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Abstract—This paper describes the implementation of particle 

filtering (PF) estimation method in TDOA positioning to 

mitigate the effect of NLOS signal propagation on the TDOA 

measurements. The measurement errors were modelled 

according to the circular disk scatter model (CDSM) ranging 

from 0 to 600 m. In this paper, we consider static PF which uses 

one TDOA measurement to estimate one fixed MT position. The 

network layout is set up with five base stations (BS) that resolve 

to a total of ten measured TDOAs in every PF iteration. The 

performance of the static PF was compared to two basic 

estimation methods namely robust intersection estimation (RIE) 

and linear least square (LLS). The simulation results show the 

stability of static PF over a wide range of measurement errors 

and giving an almost constant estimation error at various 

CDSM radiuses. Static PF outperforms RIE and LLS with the 

estimation error of less than 40 m and 60 m for 67% and 90% 

of the time respectively. 

 

Index Terms—TDOA Positioning; Particle Filtering; NLOS 

environment; Circular Scatterers. 

 

I. INTRODUCTION 

 

The growth of wireless mobile communication systems is 

very rapid. The widely offered information access in outdoor 

and indoor environments resulted in higher demand on the 

development of location-based services (LBSs). The motion 

activity of the mobile terminal (MT) that is provided by LBSs 

is very important  in vehicle navigation, fraud detection, 

tracking, healthcare applications, monitoring and 

transportation systems [1]. The performance of these 

applications in ensuring the continuity of mobile multimedia 

applications relies on the positioning accuracy of the MTs. 

This requires alternative positioning techniques to the 

existing GPS-assisted positioning.  

Terrestrial signals from mobile communication networks 

offer a promising potential to be explored in enhancing the 

accuracy of localization and positioning (L&P) techniques. 

Despite the extensive number of research being carried out 

throughout the last decade, mitigating the multipath and non-

line-of-sight (NLOS) propagation errors remains the main 

research issue especially in the time-based positioning. In 

time difference of arrival (TDOA) positioning techniques, 

multipath propagation causes bias in the time of arrival 

(TOA) measurements [2] which leads to uncertainties in 

TDOA measurements. The multipath effect is intensified in 

an NLOS condition where the direct path between BSs and 

MT is absent due to the presence of scatterers in the network 

surrounding. 

In general, the network-based L&P techniques can be 

categorized into three main types which are proximity-based, 

fingerprinting and measurement-based technique. Proximity-

based positioning techniques manipulate the unique 

geographical information (cell ID) of the closest (serving) BS 

as the reference point in estimating the target’s position. 

Despite CID technique being the simplest and fastest 

positioning technique, it offers very low accuracy which may 

lie within the distance of cell radius [3]. Fingerprinting 

positioning as proposed in [4], [5] promise high estimation 

accuracy. However, the implementation of fingerprinting 

techniques involves high process overhead during the offline 

data set up.   Therefore, an accurate yet low cost technique is 

highly anticipated.  

The main interest of this work is to pursue TDOA 

positioning which is a measurement-based positioning 

technique. This technique manipulates the time 

measurements done by MTs as the input to the position 

estimation method carried out by the location server. The 

methods for position estimation for indoor and outdoor 

TDOA positioning have been surveyed in [6], [7]. Among the 

methods used are the geometrical-based, numerical-based 

and probabilistic approach. Among the three methods, a 

probabilistic approach based on particle filtering (PF) is 

found to be a versatile and robust estimation method. PF is a 

Bayesian filtering method that is widely used in robotic 

positioning and tracking applications. It also attracts 

researchers  enhancing positioning accuracy in LTE indoor 

environments [8], LTE outdoor environments [9] and urban 

UAS navigation [10]. 

In this work, PF is implemented in TDOA positioning to 

handle multiple simultaneous TDOA measurements and 

mitigate the effect of NLOS errors. The objective of this work 

is to show the performance of PF estimation method in 

treating uncertainties of TDOA measurements due to 

multipath errors in NLOS environment. The static PF was 

implemented to estimate the MT’s position in NLOS 

environments where the TDOA measurements are affected by 

the circularly located scatterers. Only one TDOA 

measurement for each pair of BSs was used where the motion 

model of the target MT is not considered. The performance 

of the static PF is compared to two basic estimation methods 

namely robust intersection estimation (RIE) and linear least 

square (LLS). 
The remainder of this paper is organized as follows: 

Section II provides the background study of TDOA 

positioning technique. Section III briefly described the three 

position estimation methods which are considered in this 

work. Then, the simulation set up is described, and the results 

are discussed in Section IV. Finally, the findings are 

concluded in Section V.  
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II. TDOA POSITIONING TECHNIQUE 

 

Current research of network-based L&P techniques have 

considered several measurement parameters which are TOA 

[11], TDOA[12], received signal strength indicator 

(RSSI)[13], the angle of arrival (AOA)[14] and a hybrid of 

those parameters methods [15]. In this work, we focus on 

TDOA measurements in NLOS propagation environments.  

In TDOA positioning techniques, the position of the MT is 

estimated based on the TDOA measurements from multiple 

BSs. The positions of constant time differences of TDOA 

represented by hyperbola curves, which are, focused at the 

location of the corresponding BS pairs as shown in Figure 1. 

As seen in the figure, the distance between the MT and BS1, 

BS2, and BS3 are represented by d1, d2, and d3, respectively. 

The distances correspond to the time taken by the signal from 

each of the BSs to reach the MT is referred to as TOA. The 

value of TDOAs is calculated by differencing the TOAs in a 

pair-wise manner. For example, the TDOA of BS1-BS2 pair 

is determined as |TOA2 – TOA1| which corresponds to the 

distance difference of |d2 – d1| as shown in the figure. Each 

point on the hyperbola curve, (xh, yh) represents a possible 

position of MT. Therefore, at least three BS pairs producing 

three hyperbola curves are needed to solve one unique 

intersection point. In this case, the MT position estimation has 

a single solution that resolves accurately at the MT true 

position.  

 

 
Figure 1: Trilateration method in TDOA positioning 

 

The intersection of the hyperbola curves is obtained using 

an analytical method. For the three BSs network in Figure 1, 

the intersection can be found by solving three equations, 

namely Equation (1) through (3).  

 

𝑑2 − 𝑑1 = √(𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2

− √(𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 
(1) 

 

𝑑3 − 𝑑1 = √(𝑥3 − 𝑥)2 + (𝑦3 − 𝑦)2

− √(𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 
(2) 

 

𝑑3 − 𝑑2 = √(𝑥3 − 𝑥)2 + (𝑦3 − 𝑦)2

− √(𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2 
(3) 

 

The term |𝑑𝑗 − 𝑑𝑖| is the measured TDOA of BSj-BSi pair and [xj, 

yj] is the position of BSj. If the position of all BSs is known and the 

TDOA measurements are error-free, the estimated MT position is 

given by [x, y]. 

In a real implementation, however, the mobile network 

systems are more complex. The propagation channels are 

exposed to noises; errors and the number of detected BSs may 

be more than three. Multipath and NLOS errors are the main 

threats that add uncertainties to time measurements in TDOA 

positioning. The erroneous measured TDOA leads to 

arbitrary positions of hyperbola curves intersections, and the 

estimation process becomes even more complex if the 

number of detected BSs is more than three. As the hyperbola 

is not a linear function, using the analytical method will 

produce an unacceptable error, and the estimated results may 

deviate far from the true value. 

 

III. POSITION ESTIMATION METHODS 

 

There are numerous methods of position estimation being 

studied. In this work, we compare the performance of static 

PF to two basic methods which are intersection estimation 

[16] and linear least square (LLS) [17].   

 

A. Robust Intersection Estimation (RIE) 

Intersection estimation method is the simplest method to 

estimate the MT position by finding the intersection of the 

hyperbola curves. The intersection estimation method must 

be robust to deal with erroneous TDOA measurements where 

the intersections are not unique. In this work, we simulate 

TDOA positioning by using a robust intersection estimation 

(RIE) method which is modified from the basic intersection 

calculation in [16]. RIE has the capability of finding all 

possible intersection points and truncate the duplications. RIE 

computes the intersection point of each pair of hyperbola 

curves functions. The estimated MT position is then 

calculated by averaging all the intersection points.  

 

B. Linear Least Square (LLS) 

The LLS is a simple method that can be used to estimate 

the MT position in TDOA positioning. The non-linear 

equations of hyperbola curves are simplified as in (4).  

 

𝐴𝑚𝑥 + 𝐵𝑚𝑦 + 𝐶𝑚 = 0 (4) 

 

where: 

 

𝐴𝑚 = [
2𝑥𝑚

𝑇𝐷𝑂𝐴𝑚,1

] − [
2𝑥2

𝑇𝐷𝑂𝐴2,1

] (5) 

 

𝐵𝑚 = [
2𝑦𝑚

𝑇𝐷𝑂𝐴𝑚,1

] − [
2𝑦2

𝑇𝐷𝑂𝐴2,1

] (6) 

 

𝐶𝑚 = 𝑇𝐷𝑂𝐴𝑚,1 − 𝑇𝐷𝑂𝐴2,1 − [
𝑥𝑚

2 + 𝑦𝑚
2

𝑇𝐷𝑂𝐴𝑚,1

]

− [
𝑥2

2 + 𝑦2
2

𝑇𝐷𝑂𝐴2,1

] 

(7) 

 

for m = 3,4,…n. Then, then the position of MT (x,y) is 

estimated by using matrix operation as in (8). 

 

[
𝑥
𝑦] = − [

𝐴3 𝐵3

⋮ ⋮
𝐴𝑛 𝐵𝑛

]

𝑇

[
𝐶3

⋮
𝐶𝑛

] (8) 
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C. Particle Filtering (PF) 

PF is an iterative estimation method that utilizes the Bayes 

rule which computes the posterior distribution of the state 

vector based on the previous and current state observations 

[18]. The implementation of PF involves three steps. The first 

step is the initialization stage where N particles denoted as 

p(S0) were randomly sampled around the initial distribution 

of the system. The second step is the sampling stage where N 

samples 𝑥̃𝑘
𝑖  were drawn from 𝑝(𝑥̃𝑘|𝑥̃𝑘−1

𝑖 ). Lastly, the weight 

(likelihood) of each of the samples was computed based on 

Gaussian distribution model in Equation (9), where x is the 

estimated sample and µ is the observation value at the current 

time. The weight of each particle was normalized for the 

resampling process. In the resampling stage, m lowest 

weighted particles were eliminated. To maintain the number 

of N samples, m highest weighted particles were duplicated 

to replace the eliminated ones. 

 

𝑝(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)
 (9) 

 

The resampling step is very crucial in determining the 

estimation accuracy.  

 

IV. SIMULATION RESULTS AND PERFORMANCE ANALYSIS 

 
A. Simulation and TDOA Measurements Setup 

We ran a series of simulations to show the performance of 

static PF in enhancing the accuracy of TDOA positioning 

over NLOS signal propagation. The system layout was set up 

in an 800x600m2 area with five BSs located at fixed Cartesian 

coordinates as summarized in Table 1. For simplicity, we 

assume that BS1 as the serving BS and the initial position of 

the MT was set to [0, 0]. We consider an NLOS environment 

where the scatterers are modelled according to the circular 

disk scatter model (CDSM) [17]. The set up generates NLOS 

errors within the range of 0 to 600 m. The system layout is 

shown in Figure2 while Figure3 depicts the TDOA 

measurements distribution of 1000 samples generated at the 

CDSM radius of 300m. The measured TDOA range is 

between 22ns to 2µs which corresponds to the distance 

difference constants of 5 to 600 m. By assuming that the 

reference signal transmitted by all five BSs was detected by 

the MT, ten TDOA measurements correspond to ten possible 

BS pairs were computed.  
 

Table 1 

System Parameters 

 
The effect of NLOS environment over TDOA 

measurements can be clearly seen in Figure 2. The hyperbola 

curves plot produced correspond to the measured TDOA 

from five BSs intersect at several points, and the position of 

the intersections are arbitrary. There are also possibilities 

where two curves intersect at more than one point. This 

condition is far different when compared to the error free case 

as described in Figure 1. Therefore, treating this condition by 

using a basic intersection method will not satisfy the L&P 

requirements. 
  

 
 

Figure 2: System layout and hyperbola curve plots corresponding to the 
measured TDOAs in NLOS environment. 

 

 
 

Figure 3: Distribution of TDOA measurements (Rd = 300m). 
 

B. Implementation of Particle Filtering 

We applied a static PF estimation method where only one 

measurement from five BSs was considered. With five BSs 

deployed in the network, ten measured TDOAs are computed. 

The measurements were treated as the current state 

observations, which became the reference points in the 

filtering iterations.  

In the first state of PF implementation, the transitional prior 

𝑝(𝑥̃𝑘|𝑥̃𝑘−1
𝑖 ) is computed. The term 𝑥̃𝑘 represents the state 

value at time k that consists of the position vector, [xi, yi] for 

particle i. We generate 1000 random particles around the 

initial MT position with the position standard deviation,  of 

100 m. The distribution of the position of the particle is 

depicted in Figure 4. Then, we calculated ten datasets of the 

estimated TDOA for each of the particles, 𝑇𝐷𝑂𝐴𝑝
𝑖  which 

corresponds to ten possible BS pairs. The estimated values 

were used to compute the particles’ weight in the next 

implementation state. 

 

 

 

 

Parameter Value 

No. of BSs 5 

Position of BSs  
[440 -110; 200 550; -370 600; -700 -

70; -200 -820] 

Initial position of MT [0, 0] 

Propagation model  CDSM 

Propagation condition NLOS 
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Figure 4: Distribution of estimated positions sampled around initial MT’s 

position ( = 100m). 
 

In the second state, the likelihood for each of the particles 

was computed as in Equation (10) and (11). As seen in 

Equation (11), the likelihood was determined based on the 

Gaussian distribution model with the measured TDOA, 

𝑇𝐷𝑂𝐴𝑚 as the mean value and the accuracy of the 

measurements,  𝜎𝑇𝐷𝑂𝐴𝑚  as the standard deviation. 

 

𝑝(𝑧𝑘|𝑥̃𝑘
𝑖 ) = 𝒩(𝑇𝐷𝑂𝐴𝑝

𝑖 ; 𝑇𝐷𝑂𝐴𝑚 , 𝜎𝑇𝐷𝑂𝐴𝑚) (10) 

 

𝑝(𝑧𝑘|𝑥̃𝑘
𝑖 ) =

1

𝜎𝑇𝐷𝑂𝐴𝑚√2𝜋
𝑒

−
1
2

(
𝑇𝐷𝑂𝐴𝑝

𝑖 −𝑇𝐷𝑂𝐴𝑚

𝜎𝑇𝐷𝑂𝐴𝑚
)

 (11) 

 

The value of the likelihood of the particles determines the 

particles’ weight which is a normalized value as given in 

Equation (12) and (13). The total weight of the particles is 

accumulated likelihood contributed by all BSs. During the 

resampling process, particles that possess higher weight 

survive in the next iteration while the particles with the lowest 

weight were eliminated. We used an importance-resampling 

method where the highest weighted particles were duplicated 

to replace the eliminated ones with the equivalent numbers. 

The accuracy of the estimated values increases as the number 

of iterations increases until the simulation converges. The 

converged state value 𝑥̃𝑘 is considered as the estimated MT 

position.  

 

𝑤𝑘
𝑖 =

𝑤𝑘
𝑖

𝑊
 (12) 

 

where: 

 

𝑊 = ∑ 𝑤𝑘
𝑖

𝑁𝑝

𝑖=1

 (13) 

                

C. The Performance of static PF 

The performance of the static PF was compared to RIE and 

LLS based on the estimation accuracy parameter of the root 

mean square error (RMSE). The NLOS measurement errors 

were generated at six different CDSM radius ranges of 100, 

200, 300, 400, 500 and 600 m. For each of the error ranges, 

graphs in Figure 5 compare the accuracy of estimated MT 

position produced by the three estimation methods. As seen 

from the graphs, static PF constantly gives high estimation 

accuracy for all error ranges. The estimation error of static PF 

is almost constant which falls around 50 m from the MT true 

position for all error ranges. Conversely, the estimation error 

produced by RIE increases linearly with the increment of 

measurement error. Even though RIE gives the highest 

accuracy when the CDSM radius is set to a low range, its 

performance declines linearly with the increasing of CDSM 

radius. The graph of LLS shows that it offers the least 

positioning accuracy when compared to other methods. On 

average, the estimation error of LLS is 450 m from the true 

MT position. Even though LLS shows the stability of the 

algorithm, its accuracy is lower than that of static PF by a 

factor of 8.  

 

 
 

Figure 5: Comparison of estimated position accuracy between static PF, 

RIE, and LLS. 

 

Figure 6 shows the cumulative distribution function (CDF) 

of estimated position errors for static PF, RIE, and LLS when 

the radius of scatterers is set to 300 m. From the graphs, it is 

obvious that static PF outperforms RIE and LLS with the 

estimation error is less than 50m and 60m for 67% and 90% 

of the time, respectively. The estimation error of RIE is 

higher than static PF by the factor of 3 and 6 for 67% and 

90% of the time, which resolve to 200 m and 500 m, 

respectively. LLS gives the lowest performance with the 

estimation error of less than 550 m and 750 m for 67% and 

90% of the time respectively. 

 

 
 

Figure 6: CDF of estimated position errors for static PF, RIE, and LLS (Rd 

= 300m). 

P = 90% 

P = 67% 
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Figure 7 shows the CDF of estimated position errors for 

static PF at various CDSM radius ranges. From the graphs, it 

is obvious that the performance of static PF is consistent 

through all the error ranges.  Overall, the minimum estimation 

error achieved by static PF is less than 40 m and 60 m for 

67% and 90% of the time respectively which occur at CDSM 

radius of 400 m. While the maximum estimation error 

achieved by static PF is less than 70 m and 115 m for 67% 

and 90% of the time, respectively which occur at CDSM 

radius of 100 m. 

 

 
 

Figure 7: CDF of Position Errors in NLOS Environment by using static PF. 
 

V. CONCLUSION 

 

In this paper, we have implemented static PF to estimate 

the MT position in TDOA positioning. The intention is to 

mitigate the effect of NLOS signal propagation on the TDOA 

measurements. The measurement errors were generated 

according to CDSM ranging from 0 to 600 m. The 

performance of the static PF was compared to two basic 

estimation methods, which are RIE and LLS. Based on the 

results, we can conclude that static PF can handle multiple 

simultaneous TDOA measurements and a good candidate to 

mitigate the effect of NLOS errors. Static PF is very stable 

over a wide range of measurement errors for giving an almost 

constant estimation error at various CDSM radius. It performs 

the best when the CDSM radius is set to 400 m with the 

estimation of less than 40 m and 60 m for 67% and 90% of 

the time respectively. Even though this achievement seems to 

fulfill the requirements of FCC, the investigation must be 

further expanded to consider many other factors. In our future 

works, we will simulate and enhance the PF estimation 

method in TDOA positioning over in more realistic and 

accurate channel models. 

 

 

ACKNOWLEDGEMENT 

 

Authors would like to thank Universiti Teknikal Malaysia 

Melaka (UTeM) and Ministry of Higher Education (MOHE), 

Malaysia for sponsoring this work under project 

RACE/F3/TK3/FKEKK/F00299. 

 

REFERENCES 

 
[1] Q. Cui and X. Zhang, “Research analysis of wireless localization with 

insufficient resources for next-generation mobile communication 
networks,” Int. J. Commun. Syst., vol. 26, no. 9, pp. 1206–1226, 2013. 

[2] R. M. Vaghefi and R. M. Buehrer, “Improving Positioning in LTE 

Through Collaboration,” in Workshop on Positioning, Navigation, 
and Communication, WPNC, 2014, pp. 1–6. 

[3] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term 

Evolution: From Theory to Practice, Second Edi. United Kingdom: 
Wiley, 2011. 

[4] I. Vin, D. P. Gaillot, P. Laly, M. Lienard, and P. Degauque, “Multipath 

component distance-based fingerprinting technique for non-
cooperative outdoor localization in NLOS scenarios,” IEEE Trans. 

Antennas Propag., vol. 62, no. 9, pp. 4794–4798, 2014. 

[5] J. Zhu, X. Luo, and D. Chen, “Maximum likelihood scheme for 
fingerprinting positioning in LTE system,” in International 

Conference on Communication Technology Proceedings, ICCT, 2012, 

pp. 428–432. 
[6] J. Shang, X. Hu, F. Gu, D. Wang, and S. Yu, “Improvement Schemes 

for Indoor Mobile Location Estimation : A Survey,” Math. Probl. 

Eng., vol. 2015, pp. 1–2, 2015. 
[7] K. Al Nuaimi and H. Kamel, “A survey of indoor positioning systems 

and algorithms,” in 2011 International Conference on Innovations in 

Information Technology, IIT 2011, 2011, pp. 185–190. 
[8] C. Gentner et al., “Particle Filter Based Positioning with 3GPP-LTE 

in Indoor Environments,” Rec. - IEEE PLANS, Position Locat. Navig. 

Symp., pp. 301–308, 2012. 
[9] C. H. Chen and K. Ten Feng, “Enhanced distance and location 

estimation for broadband wireless networks,” IEEE Trans. Mob. 

Comput., vol. 14, no. 11, pp. 2257–2271, 2015. 
[10] J. R. Rufa and E. M. Atkins, “OTDOA/GPS Fusion for Urban UAS 

Navigation using Particle Filtering Techniques,” in AIAA Guidance, 

Navigation, and Control (GNC) Conference, 2013, pp. 1–18. 

[11] A. Awang Md Isa and G. Markarian, “MIMO Positioning for IMT-

Advanced Systems based on Geometry Approach in NLOS 

Environments,” J. Telecomumunication, Electron. Comput. Eng., vol. 
3, no. 1, 2011. 

[12] C. Gentner, S. Sand, and A. Dammann, “OFDM Indoor Positioning 

based on TDOAs: Performance Analysis and Experimental Results,” 
in International Conference on Localization and GNSS, 2012, pp. 1–

7. 
[13] D. Milioris, G. Tzagkarakis, A. Papakonstantinou, M. Papadopouli, 

and P. Tsakalides, “Low-dimensional Signal-strength Fingerprint-

based Positioning in Wireless LANs,” Ad Hoc Networks, vol. 12, no. 
1, pp. 100–114, 2014. 

[14] A. Kangas and T. Wigren, “Angle of Arrival Localization in LTE 

Using MIMO Pre-Coder Index Feedback,” IEEE Commun. Lett., vol. 
17, no. 8, pp. 1584–1587, 2013. 

[15] A. Awang Md Isa, G. Markarian, and M. S. M. Isa, “Hybrid TOA-

Based MIMO and DOA-Based Beamforming for Location and 
Positioning in WiMAX Networks,” J. Telecommun. Electron. 

Comput. Eng., vol. 4, no. 2, pp. 11–20, 2012. 

[16] F. Gustafsson, “Positioning using Time-Difference of Arrival 

Measurements,” in IEEE International Conference on Acoustics, 

Speech, and Signal Processing, 2003, pp. 8–11. 

[17] A. Awang Md Isa, “Enhancing Location Estimation Accuracy in 
WiMAX Networks,” Lancaster University, 2011. 

[18] F.~Gustafsson, “Particle Filter Theory and Practice with Positioning 

Applications,” IEEE Trans. Aerosp. Electron. Syst. Mag. Part II 
Tutorials, vol. 25, no. 7, pp. 53–82, 2010. 

 

P = 90% 

P = 67% 

R
M

S
E

m
in

 =
 4

0
 m

 

R
M

S
E

m
in

 =
 6

0
 m

 

R
M

S
E

m
ax

 =
 7

0
 m

 

R
M

S
E

m
ax

 =
 1

1
5

 m
 


