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ABSTRACT 

This paper describes the known methods of generating 

next-state equations for asynchronous sequential circuits 

operating in normal fundamental mode. First, the methods 

that have been previously developed by other authors are 

explained and correlated in a simple and uniform language 

in order that the subtle differences of these approaches 

can be seen. This review is then followed by a develop-

ment of a new method for generating minimal next-state 

equations which has some advantages over the previous 

methods. 

From the comparison of the previous known methods, 

it is noted that any one of these methods may be desirable 

for certain designs since each has some advantages that 

the others do not have. However, these methods also have 

limitations in that some methods can only be used with 

particular types of assignments. Also, as flow tables 

become larger the amount of work required to use some of 

these methods becomes excessive and tedious. 

The method developed here is a simple and straight­

forward approach which can be used for any unicode, single 

transition time assignment and will easily lend itself to 

computer application. The heart of this method emanates 

from the role that the Karnaugh map plays in the conven­

tional approach for generating the next-state equations. 
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The main advantage of this method seems to be its capability 

and proficiency in handling large flow tables. 
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I. INTRODUCTION 

Sequential switching circuits are those circuits 

whose operation and output depend on both the present and 

previous inputs. These circuits can be further classified 

into two categories called synchronous and asynchronous 

sequential circuits. Synchronous circuits are those 

circuits whose operation is timed or synchronized by 

clock pulses. Conversely, asynchronous circuits are not 

timed by clock pulses and offer the advantage of faster 

operation, being limited only by the speed of the circuit 

components involved in any particular operation. 

In recent years, considerable work has been done in 

the area of generating next-state equations for asynchro­

nous sequential circuits. Although this work has been 

accomplished by a number of people, it has been primarily 

done on an individual basis without knowledge of each 

other's efforts. The intent of this paper will be twofold. 

First, the major works of other authors in this area will 

be explained in a simple and uniform language so that the 

subtle differences of these approaches can be seen and 

correlated. Although the developments of the methods 

presented here may differ somewhat from the original 

presentations, the basic ideas of the credited authors 

are used. Second, a development of a new method for 

1 



generating next-state equations will be given which has 

advantages over the other methods. 

The next section of this paper will review the basic 

concepts of asynchronous sequential circuit theory. A 

reader who is qualified in this area may skip this section. 

2 



II. BASIC CONCEPTS AND TERMINOLOGY 

A. Description of Asynchronous Sequential Circuits 

Asynchronous sequential circuits are usually repre-

sented by a block diagram of the type shown in Figure 1. 
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Figure 1. Model of an Asynchronous Sequential Circuit 

The delay shown in Figure 1 is the time required for the 

signals to propagate through the combinational logic and 

is inherent in the physical circuit components. Since pure 

combinational logic (i.e., logic with no delay) can be 

represented mathematically by Boolean algebra in the form 

of output and next-state equations, the delay is considered 
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to be removed from the logic and lumped separately as shown. 

In a simple mathematical model of an asynchronous circuit, 

the delay associated with the output logic is ignored 

while the delay of the next-state logic must be kept, 

since it is part of a required feedback loop. It is this 

lumped delay in the feedback loop that provides the 

interpretation or physical distinction between the next­

state and present-state variables. The value of the next­

state variable will become the present state after some 

delay in time. 

Attention will now be directed toward obtaining the 

next-state equations for the model shown in Figure 1. If 

there are n internal-state variables and m input states 

for such a model, the general form for the next state 

equations will be: 

Yl = fll(yl,y2,···,yn)Il + fli(yl,y2,···,yn)I2 + 

+ flm(yl,y2,···,yn)Im 

Y 2 = f 21. ( Y 1 'Y 2 ' • • • 'Y n) I 1 + f 2 2 ( Y 1 'Y 2 ' · • • 'Y n) I 2 + • • • 

+ f2m(yl,y2,···,yn)Im 

Yn = fnl(yl,y2,···,yn)Il + fn2(yl,y2,··· ,yn) 1 2 + 

+ fnm(yl,y2,···,yn)Im ( 1) 



where y 1 ,y 2 ,···,yn are the present state varia~les; 

Y1 , Y2 , ···, Yn are the next-state variables; r
1

, r
2

, 

Im are the input states; and f 11 , f 12 , 

tions of the internal-state variables. 

f are func­nm 

From hereafter 

the next-state equations will be written in this form. 

In this paper, minimization of these equations will be 

done with respect to the function of the internal-state 

variables only and will not consider codings of the input 

states. 

General information on this class of circuits can be 

found in references [1] and [2]. 

1. Flow Table 

The flow table is one of the principal means of 

describing the operation of an asynchronous sequential 

circuit. As shown in Figure 2, it is a two-dimensional 

array consisting of next-state entries, with its columns 

representing the input states and its rows representing 

the internal states of the circuit. (The flow table 

usually shows the output states, too, but in this paper 

the output states are not relevant and therefore will 

not be shown in the flow table.) The row in which the 

circuit is currently operating is often referred to as the 

present internal state or just the present state. For 

example, if the present state of the circuit described by 

Figure 2 is c and then an input of r 2 is applied, the next 

state or state that the circuit will go to is e. 

5 
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Il I2 Input States 

a c 0 
Internal b c 0 
States c 0 e 

d 0 a 

e d 8 
Figure 2. Flow Table for an Asynchronous Sequential Circuit 

If a next-state entry is found to be the same as 

the internal state representing that row, then the internal 

state is said to be stable with respect to that input 

column and is denoted by a circled next-state entry. 

Similarly, uncircled entries denote unstable internal 

states. 

2. Fundamental Mode 

An asynchronous sequential circuit is said to be 

operating in fundamental mode if the inputs are never 

changed unless the circuit is in a stable state. 

3. Normal Mode 

An asynchronous sequential circuit is said to be 

operating in normal mode if each unstable state leads 

directly to a stable state. 



4. Internal-State Assignment 

An internal-state assignment is a binary coding for 

the internal states of a sequential circuit. For an 

asynchronous circuit is must be constructed in a manner 

such that the circuit will function according to flow 

table specifications, independent of variations in trans­

mission delays within the circuit. 

5. Transition 

The change of values of state variables from the 

internal-state code associated with the present state to 

the code associated with the next state is said to be a 

transition from the present state to the next state. 

6. Direct Transition 

A transition whereby all state variables that are to 

undergo a change of state are simultaneously excited is 

direct transition. 

7. Critical Race 

A critical race is an undesirable feature of an 

internal-state assignment which occurs when the binary code 

of the next internal state differs from the code of the 

present state in two or more bit positions, and there is 

a possibility that unequal transmission delays may cause 

the circuit to reach a stable state other than the one 

intended. 

7 



8. Uni-code Single Transition Time Assignment 

A state assignment is called a single transition 

time (STT) assignment when all transitions are direct 

transitions without critical races. Further, if only a 

single coding is associated with each state, it is 

called a uni-code single transition time (USTT) 

assignment. 

9. State Table 

A state table differs from a flow table in that a 

state table shows all of the internal states that a 

sequential circuit can assume along with corresponding 

next-state entries, whereas a flow table indicates only 

the initial and final states. For example, a flow table 

that has seven internal states and is coded with a four­

variable internal-state assignment may have a correspond­

ing state table with sixteen internal states. Of these 

sixteen states, those which are not involved in any tran­

sitions in the state table are referred to as the don't­

care or unspecified states. 

10. Transition Table 

A transition table has the same form as the state 

table except that the next-state entries are replaced with 

their respective codes. 

8 



B. Conventional Approach of Generating Next-State Equations 

Assume that the flow table with the USTT assignment 

shown in Figure 3 describes the operation of a normal 

fundamental mode asynchronous sequential circuit. 

yl y2 y3 Il I2 I3 

0 0 0 a 0 b 0 
1 1 0 b c C0 C0 
1 0 0 c 0 b a 

0 0 1 d a 0 e 

0 1 1 e 0 d 0 
Figure 3. Flow Table 

In using the conventional approach of generating the 

next-state equations [1] it is necessary to first con-

struct the state and transition tables as shown in Fig-

ure 4. As previously mentioned, when constructing these 

tables all possible internal-state codings must be listed 

along with their corresponding next-state entries. Also 

since all transitions must be direct and hence carried out 

in a single transition time, it is necessary to insure 

that no critical races can occur. Therefore, to prevent 

a critical race during the transition from states a to b 

under input I 2 , the intermediate state coded as 010 in the 

state table must have state b as its next-state entry 

under I 2 • 

9 
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yl y2 y3 Il I2 I3 

0 0 0 a 0 b G 
l l 0 b c @ ~ 
l 0 0 c 0 b a 

0 0 l d a 0 e 

0 l l e 0 d 0 
0 l 0 b 

l 0 l 

l 1 1 

(a) 

yl y2 y3 Il I2 I3 

0 0 0 a 8 110 ~ 
l 1 0 b 100 GB @ 
l 0 0 c ~ 110 000 

0 0 1 d 000 G£Y 011 

0 1 l e @ 001 @) 
0 1 0 110 

1 0 1 

1 1 1 

(b) 

Figure 4. (a) State Table, (b) Transition Table 

The next step is to construct Karnaugh maps from 

the transition table and then derive the next-state 



equations, Y. 's, where i represents the ith state variable. 
l 

The Karnaugh maps for Y1 are shown in Figure 5. 

Y1 under I 1 
(denoted as Y1 , 1 ) 

0 

1 

00 

0 - 1 0 

0 0 ~ -
Y1 under I 3 

(denoted as Y1 , 3 ) 

Y1 under I 2 
(denoted as Y1 , 2 ) 

Figure 5. Karnaugh Maps for Y1 

By grouping the ones in the Karnaugh maps the sum-of-

products form of a Boolean expression for Y1 can be 

derived: 

yl = Yl,l + yl 2 + Yl,3 
I 

Yl,l = ylil 

Yl,2 = y3I2 

Yl,3 = yly2I3 

Therefore, 

11 



Similarly, the equations for Y2 and Y3 are: 

Definition: A y-variable expression is said to 

cover a set of states if for those states the expression 

is true (logical 1) and for all other states the expres­

sion is false (logical 0). 

This definition implies that the above next-state 

equations cover those states whose corresponding next-

state variable, Y., has a value of one in some input 
l 

column. 

It would now be good to analyze the foregoing pro-

cedure to determine what has actually taken place and 

why it works. The construction of the state and transi-

tion tables introduce the unspecified (or don't-care) 

states which are later used in the Karnaugh maps to 

obtain a reduced form of the next-state equations. 

Another main point that should be noted from these tables 

is that all states which lead to the same stable state 

12 

under a particular input have identical next-state entries. 

This observation plays a prominent role in some of the 

other procedures to be discussed later. Next, it is 

observed that by using the Karnaugh map two important 

feats are accomplished: 
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1) It permits the grouping of all ''1" next-state 

variable entries into subcubes which can easily 

be covered by subsets of internal-state variables. 

These subcubes are the largest possible sub-

cubes which can be selected, such that they do 

not contain any ''0" next-state variable entries. 

(However, they may contain don't-care entries.) 

Intuitively speaking, these groupings represent 

the states involved in those transitions in 

which the corresponding y-variable of the stable 

state is one. 

2) It provides a minimal y-variable expression that 

covers those states which have a ''1" for their 

Y. entry. 
l 

This expression is formed from the 

internal-state variables that cover the subcubes 

obtained in 1) above. 

Keeping these basic ideas in mind will provide 

insight in the development of the more sophisticated methods 

to be discussed later. 

The main disadvantage of using the conventional 

method to generate the next-state equations is the amount 

of time needed to construct the state table, transition 

table, and Karnaugh maps, especially for large flow tables. 



III. 

A. Method # l 

REVIEW OF THE KNOWN METHODS FOR 

GENERATING NEXT-STATE EQUATIONS 

G. K. Maki, J. H. Tracey, and R. J. Smith 

Maki, Tracey and Smith [3] jointly developed a means 

to obtain the next-state equations directly from the flow 

table and the internal state assignment. The advantage 

of this method over the conventional approach is that the 

state table, transition table, and Karnaugh maps do not 

have to be explicitly formed. 

Definition: A destination set of a flow table 

column is the set of all unstable states leading to the 

same stable state, together with that stable state. 

This definition implies that a destination set is 

a collection of all those states under a particular input 

that have the same next-state entry. 

for the flow table in Figure 3 are: 

DI 
1 

a d 

b c 

e 

DI 
2 

a b c 

d e 

The destination sets 
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where Dr. deontes the set of destination sets under input 
l 

I. and the stable state of each destination set is 
l 

underlined. 

Definition: Each pair of states consisting of one 

unstable state and the stable state of the destination 

set is called a transition pair, since there is a transi-

tion from the unstable state to the stable state. 

Note that a destination set may contain one or more 

transition pairs. For example, the destination set a d 

under r
1 

only contains one transition pair while the 

destination set a b c under r 2 consists of two transition 

pairs, a b and c b. 

Definition: An internal state s is said to be an 
r 

15 

intermediate state between states s. and s. of a transition 
l J 

pair if the state variables may assume the value associated 

with the internal states during the transition from s. r 1 

to s .. 
J 

Definition: A transition pair subspace is a portion 

of the total state space having a span that consists of 

all possible internal states, both terminal and inter-

mediate, which can be assumed by the circuit during a 

transition. This subspace is represented by a product 

function of the internal state variables. 
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Consider the transition pair a b from the destination 

set a b c under input I
2

. The internal state coding for 

states a and b are 0 0 0 and l l 0 respectively. During 

the transition between states a and b, any of the internal 

states 0, where the dashes represent all combinations 

of l's and o•s, could be assumed momentarily due to 

possible unequal transmission delays. To insure that the 

circuit reaches the proper terminal state, all the states 

represented by - - 0 must have the next-state entry of 

l l o. It can be seen that this is the case in the transi-

tion table of Figure 4(b). These states form the transition 

pair subspace which is expressed as y 3 . 

The method developed by Maki, Tracey and Smith [3] 

for representing the transition pair subspace as a product 

of internal-state variables is as follows: 

l) List the codes assigned to the states of the 

transition pair. 

2) The function that will represent the transition 

pair subspace will be a product of the internal-

state variables. If the internal-state variable 

y. is a l for both states of the transition pair, 
J 

it will appear uncomplemented in the product 

function. If the internal-state variable yj 

appears as a 0 in both of the states of the 

transition pair, its complement will appear in 

the product function. If the internal-state 

variable y. appears as both a l and a 0 in the 
J 



states of the transition pair, it is considered 

a don't-care variable and does not appear in the 

product expression. 

Therefore, using these rules, - - 0 is expressed as y
3

. 

The transition pair subspace is equivalent to the 

subcube spanned by the transition pair in a Karnaugh map. 

From the Karnaugh map of Figure 6, it is seen that the 

transition a to b will take place within the subcube 

covered by y 3 , where states 0 l 0 and l 0 0 could be inter-

mediate states of the transition. This agrees with the 

result obtained earlier for the transition pair subspace. 

00 01 11 10 

0 (a - b c) 

l d e - -

Figure 6. Karnaugh Map Showing a Transition Pair Subspace 

17 

Definition: A destination set subspace is that portion 

of the total state space consisting of all possible internal­

states that the circuit could assume during transitions 

between states within the destination set. 

The expression covering a destination set subspace 

is equal to the sum of the transition pair subspaces, where 

each transition pair subspace is represented as a product 

of the internal-state variables. Using the destination set 
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a b c under input r 2 , Figure 7 shows the steps 1n finding 

the destination set subspaces. Whereas the destination 

set itself represented all terminal states of a flow table 

Destination Transition 
Set Pairs 

- --
a b c a b 
~ 

c b 

Transition Destination 
Pair Sub spaces Set Subspace 

- --~ 

0 - - or y3 
~ ~ 

1 0 
~ y3 + yly3 - or yly3 

Figure 7. Calculating Destination Set Subspaces 

column that have the same next-state entry, the destination 

set subspaces represent all specified internal states of 

a particular input column, both terminal and intermediate 

states, that have the same next-state entry. Therefore, 

destination set subspaces perform one of the functions 

of the state table in the conventional approach since the 

state table also designates all specified internal states. 

Another main function of the state table, which will now 

be considered, is the designation of all the unspecified 

states (don't-cares) of the circuit. In order to obtain 
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the reduced form of the next-state equations, it is necessary 

to use the unspecified states. 

A sum-of-products expression which logically repre-

sents all the specified states of an input column can be 

obtained by summing the expressions for the destination 

set subspaces of that column. It then follows that the 

unspecified states of that column would simply be the 

logical complement of this expression. The simplified 

expression for the unspecified states under input column r 2 
is shown in Figure 8. 

d e 

Destination Set 
Sub spaces 

Specified States 
under r 2 

Unspecified 
States under r 2 

Figure 8. Calculating the Unspecified States 

The essential information contained in the state table of 

the conventional approach is now available in the form of 

logical y-variable expressions. 

To find the next-state equation Y., only those group­
l 

ings of internal states which have a "l'' next-state entry 

with respect toY. are considered. 
l 

These groupings of 

internal states correspond just to those destination set 

subspaces in which the yi variable in the binary coding 

for the stable state is a l. Again. this is true because 

all next-state entries of the internal states represented 



by the destination set subspaces are the same, namely that 

of the stable state. So for example, if y 1 in the stable 

state is 1, then all entries of the next-state variable 

Y will be 1 for those states represented by the respec-
1 

tive destination set subspaces. 

Definition: A destination set will be called a 

1-destination set with respect to variable y. of y. = 1 
l l 

for the stable state and a a-destination set if y. = 0 
---- l 

for the stable state. 

To complete the construction of the next-state 

equations it is only necessary to sum the logical expres-

sions representing the subspaces of those 1-destination 

sets that are in the same input column along with the 

expression representing the unspecified states of that 

column. This will insure that the resulting next-state 

expression representing that column will be in reduced 

form after a simplification procedure is applied. Retain-

ing the identity of the input column with the simplified 

expression, the process is then repeated for the remain-

ing input columns at which time the final equation will 

be complete. 

The process of combining the expressions represent-

ing the subspaces of the 1-destination sets with the 

expressions representing the unspecified states of each 

column is analogous to the function of the Karnaugh maps 

20 



in the conventional approach. With the Karnaugh map, 

those states which had 1-entries for Y. were grouped with 
l 

unspecified states in order to obtain the most minimal 

form of the next-state expression. 

To help provide a better understanding, a more 

succinct picture of the foregoing method will be given by 

first summarizing the steps of the procedure and then 

following with an example. 

1. 

Maki-Smith-Tracey 
Procedure 

List the destination sets 

for each input column. 

Meaning 

Represents groupings of 

internal states of flow 

21 

table that have same next-

state entries in a column. 

2. Find y-variable expres- Equivalent to the subcube 

sions for the transition of the Karnaugh map in 

pair subspaces of each which the transition takes 

destination set. place. 

3. Form the y-variable Represents the groupings 

expressions representing of the specified internal 

the destination set sub- states in a state table 

spaces by summing the which have the same next-

expressions representing state entries. 

the transition pair sub-

spaces of each destination 

set. 



4. Find a y-variable expres­

sion for the specified 

states of each column by 

summing the expressions 

for all destination sets 

subspaces in a column. 

5. Find a y-variable expres­

sion for the unspecified 

states of each input 

column by taking the 

logical complement of the 

expression representing 

the specified states of 

that column. 

6. 

7. 

List the 1-destination 

sets and their subspaces 

for each input column. 

Combine the expressions 

representing the sub­

spaces of the 1-destination 

sets with the expression 

representing the unspeci­

fied states for each input 

column to find the minimal 

22 

Steps 4 and 5 provide the 

same information that is 

found in the state table 

of the conventional 

approach. 

Analogous to information 

found in the transition 

table and the Karnaugh 

maps. 

Equivalent to using 

Karnaugh maps to find 

minimal next-state expres­

sions by selecting 

groupings with maximum 

1-entries and don't 

cares. 
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form of next-state expres-

sions. Retain the identity 

of each input state with 

the resulting expression 

for that column. 

Example Problem 

yl y2 y3 Il I2 I3 

0 0 0 a 0 b 0 
1 1 0 b c G G 
1 0 0 c G b a 

0 0 1 d a 0 e 

0 1 1 e 0 d 0 
The results of this method should be the same as the 

results obtained in the conventional approach. 

Following the steps of the above procedure: 

1. The destination sets are: 

DI 
1 

DI 
2 

DI 
3 

a d a b c a c 

b c d e b -
e d e 

2. The transition pair subspaces are: 



Input 

Input 

Destination 
Sets 

a d 

b c 

e 

a b c 

d e 

a c 

b 

d e 

Transition 
Pairs 

a d 

b c 

e 

a b 

b c 

d e 

a c 

b 

d e 

Transition Pair 
Subspaces 

0 0 - or y1y2 

1 - 0 or y1y3 

0 1 1 or Y1Y2Y3 

- - 0 or y3 

1 - 0 or y1y3 

0 - 1 or y1y3 

- 0 0 or y2y3 

1 1 0 or y1y2y3 

0 - 1 or y1y3 

3. The destination set subspaces are: 

Destination Sets Destination Set Subspaces 

a d 

b c 

e 

a b c 

d e 

a c 

b 

d e 
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4. Expressions for specified states of each input 

column are: 

Input Specified States 

Note: The above expressions are not simplified. 

5. Expressions for unspecified states of each column 

after simplification are: 

Input Unspecified States 

6. The 1-destination sets and their subspaces are: 

y-variable Input 1-Destination Sets Sub spaces 

Il b c yly3 -

I2 a b c y3 + yly3 

I3 b yly2y3 



26 

y-variable Input 1-Destination Sets Subs paces 

e yly2y3 -

a b c y3 + yly3 

b yly2y3 

d e yly3 -

e yly2y3 -

d e yly3 

d e yly3 -

7. Combining the subspaces for the 1-destination 

sets with the expressions for the unspecified states yields 

the following next-state equations: 



y3 = [yly2y3 + d(yly3 + Y1Y2Y3) ]Il 

+ [yly3 + d(yly3)]I2 

+ [yly3 + d(yly3 + Y1Y2Y3) ]I3 

where d( represents the subspaces of the unspecified 

states. After simplifying: 

yl = ylil + y3I2 + yly2I3 

y2 = yly2Il + y3I2 + (y2 + y3)I3 

y3 = Y1Y2I1 + y3I2 + Y3I3 

When simplifying, only those don't-care states are used 

which help simplify the next-state expressions. It is 

seen that the equations obtained with this method are 

identical to those of the conventional approach. 

As mentioned earlier, the Maki, Tracey, and Smith 

method generates a minimal set of next-state equations 

without explicitly constructing the state and transition 

tables. It sould also be pointed out that this method 

will work for any satisfactory USTT assignment, i.e., no 

matter whether the assignment has been developed from a 

transition pair basis or a destination set basis. This 

is true because transition pairs make up destination sets, 

and this method uses transition pairs for its basic 

building blocks as opposed to other methods that use 
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destination sets. Also, a computer program implementing 

this method has been developed by Smith et al. [4]. 

B. Method # 2 D. P. Burton and D. R. Noaks 

Burton and Noaks [5] recognized that for large flow 

tables the derivation of next-state equations is a major 

difficulty. The motivation for their method was to 

establish a systematic procedure of obtaining a satis­

factory USTT assignment for a normal-fundamental mode 

flow table that would lead to relatively simple next-

state equations. The technique used to accomplish this 

goal involves generating the next-state equations in a 

semi-parallel fashion with the construction of the USTT 

assignment. The next-state equations have the character­

istics that no product terms contain more than one state 

variable and no product terms contain any complemented 

state variables. 

Definition: A product term in the next-state equa-

tion is said to be a simple product term if it contains 

only one internal-state variable. 

Again, for correlation purposes, the same flow table 

that was used in the previously discussed procedures will 

be considered here and is repeated in Figure 9 for con-

venience. 

unknown. 

In this case, though, the USTT assignment is 
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Il I2 I3 

a 0 b 0 
b c ® ® 
c 0 b a 

d a 0 e 

e 0 d 0 
Figure 9. Flow Table Without a State Assignment 

As in the Maki, Tracey and Smith method, the first 

step in this procedure is to list the destination sets 

for each input column. In addition, associate with each 

destination set an internal-state variable, y., such that 
l 

y. = 1 for those states in the destination set and y. = 0 
l l 

for all other states. To help clarify the following 

discussion, the destination sets associated with a y. 
l 

state variable will sometimes be referred to as the y. 
l 

destination set. The destination sets and associated 

y-variables for the flow table in Figure 9 are: 

DI 
1 

DI 
2 

DI 
3 

yl -+ {a d} y4 -+ {a b c} y6 -+ {a c} 

y2 -+ {b c} Ys -+ {d e} y7 -+ {b} 

y3 -+ {e} Ys -+ {d e} 
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This association of the state variables with the destination 

sets provides the following initial USTT assignment for 

the flow table: 

yl y2 y3 y4 Ys y6 y7 Yg Internal States 

1 0 0 1 0 1 0 0 a 

0 1 0 1 0 0 1 0 b 

0 1 0 1 0 1 0 0 c 

1 0 0 0 1 0 0 1 d 

0 1 1 0 1 0 0 1 e 

In the previously ~iscussed methods, the next-state 

equations consisted of y-variable expressions covering 

those states ln which the next-state entries were 1. The 

same is true in Burton and Noaks' method. From the above 

assignment the next-state equations could be derived by 

constructing the Karnaugh maps as in the conventional 

approach, or by finding the expressions for the subspaces 

of the 1-destination sets as in the Maki, Tracey and Smith 

approach. But that would defeat the purpose of making a 

larger assignment in the manner shown, sirtce it is supposed 

to make thP construction of the next-state equations easier 

than in the previous methods. 

It was stated previously that in Burton and Noaks' 

method each y. state variable will be a 1 for only those 
l 

states in its associated y. destination set. 
l 

Since all 

next-state entries for the states in a destination set are 



the same and equal to the stable state, the states of 

those destination sets whose stable states are contained 

in the y. destination will have y. = 1 for their next-
l l 

state entry. Therfore, to derive the next-state equation 

for some Y. 1 the stable states of all destination sets 
l 

are compared with the states in the y. destination set. 
l 

If the stable state of some destination set, say the y. 
J 

destination set, is also a member of the y. destination 
l 

set, then theY. equation must include a simple produce 
l 

term y.I 1 where I is the input under which they. 
J m m J 

destination set is located. Of course, if more than one 

destination set under the same input have their stable 

states contained in the y. destination set, the resulting 
l 

equation for Y. will contain more than one simple product 
l 

term with the same input. For instance, theY. equation 
l 

may contain two simple product terms like yjim + ykim 

which equals (y. + yk) I . 
J m 

To illustrate the above ideas, the next-state equa-

tion for y 1 will be derived. Since the y 1 destination set 

is {ad}, Y1 will equal one for all states in destination 

sets whose stable states are either "a" or "d". The 

destination sets under each input column which satisfy 

this condition are: 

-+ {a d} -+ {d e} y -+ {a c} 
6 
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Therefore, the next-state equation for Y1 can easily be 

written as 

As previously noted, this same expression could be 

obtained using the conventional approach by finding the 

largest groupings of 1-entries and don't cares in a 

Karnaugh map, and with the Maki, Tracey and Smith method 
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by combining the expressions of the subspaces for the 

1-destination sets with the expressions for the unspecified 

states. But with such a large assignment these methods 

would require an excessive amount of work. For example, 

consider the derivation of the term y 5r 2 of the above 

equation, when using the conventional approach. The 

Karnaugh map for Y1 and input column r 2 , which would be 

constructed from the transition table, is shown in Fig-

ure 10. By circling the largest possible subcubes of the 

map which contains only "1" and don't-care entries, an 

expression for Y1 under input r 2 can be obtained. As 

illustrated in this case, all 1-entries can be grouped into 

one subcube which is covered by the state variable y 5 . 

Therefore, from the Karnaugh map we can write the expres­

sion y
5

r
2 

which agrees with the result obtained above. 

This example also illustrates that the use of don't-care 

states in the derivation of the y-variable expressions 

is inherent in Burton and Noaks' method. 



33 

y1y2y3y4 

or--i r--i 0 0.--i.--i 0 0 r--i r--i 0 0 r--i r--i 0 
00 r--i" r--i r--ir--i 0 0 0 0 r--i r--i r--i r--i 0 0 

Ys y6 y7 Ys 00 0 0 r--ir--ir--i r--ir--i r--i r--i" r--i 0 0 0 0 
00 0 0 0 0 0 0.--i r--i r--i r--i r--i" r--i r--i r--i 

0 0 0 0 - 0 - - 0 - - 0 - - - - 0 -
0 0 0 1 - - - - - - - - - - - -
0 0 1 1 - - - - - -
0 0 1 0 0 - - - - 0 0 - - - - 0 -
0 1 1 0 - 0 0 0 - - - - 0 -

0 1 1 1 - - - - - - -
0 1 0 1 - - - - - - - - - - - -
0 1 0 0 - 0 0 0 - - - - 0 -
1 1 0 0 ~ 

1 1 0 1 - - - - - - - - - -
1 1 1 1 - - - - - - - - - - - - - -
1 1 1 0 - - - - - - - - - -
1 0 1 0 - - - - - - - - - - - - - -
1 0 1 1 - - - - - - - - - - - - - -
1 0 0 1 1 1 - - - - - - 1 1 

1 0 0 0 - - - - - - - - - -

Figure 10. Karnaugh Map for Y1 under r 2 



The foregoing discussion explains the heart of 

Burton and Noaks' method. The remaining portions of their 

method deal with minimization techniques for eliminating 

redundant y-variables from the initial assignment and for 

simplifying the corresponding next-state equations. The 

description of these techniques will be stated in a 

narrative fashion with an informal plausible proof given. 

A more rigorous mathematical presentation and proof can 

be found in the reference cited [5]. 

Simplification Test I: 

The first test which is applied to check for 

redundancy involves examining all terms in the next-state 

equations of the form (y. + y. +···)I . 
l J m 

If the union of 

the destination sets associated with the y-variables of 

this term is equal to: 

1) some other ys destination set, then the term 

(y. + y. + •••)I is replaced by y I . 
l J m s m 

2) the total state set (i.e., the set of all 

internal states in the flow table) , then the 

term (y. + y. + ···)I is replaced by 1 • I 
l J m m 

or just I . 
m 

The reasoning behind these rules can be explained in the 

following manner: 

1) If there exists the term (y. + y.)I ln a 
l J m 

next-state equation and if this term is true 
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(logical 1), then either y. or y. is true. 
l J 

This 

implies that the circuit is operating in a state 

of they. destination set or in a state in the 
l 
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y. destination set. 
J 

If the union of they. andy. 
l J 

2) 

destination sets equal the y destination set, s 

then all the states of y. andy. destination sets 
l J 

are in the ys destination set too. Therefore, 

whenever y. or y. is true, y will also be true 
l J s 

and the term (y. + y.)I can be replaced by y I . 
1 J m s m 

If there exists the term (y. + y.)I and the 
1 J m 

union of they. andy. destination sets equal 
l J 

the total state set, then the circuit will always 

be operating in a state of the yi destination 

set or in a state of they. destination set. 
J 

This implies that either y. or y. will always 
l J 

be true and therefore the expression (y. + y.) 
l J 

can be replaced by the constant 1. (Note: in 

the term (y. + y.)I both y. andy. could not 
1 J m 1 J 

be true at the same time since this would imply 

that two destination sets under the same input 

shared a common state which is the condition of 

a critical race.) These ideas can be extended 

to any term in the next-state equations of the 

form (y. + y. + yk + •••)I . 
1 J m 

An example of Test I can be given by considering 

the next-state equation for y 4 of the preceding assignment. 



Remembering the method of derivation, the equation for y 
4 

can be written as: 

It is observed that there are two compound terms in the 

equation. First, looking at the term (yi + y
2
)I

1
, the 

union of the associated destination sets yields the set 

{a b c d} which is not the same as any one destination set. 

Therefore, the expression (y 1 + y 2 ) cannot be reduced. 

Now looking at the other term (y 6 + y
7
)I 3 , the union of 

the y 6 and y 7 destination sets yield the set {a b c} 

which corresponds to the y 4 destination set. Therefore, 

by Test I, the expression (y 6 + y
7

) can be replaced by 

y 4 . The reduced equation for Y4 is now: 

Simplification Test II: 

If two or more destination sets contain identical 

states, whether or not they have the same stable state, 

then these destination sets are referred to as being equiv­

alent and the same y-variable can be assigned to both sets. 

The reasoning behind this rule follows directly along the 

same lines of Test I. If two different y-variables 

represent equivalent destination sets, then both y-

variables will be true at the same time. Therefore, one 

y-variable is redundant and can be eliminated. As an 

36 



37 

example, the destination sets for the flow table in 

Figure 9 will be considered. Under input I 2 , y 5 was 

assigned to destination set (d e) and under input I
3

, y
8 

was assigned to destination set (d e) . Since both of these 

destination sets are equivalent (irrespective of which 

states are stable), the y 8 variable can be eliminated and 

the y 5 variable can be assigned to both destination sets. 

This eliminates one y-variable of the initial assignment 

and consequently one next-state equation. 

Test II can also be restated in another way. If the 

right hand side of two or more next-state equations are 

identical, then only one of the y-variables associated with 

the left hand side of these equations is necessary for the 

assignment. This results from the fact that equivalent 

destination sets will always give the same next-state 

equations. 

The next test in the minimization process is less 

specific and clear-cut, but more important than the 

previous tests. This test requires the construction of a 

dependency diagram which is used to select a minimum set 

of y-variables, from the remaining y-variables of the 

initial assignment, that will provide a satisfactory USTT 

assignment for the given flow table. Before listing the 

steps of this test, it is necessary that a few fundamental 

definitions and conditions for a satisfactory USTT assign­

ment be stated. 



Definition: A partition TI on a set of states is a 

grouping of the states into disjoint subsets called 

blocks, such that every state belongs to exactly one 

block. 

For example, a two-block partition may be defined 

on the state set {abc de} as TI ={(abc), (de)}. 

Definition: The smallest partition of a set of 

states is denoted as TI(O} and corresponds to the parti-

tion in which each block consists of a single state. 

From the preceding example, TI(O} ={(a} ,(b} ,(c}, 

(d},(e)}. 

Definition: The blocks of a partition TI corres­
g 

pending to the greater lower bound (g.l.b.} of partitions 

Til and TI 2 , written as Til • TI 2 , consist of all the non­

empty intersections that can be formed by intersecting a 

block of Til with a block of TI 2 . The g.l.b. operation is 

both commutative and associative. 

For example, if 

TI 
1 

= { (a b c} , ( d e} } and TI 2 = { (a b d} , ( c e} } 

then 

Tig =Til· TI 2 ={(a b},(c},(d),(e}} 

Tracey [6] developed USTT assignment methods from 

the idea that each binary valued state variable may be 

thought of as inducing a two-block partition on the states 

of a machine. Tracey [6] also proved in his Assignment 
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Method #2, that an USTT assignment will contain no critical 

races if it has been made such that: 

1) for every destination set D., if D. is another 
l J 

destination set in the same input column, then 

at least one y-variable partitions the destination 

sets D. 
l 

and D. 
J 

into separate blocks. 

2) all internal states are distinguished from one 

another by being in separate blocks of at least 

one y-variable partition. 

Since these conditions lead to the formation of the 

well-known Liu type assignment [7], they will be referred 

to hereafter as the Liu assignment conditions. Using this 

terminology will also help distinguish these conditions 

from the conditions of the well-known Tracey assignment [6] 

which will be discussed later. 

It should be obvious that the initial assignment of 

Burton and Noaks will satisfy the Liu assignment condi-

tions since a unique y-variable is assigned to each 

destination set. A dependency diagram is then used to 

show that a smaller set of the initial y-variable may exist 

that also satisfies the Liu conditions which would, there-

fore, result in a smaller USTT assignment. 

Simplification Test III: 

This test involves the simplification of the state 

assignment with the use of a dependency diagram. The rules 

for the construction of dependency diagrams are: 



1) Let each y-variable of the assignment represent 

2) 

a node of the diagram. 

Check each y-variable's next-state equation. 

the next-state variable, Y., is dependent on 
l 

If 

other y-variables draw arrows from the nodes of 

the independent y-variables into the node of 

the dependent next-state variable Y .. 
l 
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No formal procedure is known for selecting the minimum 

set of state variables from the dependency diagram, and the 

trial and error method suggested here differs somewhat from 

the method presented by Burton and Noaks [5]. 

It is necessary to select a set of state variables 

which have next-state equations independent of all other 

state variables. This set can be found by drawing boundary 

lines through the dependency diagram. These lines must be 

constructed such that all arrows that pass through them 

are in the same direction. Although the boundary lines 

will separate sets of state variables which are independent 

of the remaining variables, this does not, however, imply 

that each set of independent variables will necessarily 

result in a satisfactory assignment. To determine whether 

the set of independent state variables selected do form a 

satisfactory assignment, the two-block partitions induced 

by these variables must satisfy the Liu assignment condi-

tions mentioned earlier. First, it is necessary to insure 

that all destination sets under the same input are in 



separate blocks of at least one y-variable partition, and 

second, it is necessary to insure that all states are in 

separate blocks of at least one y-variable partition. The 

second condition will be satisfied if the g.l.b. of the 

y-variable partisions is equal to n(O). If the Liu 

assignment conditions do not hold, the next larger set of 

independent y-variables is selected and tested. This 

process is continued until a set of y-variables are 

selected which will satisfy the Liu conditions. This set 

of variables will result in the minimal Burton and Noaks' 

assignment with corresponding minimal next-state equations. 

This concludes the description of the Burton and 

Noaks' method. A brief summary of the procedure is given 

by the following steps: 

1) List all destination sets of the flow table and 

assign to each set a unique state variable. 

2) Construct the next-state equations for the 

initial state variables by using the strategy 

of simple product terms. 

3) Apply minimization techniques. 

a) Test I - Replace compound terms with simpler 

terms. 
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b) Test II - Eliminate redundant y-variables 

that represent the same destination set. 

(Note: This test may be applied concurrently 

with Step 1.) 



c) Test III - Construct and use the dependency 

diagram. 

The complete method will now be illustrated for the 

flow table in Figure 9. 

Step 1. 

The destination sets and associated y-variables are 

listed for each input column. 

DI 
1 

DI 
2 

DI 
3 

yl -+ {a d} y4 -+ {a b c} y6 -+ {a c} 

y2 -+ {b c} Ys -+ {d e} y7 -+ {b} 

y3 -+ {e} Ys -+ {d e} 

Minimization Test II was applied concurrently with this 

step by assigning y 5 to two equal destination sets. 

Step 2. 

The set of next-state equations, written ln matrix 

form for clarity, is: 
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yl yl Ys y6 

y2 y2 y4 y7 

YJ y3 0 Ys Il 

y4 = (yl +y2) y4 (y 6+y7) I2 

Ys YJ Ys Ys I3 

y6 (y 1 +y 2) 0 y6 

y7 0 y4 y7 

Step 3. 

With minimization test I, only the expression (y
6

+y
7

) 

is replaced and the resulting equations are: 

yl yl Ys y6 

y2 y2 y4 y7 

y3 y3 0 Ys Il 

y4 = (yl +y 2) y4 y4 I2 

Ys y3 Ys Ys I3 

y6 (y 1 +y 2) 0 y6 

y7 0 y4 y7 

Since test II was utilized during Step 1, test III will now 

be applied. The dependency diagram for the above set of 

next-state equations is: 
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J 
I Boundary Line 
I 

Only one boundary line exists for this diagram. The 

set {y 3 , y 5 } is the independent set because these variables 

are not dependent on any of the other variables in the 

diagram. 

dependent on the set {y 5 , y 3 } because y 1 depends on y
5 

and 

y 5 in turn depends on y 3 . The direction of the arrows 

crossing the boundary line will indicate which set of 

variables is the independent set. 

It is obvious that the set {y 3 , y 5 } is not sufficient 

to identify the five states of the flow table, since two 

binary valued variables can only code a maximum of four 

distinct states. The next largest independent set of 

y-variables to be tested is in this case the total state 

set itself. Of course, this set of variables will form a 

satisfactory assignment, since it is equivalent to the 

initial assignment given in page 30 (the reader should be 

convinced that the Liu assignment conditions hold for this 
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assignment) • Therefore, the minimum Burton and Noaks' 

assignment and simplified next-state equations for the 

flow table of this example are: 

Assignment 

yl y2 y3 y4 Ys y6 y7 Internal 
States 

l 0 0 l 0 l 0 a 

0 l 0 l 0 0 l b 

0 l 0 l 0 l 0 c 

l 0 0 0 l 0 0 d 

0 0 l 0 l 0 0 e 

Next-State Equations 

yl = ylil + Ys 1 2 + y6I3 

y2 = Y2 1 1 + Y4 1 2 + Y7I3 

y3 = Y3 1 1 + Ysi3 

y4 = (yl+y2)Il + Y4 1 2 + Y4 1 3 

Ys = y3Il + Ys 1 2 + y5I3 

y6 = (yl+y2)Il + y6I3 

y7 = Y4 1 2 + Y7 1 3 

As seen in the example problem, this method required 

only a seven-variable assignment while the previous 

methods only used a three-variable assignment for the 



same flow table. Although this method generally realizes 

a larger than minimal assignment, the property that no 

complemented variables are contained in the next-state 

equations may be a desirable feature with respect to the 

design and fabrication of the circuit. 

The next method to be discussed will follow closely 

with some of the ideas of Burton and Noaks. 

c. Method#~ C. J. Tan 
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Tan [8] developed an iterative state assignment 

procedure for normal fundamental-mode asynchronous machines. 

Although one of Tan's goals was to try to realize low cost 

machines in terms of the number of logic gate inputs 

required in the realization of the next-state equations, 

the main intent here is to present the basic procedure 

used in the derivation of the next-state equations rather 

than presenting a cost study for fabricating the machine. 

As in the method of Burton and Noaks, Tan [8] derives his 

state assignment and next-state equations in a parallel 

fashion. 

Before proceeding with the derivation and explanation 

of Tan's specific procedure, a brief review of the theory 

behind the iterative approach will be presented. It 

should be pointed out, that although the following pre­

sentation is based on the concept of transition pairs, 

since this is the most fundamental approach, it can easily 

be extended to the concept of destination sets. 



1. Basic Theory of Tan's Procedure 

Definition: An unordered pair of disjoint subsets 

of the states of the machine is referred to as a dichotomy. 

The dichotomy is equivalent to a two-block partition 

in which all the states of the total state set are not 

necessarily specified. For example, if two transitions 

under the same input are a + b and c + d, the dichotomy 

associated with these transitions is (ab, cd). 

Definition: A state variable y. is said to cover 
1 

a dichotomy if y. = 0 for all states in one block of the 
1 

dichotomy and y. = 1 for all states in the other block. 
1 

For example, y. is said to cover the dichotomy 
1 

(ab, cd) if y. = 0 in the binary coding of states a and b, 
1 

and yi = 1 in states c and d or vice versa. 

Definition: A dichotomy consisting of two transi-

tion pairs is said to be relevant to a state variable yi' 

if y. = 0 for the stable state of one transition pair and 
1 

y. = 1 for the stable state of the other transition pair. 
1 

For example, the dichotomy of transition pairs 

(ab, cd) is relevant toy., if y. = 0 for b and y. = 1 for 
1 l 1 

d or vice versa. It should be noted that relevancy is 

independent of the value of yi for the unstable states 

a and c. 
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Definition: A transition a ~ b in some column of 

a flow table will be called a 1-transition with respect 

to state variable y., if y. = 1 for the stable state b 
l l 

and a a-transition if y. = a for b. 
l 

A relevant dichotomy is therefore a dichotomy con-

taining transition pairs involved in a 1-transition and 

a a-transition with respect to some y .. 
l 

This definition 

also implies that all 1-transitions with respect to y. 
l 

result from those transition pairs contained in the 

1-destination sets of that y .. 
l 

Since the assignment and corresponding next-state 

equations are going to be derived simultaneously, the 

rules for the construction of both have to be observed. 

Again, in this procedure, the Tracey [6] conditions 

must hold in order to have a satisfactory USTT assignment. 

Since transition pairs rather than destination sets are 

being dealt with here, the conditions differ slightly 

from those used in the Burton and Noaks method. From 

Tracey's fundamental theorem [6] the necessary conditions 

for a USTT assignment are: 

1) 

2) 

If (Si' Sj) and (Sm' Sn) are transitions in the 

same flow table column, then at least one 

Y-variable must partition (S., S.) and (S , S ) 
1 J m n 

into separate blocks. 

If (S., S.) 
l J 

is a transition and Sk a lone 

stable state in the same column, then at least 
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3) 

one y-variable must partition 

into separate blocks. 

(S. I s .) 
l J 

Fori~ j, S. and S. must be in separate blocks 
l J 

of at least one y-variable partition. 

Notice that the Tracey conditions stated in the 
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Burton and Noaks method are really an extension of these 

conditions. If a y-variable partitions two destination 

sets into separate blocks, then this same y-variable will 

partition the transition pairs contained in these destina-

tion sets into separate blocks. However, the opposite 

may not be true in cases where destination sets contain 

more than one transition pair. Therefore, the above 

conditions dealing with transition pairs have been accepted 

as the fundamental theorem and all USTT assignments must 

satisfy it. To restate this theorem more succinctly and 

in terms used in Tan's procedure, a USTT assignment exists 

if: 

1) The dichotomies associated with every pair of 

transitions (including lone stable states) 

occurring in each column of the flow table should 

be covered by some state variable. 

2) Every state has a unique coding. 

Condition 1 stated above is the same as conditions 1 and 2 

of Tracey's Theorem. If a y-variable covers a dichotomy 

of transition pairs, this implies that the transition pairs 

will be in separate blocks of that y-variable partition. 



The conditions for the construction of the next-state 

equations using the concept of transition pairs will now 

be discussed. As in the case of the state assignment, the 

previous methods have primarily dealt with the next-state 

equations from a destination set point of view. 
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In the conventional approach, the next-state equa­

tions resulted from circling the largest groups of 1-entries 

and don't-cares in a Karnaugh map. These 1-entries in the 

Karnaugh map came from the transition table and were the 

next-state entries for those states in 1-destination sets. 

Or it could be said that they were the 1-entries for those 

states of the transition pairs contained in the 1-destina-

tion sets. This is also the case for the Maki, Tracey, 

and Smith method, since it is the transition pairs subspaces 

which make up the subspaces for the 1-destination sets. 

Therefore, the expression resulting from a Karnaugh map is 

actually a minimum variable cover which separates all 

states involved ln 1-transitions of a flow table from those 

states involved in a-transitions. If the expression is 

true or false then the circuit is involved in a 1-transition 

or a-transition respectively. 

The preceding ideas will help explain the theory of 

Tan's iterative approach. From the flow table the dicho­

tomies of all transition pairs in each input column are 

listed. The first state variable, y 1 , with its corres­

ponding induced partition is then selected. Some guide­

lines for selecting good initial state variables will be 



given later. All dichotomies are now examined and those 

found to be relevant to y 1 are so designated. These 

relevant dichotomies separate the !-transition pairs from 

the a-transition pairs with respect to y
1

. This is what 

circling the 1-entries in the Karnaugh map essentially 

did. Now it is necessary to find the cover for the groups 

of 1-entries or, in Tan's case, for the relevant dicho-

tomies. This cover will insure that the !-transitions 

remain separated from the a-transitions. To find this 

cover, additional y-variables are chosen until all relevant 

dichotomies have been covered. From the set of state 
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variables that covers all dichotomies relevant to y 1 , a 

simplified sum-of-products expression for Y1 can be written. 

This procedure is repeated for each y-variable selected. 

When enough y-variables have been selected to cover all 

dichotomies, a satisfactory USTT assignment with corres­

ponding next-state equations will exist. 

In Figure 11, a columnar Karnaugh map is used to help 

illustrate the concepts of relevancy and cover by consider­

ing the dichotomy (ad, e) , under input r 1 of the flow 

table in Figure 12. Since y 1 codes both stable states a 

and e with the same value (i.e., a value of 0), the 

dichotomy (ad, e) is not relevant to y 1 . Therefore, y 1 

is not useful for separating !-transitions from a-transi­

tions as can be verified by noting that both transition 

pairs of this dichotomy have a-entries for Y1 . Now looking 

at y
2 

it is seen that it codes stable states a and e of 



the dichotomy (ad, e) differently. Hence the dichotomy 

is relevant to y 2 and it does distinguish 1-transitions 

from a-transitions as lS evident from the next-state 

entries, Y2 = 0 for states a and d and Y
2 

= 1 for e. A 

cover for this relevant dichotomy must now be found. 

Since y 2 itself is a 0 for states a and d and l for e, 

y 2 covers the dichotomy (ad, ~). Finally, it is seen 

that the dichotomy (ad, e) is also relevant to y
3 

but 

y 3 is not a cover for this dichotomy, because y 3 does not 

code states a and d the same. Again, y 2 is the cover for 

this case. The same procedure can be used to find and 

verify the relevant dichotomies and covers for the remain­

ing dichotomies of transition pairs contained in the flow 

table of Figure 12. The results for all dichotomies of 

this flow table are tabulated in Figure 14. 

As a final point, it should be noted that the 

covers selected for the relevant dichotomies do implicitly 

make use of don't-care states, in that the subcubes of 
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the Karnaugh map represented by the covers may contain some 

don't-care states. 

The sum of products expressions for the next-state 

equations can be formed by following the implicit rules 

of Karnaugh mapping. These rules put into words are: 

l) If the y-variable that covers a dichotomy is a l 

for the 1-transition pair of the dichotomy, it 

will appear uncomplemented in a product term 



Figure 11. 

yl y2 y3 yl y2 y3 

0 0 0 a 0 0 0 

0 0 1 - d 0 0 0 

0 1 1 e 0 1 1 

0 1 0 

1 1 0 b 1 0 0 

1 1 1 

1 0 1 

1 0 0 c 1 0 0 

Columnar Karnaugh Map Showing Next-State 
Entries Under Input I 1 of the Flow Table 

in Figure 12 

of the next-state expression. Conversely, if 

it is a 0 for the 1-transition pair, it will 

appear complemented in the product term. 

2) If only one relevant dichotomy appears under 

a particular input, or if more than one relevant 

dichotomy appears but are covered by the same 

y-variable, then a simple product term of the 

form v.I will occur in the next-state equation 
"'-1 m 

where ~i is the respective cover for the 

dichotomies. 

y. ) • 
l 

(Note: ~i implies either yi or 

3) If more than one relevant dichotomy appears 

under a particular input, and each has a 
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different 1-transition pair then a product term 

of the form (~i + ~j + ••• + ~n)Im will occur in 

the next-state equation, where the state variables 

in the term represent the respective covers for 

the relevant dichotomies. 

4) If the same 1-transition pair appears ln more 

than one relevant dichotomy under a particular 

input, then a product term of the form ~·~· 
l J 

v I will occur in the next-state equation. Ln m 

Conversely, if no dichotomies under a particular 

input are relevant toy., then no product term 
l 

for this input will occur in the equation for Y .. 
l 

As an example of Tan's theory, the flow table which 

was used in the previous methods will again be considered 

here and is repeated in Figure 12. 

Il I2 I3 

a 0 b 0 
b c ® ® 
c Q b a 

d a 0 e 

e 0 d 0 
Figure 12. Flow Table 

The first step would be to list all the destination 

sets under each input. 



DI DI DI 
1 __ 2 3 

a d a b c a c 

b c d e b -
e d e 

From the destination sets the dichotomies of transition 

pairs that can be formed are: 

Il I2 I3 

(a d, b c) (a b, d e) (a c, b) 

(a d, e) (b c, d e) (~ c, d e) 

(b c, e) (b 1 d e) 

For the selection of the initial state variable, let y 1 
induce the partition {(ad e) ,(b c)} such that states in 

block (a d e) are coded with a 0 and states in block (b c) 
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are coded with a 1. A searching procedure is now initiated, 

as shown in Figure 13, to find those dichotomies which are 

relevant to y 1 . 

It is observed in Figure 13 that two relevant dicho-

tomies are not covered. To cover these dichotomies the 

state variables y 2 and y 3 , which induce the partitions 

{(a c d), (be)} and {(abc) ,(de)} respectively, are 

chosen. Therefore, yl = fl(Im' 01) where 01 = {yl' y2, 

The table in Figure 13 is extended to include y2 and y3 

in Figure 14. Notice that all dichotomies of the flow 

y3}. 

table are now covered and each state has a unique coding. 

This means that the Tracey conditions are satisfied and 
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Partial Assignment Input Dichotomies 
yl States 

0 a 
(ad, be) X 

1 b 
Il (ad, e) -

1 c 
(be, e) X 

0 d I2 ( ab ,de) I 

0 e (be, de) X 

(~c, b) I 

I3 (ac, d~) -

(b 1 de) X 

Legend 

means not relevant 

I means relevant to y. but not covered by y. 
l l 

X means relevant to y. and covered by y. 
l l 

Figure 13. Determination of Relevant Dichotomies 

the USTT assgnment will also consist of the set {y1
, y 2

, y
3

}. 

The equations for Y1 , Y2 , and Y3 can be written directly 

from Figure 14 using the rules previously stated. 

These equations are: 

yl = ylil + y3I2 + Y1Y2I3 

y2 = yly2Il + y3I2 + (y 2 + y3)I3 

In some cases where two different variables cover the same 

dichotomy either variable may be used in the product term. 
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Partial Assignment Input Dichotomies y
1 

y
2 

y
3 

yl y2 y3 States 
(ad, be) X - -

0 0 0 a 
Il (ad, e) - X I 

1 1 0 b (be, e) X I X - -
1 0 0 c 

I2 (ab, de) I I X 

0 0 1 d 
(be, de) X I X -

0 1 1 e (ac, b) I X --
I3 (ac, de) - I X 

(b' de) X - X 

Figure 14. Complete Cover of Relevant Dichotomies 

This is equivalent to having more than one choice in which 

the 1-entries of a Karnaugh map can be circled. 

It should now be pointed out that in the above 

example the selection of the state variables was predeter-

mined. The state variables were chosen so that the 

resulting assignment would be the same as the one used in 

the conventional approach and in the Maki, Tracey and Smith 

method. This was done to show that the same next-state 

equations could be obtained with Tan's method as with these 

other approaches. 

This concludes the review of the fundamental theory 

of Tan's iterative approach. A specific iterative procedure 

developed by Tan [8] will now be discussed. This procedure 

results in a Liu type assignment and so is only concerned 
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with destination sets and not with transition pairs. Hence, 

the theory given above will be somewhat extended to a 

destination set point of view. 

2. Tan's Specific Iterative Procedure 

In Tan's specific iterative procedure [8], the 

derivation of the next-state equations is very similar 

to the method used by Burton and Noaks. One difference 

in the methods is that Tan does not start with a complete 

initial assignment by assigning all destination sets a 

unique y-variable. Instead, an initial partial-state 

assignment is made by discreetly assigning only a few 

y-variables to those destination sets which help minimize 

the number of additional variables still needed for a 

satisfactory USTT assignment. 

Some guidelines for selecting this initial partial­

state assignment are listed in the following priority: 

1) Select those y-variables that will partition 

the destination sets of more than one input 

column in the same manner. Each additional 

input column partitioned will result in a 

savings of one y-variable in the final assign-

ment. One way in which these y-variables may 

be found is by assigning a y-variable to a 

destination set which appears in more than one 

input column, because y-variables assigned to 

the same destination sets will induce identical 



partitions. This rule is essentially the same 

as the Simplification Test II of Burton and 

Noaks, which said that y-variables assigned to 

equal destination sets are redundant and only 

one y-variable is needed for all such sets. 

2) Select those y-variables which take on the 

binary value 0 for all the stable states in a 

particular input column. These y-variables can 

be determined by finding those induced parti-

tions in which all of the stable states of an 

input column will appear in the 0 coded block 

of the partition. If y. = 0 for all stable 
1 

states in an input column then no product term 

for this input column will appear in the equa-

tion for Y .. 
1 

3) Select those y-variables such that in their 

respective next-state equations, most of the 

product terms also appear in some other equa-

tions. Hence, the cost of these equations will 

likely be small. 

The third selection criterion is the least definite of the 

three and would probably only be used when criteria one 

and two failed to yield a sufficient number of state 

variables for an initial partial-state assignment. In 

many cases this criterion will yield more variables than 

what is actually needed for a. satisfactory partial-state 

assignment. Therefore, the set of variables obtained from 
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this selection technique should be examined and just those 

variables that are needed for a partial-state assignment 

should be selected. An example of a partial-state 

assignment would be an assignment which only satisfies 

two columns of a four-column flow table. 

The flow table shown in Figure 15 will now be 

considered. 

Il I2 I3 

1 0 2 0 
2 0 0 3 

3 4 0 G) 
4 0 5 1 

5 2 G) 3 

Figure 15. Flow Table 

The destination sets for this table are: 

1 1 2 1 4 

2 5 3 2 3 5 

3 4 4 5 

In examining these destination sets, it is seen that no 

y-variable can be selected which will induce identical 

partitions on the destination sets of more than one input 

column. Hence, criterion one of the selection technique 

given above cannot be satisfied. However, criterion two 
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is satisfied by three state variables, in which the first 

two, y 1 and y 2 , induce partitions on the destination 

sets under input r 2 and the third, y 3 , induces a partition 

on the destination sets under r
3

. 

their respective partitions are: 

yl -r { ( 1 2 3) , ( 4 5) } 

y2 -r { ( 1 2 4 5),{3)} 

y3 -r { ( 2 3 5) , ( 1 4) } 

Following the convention that the 

These variables with 

states in the first 

block of the partition are coded with a 0 binary value 

with respect to y. and in the second block a 1 binary 
l 

value, notice that for each partition y. = 0 for all stable 
l 

states of at least one input column, thus satisfying the 

condition of criterion two. Also, these three state vari-
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ables do form a partial-state assignment since they separate 

the destination sets under input columns r 2 and r
3

. 

Once the initial partial-state assignment has been 

determined the next-state equations for these variables 

are then derived. To expedite the derivation of these 

equations, essentially the same theory that was used in 

Burton and Noaks' method is used in Tan's method. As 

previously noted in Tan's method, each y-variable takes on 

the value 1 for all states in the second block (1-block) of 

its respective partition, while in Burton and Noaks' method 

each variable takes on a value 1 for the states in its 

associated destination set. (The associated destination 

set is actually a 1-block of its corresponding induced 



62 

y-partition.) Even though in Tan's method a 1-block of a 

y-partition may contain more than one destination set, the 

derivation of the next-state equations is performed in 

the same fashion, i.e., with the 1-blocks of the respective 

partitions being treated in the same manner as the assoc-

iated destination sets in Burton and Noaks' method. 

In Burton and Noaks' method, the equations for Y. 
l 

consisted of product terms representing covers for those 

destination sets having their stable states contained in 

the associated y. destination set. 
l 

Since each destination 

set was initially associated with a unique y-variable, all 

product terms could be immediately written in the equation. 

However, this is not the case in Tan's method, since a 

partial assignment does not separate all destination sets 

in the flow table. Therefore, there may exist destination 

sets having stable states which are contained in the 1-blocks 

of the initial y-variable partitions (some 1-destination 

sets) , but have not yet been separated by at least one 

y-variable partition from the other destination sets 

(0-destination sets), in their corresponding input column. 

(Note: Insuring the separation of the 1-destination sets 

from the a-destination sets is the same as covering the 

relevant dichotomies of destination sets or transition 

pairs as discussed in Tan's basic theory.) It should now 

be clear that if some of the covers for the 1-destination 

sets with respect to y. are not initially known, then some 
l 

of the product terms in the equation for Y. cannot be 
l 
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immediately written. To determine those destination sets 

which still lack covers and to provide assistance in the 

selection of additional y-variables, a symbolic repre-

sentation of the next-state equations can be given by: 

Y. + [a b ••• q] = ••• +I [de 
1 n r] + ••• 

[ S] * +I f g ••• 
n ( 2 ) 

where y. = 1 for states [a b ·•• q]; states [de ••• r] 
l 

are those contained in 1-destination sets with respect to 

Yi under some input In, and are covered by at least one of 

* they-variables of the initial set; [f g ••• s] are those 

states contained in 1-destination sets under input I , but 
n 

are not covered by any y-variable that has already been 

chosen. Equations of this form will be referred to as 

state transition equations. The state transition equations 

for the initial assignment found above will be: 

yl + [4 5] = I 1 [3 4] * + I
2

[4 5] 

y2 + [3] = I 2 [3] + I 3 [2 3 5] 

* y3 + [1 4] = I 1 [1, 3 4] + I 3 [1 4] 

Examining the above equations it is seen that the terms 

* 4~J* I 1 [3 4] and I 1 [1, 3 are not covered by any one of 

the variables of the initial assignment. The next step 

is to assign new y-variables to those destination sets 

that are contained in the starred product terms of the 

state transition equations. In the example here, assign-

* and y 5 to I 1 [1, 3 4] will yield the 

following partitions: 



and 

y4 + {(1 2 5) ,(3 4)} 

y
5 

+ {(2 5),(1 3 4)} 

Y4 + [3 4] = I 1 [3 4] + I 2 [3] + I 3 [2 3 5] 

Y5 + [1 3 4] = I 1 [i, 3 4] + I 2 [3] + I 3 
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Since no more starred products were introduced in the state 

transition equations for Y4 and Y5 , it would appear that 

our assignment is complete. To be sure, the assignment 

should be checked to see if the Liu conditions of separat-

ing all destination sets in an input column and distin-

guishing each state uniquely are satisfied. In this 

example these conditions are satisfied and therefore the 

set {y1 , y 2 , y 3 , y 4 , y 5 } forms a satisfactory USTT Liu 

type assignment [7]. 

Converting the state-transition equations into 

next-state equations can be done in a relatively easy and 

straightforward manner. The destination sets contained 

in the product terms of the state-transition equations will 

be replaced by the y-variables (either y. or y.) of the 
l l 

assignment, whose partitions have a block equal to these 

destination sets. Following this rule, the next-state 

equations can be written as: 

yl = Ily4 + I2yl 

y2 = I2y2 + I3y3 

y3 = Ily5 + I3Y3 

-------



y4 = Ily4 + I2y2 + I3Y3 

YS = Ily5 + I2y2 + I3 

Although the final assignment obtained may not be 

a minimal assignment, the resulting next-state equations 

are minimal and consist of only simple product terms. 

Tan [8] also showed that some of the simple product 

terms can be replaced by compound product terms if the 

overall effect was to reduce the total number of gate 

inputs required to realize the next-state equations. For 

example, the term r 1y 5 in Y3 could be replaced by r
1

(y
2

+y
3

) 

since the sum of the 1-blocks of the y 2 and y 3 partitions 

equals (1 3 4), the 1-block of the y 5 partition. However, 

it can be shown that this replacement would not result in 

a lower number of total gate inputs and therefore would 

not be made (even though the replacement would eliminate 

the need for y 5 in the assignment). 

Reduced cost in terms of the number of gate inputs 

required to logically realize the next-state equations is 

a point that Tan [8] pursued very meticulously and 

rigorously, by integrating a cost analysis with his 

derivation of the next-state equations. With today's 

technology in circuit packaging, especially in the areas 

of integrated circuitry and module construction, it is 

debatable whether the detailed cost study is worth increas­

ing the complexity of his method. 
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This completes the description of Tan's specific 

procedure. A summary of the steps of this method is: 

1) Using the criteria of the selection technique, 

select a set of state variables for the initial 

partial-state assignment. 

2) Derive the state-transition equations for the 

variables in the initial assignment. 

3) From the equations derived in step 2, generate 

new variables for the assignment. 

4) After a sufficient number of state variables 

have been generated for a valid USTT Liu type 

assignment, form the next-state equations for 

these variables. 

As an assistance in comparing this method with the 

other methods discussed, a final example will be given for 

the same flow table used in the previous methods. 

Given a machine represented by the following flow 

table: 

11 12 13 

a G b 0 
Internal b c ® ® 
States c G b a 

d a @ e 

e 0 d 0 



The destination sets for this flow table are: 

DI 
1 

DI 
2 

DI 
3 

a d a b c a c -
b c d e b -

e d e -
By criterion one of the initial assignment selection 

technique: 

y 1 -+ {(abc) ,(de)} 

By criterion 2: 

y
2 

-+ {(a b c d), (e)} 

y
3

-+ {(a c de) ,(b)} 

Since variables y 1 and y 3 will separate the destina­

tion sets under inputs r 2 and r 3 , let the initial partial­

state assignment consist of (y1 , y 3 ). 

Next, the state-transition equations will be 
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constructed for the variables in the partial-state assignment. 

* Y1 + [d e] = r 1 [e] + r 2 [d e] + r 3 [d e] 

Y3 -+ [b] = r 2 [a b c] + r 3 [b] 

* Now select a y-variable to cover the term r 1 [e] . Note 

that this term will be covered by the partition 

{(abc d), (e)} which is equal to the y 2 partition. There­

fore, add y 2 to the assignment and derive its state­

transition equation. 



Since no more starred products have occurred, check to see 

if the conditions for a valid Liu type assignment are 

satisfied. In checking these conditions, it is found that 

destination sets {a d} and {b c} under r 1 have not yet 

been separated. Therefore assign: 

y 
4 

+ {(a d e) , (b c)} 

and 

Y
4 

+ [b c] = r 1 [b c] + r 2 [a b c] + r 3[b] 

Again, no further starred products have been generated and 

the conditions for a valid USTT assignment are now satis-
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fied. Therefore, the assignment consists of {y1 , y 2 , y 3 , y 4 } 

and the corresponding next-state equations generated from 

the state-transition equations are: 

yl = Y2 1 1 + Y11 2 + Y1 1 3 

y2 = Y2 1 1 + Y1 1 3 

y3 = Y1 1 2 + Y3 1 3 

y4 = Y4 1 1 + Y1 1 2 + y3I3 

Although the results will vary for each flow table, 

the above example points out some interesting highlights 

of Tan's method. The resulting assignment has three less 

variables than the assignment obtained using Burton and 

Noaks ' method. Since both methods use the destination set 

approach, the difference in their results is primarily 

attributed to the use of complemented variables in Tan's 

method while none are permitted in Burton and Noaks' 

method. Also note that even though the number of y-variables 



• I • • 1n Tan s ass1gnment 1s one greater than the number of 

variables in the minimal assignment used in the conven-

tional approach, Tan's next-state equations require less 

gate inputs to implement than do the equations of the 

conventional approach. 

Depending on the specifications of the design, Tan's 

specific procedure may or may not be desirable. However, 

it is conceivable that his basic theory could be used to 

develop other specific iterative procedures or it could 

be used on conjunction with other USTT assignment methods, 

which may better meet the specifications of the design. 

For example, Tan, Menon and Friedman [9,2] jointly 

developed a method for generating a USTT assignment and 

next-state equations by parallel and serial decompositions 

of asynchronous sequential circuits. The method used for 

generating the next-state equations is the same as that 

discussed in Tan's basic theory. Therefore, only a brief 

description of the decomposition method will be given 

here, since the main goal of this paper is to present the 

different known methods of generating next-state equations 

and not necessarily that of finding the state assignment 

itself. 

Definition: Two partitions TI and n' on the set of 

states of a sequential machine M are a partition pair 

denoted by P(n, n') if for all states in the same block 
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of TI, their next-states to which the machine goes, when 

any input Im is applied, are in the same block of rr'. 

Definition: A partition TI on the states of a 

sequential machine M is called a preserved partition if 

for all states in the same block of rr, their next-states 

to which the machine goes, when any input I is applied, 
m 

are also in a common block of rr. 

For a machine having the set of internal states 

{a,b, c,d}, thepartitions,rr(O) ={(a), (b), (c), (d)} 

and TI(l) = {(a,b,c,d)} always form preserved partitions 

and are referred to as the trivial cases. Also from the 

above definitions it should be apparent that a preserved 

partition will form a partition pair with itself, i.e., 

P(TI, 'IT). 

Each component machine of a decomposition is defined 

by a partition pair P(TI, JT'), where the blocks of JT 1 

correspond to the states of the submachine and the blocks 

of 'IT correspond to the internal information required to 

calculate the next-state of the submachine. In order to 

obtain a decomposition resulting in a USTT assignment for 

the component machines and therefore for the composite 

machine, it is necessary that at least one non-trivial 

preserved partition exists for the given flow table. This 

preserved partition will form a partition pair with itself 

which will define the first component machine of a serial 

70 



decomposition. The model of a serial decomposition is 

shown in Figure l6(a) below. 

I 
m 

I m 

Figure 16. 

(a) 

.. M 
l 

- M2 

(b) 

(a) Serial Decomposition 
Decomposition 

I 
J 

.. 
: 
_::: 

z 
Outpu~-­
Logic 

Output z 
Logic 

{b) Parallel 

The product of the partitions induced by the y-variables 
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of the assignment for submachine M1 will equal the preserved 

partition. Since M1 feeds M2 , the preserved partition of 

M1 is an input partition to M2 • Therefore, the partition 

pair that defines M2 will be a combination of the preserved 

partition of M1 and the y-variable partitions that are 

needed to cover the dichotomies of transition pairs of the 

given flow table that were not covered by the assignment 

These y-variables will form the state assignment 
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If two or more non-trivial preserved partitions exist 

for the given flow table such that their product equals 

TI(O), then these partitions will define submachines of a 

parallel decomposition as shown in Figure 16(b). The out-

put logic recognizes the overall internal state of the 

composite machine as a function of the internal states of 

submachines M1 and M
2

. 

For flow tables that do not have any preserved 

partitions, methods have been developed for decompositions 

leading to multicode STT assignments and multiple transi­

tion time assignments, but these methods will not be 

discussed here [9]. 

The procedure terminates when all component machines 

have a valid assignment which implies that the product 

of ally-variable partitions equals TI(O). It has been 

shown that the assignments and next-state equations of the 

component machines will combine to yield a satisfactory 

non-critical race assignment and next-state equations for 

the composite or given machine [9,2]. 

To help clarify the above description, an example 

will be given for the following flow table: 



Il I2 I3 I4 

1 0 0 4 2 

2 0 3 0 0 
3 0 G) 4 

4 0 G) 5 

5 0 1 0 
Two preserved partitions for this flow table are: 

'TTl = { (13)' (245)} 

7T'"l = {(1),(2),(34),(5)} 
.:.. 

and 

n 1 · n 2 = {(1),(2),(3),(4),(5)} = n(O) 

Therefore, the preserved partitions n 1 and n 2 will form 

partition pairs P(n1 ,n1 ) and P(n 2 ,n 2 ) which will define 

component machines M1 and M2 of a parallel decomposition. 

The flow tables representing the subrnachines M1 and 

M2 are: 

Subrnachine M1 

Blocks Internal 
of n 1 States Il I2 I3 I4 

( 13) a 0 0 b b 

( 24 5) b G) a G G 
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Subrnachine M
2 

Blocks Internal 
of TI 2 States Il I2 I3 I4 

( 1) A 0 0 c B 

(2) B ® c ® ® 
( 34) c @ @) @) D 

( 5) D @ A @ 

The next step is to derive a USTT assignment and 

corresponding next-state equations for each of the corn-

ponent flow tables. The most general approach which could 

be used to accomplish this task is to derive the state 

assignment for each component flow table using a known 

state assignment procedure (e.g., the Tracey method [6]), 

and then use Tan's basic theory to derive the corresponding 

next-state equations. However 1 in this case, Tan's 

specific iterative procedure was used to derive the follow-

ing state assignment and next-state equations simultan-

eously for each component flow table. 

For subrnachine M1 : 

State Assignment Next-State Equations 

Internal 
yl States 

0 a ( 13) 

1 b ( 245) 
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And for subrnachine M2 : 

State Assignment Next-State Equations 

y2 y y4 
Internal 

3 States 

0 1 1 

1 1 0 

0 0 0 

A -

B -

c -

( 1) 

( 2) 

(34) 

y2 = y2Il + y2I3 + y3I4 

y3 = y3Il + y4I2 + y2I3 + Y3I4 

y4 = y4Il + y4I2 + Y3I3 

0 0 1 D - ( 5) 

Now the assignment and corresponding next-state 

equations for the composite machine is obtained by corn-

bining the results of the component machines. Therefore, 

the composite state assignment and corresponding next-

state equations are: 

Composite State Assignment Next-State Equations 

Internal 
yl y2 y3 y4 States 

0 0 1 1 1 yl = ylil + I3 + I4 

1 1 1 0 2 y2 = y2Il + y2I3 + Y3 1 4 

0 0 0 0 3 y3 = Y3 1 1 + Y4 1 2 + Y2 1 3 + Y3 1 4 

1 0 0 0 4 y4 = Y4 1 1 + Y4 1 2 + Y3 1 3 

1 0 0 1 5 

This concludes the review of the presently known 

methods for generating next-state equations. The remainder 

of this paper will deal with a new method which was developed 

from a study of the foregoing methods. 
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IV. NEW METHOD OF GENERATING NEXT-STATE EQUATIONS 

Burton and Noaks' procedure and Tan's specific 

procedure both have been directed toward the generation 

of the next-state equations in parallel with the selection 

of a USTT assignment. These methods may be desirable for 

some designs since the Burton and Noaks method yields 

next-state equations with no complemented variables, while 

Tan's method may yield equations that require a low number 

of gate inputs. However, in order to obtain the next-state 

equations using these methods, their particular type of 

assignments (Liu type) must also be used for the design. 

Since methods have already been developed which 

provide different types of USTT assignments for a flow 

table (e.g., the Tracey method for a minimal variable 

assignment) , a simple method for generating minimal next­

state equations that could be used for any USTT assign­

ment would be extremely valuable, especially for large 

flow tables. 

It has been shown that the Maki, Tracey and Smith 

method and the basic theory of Tan can be used to obtain 

next-state equations for any USTT assignment, but as flow 

tables become larger the amount of work required to use 

these methods becomes excessive and tedious. For example, 

in Maki, Tracey and Smith's method the Boolean expressions 

representing the specified states must be complemented to 



obtain the expressions for the unspecified states. These 

expressions in turn are combined with the expressions of 

the 1-destination set subspaces to obtain minimal next-

state equations. It is obvious that much work and time 

(computer time, too, if programmed) is required to perform 

these manipulations and the necessary simplification to 

obtain minimal equations. Also, when using Tan's basic 

theory, all dichotomies of transition pairs must be 

listed and then an exhaustive search for those state 

variables that minimally cover the relevant dichotomies 

must be carried out. Only after this is completed can 

the heuristic rules be used to construct the next-state 

equations. So again it is apparent that for large flow 

tables an extreme amount of work and time is required, 

since there would be many, many dichotomies of transition 

pairs to examine. Therefore, the main intent here is to 

develop a simple and straightforward method which will 

require less work to generate minimal next-state equations 

for any given USTT assignment and will easily lend itself 

to computer application. 

The heart of the following method of generating 

next-state equations emanates from the role that the 

Karnaugh map plays in separating the 1-destination sets 

from the a-destination sets. It was believed that if 

the operations performed with a Karnaugh map could some­

how be carried out implicitly in a simple and straight­

forward manner, a powerful means for generating the 
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next-state equations would result. To show why such a 

method would be a powerful tool, the flow table used in 

the previous methods, repeated in Figure 17, will again 

be considered here. 

yl y2 y3 Il I2 I3 

0 0 0 a 0 b 0 
1 1 0 b c G) G) 
1 0 0 c 0 b a 

0 0 1 d a 0 e 

0 1 1 e 0 d 0 
Figure 17. Flow Table 

The destination sets for this table are: 

a d a b c a c 

b c d e b 

e d e 

The Karnaugh map of the USTT assignment for this 

table is shown in Figure 16. 

yly2 
00 01 11 10 

0 a - b c 

1 d e - -

Figure 18. Karnaugh Map 
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Now suppose that the next-state equation Y
1 

is to 

be calculated. In order to successfully derive the minimal 

equation for Y1 , minimal y-variable covers must be found 

for each input column which separate the 1-destination sets 

subspaces from the a-destination set subspaces. The 

1-destination sets with respect to y 1 under each input 

are: 

b c a b c b 

From the Karnaugh map it is seen that the state variable 

y 1 separates the subspace of the 1-destination set (b c) 

from the remaining a-destination set subspaces under I
1

. 

Therefore, the minimal cover for this separation can be 

written as the simple product term y 1 I 1 . It should be 

noted that the don't-care states are again being used 

implicitly here, since they are in the subcube covered by 

y 1 . Similarly, the minimal cover for the subspace of 

(a b c) under I 2 is the simple product term y 3I 2 and for 

the subspace of (b) under I 3 the minimal cover can be 

Therefore, from a knowledge of 

the 1- and a-destination sets and with the use of the 

Karnaugh map, the equation for Y1 can be written by 

inspection as: 

The above equation is a minimal next-state equation 

and agrees with the results obtained in the conventional 
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approach, the Maki, Smith and Tracey method and the approach 

used in the basic theory of Tan. The reason the above 

equation is in minimal form is because the y-variable 

covers were selected in such a manner to separate the 

largest possible subcubes containing the 1-destination 

sets (thus inherently making use of don't-care states) from 

the subcubes of the a-destination sets. 

It should now be apparent that, by using the Karnaugh 

map in the above manner, the derivation of the next-state 

equations can be accomplished in a simpler and faster 

manner than in the previous methods. 

When working with the Karnaugh map in the above 

example, the operations were performed either by hand or 

were done mentally. The goal of the following method will 

be to describe these same operations in a definite language 

that would permit computer application for large flow 

tables. 

Definition: A two block partition a .. is called 
l,J 

the a-partition with respect toY. and input I. if the 
- l J 

left block contains all the internal states for which 

Y. =a under input I. and the right block contains all 
l J 

the internal states for which Y. = 1 under input I .. 
l J 

This definition implies that the left-block of an 

a-partition will contain the states in a-destination 

sets while the right block will contain the states in 

1-destination sets, all with respect to some y. and I .. 
l J 



For an example, the flow table in Figure 17 will again be 

considered. The 0- and 1-destination sets with respect to 

y 1 and under input I. are: 
J 

0-destination Sets 1-destination Sets 

a d b c 

e 

Therefore, a 1 , 1 can be written as: 

a 1 , 1 ={(ad e),(b c)} 

Similarly, 

a 1 2 ={(de) ,(abc)} 
' 

a 1 , 3 ={(a c d e),(b)} 

Comparing with the conventional approach, it is 

seen that the above a-partitions indicate which states 

will have either 0- or 1-entries in the Karnaugh maps 

that were derived from the transition table for Y
1 

(see 

Figure 5, page 11). Therefore, the a-partitions provide 

part of the information attainable from the Karnaugh 
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maps. Of course, the remaining portion of information that 

is obtained with the Karnaugh map is the selection of a 

minimal y-variable cover that separates the a-destination 

sets from the 1-destination sets. 

Definition: A set A of· states is said to cover a 

set B of states if B c A (read as set B is contained in 

or equal to set A) . 



It should be kept in mind that since the word ''cover" 

takes on several different meanings, any particular mean-

ing must be derived from the context in which it is being 

used. 

It is known from the conditions for a valid USTT 

assignment that all of the states in 1-destination sets 

are separated from those in 0-destination sets. These 

separations are provided by the state variables of the 

assignment as was shown in the first example by the 

Karnaugh map in Figure 18. Therefore, it follows that 

the covers of the a-partitions can be obtained from the 

partitions induced by the y-variables of the assignment. 

Definition: A two block partition, T., is called 
l 

a T-partition with respect to yi' if the left block 

contains all of the internal states for which y. = 0 and 
l 

the right block contains all the internal states for 

which y. = 1. 
l 

The concept of this definition has already been used 

in the previous methods of Tan and Burton and Noaks. The 

definition implies that the states in the left block of 

a T· partition are covered by they-variable expression 
l 

y. while the states in the right block are covered by 
l 

the expression yi. The T-partitions induced by the state 

variables in the assignment of the example are: 
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yl yl 

-r 1 ={(ad e) 1 (b c)} 

y2 y2 

T2 = {(a c d) 1 (b e) } 

y3 y3 

T = 3 {(a b c) 1 (d e)} 

The y-variable covers for all blocks have been explicitly 

shown. 

The next step is to find which blocks of the 

-r-partitions separate the blocks of the a-partitions. 

This separation can be accomplished by selecting those 

blocks of the -r-partitions that together cover the right 

block (Y = 1 block) of the a-partition and do not contain 

any states from the left block of the a-partition. 

(Those blocks satisfying the second condition are referred 

to as being disjoint from the left block of the a-partition.) 

For example, to separate the blocks of a 1 , 1 = 

{(ad e) 1 (b c)} a cover for the block (b c) is needed. 

Examining the -r-partitions, it is observed that the right 

block of -r 1 would be the most minimal cover because it 

equals (b c) itself. Now, since the block (b c) is 

covered by y
1 

in the -r 1 partition, it can be concluded 

that y
1 

will separate the blocks of a 1 , 1 and Y111 can be 

written as: 



where Yi,j represents the next-state variable yi under 

input I .. 
J 
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Here again the use of unspecified states in obtaining 

the y-variable cover is inherent in the T-partitions. For 

example, from the Karnaugh map of Figure 18 (page 78) , it 

is seen that T1 actually implies the partition 

yl yl 

T 1 = { ( ade-) , (be--) } , 

where y 1 covers the subcube spanned by specified states 

b and c and two unspecified states. It is this inherent 

characteristic of T-partitions that enables a minimal 

y-variable next-state expression to be obtained. 

Similarly for a 1 , 2 ={(de) ,(abc)}, block (abc) 

is covered by the left block of T
3

• 

Yl,2 = y3I2 

Therefore, 

Now for a 1 3 ={(a c de) ,(b)}, there is no single block , 
of the T-partitions that covers block (b) and does not 

contain any of the states in block (a d c e) . In other 

words, under input I 3 , there is no single y-variable that 

separates the 1-destination sets from the a-destination 

sets with respect to y 1 . Therefore, it is necessary to 

examine the product partitions of the form T. · T .. 
l J 

partitions will be the g.l.b. partition of T. 
l 

and T .. 
J 

In our example, the product partitions of the form 

T. • T . are: 
l J 

These 



yly2 yly2 yly2 yly2 
'l · T 2 ={(a d),(e),( c ,(b)} 

yly3 yly3 yly3 yly3 
'l · T 3 = {(a),(d e),(b c),( 0 )} 

Again the appropriate y-variable cover is associated with 

each block. As an example, the first block of 'l • T 2 is 

obtained by intersecting the y 1 block of 'l with the y 2 

block of T 2 , i.e.: 

yl y2 
(a d e) () (a c d) = etc. 

85 

Now the blocks of the T. 
l 

• T. partitions are examined 
J 

to find a cover for block (b) of a 1 , 3 . It is seen that 

block (b) can be covered by either block y 1 y 2 of 'l · T 2 

or block y
2

y
3 

of T 2 • ,
3

. This is the same choice of 

covers that existed in the preceding example with the 

Karnaugh map. Choosing y 1 y 2 as the cover, then: 

The expressions for Yl,l' Y1 , 2 , and Yl,J can now be combined 

to give: 



The result is identical to the result obtained with the 

Karnaugh map and is therefore the minimal next-state equa-

tion for Y
1

. Similarly for Y
2 

and Y
3

: 

a2,1 = { (a b c d),(e)} a3,1 = { (a b c d),(e)} 

a2,2 = { (d e) , (a b c) } a3,2 = { (a b c) ' (d e) } 

a2,3 = { (a c) , (b d e) } a3,3 = {(a b c) , (d e) } 

From the T. and T. 
l l 

• Tj partitions derived above: 

Now, 

Y2,1 = 

Y2,2 

Y2,3 

= 

= 

Y. 
l 

Y1Y2I1 

y3I2 

(y 2 + 

m 
I 

j=l 

y3)I3 

Y .. 
l,J 

y 3 '1 = 

Y3,2 = 

Y3,3 = 

Therefore, 

y2 = yly2Il + y3I2 + (y2 + y3)I3 

y3 = yly2Il + y3I2 + y3I3 

Y1Y2I1 

y3I2 

y3I3 

In some cases it is necessary to consider a union 

of blocks from the T-partitions in order to find a satis-

factory cover for the right block of an a-partition. For 

example, in finding Y2 , 3 it was necessary to take the 
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( 3) 

union of blocks y 2 of T2 and y 3 of T3 to cover block (b d e) 

of a 2 , 3 • 

In order to have minimal next-state equations it is 

necessary that the covers which are selected for the 



blocks of the a-partitions are the minimal covers for 

those blocks. For instance, a union of two blocks from 

some T-partitions would not be a minimal cover and hence 

would not be used, if a cover exists which consists of 

only one block from some other T-partition. The minimal 

cover corresponds to the largest possible circling of "1" 

and "don't-care" entries in the Karnaugh map. This can 

be seen by comparing the minimal covers found for Y1 in 

the above example with the circlings in the Karnaugh maps 

that were used in the conventional approach (Figure 5). 
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Rules for selecting the minimal covers in a systematic 

and orderly fashion can be established. One strategy 

which could be formalized into such a set of rules is: 

1) Check the blocks of the a-partition. If its 

left block or its right block equals the empty 

set, then the product term corresponding to 

this partition in the equation for Y .. will l,J 

just be I. or 0 respectively. 
J 

2) If neither block of the a-partition equals the 

empty set, then select all blocks from the 

T-partitions, that are disjoint from the left 

block of the a-partition. Check these blocks 

to see if any single block will cover the right 

block of the a-partition. If one of these 

blocks does cover the right block of the 

a-partition, then the equation for Y .. can be l,J 

written as a simple product term. If no single 



block exists, check the union of the previously 

selected disjoint blocks taken two at a time. 

If still no cover exists, check the union of 

these blocks taken three at a time, etc., until 

a cover is found. 

3) If none of the blocks of the T-partitions are 

disjoint from the left block of the a-partition, 

or if only a partial cover can be obtained with 

step 2, then form the T. · T. partitions and 
l J 

follow the rules of step 2 until a complete 

cover is found. 

4) If still no complete cover has been obtained, 

repeat the process with the product partitions 

T. • T. • Tk' etc., until a complete cover is 
l J 

found. 

Before proceeding with a final example, a summary of 

the steps of this method is: 

1) List all of the destination sets for each input 

column of the flow table. 

2) From the destination sets under each input, 

form the a-partitions with respect to yi by 

putting the a-destination sets in the left 

block and the 1-destination sets in the right 

block. 

3) Form the T-partitions that are induced by the 

state variables of the given assignment. 
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4) From the blocks of the T-partitions, find a 

cover for the right block of the a-partition 

by following the strategy for the selection of 

a minimum cover. 

5) The next-state equations are then derived from 

they-variables representing the selected covers. 

The final example will be for a larger flow table 

in order to show the capability and proficiency of this 

method. 

Suppose that an asynchronous sequential circuit is 

described by the following flow table having the USTT 

state assignment as shown. 

0 

0 

0 

1 

0 

1 

1 

0 

1 

1 

0 

1 

0 

1 

1 

0 

0 

1 

0 

1 

0 

0 

0 

1 

0 0 

0 1 

1 0 

0 0 

1 0 

0 1 

0 1 

1 1 

1 0 

1 1 

1 1 

1 0 

a 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

1 

d 0 e b 

f G) h G) 
1 ~ e b 

0 0 g b 

i a 0 b 

0 g 0 b 

d ® 0 b 

f G) b 

(;) j g b 

k CD g b 

(E) a h b 

0 c 0 b 
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The destination sets for this flow table are: 

Dr 
1 

Dr 
2 

Dr 
3 

DI 
4 

a d g a e k a c e a b c d e f g h i j k 1 - -
b f h b f 

e i c 1 - d ~ l j 

j k d b h k 

c 1 f .9. 1 

i j 

The a.-partitions with respect to each Y. and I. are: 
l J 

a,lll = {(jk) 1 (abcdefghil)} 0,211 = { (adegijk) 1 (bcfhl)} 

a.l,2 = { (abcekl) 1 (dfgij)} 0,212 = { (adefgijk) 1 (bel)} 

0,113 = { (abcehk), (dfgijl)} 0,213 = { (acdegij) , (bfhkl) } 

0,114 = {(abcdefghijkl), (~)} a.2,4 = {(~) 1 (abcdefghijkl)} 

0,311 = {(abdfgh), (ceijk1)} 0,4 1 1 = { (acdegil) 1 (bfhjk)} 

0,312 = { ( ab de f gk) 1 ( c i j 1 ) } a,4 2 = { (acdekl) 1 (bfgij)} 
1 

0,313 = { (dfgij) 1 (abcehkl)} 
(t 4 1 3 = { ( acel) 1 (bdfghi jk) } 

0,314 = {(abcdefghijkl) ,(~)} 0,414 = {(~) 1 (abcdefghijkl)} 

The T-partitions induced by the state variables of 

the assignment are: 

yl yl 
T 

1 
= { (abcehk) 1 (dfgij 1) } 



y2 y2 
T2 = {(adegijk) ,(bcfhl)} 

y3 y3 
T3 = {(abdfg) ,(cehijkl)} 

y4 y4 
T4 = {(acdeil), (bfghjk)} 

From the T-partitions, the T. · T. partitions will 
l J 

now be formed to have them available if needed. 

yly2 yly2 yly2 yly2 
Tl . T2 = {(a e k), (b c h) 1 (d g i j),(f 1)} 

yly3 yly3 yly3 yly3 

Tl . TJ = {(a b) , ( c e h k) 1 (d f g) 1 (i j 1) } 

yly4 yly4 yly4 yly4 

Tl . T4 = { (a c e) , (b h k) 1 (d i l),(fgj)} 

Y2Y3 y2y3 y2y3 y2y3 

T2 . TJ = { (a d g) , ( e i j k) , (b f) , (c h 1)} 

y2y4 y2y4 y2y4 y2y4 

T2 . T4 = {(a d e i) , ( g J k) 1 (C 1) 1 (b f h) } 

Y3Y4 Y3Y4 Y3Y4 Y3Y4 
T

3 
• T 4 ={(a d),(b f g),(c e i l),(h j k)} 

The next step is to find a minimum cover for the 

right block of the a-partitions. For an example, take the 

right block of a 1 , 1 , (abcdefghi). Therefore, find a 

minimal cover for (abcdefghi) from the block of the 

T-partitions such that the cover is disjoint from (jk), 

the left block of a 1 , 1 . 

91 



y2 y3 y4 
Cover of ( abcdefghi) = (bcfhl) u ( abdfg) u (acdeil) 

Therefore, 

yl 1 = (y 2 + y3 + y4)Il 
I 

Similarly: 

Yl,2 = (yly2 + yly3)I2 Y2,1 = Y2 1 1 

yl 3 = Yl 1 3 Y2,2 = (yly2 + Y2Y3)I2 
I 

yl 4 = 0 Y2,3 = (yly2 + yly4)I3 
I 

Y2,4 = I4 

y3 1 = (y2y3 + Y2Y4)Il Y4,1 = (y2y 4 + y3y4)Il 
I 

Y3,2 = (yl y 3 + Y2Y4)I2 y4 2 = (y3y4 + yly2y3)I2 
I 

Y3,3 = (yl + y2y3)I3 Y4,3 = (y 4 + yly2)I3 

Y3,4 = 0 Y4,4 = I4 

Note that in order to find Y4 , 2 it was necessary to 

form Tl • T2 • T3 . That is: 

yly2y3 yly2y3 yly2y3 yly2y3 
Tl • T

2 
• T

3 
= {( a ),( b ),( d g),( f ), 

Now the cover of: 

yly2y3 yly2y3 yly2y3 yly2y3 
(ek),( h ),(ij),( 1 )} 

y3y4 yly2y3 
(bfgij) = (bfg) u (ij) 
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The expressions for the covers associated with the 

a-partitions have now been found. The minimal next-state 

equations can be derived by simply combining these 

expressions. 

Y. = Y. 1 + y. 2 + Y. 3 + y. 4 
l l, l, l., l, 

Therefore, 

yl = (y 2 + y3 + y4)I1. + (y 1 y2 + yly3) 1 2 + yli3 

y2 = Y2 1 1 + (yly2 + y2y3)I2 + (yly2 + yly4)I3 + I4 

y3 = (y2y3 + Y2Y4)Il + (yly3 + y2y4)I2 + (yl + Y2Y3)I3 

y4 = (y 2y 4 + Y3Y4)Il + (y 3y 4 + yly2y3)I2 + (y4 + yly2)I3 + I4 

From the above example the value of this method with 

respect to large flow tables can be readily seen. There-

fore, the method could play a key role in future synthesis 

applications. It should be made clear that this method is 

a general method for only generating next-state equations 

and does not generate the state assignment too. 



V. CONCLUSION 

Now that each of the methods for generating the next­

state equations for normal-mode asynchronous sequential 

circuits has been described, a meaningful discussion and 

comparison of their strengths and weaknesses can be made. 

First of all, one major difference that should be 

remembered is that the state assignment must be derived 

independently and prior to the use of the Maki, Tracey and 

Smith method and the new method developed in this paper. 

On the other hand, Burton and Noaks' method and Tan's 

method are used to derive both the state assignment and 

next-state equations in a parallel fashion. (Note: The 

basic theory of Tan's method can also be used for just 

deriving the next-state equations for a given state 

assignment.) As a result of this difference the method 

of Burton and Noaks and the specific procedure of Tan's 

method are somewhat limited as general methods for gener-

ating next-state equations. In order to obtain the next-

state equations using these methods, their particular 

type of state assignments must also be used. Therefore, 

these methods could not be utilized in cases where a 

design specified the use of a state assignment that 

differed from their particular assignments. However, 

the Maki, Tracey and Smith method, Tan•s basic theory and 
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the new method developed in this paper are general methods 

which will work for any type of uni-code single transition 

time (USTT) assignment that is given. 

Another interesting comparison is the use of the 

unspecified states of a flow table as a tool for obtain-
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ing minimal next-state equations. The Maki, Tracey and 

Smith method is the only method that handles the unspecified 

states in an explicit fashion. The other methods 

implicitly use the unspecified states. This difference 

results because, in the Maki, Tracey and Smith method, the 

y-variable expression that covers a transition pair 

subspace is selected in such a manner that it covers the 

smallest subcube of a Karnaugh map that contains that 

transition pair. Then other y-variable expressions need 

to be derived to cover the subcubes of the unspecified 

states. In the other methods, however, the y-variable 

expressions which cover particular transition pairs (or 

destination sets) are selected in a manner such that they 

cover the largest possible subcube of a Karnaugh map that 

contains the transition pairs (or destination sets) along 

with any available unspecified states. Therefore, the 

unspecified states are inherent in these covers. 

It is the explicit handling of the unspecified 

states that leads to the following disadvantages of the 

Maki, Tracey and Smith method: 



1) The amount of time and work required to find the 

expressions for the unspecified states by taking 

the logical complement. 

2) The amount of time and work required to simplify 

the expressions to a set of minimal equations. 

A recommendation for partially alleviating the above 

disadvantages without changing the entire strategy can be 

given. Part of the time and work required above is a 

result of using transition pairs as the basis of their 

method. For assignments derived from a transition pair 

basis, it is necessary that their method also uses the 

transition pair basis in the derivation of the next-state 

equations. However, if the given state assignment is 

known to be one based upon destination sets, then some 

work and time would be saved if the method could be 

readily converted to use destination sets as its basis 

rather than transition pairs. A savings would result 

because the unsimplified Boolean expressions produced by 

destination sets would have fewer terms than the equiva-

lent expressions produced by transition pairs. Thus, the 

manipulations required in the above disadvantage would 

become less unwieldy. 

The best method with respect to the mechanics 

required in the actual construction of the next-state 

equations is Burton and Noaks' method. The shortcuts 

used in their derivation result from the way the initial 

state assignment is made, i.e., the association of a 
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unique y-variable with each destination set. This state 

assignment also leads to the unique property of having no 

complemented variables in the next-state equations, which 

may be a desirable feature for some designs. 

It is recalled that Tan also used a strategy similar 

to Burton and Noaks' for construction of the next-state 

equations in his specific iterative procedure. The 

1-blocks of the y-variable partitions in Tan's procedure 

are treated in the same manner as the associated y-variable 

destination sets in Burton and Noaks' method. However, 

Tan's resulting next-state equations are not complement 

free because both the 0-blocks and 1-blocks of the 

y-variable partitions are used as possible covers in the 

next-state equation. 

One characteristic of Burton and Noaks' method which 

may be a disadvantage is that a larger assignment and, 

therefore, more state variables, have to be contended with 

in the design. This evaluation can be verified by noting 

that for the same flow table used in the example of each 

method, the resulting Burton and Noaks' assignment exceeded 

the assignments of all other methods by at least three 

state variables. Of course, the effectiveness of this 

method will vary from circuit to circuit. And there may 

be cases where a minimal variable assignment could be 

obtained with this method, but generally the method will 

realize a larger assignment. This can be considered as 

the price paid for complement free next-state equations. 
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Another disadvantage of Burton and Noaks' method is 

the informal procedure of simplifying the initial assign­

ment using a dependency diagram. A more formal procedure 

capable of being programmed on a computer would certainly 

be welcomed. 

From his basic theory, Tan developed a specific 

iterative procedure which results in a Liu type assign­

ment. Although his assignment may not be a minimum 

variable assignment, it often results in minimal next­

state equations requiring less gate inputs to implement. 

This is due to the discreet manner in which the state 

variables are selected for the assignment. 

It has also been shown that Tan's basic theory can 

be used strictly as a next-state equation generation 

method for any given USTT assignment. However, as in the 

case of the Maki, Tracey and Smith method, it too requires 

a considerable amount of work and time for larger flow 

tables. This is because, in using Tan's basic theory, 

all dichotomies of transition pairs must be listed and 

then an exhaustive search for those state variables that 

minimally cover the relevant dichotomies must be carried 

out. Even after the covers for the relevant dichotomies 

have been determined, the derivation of the next-state 

equations requires another rather complicated step. In 

this step, the relevant dichotomies have to be further 

examined to determine whether the uncomplement or 
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complement form of the y-variable covers should be used 

and whether the product terms will be simple or compound 

in the final next-state expression. As flow tables 

become larger, a greater number of dichotomies have to 

be examined and the amount of work and time required 

becomes excessive. 
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The new method developed in this paper seems to 

provide a better means of coping with larger flow tables. 

In this method all destination sets (and therefore transi­

tion pairs) are grouped into one two-block partition per 

input column, i.e., the a-partition. Therefore, no matter 

how large the flow table is, in the derivation of a next­

state equation it is only necessary to cover one a-partition 

per input column; whereas, in Tan's basic theory, many 

dichotomies per input column have to be examined and 

covered. It is this reason that enables the new method to 

handle larger flow tables more efficiently than the other 

methods. Since many practical circuits are very large, it 

is conceivable that this method could become a valuable 

tool in the future in the synthesis of asynchronous sequen­

tial circuits. Also, another attribute of this method is 

its applicability to be programmed for computer use. 

Since the new method is a systematic repetitive 

procedure, it, too, has the disadvantage of becoming some­

what lengthy for larger flow tables when a large number of 

T-partitions and products of T-partitions have to be 

considered. 
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This completes a comparison of the foregoing methods. 

In deciding which method should be used, the strengths 

and weaknesses of each method mentioned above would have 

to be weighed for the particular problem at hand. 
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