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ABSTRACT

This thesis proposes two types of Hybrid Automatic Repeat reQuest (HARQ) schemes

for the Controller Area Network (CAN) to combat Electro-Magnetic Interference (EMI) and

improve network efficiency. The proposed HARQ schemes encode the original CAN data

frames by a Reed-Solomon (R-S) code so that burst errors due to EMI may be corrected at

the receive nodes. Therefore, the probability of error frames is reduced, thereby reducing

the probability of retransmission. Hence, the network efficiency of the system is improved.

HARQ Type-I employs a 20-bit R-S code to encode the CAN frame and transmits the R-S

code along with the CAN frame. A variant of HARQ Type-I is also studied, which replaces

the error-detection code, Cyclic Redundancy Check (CRC) in the original CAN frame by

an error-correction cyclic code. HARQ Type-II either uses a 20-bit R-S code alone or a

combination of 20-bit and 40-bit R-S codes. This method transmits the original CAN frame

in normal conditions. Only when the receiver detects an error frame, it sends a negative

acknowledgement (NACK) and the transmitter will send the parity bits of the error frames.

Computer simulations show that the proposed HARQ schemes have several advantages

over the conventional ARQ currently used in the CAN bus. First, the error-correction capa-

bility in HARQ schemes enables the receivers to correct random or burst errors when they are

spread over 2 R-S symbols. The burst length can be of any length less than 11 bits. Second,

the HARQ scheme reduces the probability of retransmission by 100% for burst lengths shorter

than 7 bits. When the probability of burst error occurrence is 40%, the probability of retrans-

mission is reduced by 30% for burst lengths of 8 bits and 11% for burst lengths of 10 bits.

Third, the proposed HARQ schemes require minimal changes in the CAN frame structure or

the communication protocol and are easy to implement in practical hardware.
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1. INTRODUCTION

1.1. INTRODUCTION TO THE PROBLEM

The Controller Area Network (CAN) bus has evolved as a de facto standard in automo-

tive and industrial networks. It is a serial communication protocol which supports distributed

real-time control systems with a high level of fidelity [1]. Current applications of CAN in-

clude data transfer between sensors and actuators on automobiles, off-road machinery, and

industrial control systems [2]. CAN bus is the backbone network for communication between

networking controllers for engine timing, transmission, chassis and brakes, networking compo-

nents of chassis electronics, and electronics which makes vehicles more comfortable (lighting

control, air-conditioning, central locking, and seat and mirror adjustment). In industrial con-

trol systems, manufacturers have chosen to use CAN in medical apparatus, textile machines,

special-purpose machinery and elevator controls. The serial bus system of the CAN bus is

particularly well suited for networking intelligent I/O devices as well as sensors and actuators

within a machine or a plant [3]. An example of a typical automotive CAN network is shown

in Fig. 1.1 [4].

Complexity of the CAN applications has been increasing due to recent trends in the

automotive industry. The number of nodes connected to the CAN bus has been increasing

dramatically as a result of these complex applications. Vehicle automation require large

numbers of sensors communicating with each other in real-time. Hence, these applications
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Figure 1.1 Example of Typical Automotive CAN Network



2

require high data rates to effectively communicate. Additionally, other parameters like the

data throughput, latency demands, immunity to noise, and error detection capability are

challenging the current capabilities of the CAN bus.

Standards and increased reliability in stringent Electro-Magnetic Interference (EMI) and

Electrostatic Discharge (ESD) environments are challenging CAN system designers [4]. In gen-

eral, a CAN transceiver must be able to survive high energy transients produced by a number

of disturbances, including load dump, inductive load switching, relay contact chatter, and

ignition system noise. In an automotive application the load dump is the severest transient.

It occurs when the battery is inadvertently disconnected from the generator [4]. External

interference, including cell phone signals, radio signals, etc., can also contribute to data cor-

ruption, and thereby inefficiency. The effects of EMI on the CAN bus can reduce efficiency

by introducing bit errors into the frame. These bit errors can be single-bit or burst errors, de-

pending on the severity of the EMI. Currently, the CAN bus uses differential bus twisted pair

cables along with error-detection techniques to combat the EMI effects to a certain extent, if

not completely.

The data throughput of the CAN network is a major concern in its current applications.

The CAN network speed determines the kinds of application for which it be used. Small scale

applications like general automobile applications use a low speed CAN bus with a data rate

of 125 kbps. Large scale applications, like the off-road machinery, use a high speed CAN bus

with a data rate of 1 Mbps. These applications utilize the CAN bus network not only because

of the lower cost, but also because the network is robust [5]. Reliable transmission of the CAN

frame is the priority of the CAN network. The CAN bus uses Carrier Sense Multiple Access

with Bitwise Arbitration (CSMA/BA) MAC layer protocol to transmit the frames. The CAN

transceivers check whether the frame is received correctly or not, but they do not concentrate

on how many times the frame was retransmitted in order to reach the destination. In harsh

environments, the effective bandwidth utilized by the high speed CAN bus is approximately

30%.

Five major factors affect the efficiency of the CAN bus. They are:

1. Electro-Magnetic Interference caused by the many magnetic relays and communication

cables in a vehicle.

2. Inefficient stop-and-wait retransmission technique.

3. Broadcast systems which require retransmission when any node raises an error flag.

4. High bit overhead in each CAN frame.

5. Length of the CAN bus.
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The types of errors created by interference could be single-bit errors or burst errors. This

is one of the major factors contributing to the inefficiency of the CAN bus. As the number

of inductive loads increase, the probability of a frame getting corrupted by EMI increases.

In order to handle with the affect of EMI, the current CAN network implements three error-

detection mechanisms at the message level: Cyclic Redundancy Check (CRC), Frame Check,

and Acknowledgement Errors. It also implements two error-detection mechanisms at the bit

level: Bit Monitoring and Bit Stuffing [3]. The corrupted frames are checked for errors at the

receiver and if errors are detected, the receiver node raises an error flag and sends a request to

the transmitter asking for retransmission [6]. Increase in the number of retransmissions has a

huge impact on the throughput of the entire network.

The main aim of this work is to study the effect of Electro-Magnetic Interference (EMI)

on the CAN bus and to propose new techniques to reduce its impact on the CAN bus perfor-

mance.

1.2. MY APPROACH AND CONTRIBUTION

Current methods to combat EMI can detect errors, but not correct them. They ensure

error free transmissions between the transmitter and the receiver at the expense of throughput.

The Automatic Repeat reQuest (ARQ) protocol used in the CAN bus for retransmission of

corrupted frames is very simple to implement, but inherently inefficient because of the idle time

spent for acknowledgement and time spent for retransmission [7]. Hence, when the channel

error rate is high, the number of retransmissions reduce the throughput of the network, which

results in an efficiency close to 30% for a high speed CAN bus network. In applications like

vehicle automation, this speed is insufficient to keep up with the current requirements. Hence,

it is very important to improve the speed of the CAN bus without compromise to its error

immunity. Implementing Forward Error-Correction (FEC) codes in conjunction with error-

detection codes is a valuable solution to the problem. The function of the FEC system is

to correct the possible errors and reduce the number of retransmissions, thereby increasing

system performance. When error-correction alone is used to handle the errors, a decoding

error is committed if the receiver either fails to detect or correct the errors. In both cases,

a wrong word is delivered to the receiver [7]. Hence, use of FEC alone fails to maintain the

reliability standards of the original bus. In order to overcome the drawbacks of the ARQ and

FEC schemes, a hybrid technique of combining both the ARQ and FEC into one scheme is

used. This technique is desicribed as Hybrid Automatic Repeat reQuest (HARQ) [7]. The

FEC system corrects the possible errors in the frame and then the ARQ system detects if

there are errors present in the decoded frame. In the case of error detection, retransmission

of the frame is requested [8]. Hence, proper combination of the FEC and the ARQ schemes
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provide higher reliability than the FEC system alone and higher throughput than the ARQ

system alone.

To design a FEC scheme to be used on the CAN bus, its important to find the impact

of EMI on the CAN bus performance. Experimental tests were conducted by Fei Ren, an

Electrical Engineering graduate student in one of the Electrical Engineering Laboratory G23

at the University of Missouri-Rolla. These tests were part of a systematic study of the CAN

bus environment and the types of errors that can occur in such harsh environments. Fei

programmed two 8051 micro-controllers to depict the CAN nodes and the connection between

them to depict the CAN bus. One of these two boards was set as a transmitter and the

other as a receiver. The connecting wire was an unshielded twisted pair copper cable wrapped

around with a cable connecting the switch and the magnetic relay to emulate the environment

of an inductive load on a CAN network. Communication was set up between the nodes and

the magnetic relay was turned on and off manually using a switch. The CAN frame was

observed at the receiver using digital oscilloscope to measure the EMI in terms of the number

of bits corrupted. This provided valuable information for designing a new technique to combat

the errors in the CAN environment. A similar environment has been emulated in simulation

using MATLAB. Various simulations were performed to study the performance of the CAN

bus using the proposed new techniques.

Five different methods of using error correction codes on the CAN bus have been dis-

cussed in this thesis. The first idea is to use cyclic codes to correct the bit errors instead

of the Cyclic Redundancy Check (CRC). Two different versions of cyclic codes are proposed

(Cyclic117, Cyclic60). Performance analysis in terms of error correcting capability and com-

putational complexity are discussed in detail. Hybrid ARQ has been used as the basis for the

other four methods proposed in this thesis. Two different versions of HARQ exist and they

are termed as HARQ Type-I and HARQ Type-II. The second method proposed is based on

HARQ Type-I in which Reed-Solomon codes have been used to correct the errors and CRC

error-detection method has been used to detect the errors. This method is named as HARQ

Type-I R-S20/CRC. The third method proposed is a slight modification to the HARQ Type-I

R-S20/CRC method. The CRC bits in the CAN frame have been replaced by cyclic error-

correction bits discussed in the first method to provide additional error-correction capability.

This method is termed as HARQ Type-I R-S20/Cyclic. Performance analysis of these two

variants of HARQ Type-I is provided in the results section. HARQ Type-II provides the same

error-correction performance as HARQ Type-I but with a higher bandwidth efficiency. Two

variants of HARQ Type-II are proposed in this thesis. Fourth method therefore, is to use

the HARQ Type-II technique with the R-S codes and the CRC method for error-correction

and detection respectively. This method is named as HARQ Type-II R-S20/CRC. The fifth
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method proposes to use a 40 bit parity R-S code along with the 20 bit parity method proposed

earlier. This method is named as HARQ Type-II R-S40/CRC. In some cases when the R-S20

parity bits are not sufficient to correct the error frame, additional error-correction parity bits

might correct the frame. Therefore, instead of transmitting the entire frame for the HARQ

Type-I R-S20/CRC method or the HARQ Type-II R-S20/CRC method, these additional 40

R-S parity bits are transmitted. Simulation results to compare the bandwidth efficiency of

each of these methods along with the conditions in which each of the method can be used are

explained in the results and conclusion section.

Errors caused by EMI in the CAN bus are single-bit or burst errors depending on the

environment in which it is being operated. For all the simulation results provided in this

thesis, the burst lengths are assumed to vary from 0 bits to 10 bits, where 0 signifies no error

condition and 10 bit burst represents worst conditions. The error-correction scheme has to be

competent enough to correct these errors in most of the cases, if not in every situation. The

first method (Cyclic60) of replacing the CRC bits with cyclic codes is capable of correcting

single bit errors, but does not correct burst type errors. The second method (HARQ Type-I

R-S20/CRC) corrects 100% of the frames for burst lengths shorter than 7 bits. When the

probability of a CAN frame getting corrupted is 40%, the HARQ Type-I R-S20/CRC scheme

requires 30% fewer frame retransmissions for burst lengths of 8 bits and 11% fewer for burst

lengths of 10 bits. This is a significant contribution as the number of retransmissions will be

reduced for all burst errors less than 7 bits and will be less than 50% for burst lengths greater

than 7 bits. The HARQ Type-II methods improve the performance of the system in terms of

bandwidth efficiency. Simulation results show that the percentage overhead for HARQ Type-II

R-S20/CRC is always lower than that of the HARQ Type-I R-S20/CRC, when the probability

of error is lower than 60%. At low channel error rate, the bit overhead of the HARQ Type-II

is still less than its corresponding HARQ Type-I and also less than its corresponding ARQ

scheme.
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2. BACKGROUND

2.1. CONTROLLER AREA NETWORK (CAN)

The Controller Area Network (CAN) is a serial communication protocol supporting

many distributed real-time applications with a high level of fidelity and security [1]. The

applications of the CAN bus ranges from high speed to low speed communication networks.

In applications like vehicle automation, sensors in the anti-skidding brake system require high

speed communication to avoid the danger of delayed response. The bit rates for these kinds

of applications are up to 1Mbps. For other applications, such as temperature control in a

building, high bit rates are not required, so the bit rate of the CAN network used is 125 kbps.

The CAN bus with data rates reaching the 1 Mbps mark is called a High Speed CAN bus.

The other version of CAN bus, with speeds not exceeding 125 kbps, is called a Low Speed

CAN bus.

2.1.1. CAN-Protocol and Principles of Data Exchange. The CAN protocol is

an international standard defined in ISO 11898 [6]. Communication in the CAN bus is based

on a broadcast mechanism in which one node transmits the frames and all the other nodes

receive them depending on their urgency. Transmission of the CAN frame is message oriented

rather than address oriented. The content of the message is designated by an identifier that is

unique throughout the network [3]. Every CAN frame also has a priority level assigned to its

particular message. This priority assignment is an important process which prevents several

nodes competing for bus arbitration [6].

The content based communication protocol used by the CAN bus provides a high degree

of flexibility. It is very easy to add a node to the existing CAN network without making any

hardware or software modifications if the added nodes are receive only nodes. The multicast

communication mechanism and the concept of message filtering enable any number of nodes

to simultaneously receive the messages and take necessary action [1].

In real-time data transmission some of the frequently or fast varying data (e.g., engine

load), needs to be transmitted more often and with higher priority and less delay than other

less important messages (e.g., engine temperature). The priority level of the message is de-

termined by its identifier. These identifiers are defined during system design in the form of

binary values with the least binary value having the highest priority. Bus access conflicts

are handled by the Bit-wise Arbitration (BA) of the identifiers involved in the conflict. In

Bit-wise Arbitration the dominant mode overwrites the recessive mode. Hence, all nodes in

the dominant receive and recessive transmission modes lose the competition to access the bus.

All the nodes in the dominant receive mode become active receivers of the message and do not
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Figure 2.1 Layered Structure of a CAN node

attempt to transmit their message until the bus is available again. The system performance

determines the order of importance of the transmitted messages [6].

To achieve design transparency and implementation flexibility the CAN node has been

subdivided into three different layers [1]:

1. The CAN object layer

2. The CAN transfer layer

3. The physical layer

Layered structure of the CAN node is shown in Fig 2.1 [1]. All the major services

and functions offered by the data link layer in the ISO/OSI architecture are handled by the

object and the transfer layers in the CAN. The object layer provides an interface to the

external hardware and deals with decisions regarding which messages are to be transmitted

and which messages should be used. As the name implies, the transfer layer deals with the

transfer protocol, i.e., control the framing, arbitration of the messages, error handling, etc.

The physical layer deals with the transfer of the bits between the different nodes with respect

to all electrical properties. These three layers make sure that the communication between the

nodes is transparent to the end user or the external applications.
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Each of the functions mentioned in the structured layout of the CAN node contribute to

handling error free communication between the nodes. The functions handled by these three

different layers are described in the next section to give an overview of the CAN operation

and different constituents of the CAN protocol.

2.1.2. Information Routing. Content based message routing in the CAN bus

leads to several other consequences which can be listed as follows:

1. System Flexibility

2. Message Routing

3. Multicast Communication protocol

4. Data Consistency

5. Bit Rate

6. Priorities Definition

7. Multimaster

8. Remote Data Request

9. Arbitration

10. Safety

Message routing in the CAN bus is content based with an identifier at the beginning of

the message. This type of routing enables multiple receiver nodes to simultaneously receive

data. Multicast communication demands that the data be consistent because messages should

be compatible with all the nodes accessing the data. The bit rates of the CAN bus can be

different for different systems. However, for a given system the bit rate is uniform and fixed

[1].

The priorities have to be set when the network is initially designed. These priorities

determine which unit has to gain control of the network for data transmission. A system in

which any node can transmit data when the channel is available for transmission is called a

multi-master system. When two or more systems try to access the network at the same time

Bit-wise Arbitration resolves the conflict with the help of the identifier.

Safety is an important parameter in calculating the performance metrics of the CAN.

In order to achieve utmost safety powerful error-detection techniques have been implemented

on each of the CAN node. Different error-detection techniques on the CAN nodes include:



9

• Bit Monitoring

• Bit Stuffing

• Message Frame Check or Form Error

• Acknowledgement Error

• Cyclic Redundancy Check

2.1.3. Message Transfer in CAN. Messages are transferred in the form of frames.

These frames are categorized into four different types depending on their function.

1. Data Frame

2. Remote Frame

3. Error Frame

4. Overload Frame

The data frame carries the data from the transmitter to the receiver, while the remote frame

is transmitted by any unit to request for the frame with the same identifier. An error frame

is transmitted by any node that detects an error on the bus. An overload frame is used to

create an intentional delay between the transmissions of two frames. This overload frame is

obsolete now and is hardly used in any application.

1. Data Frame: The CAN data frame is composed of seven different bit fields. They

are: Start of Frame, Arbitration Field, Control Field, Data Field, Cyclic Redundancy Check

Field, Acknowledge Field, End of Frame.

Two different versions of the CAN data frame, Standard Format and Extended Format

are available depending on the number of bits in the Identifier field. Figure 2.2 and Fig. 2.3

show the Standard and Extended CAN frames respectively [1]. The Standard CAN frame

contains 108 bits and the Extended CAN frame has 126 bits. The Identifier field has 11 bits

in the Standard format and 29 bits in the Extended format. The greater number of bits in

the identifier of the extended frame format provides access to a higher number of the CAN

nodes. For all the simulations described in this thesis, the CAN frame length is assumed to be

128 bits. Certain applications use a CAN frame of 126 bits, neglecting two bits in the header.

Two optional bits are present in the header of both versions of CAN frames: the Reserved bit

(R0) and the IDentifier Extension bit (IDE) in the standard frame and the Substitute Remote

Request (SRR) and the IDentifier Extension bit (IDE) in the extended frame structure. An
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Figure 2.2 Standard CAN Frame with Individual Fields Shown

Figure 2.3 Extended CAN Frame with Individual Fields Shown

Table 2.1 Bit arrangement of the Data Length field

No: of Data Bytes DLC3 DLC2 DLC1 DLC0
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0

additional bit present in the tail called the CRC delimiter, is common to both versions of the

CAN frame [9].

The data field length in the CAN frame is 64 bits. Four bits before the data field define

its length. These four bits are either recessive or dominant, depending on the length of the

data field. Table 2.1 gives all the possible combinations of the arrangements of the bits in

these four bit positions [1].

Cyclic Redundancy Check (CRC) Field: This field consists of the CRC sequence

followed by the CRC delimiter. The CRC sequence is derived from a cyclic redundancy code

best suited for frames with fewer than 127 bits. All the fields including the Start of Frame, the

Arbitration Field, the Control Field, and the Data Field are divided by the CRC polynomial.

The remainder of this division is the CRC sequence, which is appended to the CAN frame
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and transmitted over the bus [1]. The expression for the CRC polynomial used by CAN to

generate the CRC sequence is given by

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1 (2.1)

2. Remote Frame: Any node can request transmission of a particular frame from the

transmitter by sending a Remote Frame. The Remote Frame is same as the Data Frame,

except that it has no data field. The Remote Transmission Request bit (RTR) is dominant

for a Data Frame and recessive for a Remote Frame.

3. Error Frame: An Error Frame consists of two different fields. The first field is

given by the superposition of error flags raised by different stations. The second field is the

Error Delimiter. There are two kinds of error flags: active and passive error flags. The Active

error flag consists of six consecutive dominant bits. The Passive error flag has six consecutive

recessive bits, unless they have been overwritten by six dominant bits by another active node.

4. Overload Frame: This is an obsolete frame which is no longer used in the current

CAN bus. This frame consists of two fields, the Overload Flag and the Overload Delimiter

and is used to introduce an intentional delay between two successive frame transmissions [1].

2.2. ERROR CORRECTION TECHNIQUES

Errors can be handled in different ways. Simply neglect the errors and live with them,

detect an error in the received data and inform the transmitter that an error was received and

request the transmitter to re-transmit the data again, or a third option is to detect the error

and use some technique to correct it, if possible.

The first of the methods is a crude way of saying live with the errors and get as much

information as you can. The second method mentioned above is implemented in practice

and is called Automatic Repeat reQuest (ARQ). This is the current standard used by the

CAN bus. In this method, the receiver checks for a particular set of conditions that the

received data has to meet. If the received data does not meet the set of rules, it detects

an error and informs the transmitter. The transmitter then retransmits the frame and these

retransmissions reduce bandwidth efficiency. Transmitters have to maintain a record of all the

previous transmissions. The third method mentioned is receiving increasing attention. This

method reduces the number of retransmissions and can also be used in applications where

there is no reverse channel of communication. Additional bits are added to each frame, but

the receiver is now capable of finding and correcting the errors in the received frame.

The Forward Error Correction (FEC) technique adds controlled redundancy to the data

for the receiver to correct the errors. Hence, the data required to convey the same information
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is increased. For all real-time applications the data rate has to be increased which, in turn

demands more bandwidth. At the cost of this increased bandwidth, the chance of receiving

an erroneous frame is reduced. If the application is not real time then FEC can be used with

certain allowable delay. Linear block codes are a major category in FEC techniques.

2.2.1. Linear Block Codes. Linear Block Codes are a class of parity check codes

that can be characterized by the (n, k) notation [10]. The transmitter encodes a block of k bits

into a block of n bits. The k bits can be arranged into 2k messages called the k-tuples. Each of

the 2k messages has to be encoded as an n bit sequence. There are 2n sequences possible and

these sequences form what is called the n-tuples. Each of the 2k k-tuples is mapped uniquely

to one of the 2k code words of the n-tuples.

Linear block codes can be executed with little complexity or calculation, an easy decoding

technique as compared to other methods. Among the different types of linear codes available,

cyclic codes are the most popular.

Cyclic Codes: As the name implies, Cyclic Codes are cyclic in nature, i.e., if C is a

codeword for the given data set, then C with the bits rotated by k positions is also a codeword

for that set of data.

If C = C1C2C3Cn−1Cn is a code word then,

C = CnC1C2C3Cn−1

and C = Cn−1CnC1C2C3Cn−2 are also valid code words.

The n and k values determine the amount of overhead that each one of these sequences

has to carry. If the value of k = 3 and the value of n = 7, there is an overhead of 4 bits for

every message frame. The ratio k/n is called the rate of the code.

For any number m greater than or equal to 3, the values of n and k are determined by

n = 2m − 1; k = n−m ⇒ 2m − 1−m. (2.2)

Example: For m = 3 we have n = 7 and k = 3. If the message is of length k = 3, the

encoded message conveying the same information is of length 7 with the advantage that it can

decode and correct all single bit errors in the received sequence. The rate of this code is 3/7,

which is less than 1/2, so, this code might have better error handling performance, but the

bandwidth utilization is not high. If m = 4, n = 15 and k = 11 with a code rate of 11/15, the

rate in this case is greater than 1/2, but the error correction capability will not be as good

as the m = 3 case. So, the values of n and k determine the efficiency of the cyclic codes in

terms of error-correction capability and bandwidth efficiency.

The capacity of any linear code to correct an error is determined by a factor called the

hamming distance. The weight of any vector is given the number of ones in that data vector.
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Table 2.2 Number of Correctable and Detectable Errors

Correction(X) Detection(Y)
0 4
1 3
2 2

The distance between any two vectors is given by the count of the number of bits by which

they differ. The distance can be found by calculating the XOR sum between vectors A and

B and then finding the weight of the sum [10]. This can be represented in the form of an

equation as

D(A,B) = W (XOR(A, B)) (2.3)

where D(A,B) is the distance between the vectors A and B, W (.) is the weight of the vector,

and XOR(A, B) is the XOR sum of the vectors A and B. So, in a given set of code words we

have a minimum distance (Dmin) that is always maintained in between any two vectors. This

Dmin determines the number of errors that can be corrected or the number of errors that can

be detected by a linear code.

The relation between the number of errors that can be corrected (X) and the number

of errors that can be detected (Y ) and the minimum distance Dmin is given by

Dmin = 2 ∗X + 1. (2.4)

Dmin ≥ X + Y + 1; X ≥ Y (2.5)

This implies that, if Dmin = 5, the number of errors that can be corrected and number

of errors that can be detected can be arranged in the combinations given in Table 2.2. The

performance of cyclic codes in terms of error correction capability can be observed in Fig.

2.4, which compares the Bit Error Rate (BER) with and without coding plotted to the SNR

values ranging from 0 to 10.

2.2.2. Combating Burst Errors. Simulations of the cyclic codes performance

showed that they can correct random bit errors, but in the case of burst errors these cyclic

codes do not offer good performance.

Two common approaches are used to combat burst errors. The first one is the interleaver

approach. A linear interleaver feeds the data to be transmitted into rows of a matrix and then

reads out from columns. At the receiver the received data is fed into the matrix column-wise
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Figure 2.4 Comparison of BER curves without and with cyclic coding n = 7; k = 3

and read out row-wise. This de-interleaved data is decoded using normal decoding techniques.

The process of interleaving shifts the burst error and converts it into a single bit error, i.e.,

separates adjacent bits by R positions, where R is the number of rows in the interleaver

matrix. Figure 2.5 shows the performance improvement when the data is interleaved.

Use of an interleaver solves the problem of burst errors to an extent, but the disadvantage

of this method is the delay in de-interleaving the received sequence. The receiver has to wait

until it receives the frames that contribute to the data sequence and has to save all the received

data until it receives all the interleaved frames to decode the original data sequence. Hence, a

method in which the receiver can decode the data, depending only on the current frame needs

to be designed. The second approach to combat burst errors is to use Reed-Solomon codes.

Reed-Solomon codes offer good error-correction capability in the burst error environment.

Reed-Solomon(R-S) codes are also a kind of block codes. R-S codes are non-binary

cyclic codes with symbols made up of m-bit sequences where m is any positive integer having

a value greater than 2 [10]. R-S(n, k) codes for m-bit symbols exists for all values of n and k,
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satisfying the condition given by

0 < k < n < 2m + 2 (2.6)

where k is the number of symbols being encoded and n is the number of symbols in the

encoded block. The values of n and k can be selected according to the requirement. The

relation between the values of (n, k) can be given as

(n, k) = (2m − 1, 2m − 1− 2t) (2.7)

where t determines the number of symbols that the code can correct. Encoded block size n

is determined by the expression given in Eq. 2.7 and k can be any value less than n with the

only condition that n− k should be even. The value of t is given by

t =
n− k

2
(2.8)
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Figure 2.5 Comparison of BER curves for Cyclic codes with and without interleaving
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Figure 2.6 Frame in which 25 bits corrupt 4 symbols

Why R-S Codes Perform Well Against Burst Noise? Consider an example of

(n, k) = (255, 247) R-S code in which each symbol is made of m = 8 bits. Since n−k = 8, Eq.

2.8 indicates that this code can correct four symbols in a block of 255 symbols. Imagine a noise

burst corrupts 25 bits of the frame in a transmission. This burst of 25 bits can corrupt exactly

four symbols and, because the code has the capability of correcting all the four symbol errors

without any regard to the damage suffered by each of the symbol, the original bit sequence

can be recovered. Thus, if a symbol is wrong it might be corrupted in all the bit positions or

it might be corrupted at only one bit position [10]. Figure 2.6 clearly shows how 25 bit errors

can be distributed over four symbols. Eight bits are corrupted in each of the three symbols

and only one bit is corrupted in the fourth symbol. All four symbol errors can be corrected

using Reed-Solomon error correction method mentioned above.

Hence, Reed-Solomon codes have been used to counter the burst errors created by EMI

in the CAN environment. The procedure followed and the design values of the R-S codes used

for this particular application are discussed in detail in Section. 4.

2.3. ARQ AND HYBRID ARQ

This section introduces the three different types of Automatic Repeat reQuest (ARQ)

protocols.

1. Automatic Repeat reQuest (ARQ)

2. Hybrid Automatic Repeat reQuest Type-I (HARQ Type-I)

3. Hybrid Automatic Repeat reQuest Type-II (HARQ Type-II)

2.3.1. Automatic Repeat Request (ARQ). Error detection is an important er-

ror control technique used by many communication systems these days. Automatic Repeat

reQuest (ARQ) is a widely used error control technique because of its simplicity of use. ARQ

relies on an error detection code such as the Cyclic Redundancy Check (CRC). Importance of

the ARQ scheme is to turn an unreliable data link into a reliable one. In general, when a source
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Figure 2.7 ARQ Protocol with the Data Flow and Acknowledgements

has a stream of data to transmit, it breaks up the stream of data into smaller packets and

transmits the individual packets. Each of these packets are encoded using the error-detection

coding technique and transmitted through the noisy channel [11]. When the packet is re-

ceived, the receiver computes the syndrome of the error detection code used. If the syndrome

for the received packet is zero, it implies that the packet is error free and the receiver accepts

the packet, separating the parity bits. The receiver sends a positive acknowledgment to the

transmitter to confirm the reception of the packet. If the acknowledgement is not received,

the transmitter waits for a pre-determined amount of time and then retransmits the packet.

If the syndrome is not equal to zero, receiver detects an error in the received packet and sends

a negative acknowledgement to the transmitter requesting retransmission of the corrupted

packet [7]. The receiver discards the corrupted packet and all further packets until the cor-

rupted packet is correctly received. An erroneous packet is delivered to the destination node

only when the error-detection scheme fails to detect the error. A proper error detecting code

can greatly reduce the probability of receiving an erroneous frame. However, the throughput

of the network is not constant as the increase in error rate reduces the throughput of the

network drastically [7]. The flow of the data frames along with their acknowledgements for

the ARQ scheme is shown in Fig. 2.7.

2.3.2. Hybrid Automatic Repeat Request(HARQ) Type-I. Retransmission

of the data frames is a waste of bandwidth and reduces the throughput of the network. The



18

Transmitter

(Error 

Detection 
and Error 

Correction - 

FEC)

Receiver

Error 

Detection 
and Error 

Correction - 

FEC)

Positive Acknowledgement

Frame 1 (Detection + FEC)

Frame 2 Corrupted (Detection + FEC)

Positive Acknowledgement

Frame 3 Corrupted (Detection + FEC)

Negative Acknowledgement

Frame 3 Retransmission

Positive Acknowledgement
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number of retransmissions should be reduced with the same level of reliability in order to

improve the throughput of the network. Hybrid Automatic Repeat reQuest (HARQ) is a

technique which implements Forward Error Correction (FEC), along with the error-detection

used by the ARQ schemes. Hybrid ARQ offers the potential for better performance if the ARQ

and the FEC schemes are properly designed. Either convolutional codes or block codes can be

used in the FEC depending on the performance criteria. Due to combination of the two basic

error control schemes, it is called Hybrid ARQ. In this system the purpose of the FEC is to

reduce the frequency of retransmissions by correcting the frequently recurring error patterns.

The purpose of the error-detection technique is to maintain the reliability of the network.

When an error pattern that cannot be corrected is received, the receiver detects the error and

requests for a retransmission. As a result of this combination, the throughput of the network

increases [7]. HARQ schemes are classified into two categories: HARQ Type-I and HARQ

Type-II. HARQ Type-I uses a codeword designed for simultaneous correction and detection.

Hence, in this case the CAN frame contains the error-detection and correction parity bits. In

this method the receiver attempts to correct the error upon reception of a frame and then

checks for further error. If the packet does not have any errors after the FEC decoding, the
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frame is accepted, removing the additional parity bits. If an error is detected in spite of the

FEC decoding, then the receiver requests retransmission. In this method the bit overhead

per packet is increased because the packet has to contain both the error-detection and the

error-correction parity bits. Hence, when the channel error rate is low this method induces

more overhead than it’s corresponding ARQ scheme. But, when the error rate increases, the

ARQ scheme performance reduces drastically thereby proving the importance of this method

[7]. The flow of the data frames along with their acknowledgements for HARQ Type-I is

shown in Fig. 2.8.

2.3.3. Hybrid Automatic Repeat Request(HARQ) Type-II. Transmitting all

the frames with error-correction parity bits might lead to higher bit overhead in a low channel

error rate case. Hence, a new method has to be used in order to reduce the bit overhead

added by the extra parity bits. A solution to this problem is to transmit the error-correction

parity bits once the error is detected. This method is called the HARQ Type-II [12]. Simply

put, in this technique all the packets are encoded using error-correction codes such as the

Reed-Solomon(R-S) or the Bose Chaudhuri Hocquenghem (BCH) codes. But, the packet
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with error-detection parity bits alone is sent across the channel without the error-correction

parity bits. The receiver node computes the syndrome of the received frame and checks for

errors using the CRC method. If no error is detected, the frame is accepted. If an error is

detected, then the receiver asks the transmitter to transmit the error-correction parity bits.

The receiver saves the corrupted frame until it receives the correction parity bits. Once it

receives them, it decodes the frame using the error-correction technique. Upon decoding, the

receiver checks for errors once again using the CRC technique and if the error still exists, then

the receiver asks for the retransmission of the entire frame. Hence, when the probability of

occurrence of error is low, the HARQ Type-II method reduces the bit overhead because every

frame need not have the parity bits transmitted, proving that it is more efficient to reduce

the bit overhead introduced by the HARQ Type-I method. The flow of the data frames along

with their acknowledgements for HARQ Type-II is shown in Fig. 2.9.
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3. ERROR HANDLING METHODS IN CAN

Error handling has already been built in the CAN bus and t is an important aspect

of evaluating the the CAN bus performance as a standard communication protocol in many

applications [13]. The error handling schemes used by the CAN bus aim at detecting the

errors in the frames transmitted over the bus and requests the transmitter retransmit the

erroneous frames. Any number of nodes can be connected to the CAN bus depending on the

application. Every node connected to the CAN bus has the capability of detecting an error

within the frame. The node that detected the error raises an error flag, halting the traffic on

the bus and all the other nodes connected to the bus discard the frame [13].

At the transmitter end, the frame is considered valid if there is no error until the End of

Frame. If a corruption is detected, retransmission follows automatically, according to priority.

The frame is considered valid from the receiver point of view if the frame has no errors until

the next to last bit of the End of Frame [1].

3.1. ERROR DETECTION MECHANISMS USED BY CAN

CAN protocol uses five different ways error detecting techniques defined in its protocol

with two of them working at the bit level and other three working at the message level. The

different mechanisms used by CAN are listed below [13].

1. Bit Monitoring

2. Bit Stuffing

3. Frame Check or Form Error

4. Acknowledgement Check

5. Cyclic Redundancy Check

3.1.1. Bit Monitoring. The transmitting unit that sends a bit on the bus also

monitors the bus continuously. A bit error is detected when the bit value monitored on the

bus is different from the bit value that is transmitted [1].

3.1.2. Bit Stuffing. Frame segments including the Start of Frame, the Arbitration

Field, the Control Field, the Data Field, and the CRC Sequence are all coded using a method

called Bit Stuffing. Whenever a CAN transmitter detects five consecutive identical bits in the

bit stream to be transmitted it automatically inserts a complementary bit at the sixth bit

position in the actual transmitted bit stream. Hence, a stuff error is raised whenever the 6th

bit of equal level is detected in the message field [1].
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3.1.3. Frame Check or Form Error. Several fields of the CAN frame have fixed

formats. This implies that the CAN standard defines exactly what levels have to occur at

what positions. Hence, when a CAN node detects a wrong bit level at one of these fixed fields,

it raises a Form Error flag [13].

3.1.4. Acknowledgement Check. An acknowledgement error is detected by a

transmitter whenever it does not monitor a ‘dominant’ bit during the Acknowledge Slot [1].

3.1.5. Cyclic Redundancy Check. Cyclic codes, which are widely used for error-

detection, are typically called the Cyclic Redundancy Check (CRC) codes. These are very

popular and most commonly used error-detection codes in many communication systems [14].

CRC codes generally use a generator polynomial to generate the sequence called the CRC

sequence. A polynomial of degree equal to 15 is used by the CAN bus to detect errors that

occur in data transmission.

With this CRC, the transmitter calculates a check sum for the CRC sequence from the

Start of Frame bit until the end of Data Field [15]. A CRC error has to be detected if the

result calculated by the receiver is not the same as that received in the CRC sequence. In

this case the receiver discards the message and transmits negative acknowledgement to the

transmitter. The CRC checksum used in the CAN bus is for error-detection, but not used

for error-correction. The hamming distance for this particular CRC code is 6. With this

hamming distance it is possible to detect up to 5 single bit errors that are randomly scattered

about the message or burst errors up to a length of 15 bits [15].

Every CAN node will detect errors within each message using the methods defined above.

The discovering node will raise an error flag, halting the bus traffic, and all the others nodes

read the error flag and discard the current frame [13].

3.2. FAULT CONFINEMENT

With respect to fault confinement, the CAN bus nodes can be in any of the three states:

Error Active, Error Passive or Bus Off. An Error Active unit can normally take part in bus

communication and can send an active error flag when an error has been detected on the bus.

This halts the communication on the bus and all nodes discard the message immediately when

the active error flag is raised. An Error Passive unit takes part in the normal communication

of the bus and can only send a Passive Error flag but not an Active Error flag. The Bus Off

unit is not allowed to have any influence on the bus [1].

Two counters are used to determine the state of every CAN node: a Transmit Error

Counter (TEC) and a Receive Error Counter (REC). Every node starts off in the Error Active

mode. The node updates the counter every time an error is encountered. The Transmit Error

Counter is increased by eight when the transmitter identifies an error in the transmitted frame.



23

The Receive Error Counter is incremented by one when any receiving node identifies an error

in the frame. If either of these counters rises above 127, the node will move to the Error

Passive state. If the Transmit Error Counter reaches a value of 255, the node moves to the

Bus Off mode [13].

The rules for incrementing the error counters are complex and unique for both transmit

and receive error flags. For example, imagine that a node ‘A’ connected to the CAN bus

does not function properly. For every transmit error, the TEC of the node ‘A’ is incremented

by 8 and the node goes into the Error Passive mode when the count reaches 127 (i.e., after

16 attempts). Once the node is in Error Passive mode it only transmits Passive Error flags,

which do not interfere with the traffic on the bus. The counter on node ‘A’ keeps increasing

and when the count reaches 255 the node goes into the Bus Off mode. This state is reached

by node ‘A’ lot before the count of the other nodes reach 127. Henceforth, the count of the

receive nodes is decreased by 1 every time a correct frame receive [13].

The CAN controller’s method of automatically retransmitting messages when errors

occur can be annoying at times [13]. The above fault confinement makes sure that the CAN

bus communication is not affected by a malfunctioning node. Low speed CAN applications

have high performance in maintaining the speeds required for the data transfer. For high

speed CAN these errors have to be reduced because the number of retransmissions reduce the

performance of the CAN bus.
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4. PROPOSED HARQ METHODS AND SIMULATIONS

As discussed in the previous section, the methods used by the CAN bus to handle

errors do not effectively maintain the data rates at the required level in severe interference

environments or when data rates increase beyond 1Mbps. Hence, a novel protocol is proposed

to improve the performance of the CAN bus for use in applications that demand high data

rates. The proposed idea is to implement error-correction codes along to go with the error-

detection codes that are currently being used.

4.1. SOURCES OF ERROR: EMI EFFECTS, NOISES, ETC

The first and the foremost step in designing the error-correction code for implementation

in the CAN bus is to determine the kinds of errors and their sources. Once the environment

in which the CAN bus operates is known, the job is cut down to select a particular type

Figure 4.1 Lab Arrangement made in G23 with Four Computers
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of error-correction coding technique to combat these errors. A small setup with four con-

nected computers with LINUX operating systems was set up in the G23 laboratory, Electrical

Engineering department, University of Missouri-Rolla, to check the impact of EMI on data

transfer. This setup used Ethernet crossover cables to transfer data between the computers.

Figure 4.1 shows the lab’s setup, with the relay and the switch connected to each other and

tangled with the connecting wire.

A command ping -f can be used to determine whether the packets are transmitted

without error. Once the connections were made, as shown in the Fig. 4.1, IP addresses

were assigned to each computer’s network cards. Each computer was fitted with two Network

Interface Cards (NIC). Then computer 4 was pinged from computer 2.

Ping -f 192.168.24.4-Pinging Back and Forth

This command induces a dot once the transmission is made and removes it once the packet

is transmitted back without any error. Hence, an error can be seen when a dot is induced on

the screen but not removed. The greater the number of dots at the end of the test, imply

more the number of lost packets. Observations were made using this test bench in two cases:

1. When no EMI is introduced

2. When EMI is introduced by the switch and the magnetic relay to see its affect on data

transfer.

The results of the experiment showed that when EMI was introduced by switching, loss of

packets occured. A dot appears on the screen showing the transmission, but it is not removed

because the received packet is not the same as the transmitted packet. Hence, the conclusion

drawn from this experiment is that EMI is a major source of error. This information reveals

that EMI is a major source of error in the CAN bus, but the severity of the errors that it

creates is unknown. Some other means of studying how many bits are corrupted every time

EMI is introduced needs to be developed. Are errors scattered randomly all over the frame

or do they occur in a burst?

Another experiment was conducted to study the types of errors created by EMI. Fei

Ren, a graduate student in Electrical Engineering at the University of Missouri-Rolla set up

a test bench in the laboratory to study the CAN environment. Two 8051 micro-controllers,

which were capable of emulating the CAN network between them, were programmed in such a

way that one of them functioned as a transmitter and the other as a receiver. The switch and

the magnetic relay provided by Caterpillar were connected and both these wires were matted

together to create an Electro-Magnetic Interference (EMI) effect on the CAN bus.
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The receiver was set to ‘receive ready’ state and the transmitter continuously transmitted

frames of data, which were accepted by the receiver if they were error free. Whenever the

receiver detects an error, it sends an Automatic Repeat reQuest (ARQ) to the transmitter

and the transmitter then retransmits the frame. In a normal CAN (without EMI) errors

rarely occur and almost all the frames are received without retransmission. When EMI was

introduced the frames were corrupted, thereby introducing errors. Hence, it was important to

measure the EMI to determine the kind of coding scheme to use.

A digital oscilloscope was connected to the CAN bus receiver, through which the CAN

frames were observed. CAN frames were recorded with and without EMI and the data was

analyzed in detail. Initial figures showed that the frames were corrupted in single instances.

The errors were random and the EMI could only corrupt one or two bits in the entire frame.

In some instances the errors were spread over more than 2 bits. Further investigation into the

EMI and its effect on the CAN bus showed that the types of errors assumed in the first case

were not correct. The method Fei used to view the waveforms on the oscilloscope in his initial

study was proven to be wrong. In consultation with Dr. Thomas P. VanDoren, Emeritus
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Figure 4.2 CAN Frame without EMI
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Figure 4.3 Part of a CAN Frame with EMI Corruption

Professor at the University of Missouri-Rolla, the waveforms were properly observed. The

new figures from the oscilloscope showed that the errors due to EMI in the CAN bus are not

random and single-bit, but occurred in bursts. The length of the burst varied from 3 to 8 bits.

Figures 4.2 and 4.3 shows the CAN frame without and with EMI respectively. The spikes

shown in Fig. 4.3 are the result of EMI acting on the CAN bus. Careful observation of the

signal shows that EMI adversely affects about 3 − 5 bits of the CAN data frame. The CAN

bus receiver or any node on the CAN bus will discard frames with even a single bit error.

However, with error-correction schemes these issues can be resolved.

4.2. DESIGN AND IMPLEMENTATION OF CYCLIC CODES ON CAN

When looking at the CAN frame affected by EMI from the initial study by Fei, it first

appears that any error-correction technique capable of correcting random errors would be

sufficient to combat and correct errors. Cyclic codes were used to correct the errors because

they are simple to implement. Two different cyclic code designs (Cyclic117 and Cyclic60) were

applied and the performances were compared with respect to the error correction capability

and the computational complexity. Depending on the size of the CAN frame, the values of n
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and k were selected such that every bit in the given frame is encoded. A compromise had to

be made in selecting the values of n and k, because the generator polynomial does not exist

for all combinations of n and k. Hence, the values were selected as close to the frame length

as possible to include all the bits to be encoded. Two different pairs of (n, k) were selected

for the simulations and their performance is presented in detail. As mentioned earlier, the

number of bits in the CAN frame is assumed to be 128 in all simulations. The performance

analysis presented in this report holds good in the case of the 126 bit frame length. Hereafter,

when the phrase CAN frame length is used, it implies 128 bits.

4.2.1. Case 1: n = 117, k = 102. The values of (n, k) = (117, 102) were used for

the first simulation (Cyclic117). The number of bits to be encoded was 103 and the length

of the codeword encoded should be 118. These two values of (n, k) do not have a generator

polynomial. Hence, when k = 102 is used, one bit is neglected in the encoding process and

appended after the encoding is complete. In other words, the first bit was not encoded and

all the bits starting from second to the 103rd were encoded to a codeword of 117 bits.

Depending on these values of n and k, the minimum distance between the codewords

was calculated to be 6. The minimum distance between the codewords is a measure of the

number of errors that can be corrected using this error-correction technique. The number of

errors that can be corrected by any error-correction technique is given by

t = bdmin − 1

2
c (4.1)

where dmin is the minimum distance between the code words.

Equation 4.1 shows that this code is capable of correcting 2 bit errors occurring anywhere

in the received frame. The CAN frame with EMI from the initial study showed only two

errors in some cases, so this error-correction scheme seemed to be sufficient to combat the

affect of EMI on the CAN bus. This scheme had 100% probability of correcting all the single

bit and double bit errors. The only drawback of this scheme is its computational complexity.

Computational complexity is directly proportional to the value of n and the difference between

the values of n and k because the size of the syndrome table is n ∗ 2(n−k). Hence, calculating

the syndrome table and storing it is a huge task in terms of computational complexity and

memory space. The number of elements in the syndrome table for this coding scheme is

117 ∗ 215 = 3, 833, 856 elements.

Every time an error frame was received the scheme compared the received frame with all

the rows of possible codewords and the codeword closest to the received frame was finalized

as the original transmitted frame. Hence, this method provided good performance in terms of

error correction capability for the kind of errors that the EMI created but the computational
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Table 4.1 Comparison of the Two Cyclic Code Methods (n, k) = (117, 102) and (n, k) =
(60, 53)

Cyclic117 (n, k) = (117, 102) Cyclic60 (n, k) = (60, 53)
1. The values of (n, k) are very close
to the required value but do not en-
code the whole CAN frame.

1. The values of (n, k) encode the
whole CAN frame with slight modi-
fication in the encoding process.

2. The minimum distance is 6 and
hence the number of errors that can
be corrected is 2.

2. The minimum distance is 4 and
hence the number of errors that can
be corrected is 1.

3. The computational complexity of
this method is very high and the syn-
drome table is very huge

3. The computational complexity is
less than the first method and the
syndrome table is 1/500 times of the
first case.

complexity is a disadvantage of this method. So, a simpler method with fewer computations

was proposed by breaking the CAN frame into two sub-frames during the encoding process.

4.2.2. Case 2: n = 60, k = 53. The second approach had smaller n and k values

equal to 60 and 53 (Cyclic60). In this approach the given frame is divided into two different

sub-frames, each of which is encoded individually. The encoded frames are appended together

and transmitted to get the complete CAN frame. Three bits were appended to the 103 bits

to be encoded, then the frame was broken down into two sub-frames of 53 bits each and

encoded to produce a codeword of 120 bit length. The three extra bits appended for the

sake of encoding were removed and the frame is transmitted over the CAN channel. At the

receiver the three bits were appended back to decode the frames. The final decoded sequence

is compared with the transmitted sequence to check for the number of errors.

The minimum distance in this case is equal to 4. Hence, the number of bits that can be

corrected is equal to 1. Each sub-frame can correct 1 error, so 2 errors can be corrected in the

whole CAN frame, provided only one error occurs in each of the sub-frames. The performance

of the latter method is not as good as the former, but in terms of computational complexity

the number of elements in the syndrome table in the latter case is almost 1/500 of the former.

The number of elements in the syndrome table in this case is 7, 680. The two methods are

compared in Table 4.1.

One major disadvantage of both the methods is that there is no guarantee of an error

free reception. When the frames have a burst of 2 bits or greater, the original frames can never

be recovered from the corrupted frames. In this case the two methods discussed would fail

badly because they are only capable of correcting single bit errors (not burst errors). In this
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situation there is no means by which the receiver can request retransmission of the frames.

Hence, a new method had to be proposed to tackle these burst errors, ensuring error free

communication while reducing the number of retransmissions. This situation motivates the

introduction of Hybrid Automatic Repeat reQuest (HARQ).

4.3. DESIGN AND IMPLEMENTATION OF PROPOSED HARQ

Two variants of HARQ Type-I and two variants of HARQ Type-II are proposed to

improve the performance of the CAN bus. As mentioned in the previous section, error-

correction coding is the technique used to correct the errors in the received data. It introduces

systematic redundancy in the transmitting data in order to combat the errors caused by various

noise sources such as EMI. Block codes are a popular category of error-correction schemes.

Block codes are defined by (n, k) where k is the number of input data bits and n is the

number of bits in the encoded frame. These codes are simple to implement and have lower

computational complexity than the other competing coding schemes. Reed-Solomon (R-S)

codes are non-binary cyclic codes with symbols made up of m-bit sequences where m is any

positive integer having a value greater than 2 [10]. Reed-Solomon codes are a special type

of block codes well suited to combat burst type errors with less computation time as the

computations are done at the symbol level. The errors induced by EMI being burst type can

be easily corrected by the proposed scheme. Depending on the error-correction performance

needed, values of (n, k) are selected. The number of symbols that can be corrected will always

be t given by Equation 2.8, irrespective of the number of bits corrupted in each symbol. This

is a major advantage of using R-S codes.

Figure 4.4 shows the flowchart of the algorithm used to simulate the two HARQ Type-I

methods (HARQ Type-I R-S20/CRC and R-S20/Cyclic) on the CAN bus. Both the methods

use R-S codes to combat the burst errors, but the R-S20/CRC method uses the CRC error-

detection technique while the R-S20/Cyclic replaces the CRC bits with cyclic codes. Both

the methods are shown in the flowchart. The arrows with solid lines show the flow of the

HARQ Type-I R-S20/CRC method. The arrows shown by dashed lines represent the flow of

the HARQ Type-I R-S20/Cyclic method. Random data is generated and each time 64 bits are

selected and a header is added to the frame. In the HARQ Type-I R-S20/CRC the frame is

now encoded with CRC error-detection technique, while for the HARQ Type-I R-S20/Cyclic

the frame is encoded with cyclic codes. The cyclic code used in this method is Cyclic60

discussed previously. After the parity bits are appended the tail is added to bring the frame

length to 128 bits. This frame is then encoded using the R-S20 encoder. At the receiver

the frame is first decoded using the R-S20 decoder. In case of the R-S20/CRC method the
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Figure 4.4 Flowchart Depicting Implementation of HARQ Type-I R-S20/CRC and HARQ
Type-I R-S20/Cyclic for Randomly Generated Data and Burst Length Increasing
from 0 to 10

frame is checked for errors and a retransmission is requested if errors are detected. In the R-

S20/Cyclic method the R-S20 decoded frame is then decoded using cyclic codes to obtain the

final decoded bit sequence. In this case the final bit sequence has to be accepted even if errors

exist because this method has no mechanism for error-detection. The parameters and the

methods mentioned in this section were simulated and compared to find out the advantages

and disadvantages of each of the methods. These comparisons are shown clearly in the results

sections with necessary plots to support the observations. The parameters for the R-S encoder

used in these methods were determined using the predefined rules given by

m = 5; n = 2m − 1 ⇒ n = 31; k = 27 ⇒ t =
n− k

2
⇒ t = 2 (4.2)
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The CAN frame length is equal to 128 bits, so the coding scheme has to encode all 128

bits. The value chosen of m = 5 gives the value of n = 31. Choosing k = 27 enables the

encoding of all the bits in the CAN frame. Zeros are appended at the end of the CAN frame

to make the length equal to 135 bits. Once the frame is encoded the appended zeros are

removed, the CAN frame is transmitted along with the error-correction parity bits.

The CAN frame length increases from 128 to 148 bits with the 20 additional error-

correction bits. In order to check the performance of the proposed HARQ scheme, 8000

frames are encoded with R-S codes and are transmitted over a channel having SNR=20dB.

The SNR value for the CAN bus is expected to be high because its a wired network. The only

interference in the network is the Electro-Magnetic Interference (EMI) created by the external

sources. The analysis and study of the affect of EMI on the CAN bus showed that the errors are

burst type. Hence, different length bursts were created to corrupt the CAN frame and study

the performance of the HARQ scheme. One other parameter considered was the probability of

the occurrence of the burst errors in the CAN communication. The probability of a burst error

depends on the environment in which the CAN network is being operated. If the inductive

load present in that particular environment is high, then the probability of occurrence of

burst error is high. Hence, all the simulations are presented with the different probabilities of

burst error occurrence to give a clear picture of the HARQ scheme’s performance in various

environments. The length of the burst has been varied from 0 to 10 bits. The first 8000 frames

were transmitted with a 0 bit burst error, then the burst length was increased in steps of 1

for every 8000 frames to reach a maximum burst length equal to 10 bits. The position of the

burst in the frame is random and can occur at any position.

The erroneous frames reach the receiver, zeros are appended back to make the length

equal 155 bits. The corrupted frames are then decoded using the R-S decoder. The zeros are

removed from the decoder output to obtain 128 bit frame back. The decoded CAN frame is

then checked for errors using the CRC bits commonly used by the CAN. If the receiver detects

an error on the CAN frame, it asks for a retransmission and the transmitter retransmits the

entire frame. If no errors are detected then the receiver accepts the frame. Simulation graphs

in the results section give a picture about the CAN performance improvement via R-S codes.

Comparison between the performance of HARQ Type-I R-S20/CRC and HARQ Type-I R-

S20/Cyclic codes is also given in the results section.

HARQ Type-II is another protocol that can be used for CAN bus communication. The

error-correction capabilities of HARQ Type-I and HARQ Type-II are similar since the same

error-correction scheme is used. The difference in performance is in terms of the bit overhead

added to the network. Figure 4.5 shows the flowchart of the two variants of the HARQ Type-

II method. HARQ Type-II R-S20/CRC uses the CRC for error-detection and 20 R-S parity
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Figure 4.5 Flowchart Depicting Implementation of HARQ Type-II R-S20/CRC for Randomly
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bits but in this method sends the original CAN frame with ARQ parity bits only without the

R-S20 parity bits. In case of error-detection, the receiver requests for error-correction parity

bits and the transmitter transmits the parity bits. The bits are appended and checked if the

frame can be corrected. In case the receiver cannot decode the uncorrupted frame then the

whole frame is requested. Here, as the retransmission involves only the parity bits instead of

the whole frame, the bit overhead is reduced.

In some cases, when either the HARQ Type-I R-S20/CRC or the HARQ Type-II R-

S20/CRC method might be unable to correct the errors in the corrupted frame. In these

cases, the whole frame along with the error-correction parity bits have to be retransmitted in

the former method and the frame with detection parity bits alone have to be retransmitted

in the latter method. A new method of transmitting additional error-correction parity bits

can be used instead of transmitting the entire frame. This method is termed as HARQ

Type-II R-S40/CRC. Hence, instead of retransmitting the entire frame, in the HARQ Type-II
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Figure 4.6 Standard CAN Frame with Individual Fields Shown

R-S40/CRC the frame can be encoded with additional error-correction bits by encoding the

CAN frame twice. Once with the R-S20 encoder and then with R-S40 encoder. When the

first retransmission parity bits (R-S20) fail to correct the erroneous frame, the second set of

parity bits (R-S40) can be transmitted to correct the errors. The R-S40 codes have twice the

error-correction capability of the R-S20 codes. Hence, most of the errors that occur in the

CAN bus communication could be corrected with this scheme. This reduces the bit overhead

added by the earlier schemes providing additional error-correction capability.

The comparison of the percentage bit overhead for ARQ, HARQ Type-I R-S20/CRC,

HARQ Type-II R-S20/CRC and HARQ Type-II R-S40/CRC is discussed in detail in the

results section with necessary graphs to support the results.

4.4. COMPARISON OF THE ORIGINAL AND PROPOSED CAN FRAMES

The current CAN data frame structure is briefly repeated here to illustrate the modifica-

tion of the frame structure for implementing the HARQ scheme in the CAN bus. Two versions

of the CAN frames are currently in use: the standard version and the extended version [1],

shown in Fig. 2.2 and Fig. 2.3. These figures are redrawn here to provide a clear comparison.

The number of bits in each of the fields for both versions is listed below:

• Standard Frame Structure: Header: 19 bits; Data field: 64 bits; CRC field: 15 bits;

Tail:10 bits.

• Extended Frame Structure: Header: 39 bits; Data field: 64 bits; CRC field: 15 bits;

Tail:10 bits.

Figure 4.7 Extended CAN Frame with Individual Fields Shown
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Figure 4.8 Extended CAN Frame with Individual Fields and RS-Bits Shown. Frame used for
HARQ Type-I R-S20/CRC

Figure 4.9 Extended CAN Frame with Individual Fields, Cyclic Parity Bits and R-S Bits
Shown. Frame Used for HARQ Type-I R-S20/Cyclic

Figure 4.10 Extended CAN Frame with Individual Fields and RS-Bits Shown. Frame used
for HARQ Type-II R-S20/CRC, dotted part is the R-S parity bits retransmitted
upon request

Figure 4.11 Extended CAN Frame with Individual Fields and RS-Bits Shown. Frame used
for HARQ Type-II R-S40/CRC, dotted part is the R-S parity bits retransmitted
upon request

In the HARQ Type-I R-S20/CRC the CRC method is supplemented by the R-S encoder.

In this method the CAN frame is appended by error-correction parity bits at the end of the

frame with the rest of the frame left unchanged. Figure 4.8 shows the extended CAN frame

encoded with R-S codes for HARQ Type-I R-S20/CRC method. For the HARQ Type-I R-

S20/Cyclic the CRC bits are replaced with cyclic parity bits and the rest of the frame is same

as the HARQ Type-I R-S20/CRC. Figure 4.9 shows the frame structure of the HARQ Type-I

R-S20/Cyclic. For the HARQ Type-II R-S20/CRC the 20 R-S parity bits part of the frame

can be detached from the frame. Figure 4.10 shows it as a dotted line. This method makes the



36

HARQ scheme more compatible with current CAN bus as it requires no change to the current

CAN frame but an additional frame has to be introduced to transmit the R-S parity bits

and all the CAN nodes should be incorporated with error-correction techniques. For HARQ

Type-II R-S40/CRC the 20 R-S bits and 40 R-S bits are detached from the frame and shown

as dotted line in Fig. 4.11. Each one of the two R-S parity sub-frames are transmitted upon

error-detection and receiver request.
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5. RESULTS AND OBSERVATIONS

MATLAB was used to check the performance of the HARQ schemes presented in this

thesis, in terms of error-correction capability, percentage reduction in the number of retrans-

missions and the percentage bit overhead added by each of the methods. Results and observa-

tions are divided into two categories with the first one giving a thorough analysis of the each

method’s performance in terms of error-correction capability and the second one comparing

the methods in terms of the bit overhead added to the network.

5.1. ERROR HANDLING COMPARISON OF PROPOSED METHODS AND

CONVENTIONAL CAN

The first method proposed replaces the CRC bits in the CAN frame with the cyclic

error-correction bits (Cyclic60). The performance of the proposed method as compared to

the conventional CAN is illustrated in Fig. 5.1. This figure shows the performance of the

Cyclic60 method in terms of the percentage of correct frames received. For this simulation

the SNR = 25dB and the probability of the CAN frame getting corrupted varies from 0.1 to

0.5. All the single bit errors are corrected in this method, but burst errors ranging from 2 to

10 bits are not. If the receiver fails to correct the errors there is no way the receiver can get

back the uncorrupted frame because there is no feedback mechanism in this method. Hence,

this method can only be used in environments where the impact of EMI is limited to single

bit error corruptions in single instances. In such an environment this method corrects all the

frames without any need for frame retransmissions.

The second method proposed in this thesis is to use the HARQ scheme with Reed-

Solomon Codes in conjunction with the CRC error-detection technique used by the CAN bus

(HARQ Type-I R-S20/CRC). The SNR value for this simulation is assumed to be 20dB. As

mentioned in the previous section, the SNR value is assumed to be high and the burst errors

are added over the SNR value. The probability of burst error occurrence signifies the different

environments in which CAN bus can be operated. Figure 5.2 compares the performance of

the CAN but without FEC and with the HARQ Type-I R-S20/CRC method in terms of the

percentage of frames correctly received. The R-S codes were able to correct all errors in the

case of burst lengths smaller than or equal to 6 bits. A burst of length of 6 bits always fits

into two R-S symbols in the current design and, hence, may be corrected without any need for

frame retransmissions. As the burst length exceeds 6, the ability of the R-S codes to correct

these errors reduces. Performance of the R-S codes is reduced for burst lengths of 7 bits or

higher because the burst in this case can span over more than two R-S symbols. For example,
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Figure 5.1 Comparison of the Percentage of Correct Frames Received with and without
Cyclic60 codes. SNR = 25dB, n = 60, k = 53.

when the burst length is equal to 7, the burst can be distributed over three symbols (1, 5,

and 1). In such cases, the R-S codes cannot correct the frame. The probability of correcting

errors decreases with the burst length because in more and more cases the burst corrupts

three symbols as the burst length increases. The R-S codes will be unable to correct the

frame in such cases. Hence, for burst lengths greater than or equal to 7 bits, the percentage of

correct frames received decreases. When the probability of the CAN frame getting corrupted

is 40%, the HARQ Type-I R-S20/CRC scheme requires 30% fewer frame retransmissions for

burst lengths of 8 bits and 11% fewer for burst lengths of 10 bits. For burst lengths smaller

than 7 bits all the frame retransmissions can be avoided with the percentage of correct frames

received being at 100%. The probability of burst error occurrence do not impact the R-S codes

performance for burst lengths of less than 7 bits. Hence, this method can be implemented in

different environments with different intensities of EMI impacts.

The performance of the third method HARQ Type-I R-S20/Cyclic where the CRC bits

were replaced with the cyclic codes has been simulated. Figure 5.3 shows the graph comparing
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Figure 5.2 Comparison of the Percentage of Correct Frames Received with and without R-S
codes. SNR = 20dB, Probability of Burst Error= 0.1 to 0.5, Burst Length= 0 to
10 bits.

the percentage of correct frames received for the HARQ Type-I R-S20/CRC method and the

HARQ Type-I R-S20/Cyclic method. The HARQ Type-I R-S20/Cyclic method performs

exactly the same as the HARQ Type-I R-S20/CRC method because, when the R-S codes

cannot correct the errors in the CAN frame, the cyclic codes can never correct them. The error-

correction capability of the cyclic codes is lower when compared to the R-S codes. Another

major disadvantage of the HARQ Type-I R-S20/Cyclic method is the fact that the receiver

cannot detect the errors in the received frame and can never receive the corrected frame.

This method did not provide any improvement over the HARQ Type-I R-S20/CRC method,

but surely helped in observing that use of error-correction codes alone without any error

detection can lead to erroneous frames at the receiver. Therefore, in an environment where

the type of error cannot be determined, both error-correction and error-detection have to be

used together to get the best throughput performance with high reliability. This method also
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Prob=0.4 HARQ1 RS20/Cyc
Prob=0.4 HARQ1 RS20/CRC
Prob=0.4 no Cod

Figure 5.3 Comparison Percentage of Correct Frames Received with HARQ Type-I R-
S20/Cyclic, HARQ Type-I R-S20/CRC and without Coding. SNR = 20dB,
Probability of Burst Error= 0.1 to 0.5, Burst Length= 0 to 10 bits.

laid the foundation for another idea of increasing the error-correction capability of the HARQ

Type-II R-S20/CRC scheme by increasing the R-S parity bits to correct more burst errors.

Figure 5.4 shows a bar graph for the percentage of frames corrupted with and without

R-S codes. The probability of burst error occurrence was varied from 10% to 50% and a

total of 106 bits (8000 frames) were transmitted as the probability of burst error increased

linearly. As the probability of error increased from 10% to 50% the percentage of corrupted

frames without coding increased from 10% to 47.18%. The implementation of the R-S coding

scheme in the form of HARQ Type-I R-S20/CRC reduced the percentage corrupted frames

to 1.6513% for a probability of 10% and 7.82% for a probability of 50%. This proves that

the the percentage of corrupted frames for HARQ Type-I R-S20/CRC scheme is 1/8 times

the conventional CAN without coding. This is a significant contribution as the number of

retransmissions will be reduced.

The SNR value has been kept constant for all the previous simulations, while the other

parameters such as the burst length and the probability of burst error occurrence were varied.
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Figure 5.4 Comparison of Percentage of Frames Corrupted with and without R-S coding for
different Probability of Burst Error Occurrence

The performance of the HARQ Type-I R-S20/CRC method with varying SNR values would

provide important information about the performance of the scheme for other wired CAN bus

applications or in entirely different applications like the wireless CAN. Figure 5.5 shows the

curves with the R-S coding and without the R-S coding for varying SNR, different probabilities

of burst error and random length of the burst error. The thick lines represent the percentage

of correctly received frames without error-correction codes and the thin lines represent the

percentage of correctly received frames with error-correction codes. The SNR of the channel

has been varied from 5dB to 25dB and the length of the burst for this simulation is random,

varying from 1 to 10 bits. The probability of burst error occurrence is varied from 10% to

50%. Even in the worst case of SNR = 5dB and the probability of burst error occurrence

equal to 50%, the percentage of frames correctly received by the HARQ Type-I R-S20/CRC

method is 7% higher than the method without coding.

The simulation results show that the best way to improve the CAN bus performance

is to use the Hybrid ARQ technique, which ensures correct transmission of complete data.
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Figure 5.5 Plot for Percentage of Frames Correctly Received for Different Probability of Burst
Errors, Varying SNR and Random Burst Length for HARQ Type-I R-S20/CRC
and no error-correction

Moreover, AWGN does not seem to affect the CAN frame because in the CAN bus the SNR

values are so large that random noise cannot play a vital role in inducing errors [16]. EMI

causes most of the errors in CAN communications.

5.2. BIT OVERHEAD COMPARISON OF PROPOSED METHODS AND

CONVENTIONAL CAN

The HARQ Type-II R-S20/CRC uses the same Reed-Solomon(R-S) codes, but the parity

bits are only sent once the error has been detected by the receiver. A comparison of the

conventional CAN bus ARQ, the HARQ Type-I R-S20/CRC, and the HARQ Type-II R-

S20/CRC in terms of the percentage of bit overhead due to the retransmission process is

shown in Fig. 5.6. In the following simulation, 100000 frames were transmitted and each

frame has been encoded with R-S codes. HARQ Type-I R-S20/CRC method is assumed to be

able to correct all errors with the R-S20 parity bits added to the frame i.e. no retransmission
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Figure 5.6 Bar Plot Comparison of Percentage overhead for ARQ, HARQ Type-I R-S20/CRC
and HARQ Type-II R-S20/CRC methods. Probability of Burst Error Occurrence
Varies from 10% to 50%. Percentage of uncorrected frames = 10%.

are necessary for the HARQ Type-I R-S20/CRC method. In a conventional ARQ system,

the number of bits retransmitted will be equal to bits per frame times the number of frames

retransmitted. In case the of HARQ Type-I R-S20/CRC, the number of overhead bits will

be equal to the number of parity bits in each of the HARQ Type-I R-S20/CRC CAN frame

times the number of frames transmitted.

In the HARQ Type-II R-S20/CRC all the frames are encoded using R-S codes, but the

frame is not appended with the parity bits. In this case the number of overhead bits will

be equal to the number of parity bits times the number of frame retransmissions. When

the percentage of bit overhead for the three methods is compared, at a low probability of

burst error occurrence the percentage bit overhead for the HARQ Type-I R-S20/CRC is the

maximum. At a probability of error equal to 10%, HARQ Type-I R-S20/CRC is 5.65% higher

than the conventional ARQ system and 13.28% higher than the HARQ Type-II R-S20/CRC

method. Figure 5.7 shows that the percentage overhead for HARQ Type-I R-S20/CRC is

better than that of the conventional ARQ for a probability of error higher than 15%. The
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Figure 5.7 Comparison of Percentage overhead for ARQ, HARQ Type-I R-S20/CRC and
HARQ Type-II R-S20/CRC methods. Probability of Burst Error Occurrence
Varies from 10% to 50%. Percentage of uncorrected frames = 10%.

percentage overhead for HARQ Type-II R-S20/CRC is always lower than the HARQ Type-I

R-S20/CRC for probabilities lower than 60%. Above 60% the HARQ Type-I R-S20/CRC has

lesser bit overhead compared to the HARQ Type-II R-S20/CRC. Though the bit overhead

of is lower for the HARQ Type-II R-S20/CRC, the receiver has to wait for the parity bits.

This is a tradeoff that should be taken care while designing the right method for a particular

environment.

In some cases the HARQ Type-I R-S20/CRC or HARQ Type-II R-S20/CRC method

might not be able to correct all the corrupted frames. In these cases additional error-correction

parity bits would correct the errors and hence improve the performance of the system in terms

of bandwidth efficiency. This method is called HARQ Type-II R-S40/CRC as mentioned in

Section 4. Figure 5.8 shows the percentage bit overhead comparison of the three HARQ R-

S/CRC methods and the conventional ARQ scheme. In this simulation the probability of burst

error occurrence increases from 10% to 50%. At the receiver, 10% of the corrupted frames are

assumed to be uncorrectable. In this case the receiver with the HARQ Type-I R-S20/CRC or
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Figure 5.8 Comparison of Percentage overhead for ARQ, HARQ Type-I R-S20/CRC, HARQ
Type-II R-S20/CRC and HARQ Type-II R-S40/CRC methods. Probability of
Burst Error Occurrence Varies from 10% to 50%. Percentage of uncorrected frames
= 10%.

the HARQ Type-II R-S20/CRC scheme requests for the whole frame retransmission, while the

receiver with the HARQ Type-II R-S40/CRC requests for the 40 additional error-correction

parity bits. In most of the cases the HARQ Type-II R-S40/CRC scheme will correct all

the possible errors in CAN bus communications. When the probability of burst error occur-

rence is 40%, and when 20% of the corrupted frames are assumed not correctable by R-S20

codes, HARQ Type-II R-S40/CRC has 31.4% lower bit overhead than the conventional ARQ

scheme, 16% lower than HARQ Type-I R-S20/CRC and 6% lower than the HARQ Type-II

R-S20/CRC. Hence, the HARQ Type-II has the least bit overhead compared with any other

method discussed in this thesis. This method is also an adaptive method which adapts to the

environment and the performance of this method is always better than the other methods in

terms of less retransmissions and less bit overhead at an expense of computational complexity.

Another tradeoff that needs to be considered is the wait time for the retransmission of the

parity bits.
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6. CONCLUSION

The first method (Cyclic60) can be used for the CAN environments where the severity of

the burst created by the EMI is limited to 1 bit error. In this environment, all the frame errors

can be corrected without frame retransmissions because the method can correct all single bit

errors. In an environment with a high intensity of EMI such that a burst error spreads over 5

to 6 bits, the proposed HARQ Type-I R-S20/CRC method improves the performance of the

CAN system. The R-S codes used in HARQ Type-I R-S20/CRC correct 100% of corrupted

frames for burst lengths shorter than 7 bits. When the burst length is greater than 7 bits

and when the probability of the CAN frame getting corrupted is 40% the HARQ Type-I R-

S20/CRC scheme requires 30% fewer frame retransmissions for burst lengths of 8 bits and

11% fewer for burst lengths of 10 bits. The HARQ Type-II R-S20/CRC performs exactly the

same as the HARQ Type-I R-S20/CRC in terms of error-correction capacity, but the former

has less bit overhead than the latter. When the probability of error is equal to 10%, the

bit overhead of the HARQ Type-I R-S20/CRC is 5.65% higher than the conventional ARQ

system and 13.28% higher than the HARQ Type-II R-S20/CRC method. The HARQ Type-I

R-S20/CRC has higher percentage bit overhead at low channel error rates because every frame

is appended with the 20 R-S parity bits.

The replacement of the Cyclic Redundancy Check bits (CRC) by the cyclic codes (HARQ

Type-I R-S20/Cyclic) did not improve the performance of the the system in terms of receiving

the corrected frames but this simulation laid the foundation for using a new method where

higher error-correction capacity is provided to the receiver (HARQ Type-II R-S40/CRC). It

also confirmed that using error-correction alone in a varying environment is not a convincing

way of handling the frame errors. Hence, it is always suggested to use both error-correction

and error-detection codes together in order to maintain the same level of reliability and also

improve the performance in terms of bandwidth efficiency.

Depending on the environment in which the CAN bus operates, the appropriate protocol

must be chosen from the ones suggested in this thesis and the one originally used by the CAN

bus. ARQ (Conventional CAN) can be used when the error rate of the channel is low (less than

10%) because, the system is simple to use and requires no change to the current system being

used. The HARQ Type-I R-S20/CRC can be used when the error probability is higher than

15% because, in this environment the bit overhead added to each frame for error-correction

overtakes the bit overhead due to retransmissions when compared to the conventional ARQ

scheme. Another advantage with the HARQ Type-I R-S20/CRC method is that the error-

correction parity bits are transmitted along with the CAN frame. Hence the receiver does not
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have to wait for the retransmission of R-S20 bits. If the receiver does not require the correct

frames immediately and if it can afford to wait for the retransmission of R-S parity bits, then

HARQ Type-II R-S20/CRC can be used from very low probabilities of burst error occurrence

up to very high values of the probability (close to 60%) because the percentage bit overhead

for the HARQ Type-II R-S20/CRC is always lower than the HARQ Type-I R-S20/CRC for

probability of error values lower than 60%.

When the HARQ Type-I R-S20/CRC or the HARQ Type-II R-S20/CRC method is

not able to correct the erroneous frames, retransmission of the entire frame is requested. It

is a good option to use the HARQ Type-II R-S40/CRC method in this case because the

bandwidth efficiency will definitely be better than the other two methods. When the HARQ

Type-I R-S20/CRC or the HARQ Type-II R-S20/CRC is not being able to correct 20% of the

corrupted frames, and when the probability of burst error occurrence is 40%, HARQ Type-II

R-S40/CRC has 31.4% lower bit overhead than the conventional ARQ scheme, 16% lower

than the HARQ Type-I R-S20/CRC and 6% lower than the HARQ Type-II R-S20/CRC.

Finally, in a highly inductive environment with the probability of error occurrence around

20% to 30%, the best method that can be used is a combination of HARQ Type-I R-S20/CRC

and the R-S40 bits idea to correct the errors that are not correctable by the former method.

Using this combination most of the errors can be corrected with immediate action because the

HARQ Type-I R-S20/CRC method has the error-correction parity bits along with the mail.

And in cases when it fails to correct the errors, the R-S 40 scheme can correct the additional

errors.
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