Library and
Learning Resources

Analog simulation of mass transfer in droplets with turbulent internal circulation

Jeffrey Tsai-hwa Kuo

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Chemical Engineering Commons

Department:

Recommended Citation

Kuo, Jeffrey Tsai-hwa, "Analog simulation of mass transfer in droplets with turbulent internal circulation" (1969). Masters Theses. 5282.
https://scholarsmine.mst.edu/masters_theses/5282

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

ATALOG SIMULATICN OT MASS MRAMEPER IN DROPLETS

758
defriey rsai-man kuc, 1945
\qquad

A
THESIS
submitted to the faculty or TEE UNIVERSTTY OP MPSSOURI - POTLA
in partial fulfiliment of the requirements for the

Degree of

MASTER OF SOTENCE IN CHEMICAI BIGIMEEQING

Rolla, Missouri

1969

Approved by

ABSTRACT

The object of this thesis is to simulate the Fandlos and Baron Model for mass transfer into droplets by using an iterative analog computer in order to obtain eigenvalue and other parameters in a series solution. The eisenvalues λ_{n} calculated in this work are compared with the results obtained by Wellek-Skelland using a variational technique and by Patel using numerical approaches on the digital computer. From the analytical series solution, one can calculate the fraction of solute extracted in the droplets as a function of droolet contact time.

PACTOLUS, a digital-analog simulator, provides a check on the validity of analog simulation. The PACTOLUS simulation confirmed the results obtained from the analog simulation.

ACKNOWLEDGEMENT

The author wishes to express his indebtedness to Dr. Robert M. Wellek for suggesting this investigation and for serving as the research advisor. His help, guidance and encouragement are sincerely appreciated.

Gratefulness is acknowledged to Dr. R. C. Vaggoner for his assistance and helpful suggestions.

tables of contents

PAGE
LIST OF FIGURES vi
LIST of tables ix
CHAPTER
I. INTRODUCTION 1
1.1. Prologue 1
1.2. Hydrodynamics and Droplet size 2
1.3. Mass transfer mechanism 2
1.3.1 Inside the droplets 3
1.3.1.1 Stagnant droplets 3
1.3.1.2 Circulating Drop 3
1.3.1.3 Individual mass transfer
coefficient, $k_{d r}$ 6
1.3.2 Outside of the droplet 8
1.4. Evaluation of overall mass transfer coefficient $\mathrm{K}_{\text {dr }}$ 9
II. MATHEMATICAL MODIPICATION FOR MASS TRANSFER INTO11
2.1. Handlos and Baron Model 11
2.2. Wellek and Skelland Modification of
the Handlos and Baron Model 15
2.3. Mathematical Solution of the Model of
Wellek-Skelland Modification 17
III. GENERAL ANALOG COMPUTATION TECHNIQUES IN
SOLVING PARTIAL DIFFERENTIAL EQUATION 22
3.1 Separation of Variables 22
3.2. Finite Difference Method 23
IV. ANALOG SIMULATION OF THE MODEI 25
4.1. Two-point boundary value problem 25
4.2. Proposed method of solution 27
4.3. Magnitude and Time scaling of the problem 30
4.3.1. Magnitude Scaling 30
4.3.2. Time scaling 32
4.4. The digital logic 39
4.5. PACTOLUS simulation 41
V. RESULTS AND DISCUSSION 43
5.1. Computer results of eigenvalues and
eignfunctions 43
5.2. Solution in terms of fraction of solute extracted 45
5.3. Comparison of results from analog computer with Fatel's and Wellek-Skelland's results 62
5.4. Application of the results 63
VI. SUNMARY AND conclusions 67
VII. NOMERCLATURE 71
VIII. BIEITOGRAPHY 74
ARPENDICES 77
I. APPENDIX (I) 78
2. APPEMDIX (2) 81
3. APPENDIX (3) 85
4. APPENDIX (4) 87
5. APPENDIX (5) 91

PAGE

LIST OF FIGURES

FIGURE

PAGE
I. Hadamard Streamlines 4
2. Handlos and Baron Streamlines 12
3. Unscaled brief computer circuit 28
4. Block diagram for the trial and error procedure on analog computer
5. Iterative analog computer setup for Handlos and Baron Model . 35
6. Digital logic setup for Handlos and Baron Model 36
7. Solution of Handlos and Baron Model on an iterative analog computer, λ_{1}
8. Solution of Handlos and Baron Model on an iterative analog computer, λ_{2}
9. Solution of Handlos and Baron Model on an iterative analog computer, λ_{3}
10. Solution of Handlos and Baron Model on an iterative analog computer, λ_{4}
11. Solution of Handlos and Baron Model on digital-analog simulator , λ_{1}
12. Solution of Handlos and Baron Model on digital-analog simulator,λ_{2}
13. Solution of Handios and Baron Model on digital-analog simulator,λ_{3}
14. Solution of Handlas and Baron Model on digital-analog simulator , λ_{4}
15. Fraction extracted versus dimensionless time (Analog computer)
16. Fraction extracted versus dimensionless time (PACTOLUS) 58
17. Fraction extracted versus dimensionless time (Iterative analog computer) 59A. 1 Conventional.analog computer program for Handlosand Baron Model103
A. 2 PACTOLUS program with relay swith for $y=1.0$. 106A. 3 PACTOLUS program without time scale for thefirst type circuit arrangement109
A. 4 PACTOLUS program with time scale for the first type circuit arrangement 110
A. 5 PACTOLUS program with time scale for the second type circuit arrangement 111
A. 6 PACTOLUS program without time scale for the second type of circuit arrangement 112
A. 7 Fraction extracted versus dimensionless time (Runge-Kutta method by Patel) 114
A. 8 Fraction extracted versus dimensionless time (Hamming's method by Patel (28)) 115
A. 9 Fraction extracted versus dimensionless time (Finite-difference method by Patel (28)) 116
A. 10 Solution of Handos and Baron Model on an iterative analog computer, λ_{I} 118
A.ll Solution of Handlos and Baron Model on an iterative analog computer, λ_{2} 119
A. 12 Solution of Handios and Baron Model on an iterative analog computer, λ_{3} 120
A. 13 Solution of Handlos and Baron Model on an
iterative analog computer, λ_{4}
A. 14 Solution of Handlos and Baron Model on a
conventional analog computer, λ_{1}
A. 15 Solution of Handlos and Baron Model on a
conventional analog computer, λ_{2}
A. 16 Solution of Handlos and Baron Model on a
A. conventional analog computer, λ_{3}
Solution of Handlos and Baron Model on a

IIST OF TABLES

1. Static Pot Settings and Amplifier Identification
2. Einary logic signal on the control line for different mode control
3. Djgital logic for the Track-Hold system
4. Eigenvalues and Coerficients for Handlos and Baron Model (by trial and error on an iterative analog computer)
5. Figenvalues and Coefficients for Fandlos and Baron liodel (by trial and error on a conventional analof computer)
6. Eigenvalues and Coefficients for Handlos and Baron Model (by trial and error on a digital-analog : simulator)

Al Eigenvalues and coefficients for stagnant drops due to Grober (15)

A2 Eigenvalues for Handlos and Baron Model coloulated by Wellek and Skelland (11)

A3 Eigenvalues and coefficients for circulating drops calculated by Eiluinga and Eanchero(12)

A4 Eigenvalues and coefficients for Weller-Slrelland Modification (Punces-Kutta method by Fatel(28))

A5 Eigenvalues and coefficients for Wellek-Skelland Modification (Famming's method by Patel (28))

A6 Static pot settings and amolifier identification
"ANALOG SIMUIATION OF MASS TRANSFER IN DROPLETS
WITH TURBULENT INTERNAL CIRCULATION"

I. INTRODUCTION

1.1 Prologue

Fandlos and Baron (1) have proposed a mathematical model Which describes mass transfer from a single liquid droplet or gas bubble (which possesses a special type of circulation and oscillation within the droplet) to a continuous phase of another liquid in which it is freely rising or falling. Examples of such.processes are liquid-liquid extraction and gas-liquid absorption. The factors affecting the mass transfer rate are: (1) transfer area, (2) mass transfer coefficient, (3) driving force. A number of investigators (5,6,7,8,9,10, 11.19) have studied mass transfer from a single droplet to the continuous phase. It is essential to be able to predict the rate of mass transfer which is related to the mass transfer coefficient for the dispersed phase system. (1)

The purpose of this investigation is to present a theoretical relation for predicting the dispersed phase mass transfer coefficient of circulating and/or oscillating liquid droplets based on the modification of the Handlos and Baron.

In order to study the reason for the occurrence of oscillation and turbulent internal circulation of droplets ' Which enhances the rate of extraction', a review of fluid dynamics and mass transfer aspects of droplet phenomena is
presented in the remainder of this chapter.

1. 2 Hydrodynamics and Droplet size

In studying mass transfer from single liquid droplet, most of the previous work was based on the assumption of spherical droplets $(6,7,8,9,10,11)$. At low droplet Reynolds numbers, (d:u. $/ \mu_{c}$), the droplet shape is approximately spherical. However, at high Reynolds numbers the droplet will be distorted from a spherical form. The change in shape of the droplet affects not only the interfacial area but also the continuous and dispersed phase mass transfer coefficient. The shape of a drop moving in a liquid continuous phase is determined by the force acting along the surface of the drop. Basically, the shape is dependent upon the balance between fluid dynamics pressure and the interfacial forces which tend to make the drop a sphere. As the Reynolds number is increased, droplet oscillation will occur. As the Reynolds number continues to increase, the drop will break.? Elzinga and Banchero (12) have suggested that internal circulation has little effect on distortion of the droplet dispersed in a gas, but is not necessarily true for a liquid continuous phase.

1. 3 Mass transfer mechanism

Mass transfer between a drop and the fluid in the extraction column takes place in three stages. The first is during the period of drop formation; the second is during free fall or rise of the drop; and the third stage is the extraction at coalescent layer. In this work, only mechanisms postulated for the secoñ stage are discussed.

1.3.1 Inside the dropiet

1.3.1.1 Stagnant droplets: There is generally no internal circulation in small droplets. For heat and mass transfer rates inside the drop, recent studies by Elzinga and Panchero (12), Calderbank and Korchinski (13) have used the theory for a stagnant (non-oscillating) drop(sphere) or for a drop which possessed circulation patternsiwhich were developed by Hadamard (14). (See Figure 1.) For a constant molecular diffusivity, uniform initial concentration and a spherical drop shape, Grober (15) derived an expression for the fraction extracted for a drop which encounters finite resistance in the continuous phase.

$$
\begin{equation*}
E_{m}=1-6 \sum_{n=1}^{\infty} B_{n} \exp \left[-\lambda_{n}^{2} \frac{D t}{a^{2}}\right] \tag{1.1}
\end{equation*}
$$

Newman (16) derived the following expression for mass transfer in a stagnant spherical drop from Fick's second law. It is applicable if there is no resistance in the continuous phase.

$$
\begin{equation*}
E_{m}=1-\frac{6}{a^{2}} n_{n=1}^{\infty} \frac{1}{n^{2}} \exp \left[-\frac{n^{2} D \pi t}{a^{2}}\right] \tag{1.2}
\end{equation*}
$$

1.3.1.2 Circulating Drop: As the drop size increases, the droplet begins to have internal circulation currents, Which exist inside the droplet because of viscous flow between fluids. This increases the rate of extraction when compared with the rate of extraction in an internally stagnant drop. For drop Reynolds numbers less than unity, Kronig and Brink (17) derived the following equation to be used if continuous phase resistance is negligible:

Figure 1: Hadamard Streamlines

$$
\begin{equation*}
E_{m}=1-\frac{3}{8} \sum_{n=1}^{\infty} B_{n}^{2} \exp \left[-\lambda_{n} \frac{16 D t}{a^{2}}\right] \tag{1.3}
\end{equation*}
$$

While investigating the heat transfer rate to drops in liquid-liquid systems, Elzinga and Ranchero (12) modified the Kronig and Brink Model to consider the effect of finite resistance in the continuous phase by reviseing the boundary condition at the surface. It should be emphasized that the Kronig and Brink Model and the Eizinga and Ranchero Model theoretically hold only for Reynolds numbers less than one and for Peclet numbers approaching unity.

Kronig and Brink (I7) proposed a method for illustrating the increased rate of mass transfer which results from internail circulation. They consider that effectively the molecular diffusivity, D, has been increased by a factor of about 2.4 as compared with the case of a stationery droplet.
I. J. Q. Korchinski (13) studied heat transfer in single droplet systems. He observed rigid, oscillating and circulating behavior of droplets. At Reynolds numbers of about 200, drop oscillation commenced. He concluded that internal circulation in the liquid drop raised the effective diffsivity to a value approaching 2.25 times the molecular diffusivity. He also pointed out that no precise data is available to determine the limits between the regimes of pure circulation and drop oscillation. But, Korchinski listed a table for various liquid systems to show that at the time oscillation occurs, the empirical correction factor R.increases greatly. He defines this correction factor, R as
$B=\frac{D(e f f e c t i v e ~ d i f f u s i v i t y ~ d u e ~ t o ~ i n t e r n a l ~ c i r c u l a t i o n) ~(1.4) ~}{D(m o l e c u l a r ~ d i f f u s i v i t y) ~}$
For non-circulating drops, it is apparent that R equals unity: For drops with turbulent circulation A should be larger. Johnson and Pamielec (5) state that intense circulation may cause R to be even greater than 2.5 . When the drop oscillates, the large increase described by R causes the rate of extraction to increase dramatically.

Garner and Skelland (18) stated that overall mass transfer coefficients increased with drop size but decreased with increases of interfacial tension.
1.3.1.3 Individual mass transfer coefficient, $k_{d r}$: For droplets which are internally stagnant and with no resistance in the continuous phase, Newman (16) derived:

$$
\begin{equation*}
k_{d r}=\frac{-d \rho}{6 M t} \operatorname{In}\left[\frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp \left[\frac{-n^{2} D_{v} \pi^{2} t}{(d / 2)^{2}}\right]\right) \tag{1.5}
\end{equation*}
$$

Vermenlen's (33) empirical equation fits Newman's expression Well when the fraction extracted, E_{m}, is less than 0.5 during free fall (or rise)

$$
\begin{equation*}
k_{d r}=\frac{-d \rho}{6 M t} \operatorname{In}\left[1-\frac{\pi D_{v}^{\frac{1}{2}} t^{\frac{1}{2}}}{(d / 2)}\right] \tag{1.6}
\end{equation*}
$$

Johnson and Hamielec (5) introduced Korchinski's (13) expression as a dimensionless correction factor R into Grober's expression. This factor is a multiplier for the molecular diffusivity to account for transfer rate increases in drops Which contain internal motion.

$$
\begin{equation*}
K_{d r}=\frac{-d \rho}{6 M t} \operatorname{In}\left[6 \sum_{n=1}^{\infty} B n \exp \left[-\lambda_{n}^{2} \frac{R D_{v} t}{(d / 2)^{2}}\right)\right] \tag{1.7}
\end{equation*}
$$

When transfer resistance is zero in the continuous phase and laminar circulation exists inside the drop, the Kronig and Brink expression becomes

$$
\begin{equation*}
k_{d r}=\frac{-d \rho}{6 M t} \operatorname{In}\left[\frac{3}{8} \sum_{n=1}^{\infty} B_{n}^{2} \exp \left[-\lambda_{n} \frac{16 D_{\nabla^{t}}^{t}}{(d / 2)^{2}}\right]\right) \tag{1.8}
\end{equation*}
$$

Korchinski's (13) empirical equation fits Kronig and Brink expression well only for E_{m} values of less than 0.5

$$
\begin{equation*}
k_{d r}=\frac{-d \rho}{6 M t} \operatorname{In}\left[I-\frac{\left.R^{\frac{1}{2}} \pi D_{\nabla^{\frac{1}{2}+\frac{1}{2}}}^{(d / 2)}\right], ~}{(I)}\right] \tag{1.9}
\end{equation*}
$$

Where $\mathrm{R} \cong 2.5$
Elzinga and Banchero (12) modified Kronig and Brink's expression for the case of a finite resistance in the continuous phase.

Higbie's (34) equation has been applied to the case. Where internal circulation prevails in the drops

$$
\begin{equation*}
k_{d r}=\frac{2 p}{M} \sqrt{\frac{D_{\nabla}}{\pi t e}} \tag{1.10}
\end{equation*}
$$

Handlos and Baron proposed a mechanism in which a form of turbulence (radial motion due to oscillation) is superimposed on circulation within the drop. Their expression for zero resistance in the continuous phase is given as follows:

$$
\begin{equation*}
k_{d r}=\frac{-d \rho}{6 M t} \operatorname{In}\left[2 \sum_{n=1}^{\infty} B_{n} \exp \left[\frac{-\lambda_{n} 16 D_{v} t N p e}{2048 d^{2}}\right]\right) \tag{1.11}
\end{equation*}
$$

Weller and Skelland modified the Fandlos and Baron Model to consider the finite resistance in the continuous phase

$$
\begin{equation*}
k_{d r}=\frac{\lambda_{1} V_{p}}{768\left(1+\mu_{Q} / \mu_{c}\right)} \tag{1.12}
\end{equation*}
$$

Where the first eigenvalue λ_{I} is a function of resistance in the continuous phase.

Skelland and Wellek provided the most comprehensive correlation for $k_{d r}$ based on extensive experimental data for non-oscillating and oscillating droplets:

For non-oscillating droplets:

$$
\begin{equation*}
k_{d r}=31.4 \frac{D_{v} \rho}{d M}\left(\frac{4 D_{v} t}{d}\right)^{-0.34}\left(\frac{\mu_{\mathrm{d}}}{\rho D_{v}}\right)^{-0.125}\left(\frac{d v^{2} \rho}{\sigma}\right)^{0.37} \tag{1.13}
\end{equation*}
$$

For oscillating droplets;

$$
\begin{equation*}
k_{d r}=0.32 \frac{D_{v \rho}}{d M}\left(\frac{4 D_{v} t}{d}\right)^{-0.14}\left(\frac{d V \rho_{c}}{\mu_{c}}\right)^{0.68}\left(\frac{\sigma 3 \rho_{c}^{2}}{g \mu_{c}^{4} \Delta \rho}\right)^{0.225} \tag{1.14}
\end{equation*}
$$

1.3.2 outside of the droplet. Many theoretical and empirical relations are available for predicting the individual mass transfer coefficient in the continuous phase. The continuous phase mass transfer coefficient for a rigid (nonoscillating) droplet may be predicted by an expression based on boundary layer theory and empiricism derived by Frossling (20).

$$
\begin{equation*}
k_{c r}=\frac{D_{V} \rho}{d M}\left[2+0.55\left(N_{\operatorname{Rec}}\right)^{\frac{1}{2}}\left(N_{S c c}\right)^{\frac{1}{2}}\right] \tag{1.15}
\end{equation*}
$$

valid for $2<\mathrm{Re}<1000$
For droplets with internal circulation, Boussinesq (35) has shown that

$$
\begin{equation*}
k_{c r}=\frac{D P}{d M}\left[\frac{2}{\sqrt{\pi}}\left(\mathbb{N}_{\operatorname{Rec}}\right)^{\frac{1}{2}}\left(\mathbb{N}_{\mathrm{Scc}}\right)^{\frac{1}{2}}\right] \tag{1.16}
\end{equation*}
$$

For continuous phase mass transfer from droplets which were internally circulating but not oscillating, Garner and

Treyban (36) found experimentally:

$$
\begin{equation*}
: \mathbf{k}_{\mathrm{cr}}=\frac{D_{\mathrm{V}} \rho}{d M}\left\{0.6\left(\mathrm{~N}_{\mathrm{Rec}}\right)^{\frac{1}{2}}\left(\mathrm{~N}_{\mathrm{Scc}}\right)^{\frac{1}{2}}\right\} \tag{1.17}
\end{equation*}
$$

For drops which were both circulating and oscillating, Garner and Treyban (36) developed the relation:

$$
\begin{equation*}
k_{c r}=\frac{D_{v}^{\rho}}{d M}\left[50+0.085\left(\mathrm{~N}_{\mathrm{Rec}}\right)^{1.0}\left(\mathrm{~N}_{\mathrm{Scc}}\right)^{0.7}\right] \tag{1.18}
\end{equation*}
$$

Nearly all of the above expressions assume that the droplet is spherical. However, droplets usually show large deformation into an oblate spheroidal shape as indicated by Wellek, Agrawal and Skelland (19).

Skelland and Cornish (4) correlated data on the rate of mass transfer from rigid oblate spheroids in an air stream as follows:

$$
\begin{equation*}
k_{c r}=0.74 \frac{D_{v} \rho}{d \rho I}\left(\frac{\alpha_{\rho} V^{\rho}}{\mu_{c}}\right)\left(\frac{\mu_{c}}{\rho D_{\nabla}}\right)^{1 / 3} \tag{1.19}
\end{equation*}
$$

Where d.p is the total surface area of the spheroid divided by its perimeter normal to the flow (32). This equation is useful in calculating $k_{d r}$ for non-oscillating drops which assume the shape of oblate spheroids. 1.4 Evaluation of overall mass transfer coefficient K Kr With the assumption of interfacial equilibrium, an overall mass transfer coefficient can be expressed in terms of the individual dispersed phase coefficients $k_{d r}$ and a continuous phase coefficient $k_{c r}$ during the free fall (or 'rise) period.

$$
\begin{equation*}
\frac{1}{k_{d r}}=\frac{1}{k_{d r}}+\frac{m}{k_{c r}} \tag{1.20}
\end{equation*}
$$

Individual mass transfer coefficients in the dispersed phase and the continuous phase can be calculated from the theoretical and empirical equations in section 3 of this chapter.
II. MATHEYATICAL MODIFICATION FOR MASS TRANSFER

INTO A DROPLET AT HIGH REYNOLDS NUTBERS

2.1 Handlos and Baron Model

Handlos and Baron modified the Kronis and Brink (17) theory and devised a turbulent mixing model With an internal circulation pattem of concentric circles. They assumed that the liquid between two streamlines becomes radially mixed after one circulation period. The mechanism which they proposed predicted the very low resistance to mass transfer inside circulating and/or oscillating droplets. This nodel is based on the assumption that internal circulation is fully developed and that the velocities of falling (or rising) droplets can be predicted.

Handlos and Baron (I) further assumed that the circulation within the spherical droplet is a system of circular tori-Figure (2) and that "random radial vibrations" are superimposed upon the streamlines. Handlos and Baron did not specifically state the source of these vibrations but the presence of the oscillation due to the skin friction at the droplet surface may account for them. These vibrations provide mixing between streamlines. It should be emphasized that mass transfer is assumed to take place within the outer surface of each torus. Resistance to transfer within the volume of the droplet between the outer surface of the torus and the interfacial area of the sphere is neglected.

Handlos and Baron propose that the mass flux of solute

Fig. 2 : Handlos and Baron Streamlines
at any point follows the following relation

$$
\begin{equation*}
\overline{\mathbb{N}}=-\overline{\mathrm{E}} \nabla C \tag{2.1}
\end{equation*}
$$

where \bar{N} is the flux of the solute and ∇C is the concentration vector gradient. When this relation is substituted into the equation of continuity, equation (2.2) is obtained for the case in which no chemical reaction takes place.

$$
\begin{equation*}
\frac{\partial C_{a}}{\partial t}=-\nabla \cdot \bar{N}=\nabla(\bar{E} \nabla C) \tag{2.2}
\end{equation*}
$$

In order to derive the expression for the eddy mass diffusivity $E(r)$, Handlos and Baron suggest that the transfer process can be represented by the Einstein eddy diffusion equation (for two dimensions):

$$
\begin{equation*}
\bar{E}=\frac{\bar{z}^{2}}{4 \bar{t}} \tag{2.3}
\end{equation*}
$$

Where \bar{Z} is the mean square displacement of an element of fluid during the average circulation time \bar{E}. Handlos and Baron assumed that for this model \bar{E} can be approximated by the value of $\overline{\bar{t}}$ as derived by Kronig and Brink from the Hadamard (14) dispersed phase stream function.

$$
\begin{equation*}
\bar{t}=\frac{16}{3} \frac{d_{e}}{U}\left(1+\frac{\mu_{d}}{\mu_{c}}\right) \tag{2.4}
\end{equation*}
$$

A relation for \bar{Z} is developed as follows: a particle is considered initially to have a radius ρ. After a time sufficient for one circuit along the streamlines, the particie is displaced to a point ρ^{\prime} as a result of random radial motions. 'In the limiting case of complete mixing in one circulation period, the probability that a particle is found between ρ
and $\rho+d \rho$ is the ratio of the differential element of volume at ρ^{\prime} to the total volume of the torus

$$
\begin{equation*}
P\left(\rho^{\prime}\right) d \rho^{\prime}=\frac{32 \rho^{\prime}}{d^{2}} d \rho^{\prime} \tag{2.5}
\end{equation*}
$$

Since $m=\frac{4 \rho}{d}$
expression (2.5) becomes $P\left(\underline{r}^{\prime}\right) d \underline{r^{\prime}}=2 \underline{r}^{\prime} d \underline{r}^{\prime}$
The displacement \bar{z} of the element of fluid during the circulating period is given by

$$
\begin{equation*}
\bar{Z}=\rho^{2}-\rho=\frac{d_{e}}{4}\left(\underline{\underline{r}}^{\prime}-\underline{\underline{r}}\right) \tag{2.6}
\end{equation*}
$$

According to Handlos and Baron, the mean square displacement is

$$
\begin{align*}
\bar{z}^{2}= & \int_{0}^{I} z^{2} P\left(\underline{r}^{2}\right) d \underline{r}^{\prime}=\frac{d^{2}}{8} \int_{0}^{1} \underline{r}^{1}\left(\underline{r}^{\prime}-\underline{r}\right)^{2} d \underline{r}^{2} \\
& =\frac{d_{e}^{2}}{96}\left(6 \underline{r}^{2}-8 \underline{r}+3\right) \tag{2.7}
\end{align*}
$$

Now, substituting the relation of \bar{Z} and \bar{E} into the Einstein Equation

$$
\begin{equation*}
\bar{E}(\underline{r})=\frac{\bar{Z}^{2}}{4 \bar{t}}=\frac{\alpha_{e}^{U}}{2048} \frac{\left(6 \underline{r}^{2}-8 \underline{r}+3\right)}{\left(1+\left(\mu_{\alpha} / \mu_{c}\right)\right)} \tag{2.8}
\end{equation*}
$$

If mass transfer takes place in the radial direction only, equation (2.2) for the chosen coordinate system is

$$
\begin{equation*}
\left.\frac{\partial C_{a}}{\partial t}=\frac{16}{d_{e}^{2}} \frac{I}{\underline{r}} \frac{\partial \underline{I}}{\partial(\underline{I}) \cdot \underline{r}} \frac{\partial C}{\partial \underline{r}}\right) \tag{2.9}
\end{equation*}
$$

Substituting the relation for eddy diffusivities $\bar{E}(\underline{x})$ into equation (2.9)

$$
\begin{equation*}
\frac{\partial}{\partial t}=\frac{I}{r} \frac{\partial}{\partial r}\left(\left(6 \underline{r}^{2}-8 \underline{r}+3\right) \underline{r} \frac{\partial C}{\partial r}\right) \tag{2,10}
\end{equation*}
$$

where $b=\frac{U}{128\left(1+\mu d / \mu_{c}\right) d_{e}}$
If $I=1-y$, equation (2.10) is transformed to

$$
\begin{equation*}
\frac{\partial c}{\partial t}=\frac{b}{I-y} \frac{\partial}{\partial y}\left(I-5 y+I 0 y^{2}-6 y^{3}\right) \frac{\partial C}{\partial y} \tag{2.11}
\end{equation*}
$$

The boundary conditions are

$$
\begin{array}{lll}
C=0 & y=0, & t>0 \\
C . & \text { is finite }, & y=1, \\
C=C_{0}, & t=t \\
0 \leq y \leq 1, & t=0 \tag{2.14}
\end{array}
$$

The first boundary condition indicates that there is no resistance to transfer in the continuous phase, and also
that the concentration of the continuous phase remains unchanged throughout the transfer period. The second boundary condition is equivalent to

$$
\begin{equation*}
\frac{\partial C}{\partial y}=0, \quad y=1, \quad t=t \tag{2.15}
\end{equation*}
$$

The third boundary condition implies that the initial concentration of the drop is uniform.
2.2 Wellek and Skelland Modification of the Handios and

Baron Model
Wellek and Skelland assumed a finite resistance to mass transfer in the continuous phase. Hence, the boundary conditions are changed to:
$C=c_{0}$
$0 \leq y \leq 1$,
$\mathrm{t}=0$
C is finite,
$y=1$
$t=t$

$$
\frac{\partial c}{\partial y}=h c, \quad y=0, \quad t>0
$$

Where $h=\frac{512 r_{c}\left(1+\mu_{d} / \mu_{c}\right)}{m U}$
The third boundary condition at the surface of the droplet is obtained as follows:

$$
\begin{array}{lll}
-\mathbb{Z}(\rho) \frac{\partial C}{\partial \rho}=\frac{k_{c}}{m} C, & \rho=\frac{d}{4}, & t>0 \tag{2.19}\\
-E(\underline{r}) \frac{\partial}{d} \frac{\partial C}{\partial r}=\frac{k_{c}}{m} C, & \underline{r}=I & t>0 \\
-Z(y)-\left(-\frac{\partial C}{\partial y}\right)=\frac{k_{C}}{m} C, & y=0 & t>0
\end{array}
$$

$$
\begin{align*}
& \frac{\partial c}{\partial y}=\frac{d}{4} \frac{\underline{z}}{\underline{E}(y)}-\frac{r_{c}}{c}=\frac{k_{c}}{m} \frac{d}{4} \frac{z}{E(y)} \\
& \bar{\Xi}(y)=-\frac{z^{2}}{4 E}=\frac{d^{2} / 96}{4\left(16 / 3 X d / U\left(I+\mu_{a} / \mu_{c}\right)\right.},\left(\bar{z}^{2}(I)=\frac{d^{2}}{96}(I)=\frac{d^{2}}{96}\right) \\
& \text { Ur } \\
& =\overline{(16)(32)\left(1+\mu_{d} / \mu_{c}\right)} \\
& \text { Ur } \\
& =\overline{2048\left(1+\mu_{\alpha} / \mu_{c}\right)} \tag{2.20}
\end{align*}
$$

Substitute $\bar{E}(y)$ at $y=0$ into equation (2.18)

$$
\begin{array}{ll}
\frac{\partial C}{\partial y}=\frac{k_{C}}{m} \frac{d}{4}\left(\frac{1 \cdot 512\left(I+\mu_{d} / \mu_{C}\right.}{U d}\right), & y=0, \quad t>0 \\
\frac{\partial C}{\partial y}=h C \quad y=0, \quad t>0
\end{array}
$$

Since h is assumed to remain constant during operation, the continuous phase mass transfer coefficient k_{c}, distribution
metio, m, viscosity of both phases and dropiet free fall (or rise) veiocity must be held uniform during the tinanser remiod. These essumptions are sood enourh to describe most siturtions.
2.3 Fathematical Solution of the Mocel of Vellel-suelland

Modification

The linear partial differential equation winch describes the model is

$$
\begin{equation*}
\frac{\partial C}{\partial t}=\frac{b}{I-y} \frac{\partial}{\partial y}\left(1-5 y+10 y^{2}-6 y^{3}\right) \frac{\partial C}{\partial y} \tag{2.11}
\end{equation*}
$$

The welevant boundery conditions are

(2)	$\frac{\partial C}{\partial y}=h c$	$\mathrm{y}=0$,	$t>0$	(2.18)
(2)	c is finite,	$\mathrm{y}=1$,	$t=t$	(2.17)
(3)	c is c_{0}	$0 \leq \mathrm{y}$ < 1,	$t=0$	(2.16)

To solve a linear partial differential equation when the separation of variables technique is used, the solution is assumed to have the form

$$
\begin{equation*}
C=T(t) Y(y) \tag{2.22}
\end{equation*}
$$

Where t and y are the two independent variables in the equation. Now, the equation can be separated into two ordinary differential equations as:

$$
\frac{d T}{d t}+\overline{D \lambda T}=0
$$

$$
\begin{equation*}
\frac{d}{d y}\left(P(y) \cdot \frac{d y}{d y}\right)+\lambda \cdot Q(y) Y=0 \tag{2.24}
\end{equation*}
$$

Where $P(y)=1-5 y+10 y^{2}-6 y^{3}$

$$
\begin{align*}
& Q(y)=I-y \tag{2.26}\\
& \text { ane solution of Eyuation }(2.23) \text { is } \\
& R(t)=P_{n} \exp \left(-b \lambda_{n} t\right) \tag{2.27}
\end{align*}
$$

The bourdary conditions for Equation (2.24) are
dY
$\begin{array}{ll}\frac{d y}{d y}=h Y & y=0 \\ \text { and } Y \text { is finite, } & y=I\end{array}$
Equations (2.24), (2.25) and (2.26) represent a SturmLiouville system. Non-trivial solutions to that system erist in most cases only for a discrete set of values of $\lambda_{I}, \lambda_{2}, \lambda_{3}, \ldots .$. called eigenvalues. The series of orthogonal eienfunctions $Y_{1}, Y_{2}, Y_{3}, \ldots$. are not lmown but are consicered normalized with the factor included in the cofficient E_{n}. Combining the solution of the two differential equations, one obtains the complete solution

$$
\begin{equation*}
c(y, t)=c_{0}{ }_{n} \underline{E}_{1} B_{n} Y_{n} \exp \left(-b \lambda_{n} t\right) \tag{2.30}
\end{equation*}
$$

This complete solution (2.30) represents the solute concentration at any value of y and t. For the derivation of the seneral solution refer to Appendix (2).

The mass of solute I (t) in the drop at any time can be expressed as

$$
\begin{equation*}
\mathbb{N}(t)=\int_{0}^{V} C d V \tag{2.31}
\end{equation*}
$$

The volume of torus is

$$
\begin{aligned}
V \rho & =2 \pi^{2}\left(\frac{d_{e}}{4}\right)\left(\rho^{r}\right)^{2} \\
d V \rho & =4 \pi^{2}\left(\frac{d_{e}}{4}\right) \rho d \rho, \quad \underline{r}=1-\nabla, \quad \underline{r}=\frac{\rho}{d / 4}
\end{aligned}
$$

$$
\begin{align*}
d^{V} y & =-\frac{\pi^{2} a_{e}^{3}}{16}(I-y) d y \\
M(t) & =\frac{C_{0} \pi^{2} d^{3}}{16} \sum_{n=1}^{\infty} B_{n} \exp \left(-b \lambda_{n} t\right) \int_{0}^{I}(I-y) I_{n} d y \tag{2.32}
\end{align*}
$$

At tequas o, the general solution can de written as:

$$
\begin{equation*}
C(y, 0)=C_{0}=C_{0} \sum_{n=1}^{\infty} B_{n} Y_{n} \tag{2.33}
\end{equation*}
$$

Hence

$$
\sum_{n=1}^{\infty} P_{n} Y_{n}=1
$$

In order to obtain 3_{n}, the condition of orthogonality is applied to Equation (2.34). Now, equation (2.34) can be modified to the equation

$$
\begin{equation*}
\int_{0}^{1}(1-y) y_{n} d y=3_{n} \int_{0}^{1}(1-y) y_{n}^{2} d y \tag{<.35}
\end{equation*}
$$

By application of the theory of orthonormal functions, equation reduces to

$$
\begin{equation*}
s_{1}=\int_{0}^{1}(1-y) Y_{n} d y \tag{2.36}
\end{equation*}
$$

Substituting this relation into Equation (2.32), leads to the expression for the mass in the drop at any time

$$
\begin{equation*}
H(t)=\frac{C_{o} \pi^{2} d^{3}}{16} \sum_{n=1}^{\infty} B_{n}^{2} \exp \left(-b \lambda_{n} t\right) \tag{2.37}
\end{equation*}
$$

The initial mass of solute in the droplet is

$$
\begin{aligned}
\operatorname{I}(0) & =C_{0}^{V}=C_{0} \cdot 2 \pi^{2}\left(\frac{d_{e}}{4}\right)^{3} \\
& =C_{0}\left(2 \pi^{2}\right) \frac{d_{e}}{64}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{M(t)}{M(0)}=\frac{\left(c_{0} \pi^{2} d^{3} / 16\right) n_{n}^{\infty} E_{n}^{2} \exp \left(-b \lambda_{n} t\right)}{c_{0} \pi^{2}\left(d^{3} / 32\right)} \\
& \frac{M(t)}{M(0)}=2 n_{n}^{\infty} \sum_{n}^{2} \exp \left(-b \lambda_{n} t\right)
\end{aligned}
$$

Johnson and Famielec (5) prefer to express Equation (2.33)
in terms of the fraction of solute extracted

$$
\begin{equation*}
E_{\mathrm{m}}=1-2 \sum_{n=1}^{\infty} B_{n}^{2} \exp \left(-b \lambda_{n} t\right)=1-\frac{M(t)}{H(0)} \tag{2.30}
\end{equation*}
$$

In this equation, B_{n} and λ_{11} have to be determined before E_{m} can be obtained.

$$
\begin{align*}
& \text { Consider the equation } \\
& \frac{d}{d y}\left(P(y) \cdot \frac{d Y}{d Y}\right)+\lambda Q(y) Y=0 \tag{2.40}\\
& Q(y) Y_{n}=-\frac{I}{\lambda_{n}} \frac{d}{d y}\left(P(y) \frac{d Y}{d y}\right) \tag{2.41}\\
& Q(y)=(I-y) \tag{2.26}\\
& P_{n}=\int_{0}^{I} Q(y) Y d y \tag{2.36}
\end{align*}
$$

Performing the intergration:

$$
\begin{aligned}
B_{n} & =\int_{0}^{I}-\frac{1}{\lambda_{n}} \frac{d}{d y}\left(P(y) \frac{d Y}{d y}\right) d y \\
B_{n} & =-\frac{1}{\lambda_{n}}\left[P(y) \frac{d Y}{d y}\right]_{0}^{1} \\
& =\frac{-1}{\lambda_{n}}\left[P(I) \frac{d Y_{n}(I)}{d y}-P(0) \frac{d Y_{n}}{d y}\right]
\end{aligned}
$$

$P(I)=0$
$P(0)=1$

Fence :

$$
\begin{equation*}
z_{n}=\frac{1}{\lambda_{n}} \frac{d y_{n}}{d y}(0) \tag{2.40}
\end{equation*}
$$

This relation is used to calculate I_{n} after both the eifenvalues λ_{n}, and $d Y_{n}(0) / d y$ have been obtained from iterative onalog operations.
III. GETQRAI ANALOG CCNPUTATION TECEIQUES IN SOLVING PARTIAL DIFFERENTIAL EQUATION

Analog conputer techriques have been used successfully to solve systems described mathematically by partial iifferential equations. They may be used to obtain an approximation of an analytical solution when such solutions ane either impossible or tedious. They may also serve as means of deteminins the range of validity of an approximate solution(21).

Two atproaches have been applied to solve partial differential equations on the analog computer.

3.1 Seraration of Variables

The intecrators on an analog computer are limited to a single independent variable. A partial differential equation must be converted to a set of ordinary differential equations Defore the computer can simulate a mathematical model. In this approach, each equation is casily programmed on the computer, but solutions are not readily obtained if the boundary values for the problem specify for each ordinary differential equation both initial and final conditions. On the computer only the initial condition can be applied and it is thus necessary to determine by iteration parameter values on the initial condition that will satisfy the final condition.

In eigenvalue problems, there is often an infinite number of suitable parameter values (eigenvalues) and solutions (eigenfunctions).

Fortunately, it is usually necessary to include only the first few modes in any series. A complete solution of the partial differential equation may be obtained from the product of separate functions of the independent variables. The analos computer may be used to obtain both the eigenvalues and eigenfunctions. The computer is prosramed and wired to solve one of the ordinary differential equations. The know initial conditions are applied. The parameter (eisenvalue) enters the solution as a trial initial value which is varied by adjusting a potentiometer until the final conditions are satisfied. The final value shom on the potentiometer is the eisenvalue and the correspondins solution of the dependent function sives the eisenfunction. Therefore, the orisinal problem of solving the partial differential equation reduces to a series of solutions of an eisenvalue problem.

In recent years, the "iterative analog computer" has been designed. Several disital logic components have been added to the analog computer. They may be used to control its modes and to adjust parameters automatically. These operations are especially useful in eigenvalue problems.

3.2 Finite Difference Nethod

The finite difference method is applicable to both linear and non-linear systems. The partial differential equation is replaced by a set of ordinary differertial equations with one independent variable as the continuous independent variable and the other independent variable
consicered at discrete ralues. me nemtial serirazires are replaced by an appropriate difference expressions such as the backrard, central, or fomand differenoss. Uis technique requires that the" Viscreted"ieperaent rariable of interest be only vithin bounded intervals of the adiitional independent variable(s). To maintair accurecu, iirision into a reasonable number of semments (or intervals) must be used so that the chance of the cependent variable from Doint to point will not be too severe. The requirement is cenemally fulfilled in most physical problems. If the boundery interval is divided into sements, the resulting set of $n+1$ simultareous differential Equations can be solved on the analor computer or dirital computer concumrently.

IV. analog simulation of the hodil

4.1 Tro-point boundary value problem

The mathematical expression to describe the Fandlos and Earon model with the Wellek-Skelland modification(ll) is

$$
\begin{equation*}
\frac{\partial}{\partial t}=\frac{b}{1-y} \frac{\partial}{\partial y}\left(1-5 y+10 y^{2}-6 y^{3}\right) \frac{\partial C}{\partial y} \tag{2.11}
\end{equation*}
$$

The boundary conditions are
(I) $\frac{\partial C}{\partial y}=n C \quad y=0, \quad t>0$
(2) C is finite, $y=1, \quad t=t$
(3) $c=c_{o}$

$$
\begin{equation*}
0 \leq y \leq 1, \quad t=0 \tag{2.16}
\end{equation*}
$$

Equation (2.11) is a linear partial differential equation. After using the method of separation of variable (refer to Appendix 2), two ordinary differential equations are obtained. The two-point boundary value problem to be simulated with the relevant boundary conditions is siven as follows:

$$
\begin{equation*}
\frac{d}{d y}\left(F(y) \frac{d Y}{d y}\right)+\lambda Q(y) Y=0 \tag{2.24}
\end{equation*}
$$

with boundary conditions

$$
\text { (I) } \frac{d Y}{d y}=h Y, \quad y=0
$$

(2) $\frac{d Y}{d y}=0, \quad y=1$

Where $P(y)=1-5 y+10 y^{2}-6 y^{3}$
and $\quad Q(y)=1-y$

The variatle $Y(y)$ is the dependent variable in equation (2.24)

Equation (2.24) may be rearranccd to obtair the following expression:

$$
\begin{equation*}
\frac{d^{2} y}{d y^{2}}-\frac{\left(18 y^{2}-20 y+5\right)}{\left(1-5 y+10 y^{2}-6 y^{3}\right)} \frac{d Y}{d y}+\frac{\lambda_{n} Y}{\left(6 y^{2}-4 y+1\right)}=0 \tag{4.1}
\end{equation*}
$$

The analof computer results in later chapters*show that the normalized boundary condition used by Patel

$$
\begin{equation*}
Y(I)=I, \quad Y=I \tag{4.2}
\end{equation*}
$$

is also applicable in this work.
The scoond term in equation (4.1) becomes indeterminate When y approaches unity. Forever, a limiting value for $d^{2} y / d y^{2}$ may be obtained by the applicetion of L'fospital's Fule (23) which results in the following equation:

$$
\begin{equation*}
\frac{d^{2} y}{d y^{2}}=\frac{-\lambda_{n} Y}{2\left(6 y^{2}-4 y+1\right)} \tag{4.3}
\end{equation*}
$$

and hence at $y=1$

$$
\begin{equation*}
\frac{d^{2} y}{d y^{2}}=-\frac{\lambda_{n}}{6} \tag{4.4}
\end{equation*}
$$

Equation (4.I) is the basis of the simulation. In order for it to be compatible with the limitation of an analon computer, it must be maçnitude scaled and time scaled.

As shom by Firure 5, the independent varjable y in equation (4.1) and equation (4.3) is measured in time by the time-senerated intesrator 4 on analos computer. The function gencrators to generate functions $G_{1}(y), G_{2}(y), G_{3}(y)$ indicated on Figure 3 are obtained from non-linear elements. Scaled * refer to Chavter V
values of the dependent variables, $d Y / d y$ and Y are generated in voltage by integrators 1 and 2.
4.2 Proposed method of solution

After the problem has been stated above in Equation (4.1), the next step is the formulation of a logical procedure to be programmed on the iterative analog computer.* This procedure is outlined in an abbreviated computer diagram, Figure 3. The values for the modified continuous phase resistance, h, used in this work are the same values as used by HellekSkelland (9). The object of this iterative analog computer program is to determine the value of $Y(0)$ for which the final condition, $d Y(I) / d y=0$, is satisfied.

The eigenvalue λ_{n} is selected arbitrarily and is revised during each run. A search procedure must be devised so that two variables, λ_{n} and $d Y(0) / d y$ may be obtained as a set of conditions. If both parameters, $Y(0)$ and λ_{n} must be adjusted manually, the operation may become time-consuming. Therefore, the aigital logic portion of the iterative analog computer is programmed to find automatically the initial value of dy (0)/dywhich satisfies the problems boundary conditions.

The computer must be programed with a criterion ϵ to control the problems on each iteration so that when $d y / d y(I)<\varepsilon$ (where ε is small enough to determine the accuracy to which the boundary condition is satisfied), dY(y)/dy is close to $d Y_{n}(y) / d y$ for the desired mode. The criterion to be used is based on the zero-crossing property of the normal mode. For necessarily larger eigenvalues, λ_{n}, the zeroes (* refer to APPENDIX 13)

of the normal mode, $\mathrm{dY}_{\mathrm{n}}(\mathrm{y}) / \mathrm{dy},(22)$ Iie closer together.
Let the eigenvalues be ordered numerically so that $0<\lambda_{1}<\lambda_{2}<\lambda_{3} \ldots . . \lambda_{n}$. This ordering is possible since the eigenvalues are all real and positive. If $Y_{n}(y)$ and $Y_{n+1}(y)$ are solutions of the equation with $\lambda=\lambda_{n}$ and $\lambda=\lambda_{n+1}$ respectively, it is found that $Y_{n+1}(y)$ has at least one zero-crossing more than $Y_{n}(y)$ within the interval. After estimating the small region close to the boundary at $y=1$ in which equation (4.3) can be applied, a scheme to obtain the eigenvalues λ_{n} and $Y(0)$ can be set up. The following procedure for programing the problem will be used:
(I) An eigenvalue λ_{n}^{i} is assumed (i is the number of iteration).
(2) Set $d Y(0) / d y$ at its initial approximate values $d Y(0) /\left.d y\right|_{\mathbb{Z}}$
(3) Fut the computer in IC position and track the value of $d Y(0) / d y$ stored in the Track-Fold system.
(4) Put computer in Operate position (checking program in Appendix 13).
(5) Integrate from $y=0$ to $y=1$ to find the final condition $d y(I) / d y$.
(6) Test $d Y(I) / d y$, if $d Y(I) / d y=0$ (smaller than ε), the search is completed. If not, go to next step.
(7) Adjust the initial value of $d Y / d y$, i.e:
$d Y(0) /\left.d y\right|_{i+1}=d Y(0) /\left.d y\right|_{i}+x: d Y(I) /\left.d y\right|_{i}$ (where k is a correction factor) and return to step (2). If convergence is not obtained in step (6), a correction (+ or -) must be applied to the eigenvalue and the
iterative scheme reentered at step (2).
If the value dY(I)/dy being tested at step (6) becomes negative, the eigenvalue assumed in step (I) is too large. As the mode increases, the successive eigenvalues become closer together and it became increasingly different to preselect the correct value for λ_{n}^{i}. Quite often an estimated value would lead to a solution for an entirely different mode index. The repetitive operation has to be continued until the final boundary condition is satified i.e. $d Y(I) /\left.d y\right|_{i}<\varepsilon$.

It should be pointed out that if initial guesses are used for $d Y(0) / d y$ and $Y(0)$ an iteration is performed on λ_{n}. there is only one curve that satisfies the boundary conditions for $d Y(0) / d y$ and $Y(0)$.

Fadden (24) had suggested one way to choose λ_{n} as follows

$$
\begin{equation*}
\left.\lambda_{n}\right|^{i+1}=\left.\lambda_{n}\right|^{1}+k \frac{d Y_{n}}{\partial y}(0) \tag{4.6}
\end{equation*}
$$

However, the problem he worlred with only involved one unknown parameter λ_{n}.

Since an iterative procedure has been formulated for the problem, the next step is to obtain a computer circuit for implementing this procedure.

4.3 Mamitude and Time scaling of the problem

4.3.1 Magnitude Scaling: On the computer, magnitude scaling is necessary to obtain a meaningful solution since dependent variables are limited to ± 100 volts. Magnitude scale factors are used to relate the voltages from the
computer elements to the dependent variables and its derivatives Cadem and Smith (24) suggest that the output from high gain amplifiers in an analog computer should be maintained near the reference voltage for the computer but should never exceed it. This procedure leads to the best utilization of the computer capacity. To select scale factors for the dependent variable and its functions, the maximum value of these variables must be estimated. The scale factors for the derivatives given in (25) are

$$
k_{\dot{y}}=\frac{100}{\dot{Y}_{\max }}, \quad k_{\dot{y}}=\frac{100}{\dot{Y}_{\max }}, \quad k_{y}=\frac{100}{Y_{\max }}
$$

The maximum values of $\dot{Y}_{\max }, \ddot{Y}_{\max }, Y_{\max }$ are estimated from the digital-analog simulator for different values of h and λ_{n}. (Appendix 6). In practice, the scale factors in this work are selected to be somewhat less than $100 / Y_{\max }, 100 / Y_{\max }$, $100 / \ddot{Y}_{\text {max }}$. These values make the best use of the voltage range available and ensure that the amplifier will never be overloaded in normal operation (refer to Appendix 6).

The original differential equation

$$
\begin{equation*}
\frac{d^{2} Y}{d y^{2}}=\frac{\left(18 y^{2}-20 y+5\right)}{\left(1-5 y+10 y^{2}-6 y^{3}\right)} \frac{d Y}{d y}-\frac{\lambda_{n} Y}{\left(6 y^{2}-4 y+1\right)} \tag{4.1}
\end{equation*}
$$

After magnitude scaling Equation (4.1) becomes :

$$
\frac{1}{10} \frac{d^{2}-10 y}{d y^{2}}=\frac{1}{10} \frac{\left(18 y^{2}-20 y+5\right)}{\left(1-5 y+10 y^{2}-6 y^{3}\right)} \frac{d y 10 y}{d y}-\frac{1}{10} \frac{\lambda_{n}(10 y}{\left(6 y^{2}-4 y+1\right)}
$$

Let [Y] equal $\overline{\mathrm{I}} \mathrm{OY}$.
The variable [Y] is the scaled variable (sometimes called the normalized variable); thus,

$$
\begin{equation*}
\frac{d^{2}[Y)}{d y^{2}}=\frac{\left(18 y^{2}-20 y+5\right)}{\left(1-5 y+10 y^{2}-6 y^{3}\right)} \frac{d[y]}{d y}-\frac{\lambda_{n}[y]}{\left(6 y^{2}-4 y+1\right)} \tag{4.8}
\end{equation*}
$$

The solution in the normalized form is the basis for the analog programing procedure. For instance, if the normalized variable $Y(y)$ as shown on Figure 7 is 1.5 volt, the unscaled variable would have a value of 0.15 . One unit magnitude for the unscaled variable is equivalent to 10 volts on the computer.
4.3.2 rime scaling: In mary problems to assure a feasible operating time, the program must be time-scaled. If the physical problem takes too long to complete, the analog solution must be speeded up. The analog computer integrates with respect to the actual time in seconds. Let τ designate the time measured in computer-seconds to distinguish it from independent variable y. If the problem is not scaled, one second of computer time will be equivalent to one unit of the independent variable. The time scaled factor β (25) is defined as follows:

$$
\beta=\frac{\tau}{y}=\frac{\text { computer time, sec }}{\text { independent problem variable }}
$$

Since the independent variable, y, varies from zero to one, unscaled time would be too short to record accurately in computer voltages. The recorder pen would tend to lag behind the computer signal. Therefore, the problem must be scaled to run at one-tenth the unscaled rate.

$$
\begin{equation*}
\tau=\beta y \tag{4.9}
\end{equation*}
$$

If Beta is greater than unity, the problem is slowed down (25)

$$
\begin{equation*}
y=\frac{I}{\beta} \tau=0.1 \tau \tag{4.10}
\end{equation*}
$$

In this case, after 5 sec . of computer time y has a value of 0.5 .

A general expression for the nth derivative may be used to relate the derivative terms of the unscaled variable y to the computer time.

$$
\begin{equation*}
\frac{d^{n_{f}}}{d \tau^{n}}=\frac{1}{\beta^{n}} \frac{d^{n_{f}}}{d y^{n}} \tag{4.11}
\end{equation*}
$$

Hence, $\frac{d^{2} Y_{n}}{d y^{2}}=\beta^{2} \frac{d^{2} Y_{n}}{d \tau^{2}} ; \frac{d^{2} Y_{n}}{d y^{2}}=100 \frac{d^{2} Y_{n}}{d \tau^{2}}$

$$
\begin{equation*}
\frac{d Y_{n}}{d y}=\beta \frac{d Y_{n}}{d \tau}, \quad \frac{d Y_{n}}{d Y}=10 \frac{d Y}{d \tau} \tag{4.13}
\end{equation*}
$$

When these relations are substituted into the magnitude scaled equation, the following expressions are obtained:

$$
\begin{align*}
& \beta^{2} \frac{d^{2} Y}{d \tau^{2}}=\frac{18(0.01) \tau^{2}-20(0.1 \tau)+5}{(1-0.1 \tau)\left[6(0.01) \tau^{2}-(0.4) \tau+1\right]}(\beta) \frac{d Y}{d \tau} \\
& \quad-\frac{\lambda_{n}}{\left(0.06 \tau^{2}-0.4 \tau+1\right)} \quad(4.14) \\
& \frac{d^{2} Y}{d \tau^{z}}=\frac{1\left(0.18 \tau^{2}-2.0 \tau+5\right)}{10(1-0.1 \tau)\left(1-0.4 \tau+0.06 \tau^{3}\right)} \frac{d Y}{d \tau}-\frac{\left(0.01 \lambda_{n} Y\right)}{\left(0.06 \tau^{2}-0.4 \tau+1\right)} \tag{4.15}
\end{align*}
$$

which may be simplified

$$
\begin{array}{r}
\frac{d^{2} Y}{d \tau^{2}}=0.1 \frac{\left(0.18 \tau^{2}-2.0 \tau 5\right)}{\left(1-0.5 \tau+0.1 \tau^{2}-0.006 \tau^{3}\right)} \\
-(0.01) \frac{\lambda_{n} Y}{\left(0.06 \tau^{2}-0.4 \tau+1\right)} \frac{d Y}{d \tau} \tag{4.16}
\end{array}
$$

Figure 4: Block diagram for the trial and error prowedure on analog computer

1rre 5 : Ite:metre analor comuter setup orr Handios and Earon Nodel

Figure 6: Digital logic setup for Handlos and Baron Model

TABIE 1: STATIC POT SETIINGS AND AMPLIFIER IDENTIFICATION
(I)

Corresponding
Amp. No. Amp. Purpose $\frac{\text { Amp. Output }}{\text { Int. }} \frac{\text { Matchboard Component }}{d Y / d \tau}$
02
03
04
05
06
07

Int.
τ
High gain
10τ
Al
B-I
Inverter -IOT
B-2
Multiplier
τ^{2}
A-5

11
18
$+$
$\left(0.18 \tau^{2}-2.0 \tau+5\right)$
B-3

21
22
Divider
$\frac{10\left(0.18 \tau^{2}-2.0 \tau+5\right)}{\left(0.06 \tau^{2}-0.4 \tau+1\right)}$
B-4
$+($ (high gain)
$10\left(0.06 \tau^{2}-0.4 \tau+1\right)$

23
Divider
$\frac{y}{\left(0.06 \tau^{2}-0.4 \tau+1\right)}$
$B-5,6$

As shown in equation (4.3) a revised expression must be used When y is close to unity. Equation (4.3) may be time and magnitude scaled to obtain this relationship

$$
\begin{equation*}
\frac{d^{2} Y}{d \tau^{2}}=(0.01) \frac{-0.5 \lambda_{n} Y}{\left(0.06 \tau^{2}-0.4 \tau+1\right)} \tag{4.17}
\end{equation*}
$$

When the independent variable y is close to 1.0 the input to comparator 10 changes sign and makes the control switch connect the opposite direction to Equation (4.17).

It should be emphasized that the boundary conditions of the differential equation have to be magnitude and time scaled before they are programmed on the computer. 4.4 The digital Iogic

After the equation has been magnitude and time scaled, it can be readily programmed on the analog patchboard, Figure 5. Each input of a high-gain amplifier or integrator has been clearly marked. The settings for pot 8 of the timegenerator is 0.01 . The values of pots 12,13 and 14 to generate the time function ($0.18 \tau^{2}-2.0 \tau+5$) are $0.18,0.20$, and 0.05 , respectively. Pots 15,16 and 17 used to generate $\left(0.06 \tau^{2}-0.4 \tau+1\right)$ are $0.06,0.40$ and 0.10 , respectively. Pots 19 and 20 to generate (1-0.1T) are 0.10 and 0.01 , respectively. Pots 40 and 41 represent $0.01 \lambda_{n}$ and $0.005 \lambda_{n}$, respectively. The value for $1 / h$ is set on pot 42 . The settings of pot 9 are selected very close to 0.01 as a basis for switching near the end of the integration period where y approaches unity.

The iterative procedures formulated for the problem are performed by components of the digital logic. The symbols
for the elements of the computer program are described in Appendix 1 . The logic signal generated by the comparator is used to control the operating modes for the analog computer as well as selected electronic switches in its program. A track-hold system is developed for use in the iterative procedures. When the computer is placed in Reset mode, a binary logic I signal is applied to the IC control line. Concurrently it sets amplifier 35 in the track-hold system into track mode and puts electronic switch 2 A 2 in the DOWN position. At this moment, amplifier 35 tracks the initial approximation of $d Y(0) / d y$ which is supplied to the system thru switch 2A2. As the computer is turned to the OP (or "REPOP")*, a binary logic 0 signal is applied to the IC control line and amplifier 34 tracks the error $k\left[d Y_{n} / d y\right.$ - $d y(0) / d y]$. Also, the binary logic I signal from the orGate on the logic patchboard makes the electronic switch 2 A 2 close whenever the computer is in the RPPOP mode. Near the end of the programmed operate period, the sign change of the input to the comparator switches the binary logic signal 1 from the OR-Gate into its complementary logic signal 0 . Therefore, the switch $2 A 1$ changes from the DOWN position to the UP position and switches the solution to the equation derived from L'Hospital's Rule. When the computer returns to $I C(R E P O P)$ after one integration period, amplifier WRPPOP is a term used to refer to repetitive operation on the analog computer.

34 holds the last value tracked by ampinfier 35 (k (dy (I)dyln $\left.-d Y(0) /\left.d y\right|_{n}\right]$. The repetitive operation is continued until a value of $d Y(0) / d y$ is obtained for which $d Y(I) / d y=0$. A block diagran of the computer program is shom in Figure 4. The analog and digital logic details are contained in Figures 5 and 6. The timing circuit made up of elements 4 , 8 , 9 and 10 is used to control the reset (IC) and operate period.

Binary logic signal on the control line for different mode control			
Control		MODE	
Ine	Reset	Hold	OP
IC	1	0	0
OP	0	0	1

Table 3: Digital logic for the Track-Hold system

RS	$\cdot \operatorname{REPOP}$		
	Element	OP	RS
RS	A-I (dY/dy)	$O P$	RS
RS	A-2(Y)	OP	RS
H	$2 C 9(34)$	T	H
T	$2 D 9(35)$	H	T
DN	Switch $2 A-2$	$U P$	$U P$

4.5 PACTOLUS simulation

The development of MIDAS (modified integration DAS) from DAS (digital analog simulator) is based on a fourth-order Runge-Kutta Merson integration method with an automatic
stepsize adjustment to make it reliable and accurate. PACTOLUS, developed by Erennen (26) of IBM Research Laboratory, is similar to the FIDAS system and uses a block-oriented interpretive digital-analof simulator with a second-order Runge-Kutta integration method.

Mass transfer in droplets can also be simulated on a digital computer by using the program, PACTOLUS. In addition to the use of such elements as summers, integrators, multiplifiers, etc., a simulated relay switch also is used to switch the problem to the equation derived by the use of L'Hospital's Rule to eliminate the undetermined term when y approaches unity.

A plot of the resulis from the digital computer calculation can be compared with a plot of the results from the analog computer in Figures 11, 12, 13 and 14. The main difference between the programming on the analog computer and PACTOLUS is that the signs of the output from the summers and integrators in PACTOLUS are not changed. The PACTOLUS simulation is presented by a PACTOLUS flow diagram in Appendix 7. The simulation on PACTOLUS follows the arrangement of the circuit of the analog computer program. Prosrams with and without time scaling are set up to check the difference. All the symbols for the flow diagram are shown in Reference 20.

V. RESULTS AND DISCUSSION

5.1 Computer results of eigenvalues and eigenfunctions

Iterative analog computer results of eigenvalues λ_{n} and eigenfunctions $Y_{n}(0)$ are shown in Appendix lo. Values of E_{n} are calculated from the following equation:

$$
\begin{equation*}
B_{n}=\frac{1}{\lambda_{n}} \frac{d Y_{n}(0)}{d y} \quad n=1 \ldots .4 \tag{5.1}
\end{equation*}
$$

For instance, when $h=10.0, \lambda_{2}=18.90$, and $\mathrm{dy}(0) / \mathrm{dy}=-3.04$ Hence, B_{n} is obtained from Equation (5.1) and has the value -0.1608.

The calculated eigenvalues and series constants B_{n} for various values of the modified continuous phase mass transfer coefficient, h, obtained from the different schemes on the analog computer and digital-analog simulator are sumarized in tables 4, 5 and 6. Only the first four eigenvalues and series constants are calculated, in part because, for $n>5$, the additional terms have an almost negligible effect on the concentration profile (except at very short contact times).

The solutions using the different schemes mentioned above must be compared.

The digital-analog simulator print-out shows that the results with or without time and magnitude scaling are very close.

The results plotted from the $X-Y$ recorder on the analog computer are shown on Figures 7 to 10 . The results from the digital-analog simulator are shown on Figures 11 to 15. These figures are based on a constant n. As n increases, the value
of λ_{n} increase rapidly.
The results are also expressed in terms of the fraction of the solute extracted from the droplet, E_{m}, as a function of dimensionless time, bt. See Figures 15,16 , and 17.

Upon comparison of the first four eigenvalues λ_{1}, λ_{2}, λ_{3} and λ_{4} for different values of h used by Wellek-Skelland (9), (except when $h=40$), it is apparent that the three eigenvalues λ_{2}, λ_{3} and λ_{4} increase slowly for the low continuous phase resistance, h, especially for h<0.1; but the first eigenvalue increases rapidly with h. When h is larger than 0.I, all four eigenvalues increase rapidly as a function of h. After reaching 10 , the first three eigenvalues λ_{1}, λ_{2} and λ_{3} remain approximately constant or increase very slowly. For very high continuous phase resistances, all the eigenvalues seem to remain nearly constant. This is consistent with the physical situation because as the modified continuous phase resistance h increases, the resistance to mass transfer in the continuous phase becomes less. As h appeaches infinite, $\left(k_{c} \rightarrow \infty\right)$, all the resistance to mass transfer will be in the droplet.

The results of this work using the iterative analog computer have been compared with Patel's results (30) using the Punge-Kutta and Hamming's numerical approach to solve this problem; the four eigenvalues calculated by the two methods on iterative analog computer and digital computer, respectively, 'agree with each other within about 5\%. But the results obtained for the higher eigenvalues λ_{3}, λ_{4} on a conventional
analog computer differ by lo\% with Patel's results. Rogers and Connolly (29) state that this difference arises, in fact, because at low eigenvalues which correspond to the lowfrequency normal mode, the results can be found quite accurately since it depends simply on potentiometer settings. But the higher frequency normal-modes require high gain in the computer circuit, which causes less satisfactory operation. Digital-analog simulator results coincide with results of Patel's numerical solution within about 3%.

The possible inaccurate part of this work is that for very small values of h, the noise begins to affect the low voltage of the initial approximation of $d Y(0) / d y$. Corcos, Howe, Rauch and Sellars (23) indicate that the values of the recorded eigenfunctions never have the same degree of accuracy as the eigenvalues. Because of the possible inaccurate values of the eigenfunctions $Y(0)$, the coefficient B_{n} calculated may also be slightly inaccurate.

The coefficient B_{I} is positive for all values of h. All values of B_{2} are negative. B_{3} is negative for $h>10$ and positive for h less than 10. The values of B_{4} are always negative.
5.2 Solution in terms of fraction of solute extracted

The complete solution for the fraction extracted can be computed from the following relation:

$$
\begin{equation*}
E_{m}=1-2 \sum_{n=1}^{\infty} B_{n}^{2} \exp \left(-b \lambda_{n} t\right) \tag{5.2}
\end{equation*}
$$

The values B_{n} and λ_{n} obtained by three different approaches

Table 4: Eigenvalues and Coefficients for Handlos and Baron Model (by trial and error on an iterative analog computer)

h	λ_{I}	λ_{2}	λ_{3}	λ_{4}	B1	B_{2}	B_{3}	B_{4}
0.0010	0.0018	6.630	31.20	354.0	0.4130	-0.799(10)-4	$0.154(10)-4$	$-0.762(10)^{-6}$
0.0020	0.0039	6.600	31.20	353.0	0.5436	-0.162(10)-3	$0.250(10)^{-4}$	-0.161(10)-5
0.0100	0.0185	6.790	31.20	353.0	0.4214	-0.788(10)-3	$0.146(10)^{-3}$	-0.850(10)-5
0.0500	0.0950	6.810	31.20	355.0	0.4895	-0.418(10)-2	$0.695(10)^{-3}$	-0.415(10)-4
0.1000	0.2000	6.900	31.20	352.0	0.4375	-0.884(10) ${ }^{-2}$	$0.140(10)^{-2}$	-0.852(10)-4
0.5000	0.7900	8.010	32.90	354.0	0.3987	-0.399(10)-1	$0.699(10)^{-2}$	-0.452(10)-3
1.0000	1.2800	9.300	36.20	355.0	0.3477	-0.731(10)-1	$0.134(10)-1$	-0.794(10)-3
2.5000	1.9900	12.40	35.60	365.0	0.2804	-0.1153	$0.351(10)^{-1}$	-0.194(10)-2
5.0000	2.3600	15.60	41.40	369.0	0.2542	-0.1288	$0.492(10)^{-1}$	-0.376(1.0)-2
7.0000	2.5100	17.10	45.30	373.0	0.2789	-0.1316	$0.476(10)^{-1}$	-0.517(10)-2
10.000	2.5900	18.90	87.00	376.0	0.2317	-0.1608	-0.212(10)-1	-0.697(10)-2
25.000	2.7300	18.90	90.90	393.0	0.1905	-0.1217	-0.429(10)-1	-0.119(10)-1
30.000	2.7500	18.90	92.00	396.0	0.1964	-0.1333	-0.394(10) ${ }^{-1}$	-0.128(10)-1
40.000	2.7700	19.00	96.90	402.0	0.2076	-0.1247	-0.388(10) ${ }^{-1}$	-0.139(10) ${ }^{-1}$
50.000	2.7800	19.10	95.10	404.0	0.2032	-0.1238	$-0.394(10)^{-1}$	$-0.144(10)^{-1}$
70.000	2.7850*	19.15*	96.60	411.0	0.2011	-0.1227	-0.375(10)-1	$-0.143(10)^{-1}$
100.00	2.8000	19.30	96.80	415.8	0.2004	-0.1166	$-0.386(10)^{-1}$	-0.145(10)-1
250.00	2.8200	20.20	97.10	416.8	0.1993	-0.1337	$-0.395(10)^{-1}$	-0.145(10)-1
500.00	2.8200	20.80	97.20	417.0	0.1986	-0.1154	$-0.388(10)^{-1}$	-0.246(10)-1
700.00	2.8200	20.90	97.80	418.5	0.2021	-0.1077	-0.387(10) ${ }^{-1}$	-0.145(10)-1
1000.0	2.8200	22.30	98.00	418.5	0.2021	-0.1108	-0.384(10) ${ }^{-1}$	$-0.144(10)^{-1}$
	2.8200	22.40	98.10	419.0	0.2021	-0.982(10)-1	-0.387(10)-1	-0.145(10)-2

* Approximate values due to the 3-digits of the null dial on the computer.

Table: 5: Eigenvalues and Coefficients for Handlos and Baron Model (by trial and error on a conventional analog computer)

h	λ_{I}	λ_{2}	λ_{3}	λ_{4}	B_{1}	B_{2}	B_{3}	B_{4}
0.0010	0.0018	6.30	35.40	394.0	0.522	-0.870(10)-4	$0.114(10)^{-4}$	-0.731(10) ${ }^{-6}$
0.0020	0.0036	6.35	34.90	394.0	0.519	-0.173(10)-3	$0.227(10)^{-4}$	-0.146(10)-5
0.0100	0.0200	6.40	35.30	394.0	0.472	-0.867(10)-3	$0.111(10)^{-3}$	-0.733(10)-5
0.0500	0.0963	6.40	35.10	394.0	0.493	-0.462(10)-2	$0.527(10)-3$	-0.367(10)-4
0.1000	0.1870	6.45	35.20	394.0	0.476	-0.898(10) ${ }^{-2}$	$0.107(10)^{-2}$	-0.711(10)-4
0.5000	0.7950	7.45	35.00	394.5	0.347	-0.416(10) ${ }^{-1}$	$0.536(10)^{-2}$	-0.321(10) ${ }^{-3}$
1.0000	1.2900	8.50	35.70	395.0	0.287	-0.800(10)-1	$0.108(10)^{-1}$	-0.696(10)-3
2.5000	1.9850	12.0	37.60	397.0	0.239	-0.1500	$0.239(10)^{-1}$	-0.166(10)-2
5.0000	2.3600	15.5	41.60	403.0	0.201	-0.1677	$0.420(10)^{-1}$	-0.333(10)-2
7.0000	2.4800	17.0	43.70	404.0	0.215	-0.1610	$0.494(10)^{-7}$	-0.460(10) ${ }^{-2}$
10.000	2.5600	17.4	87.50	409.0	0.180	-0.1736	-0.263(10)-1	-0.648(10)-2
25.000	2.7100	19.3	93.30	420.5	0.184	-0.1580	-0.356(10) ${ }^{-1}$	-0.982(10)-2
30.000	2.7300	19.5	94.90	425.0	0.186	-0.1477	-0.360(10)-1	-0.107(10)-1
40.000	2.7500	19.8	96.70	428.0	0.189	-0.1495	-0.372(10)-1	-0.114(10)-1
50.000	2.7600	19.8	97.50	432.0	0.190	-0.1461	-0.369(10) ${ }^{-1}$	-0.112(10)-1
70.000	2.7750	20.1	97.60	439.0	0.189	-0.1393	-0.365(10)-1	-0.121(10)-1
100.00	2.8100	20.2	101.0	451.0	0.187	-0.1348	-0.322(10) ${ }^{-1}$	-0.132(10) ${ }^{-1}$
250.00	2.8250	20.6	101.5	451.0	0.188	-0.1341	-0.327(10) ${ }^{-1}$	-0.139(10) ${ }^{-1}$
500.00	2.8250	20.7	101.5	451.0	0.198	-0.1342	-0.337(10) ${ }^{-1}$	-0.139(10) ${ }^{-1}$
700.00	2.8450	20.7	101.5	452.0	0.204	-0.1343	$-0.327(10)^{-1}$	-0.136(10) ${ }^{-1}$
1000.0	2.8500	20.8	102.0	452.0	0.205	-0.1347	-0.329(10) ${ }^{-1}$	-0.136(10)-1
	2.8600	20.8	102.0	452.0	0.206	-0.1356	-0.332(10)-1	-0.138(10) ${ }^{-1}$

Table 6: Eigenvalues and Coefficients for Handlcs and Baron Model (by trial and error on a digital-analog simulator)

h	λ_{1}	λ_{2}	λ_{3}	λ_{4}	B_{1}	B_{2}	B_{3}	B_{4}
0.0010	0.0020	6.80	31.30	363.0	0.500	-0.822(10) ${ }^{-4}$	$0.153(10)^{-4}$	-0.826(10) ${ }^{-6}$
0.0020	0.0040	6.80	31.30	363.0	0.500	-0.179(10) ${ }^{-3}$	$0.306(10)^{-4}$	-0.165(10)-5
0.0100	0.0180	6.86	31.30	363.6	0.505	-0.893(10)-3	$0.153(10)^{-3}$	-0.819(10)-5
0.0500	0.0940	6.92	31.40	364.2	0.506	-0.446(10) ${ }^{-2}$	$0.764(10)^{-3}$	-0.409(10)-4
0.1000	0.1860	7.02	31.40	364.4	0.491	-0.891(10) ${ }^{-2}$	$0.153(10)^{-2}$	-0.816(10) ${ }^{-4}$
0.5000	0.7800	7.90	32.20	365.6	0.423	-0.421(10) ${ }^{-1}$	$0.757(10)^{-2}$	-0.407(10)-3
1.0000	1.2690	9.04	33.12	365.3	0.372	-0.753(10)-1	$0.147(10)^{-1}$	-0.816(10)-2
2.5000	1.9600	12.06	35.80	367.0	0.307	-0.12380	$0.545(10)^{-1}$	-0.202(10)-2
5.0000	2.3000	14.96	39.20	372.6	0.278	-0.13840	$0.524(10)^{-1}$	-0.392(10)-2
7.0000	2.4600	16.30	41.60	376.4	0.264	-0.13520	$0.593(10)^{-1}$	-0.531(10) ${ }^{-2}$
10.000	2.5600	17.40	83.90	380.0	0.256	-0.13330	-0.142(10)-1	-0.714(10)-2
25.000	2.7000	19.22	90.20	394.6	0.244	-0.12110	-0.415(10)-1	-0.120(10)-1
30.000	2.7200	19.35	91.40	399.0	0.243	-0.11990	-0.414(10) ${ }^{-1}$	-0.128(10) ${ }^{-1}$
50.000	2.7600	19.80	93.40	406.0	0.239	-0.11700	-0.413(10) ${ }^{-1}$	-0.138(10)-1
70.000	2.7700	20.20	94.60	410.0	0.238	-0.11410	-0.408(10) ${ }^{-1}$	-0.141(10) ${ }^{-1}$
100.00	2.7800	20.36	96.30	418.4	0.238	-0.11200	-0.399(10) ${ }^{-1}$	-0.141(10) ${ }^{-1}$
250.00	2.7900	20.38	96.40	418.5	0.238	-0.11190	-0.402(10) ${ }^{-1}$	-0.143(10) ${ }^{-1}$
500.00	2.8000	20.40	96.64	418.6	0.236	-0.11120	-0.401(10) ${ }^{-1}$	-0.143(10) ${ }^{-1}$
700.00	2.8060	20.42	97.70	420.0	0.235	-0.11120	-0.401(10) ${ }^{-1}$	-0.142(10) ${ }^{-1}$
1000.0	2.8070	20.42	96.70	420.0	0.235	-0.11120	-0.400(10) ${ }^{-1}$	-0.142(10) ${ }^{-1}$
	2.8100	20.50	96.92	420.4	0.235	-0.11120	-0.399(10) ${ }^{-1}$	-0.142(10) ${ }^{-1}$

Figure 7: Solution of Handlos and Baron Model on an iterative analog computer

Figure 8: Solution of Handlos and Baron Model on an iterative analog computer

Figure 9: Solution of Handlos and Baron Model on an iterative analog computer

Figure 10: Solution of Handlos and Baron Model on an iterative analog computer

Figure 11: Solution of Handlos and Baron Model on digital-analog simulator

Figure 12: Solution of Handios and Baron Model on digital-analog simulator

Figure 13: Solution of Handlos and Baron Model on digital-analog simulator

Figure 14: Solution of Handios and Baron Model on digital-analog simulator

mentioned before have been substituted into the above equation to obtain the fraction extracted predicted by these approaches. It can be observed from Figures 14, 15 and 16 that for a particular value of bt the fraction extracted increases as the modified continuous phase resistance h increases. This is quite true because as h becomes larger ($h>0.5$) the fraction extracted approach unity at a lower value of bt. This is consistent with expectations because as h gets larger, k_{c} gets larger and therefore, the resistance in the continuous phase decreases. For low value of bt, the fraction extracted remains approximately. constant at non-zero values. As bt becomes larger, the fraction extracted increases and approaches unity asymptotically, which is expected physically.

Refer to appendix * , the calculation of the deviation between $E_{m}(n=4)$ and $E_{m}(n=3)$ indicates that the solution for $n=4$ is approximated satisfactorily. For low value of h, B_{n} and λ_{n} are small enough that only first term is dominant, especially for high values of bt. For high values of h, at low value of bt, small deviations of the order of about 0.05% exists between $E_{m}(n=4)$ and $E_{m}(n=3)$.

A similar family of curves were obtained in Patel's work using numerical methods with the digital computer. Comparing the results presented in Appendix 8, it is observed that the results of the iterative analog comprter and digital-analog simulator agree best with solution obtained by either the Runge-Kutta or Famming's method. The solution obtained using * supplementary appendix
the conventional analog computer deviates slightly from the iterative analog computer results.

When bt is zero, E_{m} should be zero; thus the following relation should exist at time equal to zero:

$$
\begin{equation*}
I=2 \sum_{n}^{\infty} I_{n}^{2} \tag{5.3}
\end{equation*}
$$

But in this worls, the results apparently do not satisfy the above relation. For larger dimensionless time, (bt), the values of E_{m} do approach unity as bt approaches infinity, which is the expected physical behavior.

It is very important to realize that in the trial and error procedures in this work, $d Y(0) / d y$, one of the two parameters, only affects the curves of $d Y / d y$ versus y in magnitude (amplitude) and another parameter beins searched decides the position of the zero-crossing position in order to meet the final condition. Two kinds of recording equipments, cathode-ray oscilloscope and a servo-meter driven $X-Y$ recorder have been used in this work. The oscilloscope has the advantage that problems with an end point to meet can be solved more quickly, especially in this work, an approximate value of the two parameters λ_{n} and $d Y(0) / d y$ are obtained on the oscilloscope. However, using the oscilloscope it is also somewhat difficult to obtain the same degree of accuracy as the slower recording device (21).

Frequency response was not critical in the problem situations generated by the iterative analog computer. The question of precision arises for the dividers which are the
least exact components used in the simulation. Whenever it was impossible to prevent the use of low values of voltages or very small pot settings, electrical noise, both internal and external, could affect the solution. Iow voltage outputs from the dividers show them to be operating at the least precise section of their range. 5.3 Comparison of results from analog computer with Patel's and Wellek-Skelland's results

Compare the eigenvalues obtained by Wellek-Skelland (9), Fatel (28) and this work, the first eigenvalue for the three works are generally in agreement within $\pm 5 \%$. But the deviation becomes larger in the third and fourth eigenvalues λ_{3}, λ_{4}. Since only the first eigenvalue is important at large contact time, the results of E_{m} obtained by the three works agree with each other very well at large contact time.

At short contact times, Patel obtained a numerical solution by a finite difference method which can be applied very satisfactorily.

Although the results obtained by Wellek-Skelland are consistent with the physical situation which at bt equals to zero, $E_{\text {m }}$ equals to zero, the solution is strictly valid for large contact times.

The values of E_{m} calculated by the various method are presented below for the specific case of $h=0.5$, and $b t=1.0$.

$$
\begin{array}{ll}
E_{m}=0.836 & \text { (digital-analog simulator } \\
E_{m}=0.891 & \text { (conventional analog computer) } \\
E_{m}=0.856 & \text { (iterative analog computer) }
\end{array}
$$

$$
\begin{array}{ll}
E_{m}=0.834 & \text { (Runge-Kutta method by Patel) } \\
E_{m}=0.832 & \text { (Hammingis method by Patel) } \\
E_{m}=0.663 & \text { (Finite difference method by Patel) } \\
E_{m}=0.750 & \text { (Wellek-Skelland) }
\end{array}
$$

It can be seen that the three results obtained in this work are in agreement with each other within about 5%. The value of E_{m} obtained by finite difference method of Patel and by Wellek-Skelland are lower than the values of E_{m} in this work. For larger values of h, all the curves of E_{m} versus bt tend to coincide.

When bt is close to zero, the deviation becomes very large from the actual physical situation which is bt equal zero, E_{m} equals zero.

One particular behavior of the family of curves obtained in this work which is similar to the behavior of the family of curves (E_{m} versus bt) obtained by Elizinga and Banchero (12). The similarity is the intersection of various curves. 5.4 Application of the results

Two different single droplets systems are chosen to describe the application of the analytical series solution of the model. The first system has the most of the resistance to mass transfer in the droplet phase. In the second system, resistance is about equally distributed between both phases.

The experimental data for the following comparisons are provided by Handlos and Baron (I). System (I)
solute: acetic acid
dispersed phase: benzene
continuous phase: water
droplet velocity: $11.3 \mathrm{~cm} / \mathrm{sec}$
droplet diameter: 0.503 cm
Reynolds number $=597$
Using the Garner and Tayeban correlation to calculate the continuous phase mass transfer coefficient

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{c}}=0.01565 \mathrm{~cm} / \mathrm{sec} \\
& \mathrm{~h}=50.29
\end{aligned}
$$

dimensionless time bt $=0.952$
The following values for the over-all mass transfer coefficient are obtained for the different methods:

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{d}}=0.0409 & \mathrm{~cm} / \mathrm{sec} \\
\mathrm{~K}_{\mathrm{d}}=0.0241 & \text { (Runge-Kutta method by Patel) } \\
\mathrm{K}_{\mathrm{d}}=0.0318 & \mathrm{~cm} / \mathrm{sec} \\
\mathrm{~K}_{\mathrm{d}}=0.0470 & \text { (Wellek-Skelland) } \\
\mathrm{K}_{\mathrm{d}}=0.0409 & \text { (Finite difference method by Patel) } \\
\mathrm{K}_{\mathrm{d}}=0.0457 & \mathrm{~cm} / \mathrm{sec} \\
\text { (conventional analog computer) } & \text { (digital-analog simulator) } \\
\mathrm{K}_{\mathrm{d}}=0.0258 & \mathrm{~cm} / \mathrm{sec} \\
\mathrm{~K}_{\mathrm{d}}=0.0211 & \text { (iterative analog computer) } \\
\text { (Handlos and Baron, } \mathrm{h} \rightarrow \infty \text {) } \\
\text { (sec } & \text { (experimental) }
\end{array}
$$

The results show that the Wellek-Skelland and Handlos and Baron calculations and the experimental value agree fairly well with each other. (It should be emphasized that the Handlos and Baron calculation is based on the continuous phase resistance being negligible). The values of K_{d} obtained by Patel using the Runge-Kutta and Haming's method agree with this work satisfactorily.

System (II)
solute: Acetone
Dispersed phase: benzene
Continuous phase: water
Droplet diameter: 0.481 cm
rising (falling) velocity: $10.6 \mathrm{~cm} / \mathrm{sec}$
Reynolds number $=535$
Using the Garner and Tayeban correlation the continuous phase.
mass transfer coefficient is

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{c}}=0.0134 \mathrm{~cm} / \mathrm{sec} \\
& \mathrm{~h}=1.133
\end{aligned}
$$

dimensionless time $=\mathrm{bt}=0.995$
The followif values of the over-all mass transfer coefficient are obtained for the different methods:
$\begin{array}{ll}\mathrm{K}_{\mathrm{d}}=0.00845 \mathrm{~cm} / \mathrm{sec} & \text { (Runge-Kutta method by Patel) } \\ \mathrm{K}_{\mathrm{d}}=0.00880 \mathrm{~cm} / \mathrm{sec} & \text { (Nellek-Sielland) } \\ \mathrm{K}_{\mathrm{d}}=0.00655 \mathrm{~cm} / \mathrm{sec} & \text { (Finite difference method by Patel) } \\ \mathrm{K}_{\mathrm{d}}=0.00846 \mathrm{~cm} / \mathrm{sec} & \text { (digital-analog simulator) } \\ \mathrm{K}_{\mathrm{d}}=0.00915 \mathrm{~cm} / \mathrm{sec} & \text { (conventional analog computer) } \\ \mathrm{K}_{\mathrm{d}}=0.00870 \mathrm{~cm} / \mathrm{sec} & \text { (iterative analog computer) } \\ \mathrm{K}_{\mathrm{d}}=0.01090 \mathrm{~cm} / \mathrm{sec} & \text { (Handios and Baron } \mathrm{h} \rightarrow \infty) \\ \mathrm{K}_{\mathrm{d}}=0.01260 \mathrm{~cm} / \mathrm{sec} & \text { (experimental) }\end{array}$
From the above results, it can be seen that the value calculated by Handios and Baron ($h \rightarrow \infty$) and the experimental value of K_{d} are higher than the other computer solutions. For this case, the values of K_{d} obtained in this work and by the numerical methods (Runge-Kutta, Haming's) by Patel agree
with each other satisfactorily.
For short contact time(such as bt=0.1), the results obtained by the Runge-Kutta method and analog computer method differ considerably from the results by the method of finite difference. However, the results using finite difference method agree better with the physical situation for low contact time. But the results of this work as Well as the results obtained by Patel using the Funge-Kutta and/or Hamming's method can be applied for large contact times(especially for bt>0.5).

VI: SUMMARY AND CONCLUSIONS

The aim of this study was to successfully simulate on an analog computer the modification of the Handlos and Baron Model for mass transfer to droplets with turbulent internal circulation and a finite continuous phase resistance. Apparently, no solution to a similar type of mathematical problem (i.e. and eigenvalue problem with split boundary condition) exists in the Iiterature (37) which has been simulated on an iterative analog computer. The two-variable Iteration which is used constitutes a special feature of this work.

The project was divided into three schemes:
(1) using a conventional analog computer to determine both the parameters λ_{n} and $d Y(0) / d y$ and ultimately B_{n}. The trial and error procedure is performed manually on the computer. (2) using the iterative analog computer to perform the iterative procedures more accurately and rapidly. (3) using a digital-analog simulator to caloulate the eigenvalues λ_{n} and $d Y(0) / d y$.

The results obtained by these three schemes are then compared with results in the Iiterature using different approaches.

The results show that for long contact time, the different schemes used in this work satisfactorily agree with the previous rork done by Patel (28). For short contact time the finite difference method of Patel is recommended.

Upon comparison of the results obtained in this thesis with several previous approaches in the literature, the following conclusions can be made:
(I) The low eigenvalues (λ_{1} and λ_{2}) obtained in all the schemes in this work agree with each other within 3%. For the higher eigenvalues (λ_{3} and λ_{4}) the results from the conventional analog computer show a 5% to 10% deviation from the digital-analog simulator.
(2) The values of the coefficients B_{n} calculated by the three schemes in this work differ by no more than 10% from the results of each method. The results obtained using the analog computer with digital logic are closer to the values obtained by the digital-analog simulator.
(3) The eigenvalues λ_{n} obtained by Patel using numerical methods (Runge-Kutta and Hamming's) and by Wellek-Skelland using the Rayleigh-Ritz variational technique and this work are in agreement within 5\%. The higher eigenvalues differ considerably. But the results of this work are closer to the Runge-Kutta results obtained using the digital computer than the finite difference method using the digital computer.
(4) For long dimensionless times (bt>50), all the curves of E_{m} versus bt tend to coincide with each other; that is, they approach the results for h equal to infinity for the Handlos and Baron Model ($\mathrm{k}_{\mathrm{c}} \rightarrow \infty$).
(5) The families of curves E_{m} versus bt (with varying h values) obtained in this work are similar in nature to those results obtained from the Runge-Kutta and Hamming's method by

Patel, the Grober (stagnant drop) result, and the Elzinga and Banchero (laminar circulation) results. That is, as bt approaches zero, (or for short dimensionless time, bt), E_{m} (fraction extracted) does not approach zero. This is not consistent with the physical situation.
(6) The overall mass transfer coefficients, $K_{\text {dr }}$, obtained by using the Punge-Kutta or Famming's method and the results in this work agree with each other within 10%.
(7) For the experimental system chosen for the calculation of $K_{d r}$ (with most of the resistance to mass transfer in the droplet), Kar calculated by using Wellek and skelland method differs considerably from the values of $K_{d r}$ calculated by using the Runge-Kutta method, Hamming's method and the analog computation. But the Wellek and skelland method predicts $K_{d r}$ values which are closer to the experimental values. The system with resistance to mass transfer in both phases shows that all predicted values of $K_{d r}$ (using all the methods) are in agreement with each other, although they are less than the experimental value by about 30%.
(8) For very short contact times (bt<0.1), the value of $K_{d r}$ calculated by the finite difference method of Patel and by the results of this work differ by as much as 40%. But the results from the Runge-Kutta and Hamming's method by Patel agree with this work very satisfactorily.
(9) Further study in this work is recommended to use the numerical approach to simulate the mathematical model on the hybrid computer and to transform the partial differential
equation into a difference equation using a technique to avoid truncation errors. The hybrid computer has the advantage of a larger storage capacity for digital values than than that of the iterative analog computer. This advantage is on the order of 1000 to 1 so that entire functions may be stored numerically.

VII. IVOMENCIATURE

$A_{n} \quad=$ Coefficients in series solution
$a \quad=$ radius of droplet (cm)
$B_{n} \quad=$ Coefficients in series solution, dimensionless

$$
\mathrm{b} \quad=\frac{\mathrm{u}}{I 28\left(I \mu_{\mathrm{d}} / \mu_{\mathrm{c}}\right) \mathrm{d}_{\mathrm{e}}}
$$

$$
C \& c=\text { Concentration of solute in dispersed phase. } \frac{g \text {-mole }}{\text { Iiter }}
$$

$$
C_{0}=\text { initial concentration (g-mole/liter) }
$$

$$
D \quad=\text { Molecular diffusivity }\left(\mathrm{cm}^{2} / \mathrm{sec}\right)
$$

$d_{e}=$ droplets diameter (cm)
$E \quad=$ Eddy diffusivity
$E_{m}=$ Fraction Extracted, $\frac{C_{o}-C}{C_{0}}$
$e_{0}=$ output voltage
$e_{i}=$ input voltage
$g \quad=$ Acceleration due to gravitation ($\mathrm{cm} / \mathrm{sec}^{2}$)
$h=$ Modified continuous phase resistance, $\frac{512 \mathrm{kc}\left(I+\mu_{d} / \mu_{c}\right)}{\mathrm{mu}}$
$h_{0}=$ heat transfer coefficients (cal $\mathrm{cm}^{-2} \mathrm{sec}^{-1} \mathrm{o}_{\mathrm{K}^{-1}}$)
$K_{d r}=$ Overall coefficients of mass transfer in terms of disperse phase concentration during droplet free rising (or falling) period. ($\mathrm{cm} / \mathrm{sec}$)
$K \quad=$ Thermalconductivity (cal $\mathrm{sec}^{-1} \mathrm{~cm}^{-1} \circ_{\mathrm{K}^{-1}}$)
$k=$ correction factor
$k_{Y} \quad=$ magnitude scaled factor
$k_{c}, k_{d}=$ individual mass transfer coefficient (continuous and dispersed phase), respectively (cm/sec)

```
    M(t) = mass of solute in droplet phase (drop phase) at time t
    M(0) = mass of solute in droplet phase at t=0
    mu = distribution coefficient, dispersed phase concentra-
        tion/continuous phase concentration at equilibrium
    n = an integer number (number of modes)
    (N}\mp@subsup{N}{Re}{})=\mathrm{ Reynolds number }\frac{\mp@subsup{d}{e}{u\rho}c}{\mp@subsup{\mu}{c}{}
```



```
    N}\mp@subsup{\textrm{N}}{\textrm{Nu}}{}=\mathrm{ Nusselt number, 隹
    NP}=\mathrm{ Peclet number, }\frac{\mp@subsup{\textrm{d}}{\textrm{e}}{}\textrm{u}}{\textrm{D}
    N}\mp@subsup{N}{Sh}{}=\mathrm{ Sharewood number, }\frac{\mp@subsup{k}{c}{}\mp@subsup{d}{e}{}}{D
    I}=\frac{4P}{\mp@subsup{d}{e}{}}\mathrm{ , torus radius
    t = time during free fall (or rise) period (sec.)
    bt = dimensionaless time
    \overline { E } = \text { average circulation time droplet (sec)}
    U, u = droplet free fall (or rise) velocity (cm/sec)
    \overline{z}}==\mathrm{ average displacement of fluid
    n = eigenvalues
    \mp@subsup{\mu}{d}{},\mp@subsup{\mu}{c}{}= viscosity of dispersed phase and continuous phase
        respectively (centipoise)
\rho}\mp@subsup{d}{}{\prime},\mp@subsup{\rho}{c}{}=\mathrm{ density of dispersed phase and continuous phase
        respectively (g/cm}\mp@subsup{}{}{3}
\rho = torus radius
\tau = Scaled time (computer time) (sec)
\beta = Scaled factor for time scale
```

ξ	$=$ radial direction of Hadamard type circulation
\dot{Y}	$=$ Magnitude scaled variable
Y	$=$ Problem variable

VIII: BIBLIOGRAPHY

(I) Handlos, A. E. and T. Baron, A.I.Ch.E.J. 3, 127 (1957).
(2) Mickley, H. S., T. K. Sherwood and C. E. Reed, "Applied - Mathematics in Chemical Engineering, "MoGraw-Fill Book Co., New York (1957), 2nd Edition.
(3) Operation Manual for AD-40 analog computer, Applied Dynamics, Ann Arbor, Michigan.
(4) Skelland, A. H. P. and A. R. H. Cornish, Can. J. Ch. E., 43, 302, Dec. (1965).
(5) Johnson, A. I. and A. E. Hamielec, A.I.Ch.E.J., 6, 145 (1960).
(6) Griffith, R. M., Chem. Engr: Sci., 12, 198 (1960).
(7) Clney, R. B. and R. S. Miller, Modern Chemical Eng., I, 89, Acrivos, A., P. Reinhold, eds., New York (1963).
(8) Linton, M. and K. L. Sutherland, Chem. Eng. Sci., 12, 214 (1960).
(9) Skelland, A. H. P. and R. M. Wellek, A.I.Ch.E.J., 2, 73, (1963).
(10) Treybal, R. G. "Liquid Extraction", 2, 186, McGraw-Hill, New York (1963).
(II) Wellek, R. M. and A. H. P. Skelland, A.I.Ch.E.J., Il, 577 (1965).
(12) Elizinga, E. R. and J. T. Eanchero, Chem. Engr. Symp. Ser., No. 29, 55, Chicago.
(13) Calderbank, P. H. and I. J. O. Korchinski, Chem. Engr. Sci., 6, 65 (1965).
(14) Hadamard, J., Comp. Rend., 152, 1735 (1911).
(15) Grober, H. Z., Ver. Dent. Ing., 69, 705 (1925).
(16) Newman, A. B., Trans. Am. Inst. Chem. Engr., 27, 203 (1931).
(17) Kronig R. and J. E. Brink, Applied Sci. Res., A-2, 142.
(18) Garner, F. H. and A. H. R. Skelland, Ind. Engr. Chem. 46, 1255 (1945).
(19) Mellek, R. M., A. K. Agrawal and A. F. P. Skelland, A.I.Ch.E.J., 11, 854 (1966).
(20) Frossling, N. Gerland Beitr. Geophysik, 52, 170 (1938).
(21) G. W. Corcus, R. M. Howe, L. I. Ranch, and J. R. Sellars, Project Cyclone, Synp (II), Part 2, (I952).
(22) Fadden, E. J., 55th National Meeting, A.I.Ch.E.
(23) Olmsted, J. M. H., "Advanced Calculus", 95, Appleton-Century-Crofts, Inc., New York (1959).
(24) Cadem, T. W. and T. G. Smith, Series in Hudrocarbon Processing begins from Feb., 47, No. 2 (1968).
(25) Coughhanour, D. R. and L. B. Koppel, "Process Systems Analysis and Control", 420 (1965).
(26) Chao, H. T., M. S. Thesis, Univ. of Missouri-Rolla (1968).
(27) Alcorn, H. R. "Instruction for programming, PACPOLUS", Computer Science Center, Univ. of Missouri-Rolla (1966).
(28) Patel, J. M., M. S. Thesis, Univ. of Missouri-Rolla (1966).
(29) Rogers, A. E. and T. W. Connolly, "Analoz Computation in Engineering Design", McGraw-Hill Book Co., Inc. (1960).
(30) Tamiya Nomura and R. M. Dieters, II, No. 2, Simulation, Aug. (I968).
(31) R. B. Bird, W. E. Stewart and E. N. Lightfoot Mransport Phenomena", John Niley \& Sons, Inc., New York, 356.
(32) Pasternak, I. S. and Gauvin, W. H., Can. J. Chem. Eng. 38, 35 (1960).
(33) Vermeulen, Theodore, Ind. Eng. Chem. 45, 1664 (1953).
(34) Higbie, R., Trans. Am. Inst. Chem. Engr. 31, 365 (1935).
(35) Boussinesq, J., J. de Math. Pures et appliques, ser 6, I. 285 (1905).
(36) Garmer, F. H., Tayeban M., Anales de Ia Real Sociedad Espanola de Fisica y Quimica, serie B-Quimica Tomo LVI (B) 479 (1960).
(37) Simulation Survey and Literature Review edited by Lawrence W. Ross, "Simulation"

APPENDICES

APPENDIX (1)

Analog and hybrid symbols for the elements used in the computer circuit. (The symbols are published in December, 1967, Simulation issue by Simulation Council, Inc.).

SYMBOLS
FUNCTION
(I) Integrator

a is the initial condition for the integration
(2) Summer

$$
x=-(10 a+b)
$$

(3) Potentiometer

$$
x=0.1 a
$$

(4) Multiplier = some reference positive or negative $=\begin{aligned} & \text { some } \\ & \text { voltageference }\end{aligned}$ positive or negative
output possible

$$
x=\frac{a b}{a}
$$

Two-terminal pot k value is less than 1 and always positive
(5) Divider

(6) Comparator

With binary output $\quad U=1(a+b)>0$
$U=1 \quad(a+b)<0$

(7) Track-hold

Track when IC Hold when in hold
(8) High Gain amplifier

(9) Analog/digital switch $\mathrm{Ua}=0 \quad(\mathrm{U}=0)$

The denominator has to be always positive

The symbol for a relay comparator can be made by combining either of these symbols with that of a relay

When used in this way the size of the integrating capacitor is important. The quantity being track and held is $-(a+b+c)$

The curve back indicates that the feedback resistor has been removed.

ON when binary signal U is digital "one"

(10) Logic gate

(II) Indicator

(12) Trunk

(13) Track-hold integrator as inverter
$x=-a$

(14) Signal flow Analog

Hybrid

Connection

No connection

APPENDIX (2)

The partial differential equation to describe the Model With the relevant boundary conditions:

$$
\begin{equation*}
\frac{\partial c}{\partial \tau}=\frac{b}{1-y} \frac{\partial}{\partial y} \cdot\left(1-5 y+10 y^{2}-6 y^{3}\right) \frac{\partial c}{\partial y} \tag{A.1}
\end{equation*}
$$

Boundary condition
(1) Wellek-Skelland modification

$$
\begin{equation*}
\frac{\partial C}{\partial Y}=h\left(C-C_{i}\right) \quad y=0 \quad . t>0 \tag{A.2}
\end{equation*}
$$

(2) ∂C

$$
\begin{equation*}
\frac{y}{\partial y}=0 \quad t=1 \quad t=t \tag{A.4}
\end{equation*}
$$

(3) $C=C_{0}$
$0<y<1$
$t=0$
Applying the technique of separation of variably:

$$
\begin{aligned}
& C=T^{\prime}(t) Y(y) \\
& \frac{\partial C}{\partial t}=T^{\prime}(t) Y(y) \\
& \frac{\partial C}{\partial y}=T^{\prime}(t) Y^{\prime}(y) \\
& \frac{\partial^{2} C}{\partial t^{2}}=T(t) Y^{\prime}(y)
\end{aligned}
$$

Substitute into equation (A.1)

$$
\begin{aligned}
T^{\prime}(t) Y(y)= & \frac{6}{(1-y)}\left(1-5 y+10 y^{2}-6 y^{3}\right) T(t) Y^{\prime \prime}(y) \\
& +\frac{6}{(1-y)} T(t) Y^{\prime}(y)\left(-5+20 y-18 y^{2}\right)
\end{aligned}
$$

$$
\frac{T^{\prime}(t)}{b T(t)}=\frac{1}{(1-y)} \quad\left(1-5 y+10 y^{2}-6 y^{3}\right) \frac{Y^{\prime \prime}(y)}{Y(y)}+\left(-5+20 y-18 y^{2}\right) \frac{Y^{\prime}(y)}{Y(y)}=-\lambda
$$

Rearranging the equation, a set of ordinary differential equations are obtained:

$$
\begin{align*}
& \begin{array}{l}
\frac{d T}{d t}+b \lambda T=0 \\
\left(1-5 y T I 0 y^{2}-6 y^{3}\right) Y^{\prime \prime}(y) \\
+\left(-5+20 y-18 y^{2}\right) Y^{\prime}(y) \\
+\lambda(1-y) Y(y)=0
\end{array} \tag{A.7}\\
& \begin{aligned}
\frac{d^{2} Y}{d y^{2}}=-\frac{\left(-5+20 y-18 y^{2}\right)}{\left(1-5 y+10 y^{2}-6 y^{3}\right)} \frac{d Y}{d y}-\frac{\lambda(1-y) Y}{\left(1-5 y+10 y^{2}-6 y^{3}\right)}
\end{aligned}
\end{align*}
$$

or $\quad \frac{d^{2} Y}{d y^{2}}=\frac{18 y^{2}-20 y+5}{1-5 y+10 y^{2}-6 y^{3}} \frac{d Y}{d y}-\frac{\lambda_{n} Y}{\left(6 y^{2}-4 y+1\right)}$
Boundary conditions
(I) $\frac{d Y}{d y}=h Y$ $y=0$
(2) $\frac{d Y}{d y}=0$

$$
\begin{equation*}
y=1 \tag{A.11}
\end{equation*}
$$

In order to obtain the analytical solution, let

$$
\begin{aligned}
& P(y)=1-5 y+10 y^{2}-6 y^{3} \\
& Q(y)=1-y
\end{aligned}
$$

For $\lambda=$ positive value

$$
\begin{equation*}
T(t)=B \exp (-b \lambda t) \tag{A.12}
\end{equation*}
$$

For $\lambda=$ negative

$$
\begin{equation*}
T(t)=A \exp (b \lambda t) \tag{A.13}
\end{equation*}
$$

For $\lambda=0 \quad T(t)=D$
Where A, B and D are constants
For $\lambda=$ positive $Y(y)=Y(y)$

$$
\begin{array}{ll}
\lambda=\text { negative } & Y(y)=Y^{*}(y) \tag{A.16}\\
\lambda=0 & P(y) \frac{d Y}{d y}=c
\end{array}
$$

$$
\begin{align*}
& \int d Y=\int \frac{c}{\left(1-5 y+10 y^{2}-6 y^{3}\right)} d y \\
& Y(y)=\int \frac{c}{\left(1-5 y+10 y^{2}-6 y^{3}\right)} d y \tag{A.17}
\end{align*}
$$

Applying the principle of superposition, the complete solution is

$$
\begin{align*}
C(y, t)= & \sum_{n=1}^{\infty} b_{n} Y_{n} \exp \left(-b \lambda_{n} t\right)+\sum_{n=1}^{\infty} a_{n} Y_{n} \exp \left(b \lambda_{n} t\right) \\
& +\int_{0}^{1}\left(1-5 y+10 y^{2}-6 y^{3}\right) \tag{A.18}
\end{align*}
$$

As t approaches infinity

$$
C(y, \infty)=\text { infinite }
$$

Hence, the second term is omitted.

$$
\begin{align*}
c(y, t)=c_{i} & =\int \frac{c}{\left(I-5 y+10 y^{2}-6 y^{3}\right)} d y \tag{A.19}\\
& =c_{2} \underline{y}(y)+c_{3} . \\
c_{3}=c_{i}, \quad & c_{2}=0
\end{align*}
$$

Now, the complete solution should have the form

$$
\begin{equation*}
c(y, t)=\sum_{n=1}^{\infty} b_{n} Y_{n} \exp \left(-b \lambda_{n} t\right)+c_{i} \tag{A.20}
\end{equation*}
$$

In this work, C_{i} (continuous phase solute concentration) is very dilute.

$$
\begin{equation*}
c_{i}=0 \tag{A.21}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
c(y, t)=\sum_{n=1}^{\infty} b_{n} Y_{n} \exp \left(-b \lambda_{n} t\right) \tag{A.22}
\end{equation*}
$$

Equations (A.9), (A.10) and (A.11) belong to the SturmLouiville system, and hence the solution has an infinite number of eigenvalues as indicated in Equation (A.18).

From the initial condition

$$
\begin{equation*}
c(0, y)=c_{0}=\sum_{n=1}^{\infty} b_{n} y_{n} \tag{A.23}
\end{equation*}
$$

From the orthogonal properties of Sturm-Louiville systems:

$$
\begin{align*}
& \int_{0}^{1} c_{0}(1-y) Y_{n} d y=\sum_{n=1}^{\infty} b_{n} \int_{0}^{1}(1-y) Y_{n} d y \\
& b_{n} \int_{0}^{1}(1-y) Y_{n}^{2} d y=c_{0} \int_{0}^{1}(1-y) Y_{n} d y \tag{A.24}
\end{align*}
$$

$b_{n}=c_{0} \int_{0}^{1}(1-y) Y_{n} d y$
Let $B_{n}=\int_{0}^{1}(I-y) Y_{n} d y$
Therefore

$$
c(y, t)=c_{o_{n=1}} \sum_{n}^{\infty} B_{n} Y_{n} \exp \left(-b \lambda_{n} t\right)
$$

At the boundary ($y=1$) one term in the equation is undeterminable

$$
\begin{equation*}
\frac{d^{2} Y}{d y^{2}}=3\left(\frac{0}{0}\right)-\frac{Y_{n}(1)}{3} \tag{A.25}
\end{equation*}
$$

Therefore, the L-Hospital's Rule has to be applied before the end condition is reached.

$$
\begin{align*}
& \begin{aligned}
\frac{d^{2} Y}{d y^{2}} & =\frac{\left(18 y^{2}-20 y+5\right)}{\left(-5+20 y-18 y^{2}\right)} \frac{d^{2} Y}{d y^{2}}-\frac{\lambda_{n} Y}{\left(6 y^{2}-4 y+1\right)} \\
& =-\frac{d^{2} Y}{d y^{2}}-\frac{\lambda_{n} Y}{\left(6 y^{2}-4 y+1\right)} \\
2 \frac{d^{2} Y}{d y^{2}} & =\frac{\lambda_{n} Y}{\left(6 y^{2}-4 y+1\right)}
\end{aligned}
\end{align*}
$$

at $\mathrm{y}=1$,

$$
\begin{equation*}
\frac{d^{2} Y(I)}{d y^{2}}=-\frac{\lambda_{n}}{6} \tag{A.28}
\end{equation*}
$$

This is the same result as obtained by Patel (28) using a series expansion approach.

AFPENDIX (3)

PACTOLUS element symbols are given in the notes of the Computer Science Center of University of Missouri-Rolla.
$\frac{\text { Name }}{\text { Gain }}$

Integrator

Type Description
G
$e_{0}=P_{1} e_{i}$

I

$$
e_{0}=P_{1}+\left(e_{1}+e_{2} P_{2}+e_{3} P_{3}\right) d t
$$

Constant
K

$$
e_{0}=P_{1}
$$

(K) $P_{1} e_{0}$

Relay

$R \quad e_{0}=e_{2}^{e_{3}}$ for $e_{I}>0$

$$
e_{0}=e_{2}^{2} \text { for } e_{I}>0
$$

Weighted summer

Multiplier

W

$$
e_{0}=P_{1} e_{1}+P_{2} e_{2}+P_{3} e_{3}
$$

X

$$
e_{0}=e_{1} e_{2}
$$

Sign Inverter

$$
+\quad e_{0}=e_{1}+e_{2}+e_{3}
$$

$-\quad e_{0}=-e_{i}$

APPENDIX (4)

Sample calculation of overall mass transfer coefficient $K_{d r}$ System (I)

Solute: Acetic acid
dispersed phase: benzene
continuous phase: water
droplet velocity: $11.3 \mathrm{~cm} / \mathrm{sec}$
droplet diameter: 0.503 cm
Reynolds number $=597$
The Garner and Tayeban correlation is used to evaluate the continuous phase mass transfer coefficient k_{c}

$$
k_{c}=\frac{D_{a b}}{d_{e}}\left[50+0.0095(\mathrm{Re})^{1.0}(\mathrm{Sc})^{0.7}\right]
$$

$\mathrm{Sc}=$ continuous phase schdmit number $=\frac{\mu_{c}}{\rho_{c} D_{a b}}$

$$
\mathrm{k}_{\mathrm{c}}=0.01565 \mathrm{~cm} / \mathrm{sec} \text { (computer result) }
$$

It is defined:

$$
\begin{aligned}
h & =\frac{512 k_{c}\left(1+\mu_{d} / \mu_{c}\right)}{m u} \\
& =50.29 \\
b & =\frac{u}{128\left(I+\mu_{d} / \mu_{c}\right) d_{e}}=0.1075
\end{aligned}
$$

Dimensionless time $=$ bt $=0.95$
For the droplet rising (falling) 100 cm , the contact time $t=100 / 11.3=8.50 \mathrm{sec}$

Relation used to evaluate the dispersed mass transfer coefficient is given as follows:

$$
\begin{equation*}
k_{d}=-\left(d_{e} / 6 t\right) \ln \left(1-E_{m}\right) \tag{A.29}
\end{equation*}
$$

From the dimensionless time bt and h, E_{m} can be obtained by interpolation from Figures 15, 16 and 17.

$$
\begin{aligned}
& E_{m}=0.994 \text { (conventional analog computer) } \\
& E_{m}=0.990 \text { (digital-analog simulator) } \\
& E_{m}=0.993 \text { (iterative analog computer) }
\end{aligned}
$$

Substituting E_{m} and t into equation (A.29) to obtain k_{d} :

$$
k_{\mathrm{d}}=0.0468 \mathrm{~cm} / \mathrm{sec} \text { (analog computer with digital logic) }
$$

$$
k_{\dot{d}}=0.0481 \mathrm{~cm} / \mathrm{sec} \text { (conventional analog computer) }
$$

$$
\mathrm{k}_{\mathrm{d}}=0.0436 \mathrm{~cm} / \mathrm{sec} \text { (digital-analog simulator) }
$$

Interpolation in the figures of E_{m} versus bt of Patel's work

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{m}}=0.990 \text { (Hamming's method by Patel) } \\
& \mathrm{E}_{\mathrm{m}}=0.970 \text { (finite difference method by Patel) } \\
& \mathrm{k}_{\mathrm{d}}=0.0436 \mathrm{~cm} / \mathrm{sec} \text { (Hamming's method) } \\
& \mathrm{k}_{\mathrm{d}}=0.0333 \mathrm{~cm} / \mathrm{sec} \text { (finite difference method) }
\end{aligned}
$$

k_{d} of Wellek and Skelland modification

$$
\mathrm{k}_{\mathrm{d}}=\frac{\mathrm{u}}{768\left(1+\mu_{\mathrm{d}} / \mu_{\mathrm{c}}\right)}=0.0257 \mathrm{~cm} / \mathrm{sec}
$$

Combining the individual dispersed and continuous phase coefficients during free (or, fall) rise to give the overall mass transfer coefficient $K_{d r}$ on the assumption of interfacial equilibrium:

$$
\frac{I}{K_{d r}}=\frac{1}{k_{d r}}+\frac{m}{k_{c r}}
$$

Since the distribution factor m has the value 0.023, the
following results of K_{dr} can be obtained:
$\mathrm{K}_{\mathrm{d}}=0.0409 \mathrm{~cm} / \mathrm{sec}$ (Runge-Kutta by Patel)
$K_{d}=0.024$ cm/sec (Wellek-Skelland modification)
$\mathrm{K}_{\mathrm{d}}=0.0318 \mathrm{~cm} / \mathrm{sec}$ (finite difference method by Fatel)
$\mathrm{K}_{\mathrm{d}}=0.0457 \mathrm{~cm} / \mathrm{sec}$ (iterative analog computer)
$K_{\mathrm{d}}=0.0470 \mathrm{~cm} / \mathrm{sec}$ (conventional analog computer)
$K_{d}=0.0409 \mathrm{~cm} / \mathrm{sec}$ (digital-analog simulator)
$K_{d}=0.0258 \mathrm{~cm} / \mathrm{sec}$ (Handlos and Baron, $h \rightarrow \infty$)
$K_{d}=0.0211 \mathrm{~cm} / \mathrm{sec}$ (experimental)

System (II)

solute: Acetone
dispersed phase: benzene
continuous phase: water
drop velocity: $10.6 \mathrm{~cm} / \mathrm{sec}$
drop diameter: 0.481 cm
Reynolds number $=535$
The calculation of k_{c}, h, b, and t follows the same approach as indicated previously in system (I), except the distribution factor, m, is 0.939.
$\mathrm{K}_{\mathrm{d}}=0.00845 \mathrm{~cm} / \mathrm{sec}$ (Runge-Kutta method by Patel)
$K_{\mathrm{d}}=0.00880 \mathrm{~cm} / \mathrm{sec}$ (Wellek-Skelland modification)
$K_{\mathrm{d}}=0.00655 \mathrm{~cm} / \mathrm{sec}$ (Finite difference method by Patel)
$K_{d}=0.00846 \mathrm{~cm} / \mathrm{sec}$ (digital-analog simulator)
$\mathrm{K}_{\mathrm{d}}=0.00915 \mathrm{~cm} / \mathrm{sec}$ (conventional analog computer)
$K_{\mathrm{d}}=0.00870 \mathrm{~cm} / \mathrm{sec}$ (iterative analog computer)
$K_{d}=0.01091 \mathrm{~cm} / \mathrm{sec}$ (Handios and Baron, $h \rightarrow \infty$)
$K_{\mathrm{d}}=0.02161 \mathrm{~cm} / \mathrm{sec}$ (experimental)
For the contact time bt equals 0.1 , interpolate the values
E_{m} from the Figures $15,16,17, A .8$ and A. 10 of E_{m} versus bt, then, the following values of K_{dr} are obtained:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{d}}=0.0127 \mathrm{~cm} / \mathrm{sec} \text { (Runge-Kutta method by Patel) } \\
& \mathrm{K}_{\mathrm{d}}=0.00725 \mathrm{~cm} / \mathrm{sec} \text { (finite difference method by Patel) } \\
& \mathrm{K}_{\mathrm{d}}=0.01275 \mathrm{~cm} / \mathrm{sec} \text { (digital-analog simulator) } \\
& \mathrm{K}_{\mathrm{d}}=0.0129 \mathrm{~cm} / \mathrm{sec} \text { (iterative analog computer) } \\
& \mathrm{K}_{\mathrm{d}}=0.0131 \mathrm{~cm} / \mathrm{sec} \text { (conventional analog computer) }
\end{aligned}
$$

APPENDIX (5)

Eigenvalues for Patel (28), Wellek-Skelland (11), Elzinga and Banchero (12) and Grober (15).

Table:Al Eigenvalues and coefficients for stagnant drops due to Grober(15)

| $\frac{h_{0 d}}{\mathrm{~K}}$ | ψ_{1} | ψ_{2} | ψ_{3} | ψ_{4} | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{3}$ | $\mathrm{~A}_{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2.209 | 4.913 | 7.979 | 11.086 | 0.159 | 0.00634 | | |
| 6 | 2.289 | 5.087 | 8.069 | 11.173 | 0.153 | 0.01090 | | |
| 8 | 2.456 | 5.233 | 8.205 | 11.256 | | | | |
| 10 | 2.570 | 5.354 | 8.303 | 11.335 | 0.142 | 0.0179 | 0.00408 | |
| 12 | 2.654 | 5.454 | 8.391 | 11.409 | | | | |
| 14 | 2.717 | 5.538 | 8.470 | 11.477 | 0.134 | 0.0220 | 0.00600 | |
| 16 | 2.765 | 5.608 | 8.541 | 11.541 | | | | |
| 18 | 2.804 | 5.667 | 8.603 | 11.599 | 0.129 | 0.242 | 0.0119 | 0.00291 |
| 20 | 2.836 | 5.717 | 8.659 | 11.653 | | | | |
| 22 | 2.863 | 5.761 | 8.708 | 11.703 | 0.125 | 0.0255 | 0.00858 | 0.00359 |
| 32 | 2.948 | | | | 0.119 | | | |
| 42 | 2.993 | | | | 0.111 | | | |
| 62 | 3.041 | | | | | | | |
| 82 | 3.065 | | | | 0.107 | | | |
| 102 | 3.080 | | | | 0.101 | | | |
| ∞ | 3.142 | | | | | | | |

Table A2:
Eigenvalues for Handlos and Baron Model calculated by Wellek and Skelland(1)

h	λ_{1}	λ_{2}	λ_{3}	$\lambda 4$
0.001	0.0020	7.46	39.0	300.0
0.010	0.022	7.49	39.1	300.0
0.100	0.270	7.85	39.3	300.0
0.500	1.337	10.7	41.6	302.0
1.000	1.980	14.27	45.4	304.0
2.500	2.445	19.54	55.9	311.0
5.000	2.674	23.42	77.2	322.0
7.000	2.708	23.76	80.0	327.0
10.00	2.731	23.72	78.6	332.0
25.00	2.821	25.26	97.4	355.0
50.00	2.847	25.54	99.5	366.0
70.00	2.850	25.24	91.2	365.0
100.0	2.852	24.88	83.5	364.0
250.0	2.861	24.85	80.9	367.0
500.0	2.864	24.76	78.8	367.0
700.0	2.864	24.64	77.0	366.0
1000.	2.865	24.56	75.8	366.0
∞	2.866	24.58	75.6	367.0

Table A3: Eigenvalues and coefficients for circulating drops calculated by Elzinga and Banchero(Id

$\frac{K_{0} \alpha}{K}$	1	2	3	B_{1}	B_{2}	B_{3}
3.20	0.262	4.24		1.49	0.107	
5.33	0.368					
8.00	0.534					
10.7	0.680	4.92		1.49	0.300	
16.0	0.860	5.26		1.48	0.382	
21.3	0.982	5.63	15.7	1.47	0.428	
26.7	1.082	5.90	15.7	1.49	0.495	0.205
53.3	1.324	7.04	17.5	1.43	0.603	0.298
107.0	1.484	7.88	19.5	1.39	0.603	0.384
213.0	1.560	8.50	20.80	1.31	0.588	0.396
320.0	1.600	8.62	21.3	1.31	0.583	0.386
∞	1.565	9.08	22.2	1.29	0.506	0.386

Table A4: Eigenvalues and coefficients for: Wellek-Skeliand Modification (Kunge-Kutta method by Patel (28))

Table A5: Eigenvalues and coefficients for Wellek-Skelland Modification (Hamming's method by Patel(28))

h	λ_{1}	λ_{2}	λ_{3}	λ_{4}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
0.001	0.002	6.96	31.9	369	0.5150	$-0.882(10)^{-4}$	$0.151(10)^{-4}$	$-0.827(10)^{-6}$
0.002	0.004	6.96	31.9	369	0.5148	$-0.177(10)^{-3}$	$0.303(10)^{-4}$	$-0.166(10)^{-5}$
0.010	0.019	6.98	31.9	369	0.5129	$-0.886(10)^{-3}$	$0.152(10)^{-3}$	$-0.829(10)^{-5}$
0.10	0.185	7.18	32.1	369	0.4938	$-0.878(10)^{-2}$	$0.151(10)^{-2}$	$-0.829(10)^{-4}$
0.50	0.776	8.11	32.8	370	0.4289	$-0.413(10)^{-1}$	$0.750(10)^{-2}$	$-0.414(10)^{-3}$
1.00	1.265	9.26	33.6	371	0.3789	$-0.739(10)^{-1}$	$0.147(10)^{-1}$	$-0.825(10)^{-3}$
2.50	1.961	12.19	36.2	373	0.3133	-0.124	$0.333(10)^{-1}$	$-0.205(10)^{-2}$
5.0	2.345	15.12	39.9	377	0.2793	-0.139	$0.523(10)^{-1}$	$-0.399(10)^{-2}$
7.0	2.473	16.42	42.1	381	0.2690	-0.138	$0.597(10)^{-1}$	$-0.541(10)^{-2}$
10.0	2.575	17.56	84.5	385	0.2606	-0.134	$-0.359(10)^{-1}$	$-0.727(10)^{-2}$
25.0	2.726	19.38	91.5	400	0.2483	-0.123	$-0.420(10)^{-1}$	$-0.123(10)^{-1}$
30.0	2.743	19.59	92.5	403	0.2469	-0.121	$-0.422(10)^{-1}$	$-0.130(10)^{-1}$
50.0	2.778	20.02	04.6	411	0.2442	-0.118	$-0.421(10)^{-1}$	$-0.14(10)^{-1}$
70.0	2.793	20.20	95.6	415	0.2430	-0.116	$-0.418(10)^{-1}$	$-0.116(10)^{-1}$
100.0	2.804	20.34.	96.3	418	0.2421	-0.115	$-0.416(10)^{-1}$	$-0.148(10)^{-1}$

Apoendix 6

Factolus prosram for the for the first type arrangenent with time scaling

SOLVING EIGEN VALUFS CHE4OO
(PECTOLUS OIGITAL ANALOG SIMULATOR DROGRSM
CONFG

$\begin{array}{lr}\text { TNTEGRATEN INTERVAL } & 0.01000000 \\ \text { TOTAL TIME } \\ \text { SAMPETHE INCREMEMF- } & \end{array}$
OUTFT
ENO OUTPUT $\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & 1-5 & 22 & 20 & 19 & 18 & 18\end{array}$

Factolus prosran for the first type arrangement without time scale of the differential equation

Pactolus program with the relay to suttoh the equation to the equation using L Hospital's rule

INTEGRATION INTERVAL
SAMPLE TMEE IMCREMENT
$8.010 c 0000$
10.0000000
10.00060000
0.160600 C

ENO
DUTPT
ENO OUTPUT $\frac{1}{1} \quad \frac{2}{2}-1 \frac{3}{2}, 3^{4}, 21^{5} \quad 18^{5} \quad 1 \quad 11^{3}$

Pactolus program for the second type arrangement without time seale of the differential equation

SOLVING EIGEN VALUFS PIGEEASO PACTOLUS DIGITAL ANALOG SIMULATOR PROGRAM

Pactolus program for the second type arrancement with time scale of the differential equation

SOLVING ETGFNGVALUES DIGITAL ANALOG SIMUIATOR PROGRAM

END
DUTPT

APPENDIX (7)

(1) Computer circuit for the trial and error procedure carried out on the conventional analog computer. The numerical settings and the outputs of the components are presented. (2) PACTOLUS program with the first type arrangement with or without time scale of the differential equation to check the djfference of the results.
(3) PACTOLUS program with the second type arrangement with or without time scale of the differential equation to assure that both arrangements can be applied on PACTOLUS. Programming on the analog computer; the second arrangement is used for convenient observance of the component-overload, especially as the problem is integrated close to the boundary $y=1.0$.

Figure A.I: Conventional analog computer program for Handios and Baron Model

TABIE A.6: STATIC POT SETTINGS AND AMPLIFIER IDENTIFICATION
(I)

Amp. No. Amp. Purpose Amp. Output

Corresponding Fatchboard Element

A-2

A-3
C-3

2A-9

A-I
B-1

B-2

A-5
B-3
B-4
D-I
C-2
A-6
A-7
2B-9
B-5
B-6
2D-9
2A-10

D-4

36	inverter	$\frac{-10\left(0.18 \tau^{2}-2.0 \tau+5\right)}{\left(0.06 \tau^{2}-0.4 \tau+1\right)}$	$2 B-10$
38	+	$\frac{d^{2} Y}{d \tau^{2}}$	$D-3$
39	inverter	$-\frac{\lambda n^{Y}}{\left(0.06 \tau^{2}-0.4 \tau+1\right)}$	$2 C-9$

(II)

Pot No. Numerical Settings $04 \quad \begin{aligned} & \mathrm{Y}(0) \text { (initial } \\ & \text { approximation) }\end{aligned}$

09
11
13
19
20
21
22
23
24
42
43
37
40
0.1
0.01
0.093
0.18
0.20
0.05
0.40
0.60
0.10
0.10
0.01
$0.01 \lambda_{n}$
$0.00 \lambda_{n}$

Corresponding
Patchboard Component
BP-2

BP-5
BP-3
BP-10
AP-3
AP-2
AP-4
AP-6
AP-5
AP-7
AP-I
AP-8
BP-9
BP-8

Figure A2: PACTOLUS program with relay switch for $y=1.0$

TABIE A.7: BIOCK REPRESENTATIONS AND NUNERICAI SETTINGS

B10ck	Type	Cutput	Mumerical Settings
1	I	dY	
		-	
		dy	
2	I	Y	
3	output	dY	
		\cdots	
		dy	
4	output	Y	
5	K		-0.93 (chosen close to 1.0)
6	K		1.0
7	$+$		
8	R		
9	X	y^{2}	
10	$+$	$\left(18 y^{2}-20 y+5\right)$	
11	G		-20.0
12	G		18.0
13	K		5.00
14	G		-4.0
15	G		6.00
16	K		1.00
17	G		-1.00
18	K	1.00	
19	$+$	$\left(6 y^{2}-4.0 y+1\right)$	
20	$+$	(1-y)	
1		$\left(18 y^{2}-20 y+5\right)$	
21	/	$\left(6 y^{2}-4 y+1\right)$	

22	$/$	$\frac{Y}{\left(6 y^{2}-4 y+1\right)}$
23	$/$	$\frac{1}{(1-y)} \frac{d Y}{d y}$
24	X	$\frac{\left(18 y^{2}-20 y+5\right)}{(1-y)\left(6 y^{2}-4 y+1\right)} \frac{d Y}{d y}$
25	+	$\frac{d^{2} Y}{d y^{2}}$
26	G	$-\lambda_{n}$
27	G	$-0.5 \lambda_{n}$

Figure A. 3: PACTOLUS program without time scale for the first type cirouit arrangement

Figure A.4: PACTOIUS program with time scale for the first type cirouit arrangement

Figure A.5: PACTOLUS program with time scale for the second type oirouit arrangement:

Figure A.6: PACTOLUS program without time scale for the second type of circuit arrangement

APPENDIX 8

(1) Curves of fraction extracted versus dimensionless time (Runge-Kutta method by Patel)
(2) Curve of fraction extracted versus dimensionless time (Hamming's method by Patel)
(3) Curve of fraction extracted versus dimensionless time (Finite-difference method by Patel)

Figure A7: Fraction extracted versus dimensionaless time (Runge-Kuta method by Patel) (28) :

Figure A.8: Fraction extracted versus dimensionless time (Hamming's method by Patel (28)).

Figure A. 9 : Fraction extracted versus dimensionless time(Finite-difference method by Patel (28)).

APPENDIX 9

(I) Analog computer with its hybrid parts results (when the modified continuous phase resistance $h=25.0$).
(2) Analog computer result (when the modified continuous phase resistance $h=25.0$).

Figure A.10: Solution of Handios and Baron Model on an iterative analog computer

Figure A.11: Solution of Handlos and Baron Model on an iterative analog computer

Figure A.12: Solution of Handios and Paron Model on an iterative analos computer

Figure A.13: Solution of Handlos and Baron Model on an iterative analog computer

Figure A.I4: Solution of Handlos and Baron Model on a conventional analog computer

Figure A.15: Solution of Handios and Baron Model on a conventional analog computer

Figure A.16: Solution of Handlos and Baron Model $\begin{aligned} & \text { on a conventional analog computer }\end{aligned}$

Figure A.17: Solution of Handios and Baron Model on a conventional analog computer

PEIDIX IO.I: SCAIED EIGEUFUFCIIOME GETEPATED BY

AIT ITERATIVE ATAIOG CCGPUEER

a	$-\left.\frac{d Y}{d y}(0)\right\|_{1}$	$\left.\frac{d Y}{d y}(0)\right\|_{2}$	$\left.\frac{d Y}{d y}(0)\right\|_{3}$	$\left.\frac{\partial Y}{d y}(0)\right\|_{4}$
010	0.000950	-0.000530	0.000482	-0.000270
020	0.002120	-0.001070	0.000782	-0.000570
100	0.008850	-0.005350	0.004560	-0.003000
500	0.046500	-0.028500	0.021700	-0.014750
000	0.087500	-0.051000	0.043700	-0.030000
;000	0.315000	-0.320000	0.230000	-0.160000
1000	0.445000	-0.680000	0.485000	-0.282000
;000.	0.558000	-1.430000	1.250000	-0.710000
2000	0.600000	-2.010000	2.040000	-1.390000
3000	0.700000	-2.250000	2.160000	-1.930000
. 000	0.600000	-3.040000	-1.85000	-2.620000
. 000	0.520000	--2.300000	-3.90000	-4.680000
. 000	0.540000	-2.520000	-3.63000	-5.100000
.000	0.575000	-2.370000	-3.76000	-5.590000
.000	0.565000	-2.365000	-3.75000	-5.830000
. 000	0.560000	-2.350000	-3.63000	-5.900000
0.00	0.561000	-2.250000	-3.74000	-6.020000
0.00	0.562000	-2.700000	-3.84000	-6.060000
0.00	0.560000	-2.400000	-3.78000	-6.080000
0.00	0.570000	-2.250000	-3.79000	-6.080000
00.0	0.570000	-2.470000	-3.77000	-6.050000
\bigcirc	0.570000	-2.200000	-3.80000	-6.070000

APPEMDIX 10.2: EIGETEUYCRIOM OEIAITED FROMA

COMVEMTOTAI ATAIOG CCIEUPER

	$\frac{d Y}{d y}(0) H_{1}$	$\left.\frac{d Y}{d y}(0)\right\|_{2}$	$\left.\frac{d Y}{d y}(0)\right\|_{3}$	$\left.\frac{d Y}{d y}(0)\right\|_{4}$
0	0.000955	-0.00055	0.000405	-0.000288
0	0.001910	-0.00110	0.000792	-0.000578
10	0.009450	-0.00553	0.003920	-0.002890
10	0.047500	-0.02960	0.018500	-0.014450
10	0.089000	-0.05790	0.037600	-0.028900
10	0.274000	-0.31000	0.187500	-0.126000
j0	0.370000	-0.68000	0.385000	-0.275000
10	0.475000	-1.80000	0.900000	-0.660000
j0	0.475000	-2.60000	1.750000	-1.345000
30	0.535000	-2.73000	2.160000	-1.860000
j0	0.460000	-3.02000	-2.30000	-2.650000
30	0.500000	-3.05000	-3.33000	-4.130000
20	0.510000	-2.88000	-3.42000	-4. 570000
j0	0.520000	-2.96000	-3.60000	-4.880000
30	0.525000	-2.90000	-3.60000	-4.850000
00	0.525000	-2.80000	-3.57000	-5.320000
00	0.525000	-2.73000	-3.26000	-5.990000
00	0.530000	-2.77000	-3.32000	-6. 290000
00	0.560000	-2.78000	-3.42000	-6.300000
00	0.580000	-2.78000	-3.32000	-6. 190000
. 0	0.585000	-2.79000	-3.32000	-6.190000
	0.590000	-2.82000	-3.39000	-6.250000

BI PACIOLUS

h	$\frac{d y}{d y}(0)$	$\left.\frac{d Y}{}(0)\right\|_{2}$	$\left.\frac{d Y}{d y}(0)\right\|_{3}$	$\left.\frac{d Y(0)}{d y}\right\|_{4}$
.0010	0.00104	-0.00060	0.000480	-0.00030
.0020	0.00203	-0.00122	0.000969	-0.00059
.0100	0.01011	-0.00613	0.004800	-0.00298
.0500	0.47650	-0.03092	0.024000	-0.01490
.1000	0.09135	-0.06255	0.048000	-0.02975
.5000	0.33000	-0.33240	0.243700	-0.14900
.0000	0.47310	-0.68080	0.489500	-0.29800
.5000	0.60200	-1.49300	1.195200	-0.74170
.0000	0.64100	-2.06200	2.055240	-1.46200
.0000	0.64930	-2.20450	2.470000	-2.00180
0.000	0.65460	-2.30470	-1.19140	-2.71200
5.000	0.65970	-2.32800	-3.74090	-4.75200
30.000	0.66000	-2.31330	-3.79600	-5.12200
$; 0.000$	0.66110	-2.30370	-3.84580	-5.61660
0.000	0.66120	-2.30460	-3.86370	-5.79500
.00 .00	0.66123	-2.28140	-3.87520	-5.99100
350.00	0.66150	-2.28144	-3.87520	-5.99170
$; 00.00$	0.66170	-2.26770	-3.87760	-5.99170
.00 .00	0.66166	-2.26990	-3.87200	-5.96400
.000 .0	0.66185	-2.27100	-3.87600	-5.96400
∞	0.66176	-2.27430	-3.87700	-5.96500

APFETDIX 11

Digital computer prosram for evaluatins the fraction extracted

$$
E_{m} \text { versus dimersionless time bt. }
$$

101

$$
1
$$

102
104

122
123
124
125
128
127
128
129
136
133
132
133
1345
136
137
138
139
140
141
142
143
144
145
146
147
148
159
151
152
153
154
155
156
157
158
159

 501093

ER

53 14

(2, OO, 1), EM
$\mathrm{T}=\mathrm{T}+1-\mathrm{C}$
CDNT
On $15 \mathrm{Mi}=1,10$
S 1
$\longrightarrow \frac{1}{1}$

APPENDIX 12: ITERATIVE ANALOG COIPUTER FPOGRAN CHECKING

(I) Static check: Before the computer program is used, all the amplifiers being used have to be checked with the offset while the computer is in VERIFY position. Spot checks on the outputs from the integrators, amplifiers, multipliers, dividers while the computer is in RESET mode are necessary. (2) Dynamic check: With the program set up, the computer is allowed to operate for a certain period and is then held at a set of predetermined value of y. The dependent variables can then be compared with those read from the output of the digital-analog simulator.

The indicator on the logic patchboard is used for a double checy. It is able to point out clearly the change of the binary logic signal from binary 1 to binary 0 as the independent variable y is approaching unity.

It should be emphasized that the $X-Y$ recorder also has to be calibrated with the computer reference voltage.

APPENDIX (13)

" General information of Model AD-40 iterative analog computer used in this vork (3) "

The Applied Dynamics Analog Computer, Model AD-40, is a very precise electronic differential equation analyzer designed to solve linear and non-linear differential equation. This computer is equipped with a patchable control logic system to extend the analog computer's capability for iterative operation requiring logic decisions and sequencing events.

The computing console is shown in Figure, reference (3).. In the standard configuration, this computer contains 40 operational amplifiers, 12 integrator networks, 40 coefficients potentiometers (only 20 pots are available on the computer used in this work), 8 electronic multiplifiers (including dual squarer, divider), 4 variable diode function generators, 6 comparators, 2 track-hold units, various types of switches, and a comolement of parallel programmable logic elements. The analog components are terminated on the removable patchboard on the left, while the logic elements terminate on the patchboard on the right. Hybrid elements, i.e. comparators, track-hold units, logic controlled switches etc. have appropriate termination on both analog and Iogic patchboard.

The main components contained in the logic patchboard are Logic Gates, Combination Gates/Flip-Flop, Flip-Flops, Registers, Variable Pulsers, Logic Pushbottons, and
indicators. Comparators generate logic signals from analog voltages. Logic components perform logic decisions which produce logic levels for control of problems solutions by either integrator mode control or by logically controlled current switches or function switches.

The capability of patched hybrid and logic components for the control of repetitive or iterative operation expands the solution flexibility of the analog computer.

VITA

The author, Jeffrey Tsai-hwa Ko, was born on June 23, 1944, in Kwangtung Province, China. He attended Jiann-Kuo Boy's High School in Taiwan, graduating in 1962. After the high school, the author attended National Taiwan University in Taipei, and graduated in the summer, I966, with a degree of Bachelor of Science in Chemical Engineering. After one year ROTC service in the Chinese Army, he enrolled as a candidate for the Master of Science degree in Chemical Engineering in September, 1967.

