the right block of the a-partition

by following the strategy for the selection of

a minimum cover.

5) The next-state equations are then derived from

they-variables representing the selected covers.

The final example will be for a larger flow table

in order to show the capability and proficiency of this

method.

Suppose that an asynchronous sequential circuit is

described by the following flow table having the USTT

state assignment as shown.

0

0

0

1

0

1

1

0

1

1

0

1

0

1

1

0

0

1

0

1

0

0

0

1

0 0

0 1

1 0

0 0

1 0

0 1

0 1

1 1

1 0

1 1

1 1

1 0

a

b

c

d

e

f

g

h

i

j

k

1

d 0 e b

f G) h G)
1 ~ e b

0 0 g b

i a 0 b

0 g 0 b

d ® 0 b

f G) b

(;) j g b

k CD g b

(E) a h b

0 c 0 b

89

90

The destination sets for this flow table are:

Dr
1

Dr
2

Dr
3

DI
4

a d g a e k a c e a b c d e f g h i j k 1 - -
b f h b f

e i c 1 - d ~ l j

j k d b h k

c 1 f .9. 1

i j

The a.-partitions with respect to each Y. and I. are:
l J

a,lll = {(jk) 1 (abcdefghil)} 0,211 = { (adegijk) 1 (bcfhl)}

a.l,2 = { (abcekl) 1 (dfgij)} 0,212 = { (adefgijk) 1 (bel)}

0,113 = { (abcehk), (dfgijl)} 0,213 = { (acdegij) , (bfhkl) }

0,114 = {(abcdefghijkl), (~)} a.2,4 = {(~) 1 (abcdefghijkl)}

0,311 = {(abdfgh), (ceijk1)} 0,4 1 1 = { (acdegil) 1 (bfhjk)}

0,312 = { (ab de f gk) 1 (c i j 1) } a,4 2 = { (acdekl) 1 (bfgij)}
1

0,313 = { (dfgij) 1 (abcehkl)}
(t 4 1 3 = { (acel) 1 (bdfghi jk) }

0,314 = {(abcdefghijkl) ,(~)} 0,414 = {(~) 1 (abcdefghijkl)}

The T-partitions induced by the state variables of

the assignment are:

yl yl
T

1
= { (abcehk) 1 (dfgij 1) }

y2 y2
T2 = {(adegijk) ,(bcfhl)}

y3 y3
T3 = {(abdfg) ,(cehijkl)}

y4 y4
T4 = {(acdeil), (bfghjk)}

From the T-partitions, the T. · T. partitions will
l J

now be formed to have them available if needed.

yly2 yly2 yly2 yly2
Tl . T2 = {(a e k), (b c h) 1 (d g i j),(f 1)}

yly3 yly3 yly3 yly3

Tl . TJ = {(a b) , (c e h k) 1 (d f g) 1 (i j 1) }

yly4 yly4 yly4 yly4

Tl . T4 = { (a c e) , (b h k) 1 (d i l),(fgj)}

Y2Y3 y2y3 y2y3 y2y3

T2 . TJ = { (a d g) , (e i j k) , (b f) , (c h 1)}

y2y4 y2y4 y2y4 y2y4

T2 . T4 = {(a d e i) , (g J k) 1 (C 1) 1 (b f h) }

Y3Y4 Y3Y4 Y3Y4 Y3Y4
T

3
• T 4 ={(a d),(b f g),(c e i l),(h j k)}

The next step is to find a minimum cover for the

right block of the a-partitions. For an example, take the

right block of a 1 , 1 , (abcdefghi). Therefore, find a

minimal cover for (abcdefghi) from the block of the

T-partitions such that the cover is disjoint from (jk),

the left block of a 1 , 1 .

91

y2 y3 y4
Cover of (abcdefghi) = (bcfhl) u (abdfg) u (acdeil)

Therefore,

yl 1 = (y 2 + y3 + y4)Il
I

Similarly:

Yl,2 = (yly2 + yly3)I2 Y2,1 = Y2 1 1

yl 3 = Yl 1 3 Y2,2 = (yly2 + Y2Y3)I2
I

yl 4 = 0 Y2,3 = (yly2 + yly4)I3
I

Y2,4 = I4

y3 1 = (y2y3 + Y2Y4)Il Y4,1 = (y2y 4 + y3y4)Il
I

Y3,2 = (yl y 3 + Y2Y4)I2 y4 2 = (y3y4 + yly2y3)I2
I

Y3,3 = (yl + y2y3)I3 Y4,3 = (y 4 + yly2)I3

Y3,4 = 0 Y4,4 = I4

Note that in order to find Y4 , 2 it was necessary to

form Tl • T2 • T3 . That is:

yly2y3 yly2y3 yly2y3 yly2y3
Tl • T

2
• T

3
= {(a),(b),(d g),(f),

Now the cover of:

yly2y3 yly2y3 yly2y3 yly2y3
(ek),(h),(ij),(1)}

y3y4 yly2y3
(bfgij) = (bfg) u (ij)

92

93

The expressions for the covers associated with the

a-partitions have now been found. The minimal next-state

equations can be derived by simply combining these

expressions.

Y. = Y. 1 + y. 2 + Y. 3 + y. 4
l l, l, l., l,

Therefore,

yl = (y 2 + y3 + y4)I1. + (y 1 y2 + yly3) 1 2 + yli3

y2 = Y2 1 1 + (yly2 + y2y3)I2 + (yly2 + yly4)I3 + I4

y3 = (y2y3 + Y2Y4)Il + (yly3 + y2y4)I2 + (yl + Y2Y3)I3

y4 = (y 2y 4 + Y3Y4)Il + (y 3y 4 + yly2y3)I2 + (y4 + yly2)I3 + I4

From the above example the value of this method with

respect to large flow tables can be readily seen. There-

fore, the method could play a key role in future synthesis

applications. It should be made clear that this method is

a general method for only generating next-state equations

and does not generate the state assignment too.

V. CONCLUSION

Now that each of the methods for generating the next­

state equations for normal-mode asynchronous sequential

circuits has been described, a meaningful discussion and

comparison of their strengths and weaknesses can be made.

First of all, one major difference that should be

remembered is that the state assignment must be derived

independently and prior to the use of the Maki, Tracey and

Smith method and the new method developed in this paper.

On the other hand, Burton and Noaks' method and Tan's

method are used to derive both the state assignment and

next-state equations in a parallel fashion. (Note: The

basic theory of Tan's method can also be used for just

deriving the next-state equations for a given state

assignment.) As a result of this difference the method

of Burton and Noaks and the specific procedure of Tan's

method are somewhat limited as general methods for gener-

ating next-state equations. In order to obtain the next-

state equations using these methods, their particular

type of state assignments must also be used. Therefore,

these methods could not be utilized in cases where a

design specified the use of a state assignment that

differed from their particular assignments. However,

the Maki, Tracey and Smith method, Tan•s basic theory and

94

the new method developed in this paper are general methods

which will work for any type of uni-code single transition

time (USTT) assignment that is given.

Another interesting comparison is the use of the

unspecified states of a flow table as a tool for obtain-

95

ing minimal next-state equations. The Maki, Tracey and

Smith method is the only method that handles the unspecified

states in an explicit fashion. The other methods

implicitly use the unspecified states. This difference

results because, in the Maki, Tracey and Smith method, the

y-variable expression that covers a transition pair

subspace is selected in such a manner that it covers the

smallest subcube of a Karnaugh map that contains that

transition pair. Then other y-variable expressions need

to be derived to cover the subcubes of the unspecified

states. In the other methods, however, the y-variable

expressions which cover particular transition pairs (or

destination sets) are selected in a manner such that they

cover the largest possible subcube of a Karnaugh map that

contains the transition pairs (or destination sets) along

with any available unspecified states. Therefore, the

unspecified states are inherent in these covers.

It is the explicit handling of the unspecified

states that leads to the following disadvantages of the

Maki, Tracey and Smith method:

1) The amount of time and work required to find the

expressions for the unspecified states by taking

the logical complement.

2) The amount of time and work required to simplify

the expressions to a set of minimal equations.

A recommendation for partially alleviating the above

disadvantages without changing the entire strategy can be

given. Part of the time and work required above is a

result of using transition pairs as the basis of their

method. For assignments derived from a transition pair

basis, it is necessary that their method also uses the

transition pair basis in the derivation of the next-state

equations. However, if the given state assignment is

known to be one based upon destination sets, then some

work and time would be saved if the method could be

readily converted to use destination sets as its basis

rather than transition pairs. A savings would result

because the unsimplified Boolean expressions produced by

destination sets would have fewer terms than the equiva-

lent expressions produced by transition pairs. Thus, the

manipulations required in the above disadvantage would

become less unwieldy.

The best method with respect to the mechanics

required in the actual construction of the next-state

equations is Burton and Noaks' method. The shortcuts

used in their derivation result from the way the initial

state assignment is made, i.e., the association of a

96

unique y-variable with each destination set. This state

assignment also leads to the unique property of having no

complemented variables in the next-state equations, which

may be a desirable feature for some designs.

It is recalled that Tan also used a strategy similar

to Burton and Noaks' for construction of the next-state

equations in his specific iterative procedure. The

1-blocks of the y-variable partitions in Tan's procedure

are treated in the same manner as the associated y-variable

destination sets in Burton and Noaks' method. However,

Tan's resulting next-state equations are not complement

free because both the 0-blocks and 1-blocks of the

y-variable partitions are used as possible covers in the

next-state equation.

One characteristic of Burton and Noaks' method which

may be a disadvantage is that a larger assignment and,

therefore, more state variables, have to be contended with

in the design. This evaluation can be verified by noting

that for the same flow table used in the example of each

method, the resulting Burton and Noaks' assignment exceeded

the assignments of all other methods by at least three

state variables. Of course, the effectiveness of this

method will vary from circuit to circuit. And there may

be cases where a minimal variable assignment could be

obtained with this method, but generally the method will

realize a larger assignment. This can be considered as

the price paid for complement free next-state equations.

97

Another disadvantage of Burton and Noaks' method is

the informal procedure of simplifying the initial assign­

ment using a dependency diagram. A more formal procedure

capable of being programmed on a computer would certainly

be welcomed.

From his basic theory, Tan developed a specific

iterative procedure which results in a Liu type assign­

ment. Although his assignment may not be a minimum

variable assignment, it often results in minimal next­

state equations requiring less gate inputs to implement.

This is due to the discreet manner in which the state

variables are selected for the assignment.

It has also been shown that Tan's basic theory can

be used strictly as a next-state equation generation

method for any given USTT assignment. However, as in the

case of the Maki, Tracey and Smith method, it too requires

a considerable amount of work and time for larger flow

tables. This is because, in using Tan's basic theory,

all dichotomies of transition pairs must be listed and

then an exhaustive search for those state variables that

minimally cover the relevant dichotomies must be carried

out. Even after the covers for the relevant dichotomies

have been determined, the derivation of the next-state

equations requires another rather complicated step. In

this step, the relevant dichotomies have to be further

examined to determine whether the uncomplement or

98

complement form of the y-variable covers should be used

and whether the product terms will be simple or compound

in the final next-state expression. As flow tables

become larger, a greater number of dichotomies have to

be examined and the amount of work and time required

becomes excessive.

99

The new method developed in this paper seems to

provide a better means of coping with larger flow tables.

In this method all destination sets (and therefore transi­

tion pairs) are grouped into one two-block partition per

input column, i.e., the a-partition. Therefore, no matter

how large the flow table is, in the derivation of a next­

state equation it is only necessary to cover one a-partition

per input column; whereas, in Tan's basic theory, many

dichotomies per input column have to be examined and

covered. It is this reason that enables the new method to

handle larger flow tables more efficiently than the other

methods. Since many practical circuits are very large, it

is conceivable that this method could become a valuable

tool in the future in the synthesis of asynchronous sequen­

tial circuits. Also, another attribute of this method is

its applicability to be programmed for computer use.

Since the new method is a systematic repetitive

procedure, it, too, has the disadvantage of becoming some­

what lengthy for larger flow tables when a large number of

T-partitions and products of T-partitions have to be

considered.

100

This completes a comparison of the foregoing methods.

In deciding which method should be used, the strengths

and weaknesses of each method mentioned above would have

to be weighed for the particular problem at hand.

VI. BIBLIOGRAPHY

1. E. J. McCluskey, Introduction to the Theory of
Switching Circuits. New York:--McGraw-Hill,-rnc.,
1965.

2. S. H. Unger, Asynchronous Sequential Switching
Circuits. New York: John W1ley and Sons., Inc.,
1969.

3. G. K. Maki, J. H. Tracey, and R. J. Smith,
"Generation of design equations in asynchronous
sequential circuits," IEEE Trans. on Computers,
vol. C-18, pp. 467-472, May 1969.

4. R. J. Smith, J. H. Tracey, W. L. Schoeffel, and
G. K. Maki, "Automation in the design of asynchro­
nous sequential circuits," 1968 Spring Joint
Computer Conf., AFIPS Proc., Vol. 32, pp. 55-60,
1968.

101

5. D. P. Burton and D. R. Noaks, "Complement free STT
state assignments for asynchronous sequential
machines," Proceedings of the 2nd National Symposium
on Logic Design, University of Reading, Sponsored
by British Computer Society, March 1969.

6. J. H. Tracey, "Internal state assignments for
asynchronous sequential machines," IEEE Trans. on
Electronic Computers, vol. EC-15, pp. 551-560,
August 1966.

7. C. N. Liu, "A state variable assignment method for
asynchronous sequential switching circuits,"
J. ACM, vol. 10, pp. 209-216, April 1963.

8. c. J. Tan, "Synthesis of asynchronous sequential
switching circuits," Dr. Eng. Sc. Dissertation,
Columbia University, June 1969.

9. C. J. Tan, P. R. Menon, and A. D. Friedman,
"Structural simplification and decomposition of
asynchronous sequential circuits," IEEE Trans. on
Computers, vol. C-18, pp. 830-838, September 1969.

VII. VITA

Gregory Martin Bednar was born on June 26, 1944, in

St. Louis, ~1issouri. He was graduated valedictorian of

his class from Cuba High School, Cuba, Missouri. He

received a Bachelor of Science degree in Electrical Engi­

neering from the University of Missouri - Rolla in August,

1966. He was actively employed by IBM at Rochester,

Minnesota, from August 1966 to September 1967, after

which he began two years active duty as an officer in

the United States Ar,my. One year was spent in Vietnam

where he was awarded the bronze star and the bronze star

with oak leaf cluster. Presently, he is enrolled in the

Graduate School of the University of Missouri - Rolla in

Electrical Engineering.

The author is a member of IEEE, Eta Kappa Nu,

Tau Beta Pi, and Phi Kappa Phi.

102

	Next-state equation generation for asynchronous sequential circuits - normal mode
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084
	Page0085
	Page0086
	Page0087
	Page0088
	Page0089
	Page0090
	Page0091
	Page0092
	Page0093
	Page0094
	Page0095
	Page0096
	Page0097
	Page0098
	Page0099
	Page0100
	Page0101
	Page0102
	Page0103
	Page0104
	Page0105
	Page0106
	Page0107
	Page0108
	Page0109

