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ABSTRACT 

When designing feedback control systems, there is often a need for estimation 

methods that provide system information that is not readily available via sensors placed 

within the system.  In many cases a sensor that measures a particular system state either 

does not exist or is prohibitively expensive.  In addition, all realistic systems contain 

some degree of nonlinearity.  This thesis focuses on two such cases: missile guidance 

with bearings-only measurements and GPS satellite orbit determination.  In each case, a 

new nonlinear filter, the θ-D method, is used and evaluated for its performance in 

providing the necessary estimation. 

To aid the filter in the bearings-only application, a guidance law is formulated that 

assists the filter in estimating the target location despite the lack of range measurement.  

An implementation procedure, called the Staggered Filter Concept, is also presented for 

implementing a continuous filter, such as the θ-D filter, with measurements taken at 

discrete intervals.  This procedure is used to implement the orbit determination algorithm 

on the Missouri S&T Satellite Team M-SAT mission. 
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1. INTRODUCTION 

1.1. MISSILE DEFENSE 

In the aftermath of the Cold War and with technological advances, both in the 

United States and abroad, the need for an effective missile defense system is becoming 

more and more evident.  Additionally, a near-miss is no longer sufficient, as hit-to-kill 

missiles are not equipped with proximity fuses as are typical Air Force missiles.  The 

next generation of missile defense systems must be able to accurately track a large variety 

of highly maneuverable targets engaged in high range/high velocity intercept scenarios. 

In order to ensure hit-to-kill accuracy in such a high energy engagement, 

advances in guidance, control, and estimation must be made, as any system is only as 

good as its weakest component.  Guidance laws need to be developed that minimize miss 

distance despite large and highly random target evasive maneuvers, control systems need 

to be designed that are able to steer the missile with a high degree of precision, and 

estimation schemes need to be able to quickly and accurately estimate the system states 

that are to drive the guidance and control systems. 

 

 

1.2. GUIDANCE AND CONTROL 

The area of guidance and control is concerned with determining efficient methods 

for steering the missile to the intended target.  The guidance portion generates 

acceleration commands which the autopilot controller enacts. 

1.2.1. Guidance Laws.  The guidance laws generate the required acceleration  

that must be produced by the missile in order to intercept the target.  Several guidance 

laws exist that make use of the relative motion between the target and missile.  Also, 

many guidance laws use, in one form or another, the acceleration of the target. 

1.2.2. Autopilot Design.  The purpose of the missile autopilot system is to use the  

missile actuators (fins, gyros, etc.) to supply the required acceleration.  Care must be 

taken to ensure that the guidance law yields accelerations that the missile is capable of 

producing. 
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1.3. ESTIMATION 

As mentioned in Section 1.2.1, the guidance law uses the relative position and 

velocity of the target, with respect to the missile, and also the target acceleration.  In 

practicality, this information is not known entirely, therefore, an estimation scheme is 

required.  Sensors built into the missile hardware measure certain quantities of the system 

such as range, angles, and various rates.  The filter must then use this information, along 

with a dynamic model of the system, to produce the necessary information to be supplied 

to the guidance law. 

1.3.1. Passive Measurements.  When determining the relative distance between  

two objects, many sensors rely on a particular form of energy (laser, sound wave, etc.) 

that is reflected off of the target.  This form of measurement is referred to as an active 

measurement system, as the detector must generate and emit energy, which could 

possibly be detected by the target.  In many applications, including missile defense, it is 

desired that the measurement source be undetectable to the target.  For this reason, 

research involving target intercept applications has shifted to using passive measurements 

only.  Such measurements typically produce bearing angles only, although passive 

ranging is possible in some instances. 

 

 

1.4. ORBIT DETERMINATION 

In any space mission, the need for an accurate orbit determination method is 

required for satellite tracking.  Accurate orbit determination is also necessary for accurate 

guidance in rendezvous and docking missions.  The process of orbit determination has 

been studied and improved throughout the years, and multiple methods have been 

proposed.  While the methods may vary, general orbit determination is achieved by 

application of a dynamic filter which processes some specified orbital measurements.  

This paper describes the orbit determination method planned for use on the Missouri 

University of Science and Technology’s M-SAT mission. 
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1.4.1. M-SAT Mission.  As per recommendation from NASA’s Goddard Space 

Flight Center, the Missouri S&T Satellite design team at the Missouri University of 

Science and Technology is developing a pair of microsatellites that will demonstrate the 

capability of formation flight control by utilizing low-cost, off-the-shelf technologies.  

This mission will consist of a pair of satellites that separate on orbit and establish a 

desired formation of 50 meters in track.  During the formation flight phase the onboard 

propulsion system will be used to maintain the desired 50 meter separation.  The satellite 

pair is depicted in Figure 1.1 below in their mated launch configuration. 

 

 

 

 

 

Figure 1.1.  M-SAT Microsatellites 
 

 

 

 

The larger of the two satellites, Missouri Rolla Satellite, or MR SAT, will be 

equipped with a cold-gas propulsion system and serve as the follower in the formation 

flight phase.  The smaller of the two, Missouri Rolla Second Satellite, or MRS SAT, will 
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serve as the leader spacecraft.  MR SAT will also be the primary means of 

communication with the satellites by ground controllers as it is the only of the pair with 

space to ground communication ability. 

Since the entire M-SAT mission is being developed as a demonstration flight, a 

newly developed orbit determination technique has been selected for onboard orbit 

navigation.  The satellites will be demonstrating the efficacy of a new nonlinear filter 

developed at Missouri S&T, the -D filter, which will be used to process GPS data for 

determining the satellites’ orbit.  The nonlinear -D filter will be implemented using a 

new concept, referred to as the staggered filter, which allows continuous filters to be 

implemented in a discrete time sense. 
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2. REVIEW OF LITERATURE 

2.1. CONTROL OR AUTOPILOT DESIGN 

A large portion of papers on missile guidance and control have focused on the 

area of missile control or autopilot design, see Refs. 1, 6, 7, 11, 19, 24, 38, 46, 49, 54, and 

56.  Theoretical bases for these papers include optimal control, feedback linearization, 

state dependent Riccati equations (SDRE), and -D.  There have also been several papers 

published recently using the concept of sliding mode in the area of control, guidance and 

estimation, see Refs. 15, 23, 28, 34, 39-41, and 47. 

 

 

2.2. GUIDANCE LAW DESIGN 

The majority of guidance laws are formulated on the relative kinematics between 

the target and the missile [30, 58].  Many guidance laws that have been formulated are 

based on variations of the concept of proportional navigation, in which a constant target 

velocity is assumed, see Refs. 2, 8, 10, and 12.  In 2003, Savkin et al. developed a 

modified H control based guidance law that was shown to provide much better 

performance, in the sense of disturbance rejection, than the linear quadratic regulator 

(LQR) based optimal guidance law.  The H guidance law also has an output feedback 

structure that is more realistic than the LQR method, which assumes that all states are 

available.  Later in 2003, Raju and Ghose proposed a novel midcourse guidance law 

based on an empirical virtual sliding target (VST) approach.  This law uses the 

conventional proportional navigation (ProNav) guidance law while exploiting the 

aerodynamic characteristics of the missile’s flight through the atmosphere.  The trajectory 

of the missile is controlled via the speed of a virtual target, which slides towards a 

predicted intercept point (PIP) during the midcourse phase. 

Lyapunov theory has also been used to improve conventional guidance schemes 

[43].  Recently, Yanushevsky and Boord improved the conventional ProNav guidance 

law by using Lyapunov theory.  In Reference 57, the guidance problem was formulated 

as a stability problem and a Lyapunov function was chosen as the square of the line-of-

sight (LOS) derivative.  Also, Lechevin and Rabbath have used a new set of state space 
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variables in the missile guidance problem which led to an easier Lyapunov-based 

synthesis, where trigonometric functions of the LOS and LOS derivative were used, see 

Reference 20.  This approach provides uniform, ultimate boundedness of the missile-

target system for the case of highly maneuvering targets.  Similar to the area of control, 

many recent papers have used the sliding mode technique for the derivation of guidance 

laws, see Refs. 28, 34, 37, and 41.  

Game theory has also made its contributions to the development of guidance laws 

for the target-intercept problem [1].  Ben-Asher and Levinson used a “trajectory shaping” 

term, which was added to the cost function by augmenting it with a quadratic-integral 

term of the state variables, see Reference 5.  It was shown that the trajectory shaping 

terms led to attenuation of the disturbance that is created by a random maneuvering 

target. 

 

 

2.3. ESTIMATION 

The concept of estimation and observers plays a crucial role in the target-intercept 

problem, for guidance laws are only as effective as the accuracy of the estimated states 

that are used in calculating the command acceleration, see Refs. 3, 4, 14, 17, 25, 37, 42, 

44, and 52.  Oshman and Arad investigated a new method to reduce the estimation delay 

in the target acceleration estimation problem.  The idea is based on the correlation 

existing between the target’s orientation, measured using an imaging sensor, and its 

evasive maneuvers.  Three estimators, including two extended Kalman filters (EKFs) and 

an interacting multiple model filter, were designed and used to demonstrate the 

performance improvement, see Reference 31. 

 

 

2.4. INTEGRATED GUIDANCE AND CONTROL 

In recent years, the missile-intercept problem has turned towards the concept of 

integrated guidance and control (IGC), in which the guidance and control problems were 

solved in a single architecture to promote synergy between the system components. 



7 

 

Lin and Yueh were the first  to address the use of an IGC design in the missile-

intercept problem [24].  An optimal controller was designed, which combined the 

guidance law and autopilot design into a single framework, to minimize a quadratic cost 

functional subject to the system dynamics.  The advantages gained in this optimal control 

law were minimization of, in the presence of unmodeled errors, the root mean square 

(RMS) miss distance, the terminal angle of attack, the pitch rate, and the control surface 

“flapping” rate.  However, these papers only dealt with non-maneuvering targets.  Evers 

et al. extended the concepts presented in Reference 24 to include a target acceleration 

model as a first order Markov process.  The resulting IGC law was expected to be less 

sensitive to the errors in estimating the current target acceleration, see Reference 16. 

Another IGC design was proposed by Menon and Ohlmeyer.  This design 

combined the feedback linearization method with the Linear Quadratic Regulator (LQR) 

technique to design a nonlinear integrated guidance and control law for homing missiles.  

The IGC design was presented in three formulations, which were based upon three 

different guidance objectives, then a 6DOF nonlinear dynamic model of an air-to-air 

homing missile was simulated.  Each of three IGC schemes achieved a specific favorable 

performance over the other, see Reference 27.  The disadvantages of feedback 

linearization are as follows:  beneficial nonlinearities may be completely removed and 

result in a large control and feedback linearization is only applicable to systems which are 

feedback linearizable. 

The IGC concept was further extended by employing the State Dependent Riccati 

Equation (SDRE) technique [9] to deal with a nonlinear model and 3-D motion.  The 

problem was cast as an infinite-horizon type problem, and a command generator was 

used to prevent actuator saturation and also to meet a terminal aspect angle constraint.  

The design was evaluated using a 6DOF nonlinear missile model with two types of target 

models: non-maneuvering targets and weaving targets.  The numerical results 

demonstrated the feasibility of designing IGC systems for the next generation high-

performance missile systems, see Reference 26.  Palumbo et al. at the Johns Hopkins 

Applied Physics Laboratory (publication restricted) have been working on IGC schemes 

using finite time SDRE based schemes [32]. 
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The downside to the SDRE approach to IGC design is that solving the state 

dependent Riccati equation on-line is very time-consuming, especially for a 6DOF 

missile with an integrated guidance design.  As the system order grows the SDRE 

approach requires significant computational capability, for on-line implementation, that is 

sometimes not feasible.  Xin and Balakrishnan successfully applied the -D method to 

the IGC design based on the same nonlinear missile model and achieved some good 

preliminary results.  The -D method is a sub-optimal control scheme that approximates 

the solution to the SDRE and applies disturbance terms to the SDRE in order to prevent 

large control inputs.  Compared to the SDRE approach, the -D controller gives a closed-

form solution and is easy to implement, see Reference 55. 

 

 

2.5. ORBIT DETERMINATION 

Early orbit determination methods relied on observational data obtained from 

ground-based telescopes.  Before dynamic filters were known, the data were processed by 

solving relatively complicated orbital equations of motion.  A popular method was 

developed by Gauss and used angle measurements only [48].  This method was 

successfully used, by Gauss, to predict the return of Ceres in 1801.  Over the years, the 

methods for obtaining the telescopic data have been refined, however the general 

processing methods have remained the same. 

With the introduction of dynamic filter concepts and accurate numerical 

integration schemes, more orbit determination options became available.  The most 

common method is to use the Global Positioning System (GPS) to obtain, through 

triangulation, the position of the GPS receiver.  The GPS uses a network of orbiting 

satellites which continually send radio signals to receivers with a direct line-of-sight.  The 

time required for the signal to reach the receiver is used to determine the range to the 

receiver, and with four available measurements, it is possible to determine the position of 

the receiver.  This system has been used successfully on several satellite missions [21, 22, 

33]. 
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Another method of orbit determination that has been used successfully is to 

measure the Earth’s magnetic field [13].  This particular method can be used not only for 

orbit determination, but also the determination of the satellite attitude.  This process was 

incorporated in the Magnetometer Navigation (MAGNAV) Inflight Experiment [45]. 
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3. -D FILTER FORMULATION 

3.1. CONTROL/FILTER PARALLELISM 

The concept of control is to use inputs, e.g. forces, torques, etc., to a system to 

change the behavior of the system in a desirable manner.  This is most readily 

accomplished through feedback control where the system inputs are calculated based 

upon the current state of the system.  Consider the general dynamic system of the form 

 

  , xx f x u   (1) 

 

where f is the dynamic model of the system, x is the system state vector, u is the system 

input vector, and x is a disturbance term that accounts for unmodeled dynamics and 

system uncertainties. 

Typically, the control problem is transformed into a regulator type problem where 

it is desired that x  0 as time progresses towards infinity.  For tracking problems, x 

would represent system tracking errors.  The control problem then becomes a matter of 

trying to find a suitable function, the control law, of the form 

 

  u g x  (2) 

 

which causes x  0 in the presence of disturbances. 

The problem encountered with feedback control is that complete knowledge of all 

system states is required for calculation of the input control.  The objective of a filter is to 

produce estimates for the system states by using a series of sensor measurements to 

effectively ”control” the state of a fictitious dynamic system, x̂ , so that x̂   x as time 

progresses towards infinity.  The measurements are given by 

 

  y h x v   (3) 
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where v is noise that affects the sensor measurements. 

Generally, the filter model is taken as the system model it is supposed to estimate 

plus an extra term to incorporate the measurement control. 

 

    ˆ ˆ ˆ, ,x f x u k y x   (4) 

 

By taking the difference between the estimated and actual states, the filter error 

dynamics are obtained as 

 

    ˆ, , ee f e u k y x    (5) 

 

where e is a disturbance term that accounts for modeling errors, system uncertainties, as 

well as errors incurred through system nonlinearities and measurement noise. 

In a parallel fashion to the regulator control problem, the filter problem has now 

become a matter of finding a suitable function, k, that causes e  0 in the presence of the 

disturbances.  Because of this parallelism, many of the techniques developed for system 

control can also be used for the filter application as well. 

 

 

3.2. STATE DEPENDANT RICATTI EQUATION FILTER (SDREF) 

The State Dependant Riccati Equation Filter (SDREF) makes use of the 

parallelism between control and filter problems.  The State Dependant Riccati Equation 

(SDRE) controller and its filter counterpart, SDREF, are described in the following 

subsections. 

3.2.1. Linear Systems.  The SDRE controller is an extension of the optimal  

Linear Quadratic Regulator (LQR) controller to nonlinear systems.  Consider the linear 

system described by 

 

 x Ax Bu   (6) 
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Additionally, a quadratic cost function is defined as 

 

  
0

T TJ x Qx u Ru dt


   (7) 

 

The LQR controller minimizes the cost function, J, with the control law 

 

 1 Tu R B Sx   (8) 

 

where S is the solution to the nonlinear Algebraic Riccati Equation (ARE) 

 

 10 T TQ SA A S SBR B S     (9) 

 

In a parallel manner, an optimal observer, the Kalman filter, is obtained from 

 

  1ˆ ˆ ˆTx Ax Bu SH W y Hx     (10) 

 

where the measurements are given from y = Hx + w, W is the power spectral density of 

the random noise, w, and S is the solution to the ARE 

 

 10 T TV AS SA SH W HS     (11) 

 

where V is the power spectral density for the system disturbances, x, referred to as 

process noise. 

3.2.2. Nonlinear Systems.  To extend the LQR controller to nonlinear systems,  

the nonlinear system is first cast into a linear-like structure. 

 

    x F x x G x u   (12) 
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Just as was done for the linear system, the control law that minimizes the cost 

function, J, is given by 

 

    1 Tu R G x S x x   

 

where S is the state-dependant solution to the State Dependant Riccati Equation (SDRE) 

 

                10 T TQ S x F x F x S x S x G x R G x S x     (13) 

  

Unlike the LQR controller, the SDRE controller requires that the SDRE be solved 

online at each time step since the coefficient matrices are continually changing as the 

system state changes. 

Using the parallelism between controllers and filters, the SDREF is obtained from 

 

          1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
T

x F x x G x u S x H x W y H x x       (14) 

 

where the measurements are cast in the linear-like structure, y = H(x)x + w, and S is the 

solution to the SDRE 

 

                1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 T TV F x S x S x F x S x H x W H x S x     (15) 

 

which must be solved continually online. 

 

 

3.3.  APPROXIMATION METHOD 

The problem with the SDREF is that the Riccati equation must be solved in real 

time, and this task requires a significant amount of computation time.  One method 
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proposed for solving the Riccati equation is known as the  approximation method.  This 

method works by assuming the solution to the Riccati equation as a power series in . 

 

    
0

ˆ ˆ, i

i

i

S x T x  




  (16) 

 

Next, the dynamic coefficient matrices are factored into constant and state dependent 

terms. 

 

  
 

0

ˆ
ˆ

A x
F x A 


   (17) 

  
 

0

ˆ
ˆ

C x
H x C 


   (18) 

 

By substituting Equations 16-18 into the Riccati equation and matching coefficients of i
, 

the following recursive equations are found. 

 

 1

0 0 0 0 0 0 0 00 T TV A T T A T C W C T     (19.0) 

 

   

         

1 1

1 0 0 0 0 0 0 0 0 1

1 1

0 0 0 0 0 0
ˆ ˆ ˆ ˆ

T
T T

T
T T

T A T C W C A T C W C T

T A x T C W C x A x T C W C x T

 

 

 

  

 
  

 (19.1) 

 

   

         

   

1 1

2 0 0 0 0 0 0 0 0 2

1 1

1 0 0 0 0 1

1

0 1 0 0 1 0

ˆ ˆ ˆ ˆ

ˆ ˆ

T
T T

T
T T

T

T A T C W C A T C W C T

T A x T C W C x A x T C W C x T

C x C x
C T T W C T T

 

 

 

 



  

 
  

   
     
   

 (19.2) 
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   

         

   

1 1

0 0 0 0 0 0 0 0

1 1

1 0 0 0 0 1

1
1

0 1 0 1

1

ˆ ˆ ˆ ˆ

ˆ ˆ

T
T T

n n

T
T T

n n

T
n

j j n j n j

j

T A T C W C A T C W C T

T A x T C W C x A x T C W C x T

C x C x
C T T W C T T

 

 

 

 

 




   



  

 
  

   
     

   


 (19.n) 

 

Equation 19.0 can be seen to be another Riccati equation, but unlike the SDRE is state 

independent and therefore need only be solved once offline.  Equations 19.1-n are linear 

Lyapunov equations which require significantly less computation time to solve.  Once 

Equations 19.0-n are solved, the solution to the SDRE is simply found from Equation 16.  

Since Equation 16 must be truncated at some point, this method produces only an 

approximate solution to the SDRE, but this approximate solution is obtained much more 

easily in real time. 

 

 

3.4. DISTURBANCE TERMS 

The  approximation method does have its downfalls.  Consider a system in 

which A(x) = x
2
.  If the initial system state, x0, is large, A(x) will also be large and will 

produce recursively larger Ti matrices.  This could pose numerical issues during the filter 

operation.  Additionally, the  approximation method does not have guaranteed 

convergence.  To remedy these issues, a sub-optimal filter is proposed that solves a 

modified version of the Riccati equation.  This new filter will be referred to as the -D 

filter herein. 

The -D filter adds a series of disturbance terms to The Riccati equation and 

solves the disturbed Riccati equation 

 

                  1

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 , j T T

j

j

V D x F x S x S x F x S x H x W H x S x 






 
     
 

 (20) 
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where the disturbance terms,  ˆ,jD x  , are design parameters and are chosen such that 

 

  
1

ˆ, j

j

j

D x V 




  (21) 

 

This condition ensures that the solution to the disturbed Riccati equation will closely 

approximate the solution to the SDRE.  Application of the  approximation method to the 

disturbed Riccati equation results in the following recursion equations. 

 

 1

0 0 0 0 0 0 0 00 T TV A T T A T C W C T     (22.0) 

 

   

         

1 1

1 0 0 0 0 0 0 0 0 1

1 1

0 0 0 0 0 0

1

ˆ ˆ ˆ ˆ

T
T T

T
T T

T A T C W C A T C W C T

T A x T C W C x A x T C W C x T
D

 

 

 

  

 
   

 (22.1) 

 

   

         

   

1 1

2 0 0 0 0 0 0 0 0 2

1 1

1 0 0 0 0 1

1

0 1 0 0 1 0 2

ˆ ˆ ˆ ˆ

ˆ ˆ

T
T T

T
T T

T

T A T C W C A T C W C T

T A x T C W C x A x T C W C x T

C x C x
C T T W C T T D

 

 

 

 



  

 
  

   
      
   

 (22.2) 

   

 

   

         

   

1 1

0 0 0 0 0 0 0 0

1 1

1 0 0 0 0 1

1
1

0 1 0 1

1

ˆ ˆ ˆ ˆ

ˆ ˆ

T
T T

n n

T
T T

n n

T
n

j j n j n j n

j

T A T C W C A T C W C T

T A x T C W C x A x T C W C x T

C x C x
C T T W C T T D

 

 

 

 

 




   



  

 
  

   
      

   


 (22.n) 

 

The disturbance terms can now be chosen so as to alleviate the problem of large initial 

observer gains.  These matrices are chosen as 
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  
   1 1

ˆ ˆ
ˆ, j

T

l t j j

j j

T A x A x T
D x k e

 

  
 

    
 

 (23) 

 

where each kj > 0 determines the canceling effect of the disturbance and the lj > 0 term 

allows the disturbance to die off as time progresses.  With the disturbance terms defined, 

Equations 22.0-n are solved, and Equation 16 then produces an appoximate solution to 

the SDRE. 

3.4.1. Proof of Convergence.  It can also be shown that proper selection of the  

constants, kj and lj, will also guarantee convergence of Equation 16.  This proof is 

provided in Appendix A. 

 

 

3.5. SUMMARY 

This subsection provides a summary of the implementation procedure for the -D 

filter technique. 

The first step is to cast the system model and measurement function into a linear-

like structure.  Furthermore, the state dependant coefficient matrices need to be factored 

into a constant and state dependant term.  This procedure is easily accomplished by 

setting A0 = F(x0) and C0 = H(x0), then A(x) and C(x) are simply the remainders.  At this 

point it is convenient to select the kj and lj parameters.  From experience in using the -D 

filter on various problems, the first three terms in Equation 16 are usually sufficient to 

produce the desired approximate solution to the SDRE. 

Next, Equation 22.0 is solved for T0.  This only needs to be performed once!  

Also, it is convenient to calculate and store the matrix K0 = A0 – T0C0
T
W

-1
C0 for later use.  

Then, at each time step, the matrices, Ti for i = 1,2,…, are recursively calculated from 

 

 1 1
0 0

T
T n n

n n n

T K KT
T K K T P D

 
        (24) 
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where the disturbance terms are calculated from Equation 23, K = A(x) – T0C0
T
W

-1
C(x), 

and 

 

 
   1

1

0 1 0 1

1

ˆ ˆ
T

n

j j n j n j

j

C x C x
P C T T W C T T

 




   



   
     

   
  (25) 

 

Again, experience with -D indicates that calculation up to T2 is typically 

sufficient.  Also, it should be noted that the variable  is simply a means to produce a 

power series solution for the SDRE, and the solution turns out to be independent of the 

choice of , therefore  = 1 is generally used. 

Finally, the solution to the SDRE is obtained from Equation 16 and the filter 

dynamic model is given by Equation 14. 
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4. EQUATIONS OF MOTION 

4.1. MISSILE ENGAGEMENT 

This section presents the dynamic equations of motion (EOMs) used in the missile 

intercept problem. 

4.1.1. 2-D Scenario.  The 2-D missile engagement is depicted in Figure 4.1  

below.  The states for the system are r, the relative range, and , the bearing angle 

measured from the initial line-of-sight (LOS), r0, to the current LOS. 

 

 

 

 

Figure 4.1.  2-D Missile Engagement 

 

 

 

Using polar coordinates, the EOMs for the 2-D scenario are 

 

 
2

r rt mr r a a    (26) 

 2 t mr r a a
 

      (27)  
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where at and am are the target and missile accelerations, respectively, with the r and  

subscripts indicating the radial and tangential components, respectively.  Since passive 

measurements are used, the system measurement is y =  + w. 

4.1.2. 3-D Scenario.  The 3-D missile engagement is depicted in Figure 4.2 

below.  The states for the system are r, the relative range, , the bearing angle measuring 

the azimuth, and , the bearing angle measuring the elevation.  The two bearing angles 

are measured from the initial LOS to the current LOS. 

 

 

 

 

Figure 4.2.  3-D Missile Engagement 

 

 

 

Using spherical coordinates, the EOMs for the 3-D scenario are 

 

  2 2 2cos
r rt mr r a a       (28) 

 cos 2 cos 2 sin t mr r r a a
 

           (29) 
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 2 sin cos 2 t mr r r a a
 

          (30) 

 

where at and am are the target and missile accelerations, respectively, with the r, , and  

subscripts indicating the radial, azimuth, and elevation components, respectively.  Since 

passive measurements are used, the system measurements are y = [  + w. 

 

 

4.2. TARGET ACCELERATION MODELING 

For the results presented in Section 7, the filter modeled the target acceleration as 

a first order Markov process.  This is to say 

 

 
r rt r t ra a v    (31) 

 t ta a v
      (32) 

 t ta a v
      (33) 

 

where vr, v, and v are random processes that account for the random nature of target 

evasive maneuvers. 

 

 

4.3. MISSILE ACTUATOR MODELING 

In any mechanical system, there is always a lag between commanded input and 

the actual input delivered to the system.  This lag is a result of the finite time it takes for 

control actuators to transition from one commanded input to another.  For the results 

presented in Section 7, the missile actuator lag is modeled as first order lag.  This is to 

say 

 

  u cu u u    (34) 
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where u is the actual input to the system and uc is the commanded input.  For the missile 

intercept problem studied in this thesis, u is the missile acceleration, am, and uc is the 

acceleration obtained from the guidance law. 

 

 

4.4. LINEAR-LIKE STRUCTURE 

This subsection presents the EOMs, found in Section 4.1, cast in a linear-like 

structure required for use of the -D filter.  There are many ways of factoring the system 

EOMs into a linear-like structure, but since the -D technique approximately solves the 

SDRE, the state dependent matrices must be locally detectable.  The factorization 

presented in this subsection is not unique, but does demonstrate sufficient performance 

when used in the -D filter. 

4.4.1. 2-D.  There are two degrees of freedom in the 2-D scenario and, with the  

target acceleration, the system has six separate states.  The state vector for the 2-D 

scenario is chosen to be 
r

T

t tx r r a a


     .  With the state as selected, F(x) 

and G(x) are chosen to be 

 

  
2

4

3 1 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0

0 0 0 2 / 0 1/

0 0 0 0 0

0 0 0 0 0

r

x
F x

x x x







 
 
 
 

  
 

 
 

  

 (35) 

  
1

0 0 1 0 0 0

0 0 0 1/ 0 0

T

G x
x

 
  

 
 (36) 

  

The x4
2
 term in the first column of F is important for ensuring local detectability 

in the system.  This is demonstrated in Section 5, which describes the formulation of the 

Observability Enhanced Guidance Law (OEGL). 
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In the 2-D scenario with passive measurements, the only measurement is the 

bearing angle, .  Since polar coordinates were used in developing the EOMs, the 

measurement function is already linear with H(x) given by 

 

    0 1 0 0 0 0H x   (37) 

 

4.4.2. 3-D.  There are three degrees of freedom in the 3-D scenario and, with the  

target acceleration, the system has nine separate states.  The state vector for the 3-D 

scenario is chosen to be 
r

T

t t tx r r a a a
 

    
 

.  With the state as 

selected, F(x) and G(x) are chosen to be 

 

        21 22 23

0 0

0 0

I

F x F x F x F x



 
 


 
  

 (38) 

  
1

0 0 1 0 0 0

0 0 0 1/ 0 0

T

G x
x

 
  

 
 (39) 

 

where 

 

  

2 2 2

5 3 6

21

cos 0 0

0 0 0

0 0 0

x x x

F x

 
 

  
 
 

 (40) 

  22 5 1 5 3

6 1 5 3 3

0 0 0

2 / 0 2 tan

2 / sin cos 0

F x x x x x

x x x x x

 
 

 
 
   

 (41) 

  23 1 3

1

1 0 0

0 1/ cos 0

0 0 1/

F x x x

x

 
 


 
  

 (42) 
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 = diag([r  ]), and I is the 3x3 identity matrix. 

The x5
2
cos

2
x3 + x6

2
 term in the first column of F21 is important for ensuring local 

detectability in the system.  This is demonstrated in Section 5, which describes the 

formulation of the Observability Enhanced Guidance Law (OEGL). 

In the 3-D scenario with passive measurements, the only measurements are the 

bearing angles,  and .  Since spherical coordinates were used in developing the EOMs, 

the measurement function is already linear with H(x) given by 

 

  
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
H x

 
  
 

 (43) 

 

 

4.5. LOW EARTH ORBIT MODEL 

In this section the dynamic model used by the -D filter for orbit determination is 

developed.  The model incorporates Earth’s gravity field, with the perturbation due to the 

Earth’s equatorial bulge, gravitational effects due to the Sun and the Moon, and 

atmospheric drag.  The acceleration for each perturbation is formulated, and the 

combined accelerations produce the desired dynamic model.  In the sections that follow, r 

and v are the satellite position and velocity, respectively, and r represents the satellite 

orbital radius. 

 

4.5.1. Earth’s gravitational field.  The Earth’s gravitational field is modeled to 

incorporate the two dominant effects: spherical and non-spherical.  The spherical effect 

results by assuming a spherically symmetric Earth and the dominant non-spherical effect 

results from the Earth’s equatorial bulge. 

 

4.5.1.1 Spherical effect.  With E representing the Earth’s gravitational 

parameter, the acceleration due to a spherical Earth is [48] 
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3

E
geo

r


 a r  (44) 

 

 

4.5.1.2 Non-spherical effect.  The Earth, however, is not spherically symmetric, 

and the most dominant non-spherical effect occurs as a result of the equatorial bulge.  

This effect is best modeled via the second zonal harmonic which produces an additional 

gravitational potential given as [48] 

 

  
2

2

2 2

1
3sin 1

2

E ErU J
r r




 
   

 
 (45) 

 

where rE is the mean equatorial radius of the Earth,  is the satellite latitude, and J2 is the 

second zonal harmonic coefficient.  The perturbative acceleration is found from the 

gradient of U2.  Using spherical coordinates the gradient is 

 

  
2 2

2 1 2

2 2 2 22

3
3sin 1 3 sin cos

2

E E E E
J

r r
U J J

r r r r

 
  

   
       

   
a u u  (46) 

 

where u
1
 and u

2
 are the 1

st
 and 2

nd
 contravariant basis vectors, respectively, in the 

spherical coordinate system.  In this system u
1
 = r/r and u

2
 = -sincosi-sinsinj+cosk 

= [-xzi-yzj+(x
2
+y

2
)k]/r

2
cos.  The basis vector u

2
 can be represented in matrix form as u

2
 

= Rr/r
2
cos where 
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With the basis vector in this form, the perturbative acceleration due to Earth’s 

equatorial bulge is 
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a r  (48) 

 

 

4.5.2. Third Body Effects.  The dominant third body perturbations acting on a 

satellite in low Earth orbit are from the Sun and the Moon. 

 

4.5.2.1 Sun.  The perturbation due to the Sun as a third body is modeled as [48]  

 

 
3 3

se st
sun S

se str r


 
  

 

r r
a  (49) 

 

where rst and rse are vectors from the Sun to the satellite and the Sun to the Earth, 

respectively, and rst and rse are the magnitudes of rst and rse, respectively.  Assuming that 

the satellite is in low Earth orbit, so that rst  rse  dS, the mean distance between the 

Earth and the Sun, and by noting that rst - rse = r, the perturbation due to the Sun’s gravity 

field can be approximated as 

 

 
3

S
sun

Sd


 a r  (50) 

 

 

4.5.2.2 Moon.  Following a similar procedure as was done for the Sun’s 

gravitational field, the perturbation due to the Moon’s gravity field can be approximated 

as 

 



27 

 

 
3

M
moon

Md


 a r  (51) 

 

where dM is the mean distance between the Earth and the Moon. 

 

4.5.3. Atmospheric Drag.  The force due to atmospheric drag has a magnitude of 

qScD where q is the dynamic pressure, q = Vrel
2
/2 where  is the atmospheric density and 

Vrel is the satellite velocity magnitude relative to the atmosphere, S is the reference area, 

and cD is the satellite drag coefficient.  The drag force acts in the opposite direction as the 

satellite velocity vector relative to the atmosphere, Vrel.  By defining the ballistic drag 

coefficient as  = m/ScD, with m being the satellite mass, the acceleration due to 

atmospheric drag is 

 

 
2

drag rel relV



 a V  (52) 

 

To model the atmosphere, assume an exponential density decay, 
/

0
sh h

e  
  

where 0 is the atmospheric density at sea level, h is the satellite altitude, and hs is the 

atmospheric scale height.  Also assume the atmosphere rotates with the Earth, so 

rel E  V v r  where E is the Earth’s angular velocity.  When written in matrix form, 

Vrel = v - Rr where 
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So the acceleration due to atmospheric drag is given by 
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  /0

2
sh h

drag rele V R






  a r r  (54) 

 

 

4.5.4. Net Acceleration.  The dynamic model is completed by combining all 

 accelerations from the previous sections, a = ageo + aJ2 + asun + amoon + adrag.  First, for 

simplification, define 
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Then, with I being the 3x3 identity matrix, the dynamic model to be used for orbit 

determination is given as 
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5. OBSERVABILITY ENHANCED GUIDANCE LAW (OEGL) 

5.1. GUIDANCE LAW LOGIC 

All guidance laws have the goal of driving the missile towards the target; the 

difference is how each law achieves that goal.  The proportional navigation guidance law 

is based off the idea of eliminating the rotation in the line-of-site (LOS), augmented 

proportional navigation uses the same philosophy while assuming constant target 

acceleration, and the linear optimal guidance law is developed by formulating the 

guidance problem into an optimal control problem, and minimizing the miss distance 

while limiting the required missile acceleration. 

The Observability Enhanced Guidance Law (OEGL), presented in this section, is 

designed to drive the missile to the target, just as other guidance laws, but it is to do so in 

such a way that the system observability is enhanced. 

 

  

5.2. OBSERVABILITY METRIC 

In order to enhance the system observability, it is required that a suitable metric 

be defined to quantify the system observability.  For linear systems described by 

Equation 6, it can be shown that the system is completely observable if and only if the 

observability matrix, O = [H
T
 A

2T
H

T
 … A

nT
H

T
]

T
, has full rank.  Since the SDRE and θ-D 

filters require a linear-like structure, the system is locally observable if the local 

observability matrix, O(x) = [H
T
(x) A

2T
(x)H

T
(x) … A

nT
(x)H

T
(x)]

T
, has full rank.  Therefore 

a suitable metric for the system observability is o = {|det[O(x)]|}, where det() is the 

matrix determinant, || is the absolute value function, and () is a strictly increasing 

function. 

5.2.1. 2-D Engagement.  To develop the OEGL, first consider the 2-D missile  

problem.  The state dependant coefficient matrices, A(x) and H(x), are chosen to be 
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 (59) 

  0 1 0 0H   (60) 

 

It is important to note that if A31 = 0, then the product HA
j
, for any j, would have 

zeros in the first column and thus immediately cause O(x) to be rank deficient.  With a 

little effort, the determinant of the local observability matrix for this system is found to be 

 

    
2

2det 4 /O x r    (61) 

 

Therefore, the observability metric for this system is selected to be 

 

 2 /o r   (62) 

 

5.2.2. Extension to 3-D.  Notice that the numerator in Equation 62 is simply A31,  

the term that must necessarily remain non-zero in order to maintain system observability.  

In a parallel fashion, the state dependant coefficient matrices for the 3-D system are 
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Notice again that if A41 = 0, the local observability matrix would be rank deficient 

because HA
j
, for any j, would have zeros in the first column.  By noting the similarity 

between the 2-D and 3-D cases, it can be reasonably assumed that a suitable observability 

metric for the 3-D system is 

 

  2 2 2cos /o r      (65) 

 

 

 

5.3. GUIDANCE LAW FORMULATION 

The goal of any guidance law is to drive the relative range, r, to zero, and in order 

for that to happen, the LOS angular rate,  , must decrease to zero.  This indicates that the 

observability metric approaches an indeterminate value as the missile approaches the 

target.  If 2  decreases faster than r, then the system becomes unobservable as o 

becomes zero, and if r decreases faster than 2 , the filter may encounter numerical 

instability as o becomes infinite.  As a result, the OEGL attempts to drive both   and r 

to zero simultaneously in such a way that o remains constant. 

In order to find the accelerations needed to keep o constant, first multiply 

Equation 65 by r and differentiate to get 

 

 2 22 2 cos 2 sin cosor            (66) 

 

which, using the 3-D EOMs, becomes 
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Thus, letting 5 cos / 2t ma a r
 

    and 5 / 2t ma a r
 

   will cause o to 

remain constant.  There is still one acceleration component left to find: 
rma .  Consider the 

radial EOM 

 

  2 2 2cos
r rt mr r a a       (30) 

 

Employing the feedback linearization control technique and using positive 

constants, k1 and k2, such that k2 < k1
2
, letting  2 2 2

1 2cos 2
r rt ma a r k r k r         

will cause r to strictly decrease towards zero given that dr/dt is initially negative.  

Therefore the missile accelerations, using the OEGL, are found from 

 

  2 2 2

1 2cos 2
r rm ta a r k r k r        (68.a) 

 5 cos / 2m ta a r
 

    (68.b) 

 5 / 2m ta a r
 

   (68.c) 

 

 

 

5.4. DISCUSSION OF OEGL 

It is interesting to note the similarity between the OEGL and the proportional 

navigation (ProNav) guidance law.  In ProNav, the missile acceleration is proportional to 

the closing velocity and the LOS angular rate.  In the OEGL, this is also true, assuming 

no target acceleration, with a proportionality constant of 5/2.  One downside to the 

OEGL, is that the target acceleration, which is not accurately known in reality, is 

required.  Despite this pitfall, initial results using the OEGL indicate excellent 

performance when the target acceleration is neglected altogether. 
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6. STAGGERED FILTER IMPLEMENTATION CONCEPT 

6.1. CONTINUOUS FILTERS 

A continuous filter, such as the -D filter, has dynamics that are dependent not 

only on the filter state, and time in some cases, but also on the current measurement.  

This is to say that in general 

 

    , , ,x f x t g x t z t      (69) 

 

where x is the filter state, t is time, and z is the measurement at t.  A problem with 

implementing a continuous filter is that the measurements are not known at all t, but 

instead are only known at discrete times, tn-1, tn, tn+1, etc.  The continuous filter 

implementation procedure proposed involves coupling a specific numerical integration 

scheme with the continuous filter so as to approximate the continuous filter in a discrete 

time sense.  Two integration methods are presented herein. 

 

6.2. RUNGE-KUTTA SECOND ORDER 

The first numerical integrator considered is the Runge-Kutta, 2
nd

 order (RK2) 

integrator.  In this method, a given system state at tn is propagated to tn+1 via the algebraic 

equations 

 

  1 ,n nk hf x t  (70) 

  2 1,n nk hf x k t h    (71) 

  1 1 2 / 2n nx x k k     (72) 

 

where xn and xn+1 are the filter states at tn and tn+1, respectively, and h = tn+1 – tn.  Notice 

that every time the forcing function, f, is evaluated, a measurement is needed via 

Equation 69, so by only propagating the filter states between measurement times, the 
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continuous filter can be approximately implemented in a discrete time sense to produce 

state estimates at the discrete measurement times. 

To increase the accuracy of the filter, a higher order integrator can be used, but 

some care must be taken.  This is addressed in the next section. 

 

6.3. RUNGE-KUTTA FOURTH ORDER 

The Runge-Kutta, 4
th

 order (RK4) integrator is a very commonly used integrator 

for its balance between numerical accuracy and required computations.  As a result, it 

poses as a prime candidate for the implementation of a continuous time filter in a discrete 

time sense.  As will be seen shortly, however, some care must be taken when using this 

integrator. 

When using the RK4 integrator, the state at tn is propagated to the time tn+1 via the 

algebraic equations 

 

  1 ,n nk hf x t  (73) 

  2 1 / 2, / 2n nk hf x k t h    (74) 

  3 2 / 2, / 2n nk hf x k t h    (75) 

  4 3 ,n nk hf x k t h    (76) 

  1 1 2 3 42 2 / 6n nx x k k k k       (77) 

 

where again xn and xn+1 are the filter states at tn and tn+1, respectively, and h = tn+1 – tn.  

Now consider what happens when the RK4 integrator is used to propagate state estimates 

between the discrete measurement times. 

In Figure 6.1, the available measurements are marked by X’s and the state 

estimates are marked by O’s.  Consider the case, indicated by the grey arrow, when the 

state estimate at tn is known and the RK4 integrator is used to propagate the state to tn+1.  

In this case a measurement is required at tn+1/2 = tn + h/2, but a measurement at this time 

is unavailable.  Now consider the line labeled x
1
 where the RK4 is used to propagate the 

state to tn+2, instead of tn+1.  In this case all required measurements are available for the 
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integration, but unfortunately the state at tn+1 is not estimated.  This problem is corrected 

by introducing the concept of a staggered filter. 

 

 

 

 

Figure 6.1.  Staggered Filter Concept 

 

 

 

Consider the case when two separate filters, indicated by lines x
1
 and x

2
, are used 

to propagate each state estimate between two measurement intervals.  If the two filters 

are operated in a staggered fashion, as depicted in Figure 6.1, a state estimate is obtained 

at each measurement time, albeit from alternating filters.  In the staggered filter concept, 

two identical filters are propagated independently of each other, but the filters share the 

available measurements.  Using this staggered filter concept, it is possible to implement a 

continuous filter in a discrete time sense. 
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7. COMPUTER SIMULATION 

7.1. OVERVIEW 

This section describes the computer simulation used in this thesis.  All 

programming was performed using the MATLAB software package, and a Runge-Kutta 

4
th

 order, fixed step size integration scheme was used to integrate the system EOMs.  

Figure 7.1 shows a flow diagram for the computer simulation. 

 

 

 

Figure 7.1.  Computer Simulation Program Flow 

 

 

 

The main program set the initial conditions for the missile, target, and filter states 

and initialized the selected filter (e. g. A0 and C0 for -D, P0 for EKF, etc.).  The main 

program then performs the numerical integration by sending the total system state vector 

(missile + target + filter) to the system EOMs function.  Once the integration was 

completed, the main program performed post-processing calculations and plotted the 

simulation results. 

When the system state vector is passed to the system EOMs, the target motion is 

calculated first as it is independent of the missile and filter motion.  Next, the current 

filter states are sent to the guidance law to obtain the commanded acceleration, which is 
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then sent to the missile EOMs.  Finally, the filter EOMs are computed and the entire 

system derivatives are returned to the main program for integration. 

 

 

7.2. NOISE MODEL 

As stated earlier, it is assumed that bearing only measurements are available.  The 

measurement noise covariances for  and  are obtained from the target-sensor model 

 

  
0

1/ 2
2 2 2/

r
r       (78) 

  
0

1/ 2
2 2 2/

r
r       (79) 

 

The first term represents the received signal power and varies inversely to the 

square of the range, r.  The received power signal is analogous to "glint" for a radar-

equipped missile system.  The second term represents the uncertainty in the target 

position.  In the case of a passive infrared sensor, the point of illumination may be shifted 

from its true location.  Possible causes for this phenomenon include atmospheric 

refraction and electromagnetic interference (EMI).  In the results to follow, ,r = ,r = 

0.0225 rad
2
 ft

2
 and ,0 = ,0 = 5.6x10

-9
 rad

2
. 

 

 

7.3. TARGET ACCELERATION MODEL 

In the results that follow, the target maneuvers in a weaving fashion.  The target’s 

acceleration is modeled as 

 

  
max

cost ta ta n  (80) 

 

where the maximum acceleration is set at 10g and the acceleration direction is 
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 /t t  n k v k v  (81) 

 

The unit vector k points in the zenith direction and  = 2f, where f is the target 

weave frequency. 

 

 

7.4. MISS DISTANCE EVALUATION 

In the missile engagement simulation a constant time step is used, but the point of 

closest approach most likely occurs in between time steps.  In order to calculate the actual 

miss distance, Euler integration is used during the final time step, which is calculated in 

the following manner. 

At the point of closest approach, the relative range vector is perpendicular to its 

derivative, so 

 

    1 1 1 10 k k k k k kt t          r r r r r r  (82) 

 

where the relative position, velocity, and acceleration are known at time level k-1.  The 

final time step is then calculated by solving the quadratic equation 

 

      2

1 1 1 1 1 1 1 1 0k k k k k k k kt t                r r r r r r r r  (83) 

 

where the correct root is positive and less than the fixed simulation step size.  The 

intercept simulation is run at the set time step until the estimated time to go is less than 

the fixed step size, at which point the above procedure is used to locate the point of 

closest approach. 
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7.5. FILTER PARAMETERS 

The filter parameters used in this thesis are V = diag([.1 ft, 2 deg, 2 deg, .2 ft/s, 10 

deg/s, 10 deg/s, 100 ft/s
2
, 100 ft/s

2
, 100 ft/s

2
])

2
, W = diag([10 deg, .1 deg])

2
, and r =  = 

 = 2.5.  The state dependent coefficient matrices, used in the -D filter, were factored 

by using A0 = F(x0) and C0 = H(x0). 

 

 

7.6. MONTE CARLO SIMULATIONS 

Because random processes that are present in the missile-intercept problem, in 

order to fully evaluate the performance of a filter/guidance law combination, one needs to 

look at the expected value and covariance of the miss distance instead of just the miss 

distance of a single simulation.  In the results presented in Section 7, Monte Carlo 

simulations were performed in order to estimate the expected value and covariance of the 

miss distance. 

For each Monte Carlo simulation, 50 trial runs were performed for each 

engagement scenario, and the miss distance for each run was recorded.  At the 

completion of the 50 trials, the miss distances were averaged to estimate the expected 

value of the miss distance, and the standard deviation of the finite set was used as the 

estimate for the miss distance covariance. 

 

 

7.7. ORBIT SIMULATION 

For the results presented in the next section, simulated measurements were 

created using a high fidelity orbit model incorporating the GRACE Gravity Model with 

degree and order 12, solar radiation pressure, atmospheric drag with the Harris-Priester 

atmospheric density model, and solar and lunar third-body gravitational effects.  For the 

measurement model, it was assumed that the GPS receiver provides the global satellite 

point position measurement in the Earth-centered inertial reference frame at the J2000 

epoch.  While not all receivers provide these data directly, most provide enough 

information from which a small amount of preprocessing will produce the desired result. 
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For all figures presented in the next section, the satellite initial Keplerian orbital 

elements were set with a semimajor axis of 6778 km, an eccentricity of 0.01, and 

inclination of 45 degrees, 20 degrees for the right ascension of the ascending node 

(RAAN), and 50 degrees for the argument of periapsis.  The initial true anomaly for the 

satellite was set at 100 degrees.  The filter was initialized by applying Battin’s method for 

solving Lambert’s problem [48] to two measurements spaced one minute apart.  After the 

filter was initialized, measurements with five meter precision were taken at a frequency 

of one Hertz.  On the first stage of the RK4 filter, the RK2 integrator was used to stagger 

the two separate filters, after which the RK4 integrator was used as new measurements 

were taken. 

The -D filter was tuned with W = 10
-9

I6 and V = 25/310
-6

I3, where I3 and I6 are 

the 3x3 and 6x6 identity matrices, respectively.  The disturbance terms were selected 

with k1 = 1.01, k2 = 0.99, and l1 = l2 = 1, where only the first three terms were used in 

calculating the approximate solution to the Riccati equation. 
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8. RESULTS AND CONCLUSIONS 

8.1. 2-D RESULTS 

The results presented in this subsection demonstrate the effectiveness of the -D 

filter coupled with the linear optimal guidance law (LOGL), when applied to the 2-D 

target-intercept problem.  For the results presented in this subsection, unless otherwise 

stated, the initial position of the missile is the origin and the velocity is 4850 ft/s 

downrange and -8.4684 ft/s cross range.  Also, the initial position of the target is 10000 ft 

downrange and -300 ft cross range, and the initial target velocity is 3000 ft/s downrange 

and 40 ft/s cross range. 

8.1.1. -D Filter Performance.  Figures 8.1-8.3 show the filter states compared  

to the actual states.  The filter is able to estimate four of the six observer states.  The filter 

inability to estimate the target acceleration is a result of not being able to accurately 

model the target acceleration as well as not being able to measure the acceleration. 
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Figure 8.1.  Estimates for r and  
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Figure 8.2.  Estimates for r  and   
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Figure 8.3.  Estimates for Target Acceleration 

 

 

 

8.1.2. Data Smoothing.  Figures 8.4-8.6 show the same simulation as in Figs.  

8.1-8.3, but with the addition of data smoothing.  One result of the smoothing process is 

that many, if not all, of the system states are obtained from the polynomial fit.  These 
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additional state estimates can be used to “reset” the filter states so as to eliminate initial 

filter mismatch.  As can be seen in the figures, the estimator produces considerably better 

estimates with the addition of smoothing and state reset. 
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Figure 8.4.  Estimates for r and  with Smoothing and Reset 
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Figure 8.5.  Estimates for r  and   with Smoothing and Reset 
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Figure 8.6.  Estimates for Target Acceleration with Smoothing and Reset 

 

 

 

 

8.2. 3-D RESULTS 

The results presented in this subsection demonstrate the effectiveness of the -D 

filter coupled with the observability enhanced guidance law (OEGL), when applied to the 

3-D target-intercept problem.  For the results presented in this subsection, unless 

otherwise stated, the initial position of the missile is the origin and the velocity is 3800 

ft/s downrange, 3800 ft/s cross range, and 3800 ft/s vertical.  Also, the initial position of 

the target is 55000 ft downrange, 55000 ft cross range, and 55000 ft vertical, and the 

initial target velocity is -5000 ft/s downrange, -8200 ft/s cross range, and -2000 ft/s 

vertical.  This corresponds to an initial range of approximately 95000 ft (or 29 km), an 

initial closing velocity of approximately 14300 ft/s (or 4.4 km/s), and an aspect angle of 

3.77 degrees. 
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8.2.1. -D Filter Using Linear Optimal Guidance.  Figures 8.7-8.12 show a  

typical simulation with a weave frequency of 1 Hz and using the Linear Optimal 

Guidance Law (LOGL) with data smoothing.  The LOGL is summarized in Appendix B 

and the data smoothing procedure is found in Appendix C.  Figures 8.8-8.10 show the 

filter estimates of the system states.  The filter is able to accurately estimate the bearing 

angles as is to be expected since those are being measured.  Figure 8.8 indicates that the 

filter is able to reasonably estimate the range and range rate with some errors beginning 

to occur as the missile nears the target.  This is to be expected as the system is nearing a 

singularity in the EOM’s and numerical instability becomes much more likely. 

Without smoothing, the filter would estimate the target acceleration as 

approximately zero due to the first order Markov process used in the filter dynamics, but 

as can be seen in Figure 8.10 the smoothing process produces slightly better results for 

the target accelerations.  Figure 8.11 shows the missile accelerations obtained from using 

the LOGL. 

Finally, Figure 8.12 shows expected miss distances as the weave frequency is 

varied.  The -D filter, when coupled with the LOGL, produces fairly consistent miss 

distances with a tendency to increase as the weave frequency increases. 
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Figure 8.7.  Missile Engagement Using LOGL 
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Figure 8.8.  Range and Range Rate Estimates Using LOGL 
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Figure 8.9.  Bearing Angle Estimates Using LOGL 
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Figure 8.10.  Target Acceleration Estimates Using LOGL 
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Figure 8.11.  Missile Accelerations Using LOGL 



48 

 

 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
40

60

80

100

120

140

160

180

E
x
p
e
c
te

d
 M

is
s
 D

is
ta

n
c
e
 (

ft
)

Weave Frequency (Hz)
 

Figure 8.12.  Expected Miss Distance Using LOGL 

 

 

8.2.2. -D Filter Using Observability Enhanced Guidance.  Figures 8.13-8.18  

show a typical simulation with a weave frequency of 1 Hz and using the Observability 

Enhanced Guidance Law (OEGL).  Comparison studies indicated that better results are 

obtained when the OEGL is used without the data smoothing process augmenting the 

filter.  Figures 8.14-8.16 show the filter estimates of the system states.  The filter is able 

to accurately estimate the bearing angles as is to be expected since those are being 

measured.  Furthermore, Figure 8.14 indicates that the filter is able to accurately estimate 

the range and range rate, more so than when using the LOGL. 

Figure 8.17 shows the missile accelerations obtained from using the OEGL.  

Notice that the OEGL requires accelerations of the same magnitude as the LOGL.  

Finally, Figure 8.18 shows expected miss distances as the weave frequency is varied.  

The -D filter, when coupled with the OEGL, produces much smaller miss distances than 

does the filter coupled with the LOGL. 
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Figure 8.13.  Missile Engagement Using OEGL 
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Figure 8.14.  Range and Range Rate Estimates Using OEGL 
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Figure 8.15.  Bearing Angle Estimates Using OEGL 
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Figure 8.16.  Target Acceleration Estimates Using OEGL 
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Figure 8.17.  Missile Accelerations Using OEGL 
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Figure 8.18.  Expected Miss Distance Using OEGL 
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8.2.3. Expected Miss Distance Comparison.  The expected miss distances, using  

the LOGL and OEGL, have been compared.  The OEGL produces more consistent and 

smaller miss distances as weave frequency varies, as is shown in Table 7.1. 

 

 

Table 7.1.  Comparison of Expected Miss Distance 

Weave Frequency 

(Hz) 

Expected Miss Distance (ft) 

LOGL OEGL 

1.0 51.04 ± 0.15 1.61 ± 0.01 

1.5 54.65 ± 0.25 4.15 ± 0.40 

2.0 80.82 ± 0.67 2.70 ± 0.01 

2.5 106.05 ± 1.74 2.87 ± 2.15 

3.0 115.23 ± 3.67 1.37 ± 0.26 

4.0 149.80 ± 14.21 2.11 ± 1.72 

5.0 152.34 ± 14.93 1.12 ± 0.99 

 

 

 

8.2.4. Initial Heading Error Analysis.  The effect of initial heading error on the 

expected miss distances using the -D filter and the Extended Kalman Filter (EKF) has 

been studied.  The heading error is defined as the angle between the missile velocity and 

the direction to the predicted impact point (PIP).  For this analysis, the missile velocity 

was rotated to a specified initial heading error while its position, along with the target 

position and velocity, remained fixed.  The results are presented in Table 7.2. 

 

 

 

Table 7.2.  Heading Error Effect on Expected Miss Distance 

Initial Heading Error 

(deg) 

Expected Miss Distance (ft) 

-D EKF 

5 1.45 ± 0.20 6.21 ± 0.00 

10 2.09 ± 0.19 3.52 ± 3.37e-4 

15 6.00 ± 0.01 0.75 ± 3.35e-4 

20 5.90 ± 0.01 3.76 ± 4.85e-4 

25 4.15 ± 0.00 5.76 ± 4.45e-4 

30 309.53 ± 0.00 308.68 ± 0.01 
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The missile acceleration was limited to 30g’s.  It is clear that, as the initial 

heading error nears 30 degrees, the limit on the missile acceleration prohibits the missile 

from successfully turning onto the collision course. 

 

 

8.3. ORBIT DETERMINATION RESULTS 

This section provides results of the orbit determination algorithm consisting of the 

-D filter implemented using the Staggered Filter Concept.  Results using the standard 

common EKF are also provided for comparison. 

 

8.3.1. Staggered -D Filter with RK4 Integration.  Figures 8.19-8.22 show the 

filter performance when using the staggered filter with RK4 integration.  From the results 

it is evident that the -D filter, coupled with the RK4 integrator, is capable of estimating 

the satellite orbit after approximately 30 minutes.  It is also evident that while the 

measurement accuracy was five meters, the staggered -D filter with RK4 integration is 

capable of obtaining approximately three meters of positional accuracy.  It is clear from 

Figures 8.19 and 8.20 that the dynamic model used in the filter, coupled with the 

continuous nature of the -D filter, allows for accurate estimation of the shape and 

orientation of the satellite’s orbit. 

 

8.3.2. Extended Kalman Filter.  For evaluation purposes, the staggered -D 

filter method was compared to a commonly used estimation method: the Extended 

Kalman Filter (EKF).  For this method the filter dynamic model was propagated between 

the measurement times using RK4 integration and without measurement updates.  In 

addition to state propagation an estimate for the error covariance was also propagated 

using 

 

 TP PF FP W    (84) 
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Figure 8.19.  Orbital Shape Using RK4 
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Figure 8.20.  Orbital Orientation Using RK4 
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Figure 8.21.  Filter Position/Velocity Errors Using RK4 
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Figure 8.22.  RSS Position/Velocity Errors Using RK4 
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where F is the gradient of the dynamic forcing function.  At each measurement time, after 

the states were propagated, the state estimate and error covariance were updated using 

 

  x̂ x K z H x x      (85) 

  P̂ I KH P   (86) 

 

where the filter gain, K, was calculated from 

 

  
1

T TK PH HPH V


   (87) 

 

In the EKF simulation, the initial error covariance estimate was set to P = 10
2
I6.  

Figures 8.23-8.26 show the results for the EKF simulation.  After approximately 5 

minutes the EKF has reached its steady state with a position error standard deviation of 

approximate 5 meters.  By comparing Figures 8.22 and 8.26 it is clear that while the EKF 

converges faster to steady state than does the -D, the proposed staggered -D filter 

achieves greater positional accuracy.  It is also clear a similar trend occurs in the filter 

velocity estimates; however the additional velocity accuracy is not as pronounced as is 

the positional accuracy. 

 

 

8.4. CONCLUSIONS 

This thesis presented the -D filter formulation as applied to the 3D missile 

intercept problem.  The simulations used in this study assumed a passive measurement 

system with bearing angles being the only measured data.  Additionally, a comparison 

was made between the linear optimal guidance law and a different guidance law based on 

the idea of enhancing system observability.  The results presented in this report indicate 

considerable promise for the use of the -D filter in the missile intercept problem. 
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Figure 8.23.  Orbital Shape Using EKF 
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Figure 8.24.  Orbital Orientation Using EKF 
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Figure 8.25.  Filter Position/Velocity Errors Using EKF 
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Figure 8.26.  RSS Position/Velocity Errors Using EKF 
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Additionally, this thesis presented a novel orbit determination scheme that is set 

to be implemented aboard the Missouri S&T M-SAT mission.  This method uses a new 

nonlinear filter, -D, that is implemented using the staggered filter concept.  This 

combination allows the continuous -D filter to be implemented in a discrete time sense.  

This orbit determination scheme was compared to the commonly used Extended Kalman 

Filter and the results presented indicate that while the proposed scheme takes a little 

longer to converge, it arrives at a lower steady state RSS positional error. 
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APPENDIX A. 

-D PROOF OF CONVERGENCE 
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In order to prove that the series iTi(x,)i converges, it is convenient to eliminate 

the variable .  This can be done by defining, ˆ i

i iT T , after which Equations 22 become 

 

 1

0 0 0 0 0 0 0 0
ˆ ˆ ˆ ˆ0 T TV A T T A T C W C T     (A1.0) 

 
   
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1 1
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 (A1.2) 
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 (A1.n) 

 

where the disturbance terms, Di, are now chosen in the form 

 

       1 1
ˆ ˆˆ ˆ ˆjl t T

j j j jD x k e T A x A x T


     (A2) 

 

Now, if the series ˆ
i iT  converges, then so does the series iTi(x,)i.  Based on 

Weierstrass’s Theorem
18

, if a set of real numbers, Si, exists such that ˆ
i iS T  for all i, |||| 

being the maxtrix norm, and the series S is a convergent series, then ˆ
i iT  is also a 

convergent series. 
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Begin by considering a linear Lyapunov equation, A
T
P + PA = -Q, where the 

matrix A is Hurwitz.  The solution to this equation is bounded by
29

 

 

  max/ 2 symP Q A  
 

 (A3) 

 

where Asym = (A + A
T
)/2.  Given the selected disturbance terms, it can be shown that the 

norm of 1T̂  is bounded by 

 

 1 1 1 0
ˆ ˆ2T CC T  (A4) 

 

where 1

1 11
l tk e 

   and 

 

    
1

1 1

max 0 0 0 0 0 0 0 0
ˆ ˆ

T
T TC A T C W C A T C W C


      

  
 (A5) 

  
ˆ

ˆmaxA
x

C A x  (A6) 

  1

0 0
ˆ

ˆ ˆmax T

C
x

C T C W C x  (A7) 

 1 1/A CC C C    (A8) 

 

assuming A(x) and C(x) are bounded (true in most engineering applications).  Continuing 

along the same line, the bound on 2T̂  is 

 

 2

2 1 2 1 2 0
ˆ ˆ4T C C C T   (A9) 

 

where 
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 1

0 0 0

TC C W C  (A10) 

    1

ˆ
ˆ ˆmax T

B
x

C C x W C x  (A11) 

  2 1 1 2 0 2 1 1 22 / / 2 / 4A C BC C C C C C CC         (A12) 

 

In a similar fashion, one can show that 

 

 1 1 0
ˆ ˆ2n n

n n nT C C C T   (A13) 

 

Letting 1 1 0
ˆ2n n

n n nS C C C T   implies that Sn/Sn-1 = 2CCn|n|, so in order for the 

series SiSi to converge, 2CCn|n| < 1.  Therefore, by choosing the parameters kn and ln so 

that |n| < 1/2CCn, will guarantee convergence of iTi(x,)i. 
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APPENDIX B. 

LINEAR OPTIMAL GUIDANCE LAW 
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The linear optimal guidance law (LOGL) is derived in the following manner.  

Consider the 1-D intercept geometry shown in Figure B.1.  The direction, r0, corresponds 

to the initial line-of-sight (LOS) and r is the current relative range. 

 

 

 

 

Figure B.1.  1-D Engagement Scenario 

 

 

 

The goal is to find the missile acceleration, 
xma , that minimizes the cost function, 
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2

2
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J r a dt    (B1) 

 

where the first term minimizes the miss distance, the second term minimizes the energy 

input to the system, and tgo is the time remaining until the point of closest approach 

(PCA).  The value, tgo, can be estimated as /got r r .  The dynamic equations for the 

system are given by 
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 (B2) 

 

where the target acceleration has been modeled as a first order Markov process using x.  

The solution to this optimal control problem is 
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 1 2 3x xm x x ta C r C v C a    (B3) 

 

where N = 3tgo
3
/(3 + tgo

3
) and 

 

 2

1 / goC N t  (B4) 

 1 / goC N t  (B5) 
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3 1 /x got

x go x goC N e t t


 

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This concept can easily be extended to 3-D.  The missile acceleration using the 

LOGL is then 

 

 
tm r v a ta C r C v C a    (B7) 

 

where Cr = C1I and Cv = C2I, I being the 3x3 identity matrix, and 
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where () = x, y, z. 
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APPENDIX C. 

DATA SMOOTHING 
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Since nearly every guidance law requires some knowledge of the target 

acceleration, a technique has been applied to the filtering process that utilizes the system 

dynamics to augment the filter estimate of the target acceleration. 

For the 3-D equations of motion, the target acceleration is given by 

 

  2 2 2cos
r rt ma r r a       (C1)  

 cos 2 cos 2 sint ma r r r a
 

          (C2) 

 2 sin cos 2t ma r r r a
 

         (C3) 

 

It is assumed that the acceleration of the missile is known.  In order to calculate the target 

acceleration, estimates of d
2
r/dt

2
, d

2/dt
2
, and d

2/dt
2
 are needed.  To obtain these 

estimates, a polynomial is fitted, in a least squares sense, to the filter data. 

 For a set time window in the past,  = {tk tk-1 tk-2 … tk-n}, the filter state estimates, 

r, , and , at those times are recorded.  Then a polynomial, s = iait
i
 for i = 0, 1, …, m  

n + 1, where s  {r  }, is fit to the data s| so as to minimize 
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The polynomial coefficients are calculated as 
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  
1

T Ta T T T S


  (C6) 

 

The approximation polynomial can now be differentiated as needed to obtain the required 

estimates for calculating the target acceleration. 

 An alternate approach to the data smoothing is to perform the smoothing in 

Cartesian coordinates instead of spherical coordinates.  The reason for doing so is that 

errors encountered through the smoothing process using spherical coordinates become 

magnified when substituted into Equations C1-C3.  To remedy this, the states, {r  }, 

are converted to {x y z}, and the least squares fit is applied to the Cartesian coordinates.  

Then the target acceleration can be estimated using 

 

 
x xt ma x a   (C7) 

 
y yt ma y a   (C8) 

 
z zt ma z a   (C9) 

 

Then the target acceleration is converted back to spherical coordinates using a simple 

rotation. 

 One note to consider is that sensor measurements, instead of filter states, should 

be used in the data smoothing process whenever possible.  Doing so eliminates the effect 

of filter mismatch that may exist initially in the system. 
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