A study of an objective placement examination for sectioning college physics classes

John Milton Willson

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Physics Commons

Department:

Recommended Citation

Willson, John Milton, "A study of an objective placement examination for sectioning college physics classes" (1931). Masters Theses. 6662.
https://scholarsmine.mst.edu/masters_theses/6662

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A GMUDY OF AN
 OBJECTIVE PLACEMET LXCTMATION FOK GECIIONTYG COLIHGL EFYUICG CLASWES

by

John Milton Willson

\dot{A}

THESIS
submitted to the Faculty of the SOHOOL OF NIDME ATD METALURGY
of the
UNIVERSITY OT IASSOURI
in partial fulfilment of the requirements
for the degree of
NASTER OF GCIENCE

> Rolla, Missouri
> 1931

Pase
Introauction 1
boope of "horis Done 4
2 n I- Erief Guvog of Racenent Zxaminetions
Furctions of Dacencnitaniastions 5
A Lunven of wimilur Investigations 5
Lescription of the lissouri Lohool of Lines Physics Zlacement Examination 17
Pant II
Results of mamistration to Wieh Sohoolitucents
Introduotory utatencnt 20
Discussion of horms 21
Critical stuay of the Examination 24
Parit III
Results of $\dot{\text { Administration to College Students }}$
Introductory statement 32
Distribution of Scores 85
Forms for the College Group 36
Keliability of the Examination 37
Comparison of Results Obtained from College Group Having High School Physics and College Group not Having High School Physics 43
Paric IV
Study of Prelininary utuaent Treining
Quality of Prelininary raaining as wown by the
Fesults of the Lxamination 50
Parit V
Use of the Exanination for Progrocts
Fredictive Fower of the Examination 56
Fegression Equations for Prediction 64
PART VI
A Comparctive -tudy
Comparison of the Lxanination Jith the Iowa Physics iptitude Lxanination 74
Surmary 79
EIBLIOGFATIY
General References on the Preparation of
Examinations 81
General Feferences on Statistical Procedure 81
Periodiaal References 82
APPITDIX A
Analysis of Answers to Inaividual Test Items 84
APPRNDIX B
Glossary of Terms Used 91
APPMTIIX C
The Correlation Coefficient and Its Calculation 93
EIST CP TABLESDase
Table I. Correlation of Intelligence Examination Scores with College Grades 8
Pable a. Predictions dy Intelifence Fests of Pirst wemester Grade sversges in College. 8
Table 3. Correlation between the Thurstone Group Testi aná Pirst Year Yngineering schol- arship 12
Pable 4. Correlation between Iowa Placenent Ixam- inations and rirst Eenester Grades in the subject 15
Table 5. Preaiction by Intelligence Tests ofFirst Semester Grades in Specific oub-jects in college le
Table 6. Leans, Ledians, and Ranges Obtained from Papers Written by High school students 22
Table 7. Variability Norms for High ichool
Group 23
Table 8. Keliability Coefficients 26
Table 9. Statistical Data on the Examination
Papers Written by High School students 31
Table 10.Frequency Distribution of Scores, College Group 34
Table 1l. Percentile Norms and Ledions for College Groups 36
Table l:. Variability Norms for College Groups 57
rable l3. Reliability of the Examinetion 58
Table 14. Reliability Data for Various Tests 40
Tsble l5a.Interpart Correlations, 211 Colleges 41
Table 150.Interpert Correlations, LissouriSchool of Lines41
Table I5c.Interpart Correlations, Nissouri University 42
Table 150.Interpart Correlations, Washinston
University 42
Table I5e.Interpart Correlations, Central College 43
Table 16. Frequency Districution of ScoresLade by College Studerts Having Physicsin Figh School and College Stuadentsnot Raving Physics in High School45
Table 17. Measures of Central Tendency and
Variability for College Grouns Havingand not Taving High School Physics
and for the Composite Group 4^{77}
Table 18. Student Accomplishment Upon Selected Items from the Examination 51
Table 18a Test Itens Referred to in Table 18 52
Table 19. Distribution of Grades in PhysicsLade by stuaents Falling in quartersof the Class as Determined by Place-ment Examinations 58
Table 20. Distribution of Grades llade by stu- dents Falline in Quarters of the Olass -- weparate Schools 59
Table 2l. Distribution of Wasinggton University Grades 61
Table 2 . Pearson Coefficients of Correlation between Placement Examination Ecores Grades 63
Table 23. Correlation between Farned Grade: and Precicted Grades 67
Table ≈ 4. Distribution of Scores liade on IowaPhysics Aptitude and Hell physiesPlacement Rxaminations by 116 MissouriSchool of mines students 76Table 25. Measures of Central Tencency andVariability for the Sets of Scores in
Table 24. 77
Table 26. Distribution of Grades Nade by Stu-dents Falling in Given Quarters ofthe Class as Determined by the Iowa
Examination and the L.Sk Jxarination 78
Table it. Correct inswers Given for Each rest
Item by ma Groups of inissouri
Echool of yines stuaerts 84
Table 28 . Rignt, Grone, and Onitte A answers
Appearing in a Group of 150 Paperswrittem by Lissouri school of linesStudents 87.

IIOT OE GGURES

-age
Figg. l. Scores Lece on RSl Placement Examination by llb igh bchool ituagits, bhonine the Peasibility of Dividing tie Group into Eections.. . 2ε

Fig. \#. Frequencies of zores rade by 510 College otudents on the Examination......... 35

Fig. 3. Comparison of Distribution of icores aude by Group Kavins Physics in Migh School and Group not Eaving pysico in Fingh behool . 46

Fig. 4. Distribution of wores ade by 150 utucents at the issouri behool of ines Whowing Division into Three Sections 57

Fifg. 5. Negression Line for Precioting Graces 66
Fig. 6. Frequency Distribution of Ecores Lade on Iowa ancu isl examinations 75
Fig. 7. Otis Comelation Chart 95

ACHHOTMMGITES

To Professor L. E. Woomen, head of the Depertment of Physics at the missouri school of Mines, the writer owes much for suggesting this otudy and making possible its completion. From its inception Dr. Woodman was ever ready to lend assistance and cooperation. Special mention should be mad of his enthusisctic efiorts in securing the cooperation of the verious schools representea in the study.
tio Professor C. V. Mann, head of the Department of Engineering Draming, the witer is also indebted, especislly for his encouragement and advice. rirenout the work Lr . Menn was quite willing to give on his time and professional experience in furthering the study. The writer also wishes to ackncmledge the aia rendered by Dr. Mm in allwing free use of his personal and depsrticental library.
ncknowledgrents are also due the seven high schools which cooperated in the preliminary stuay, and the departments of physics at kissouri Universite, Weshirgton University, and Central College, through whose cooperation was obtained a set of papers sufficiently large to yield justifiable conclusions.

Introduction

For several years the Department of Phesios of the Missouri School of fines hes precticed seotioning of its clazses in eneral hysics. The ain has been to sezregate in one section the students of superior ability, giving them e course incuding botin the funcmantels of phesics end thoir agrlizations in engineering. rine remeinäer are given a course in fundarientals without placing so much stress upon the applications. This second group--the larger of the two--is further divided into tro unequal groups, the smaller of which includes thowe students no are expected to encounter difficulty and need especial attention. The purposes of such aivision into sections are two:

1. To facilitate the instructional processes. 2. To give the superior student an opportunity to proceed without the sense of being held back by others of the group, and to give the less fortunate student an opportunity to proceed without the feeling of helplessness which is likely to be present when both types of students work in the same class.

It must be here understood that placing a student in
a given section does not by any means predetermine or guarantee his grade. Each student is graded upon the type of work which he does. One would expect, however, from the considerations upon which the sectioning is done, that the grade averages of the two sections would differ.

Various criteria are used for determining the sections. The required physics courses are placed in the second year of all curricula at the lissouri Bchool of Nines. This makes possible the use of a student's first-year record as a criterion for assigning him to a section. Another criterion used to supplement the first-year grade record is the student's score on the Iowa Placement Examinations. The physics exanination consists of two parts, the Training Series and the Aptitude Series. These examinations are administered at the first two meetings of the class in general physios, the Aptitude Examination being given on the first day and the Training Examination on the succeeding day. The scores made on the two examinations are used in conjunction with the scholastic records of the freshman year to determine the sections.

Where the data from the placement exaninations were used to supplement other fairly reliable data, it was thought that the administration of the Iowa

Examinetions, reauiring two periods, was mesteful of time. It was believed that an examinetion could be devised which could be administered in a single period and furnish information of sufficient worth. The MSN Physics Placenent Examination was the result. This investigation is concerned with a critical study of the examination. The aims of the study are to determine the probable worth of the examination as a unit and as compared with similar examinations.

Scope of Work Done

The historical development, purposes, and functions of placement examinstions were studied, as were their form and construction. An ofjective type placement examination for college physics was constructed. This examination was administered to 113 high school students distributed among seven schools. The results were studied to determine the validity and the reliability of the examination. Slight revisions vere made in the examination wherever need for them was apparent from the study of the high school papers. It was then administered to 510 college students distributed among four Missouri colleges and universities. From the group of papers thus obtained reliability coefficients and norms were determined for the examination. The worth of the examination for predicting accomplishment in college physics classes was studied by correlating the examination scores with the final term grades for each student. Regression equations were formed by which final or term grades could be predicted from the placement examination scores or from these scores and scholarship marks combined.

Pafr I

A Brief Survey of Placement Examinations

Functions of Placement Examinations

The chief function of the placeraent examinetion is prognosis. It is expectec to yield results which will enable the adrninistrator to predict with fair accuracy the character of work which a given individual is likely to do. It should afford a reasonable basis for sectioning a class into homogeneous groups in each of which all individuals would be expected to make somewhat the same progress. It should afford the instructor a useful device for establishing academic relations with his class at the first meeting of the group. It should indicate to the student something of the preparation he is assumed to have made for the work upon which he is entering and introduce him to the nature of the material of the course.

A Survey of Similar Investigations

During the last quarter century much attention has been directed toward prediction of academic success. The importance attached to such prediction is
well expressed by symonds in his leasurements in Secondary Edueation (7, page 363): "woience holds prediction as its most important aim and prognosis is the ultimate aim of endeavor in the scientific study of education."

Early studies of exaninations for prediction had as their object the determination of general intelligence or the prediction of general mental attainment. The first tests designed to predict achievement in specific subjects or courses were constructed by T. L. Kelley, who published his results in 1914 (II). His aim was stated as follows: "The endeavor of this study is to predict with a known, and as high as possible, degree of accuracy the cepacity of the pupil to carry a prospective high school course." He devised four tests to predict ability in algebra, geometry, history, and English. The correlations of the test scores with achievement grades ranged from. 44 for the English test down to .51 for the history test. The reliability of the tests was probably rather low.

The nex't attempt of any importance to construct prognostic tests was that of Dr. Agnes Rogers, who began her work in 1916 and published her results in 1918. Correlations with achievement were much higher
than those obtained by Kelley, runing as high as .ew. More will be said of her work later in this study. From the beginning of the use of tests in prediction, tro cistinct types of tests have been vitilized. One is the general psychological or inteliisence tsst, while the other is the subject matter test which may be aesigned for rediction of genera子 scholarship or more expressly for prediction in a Eiven field. Intelligence tests which have been widely used in such studies are: Army Alpha, designea during Arerice's participation in the European war for use in the U.S. Army; Terman Group Test of kental ability; Otis Group Intelligence Scale; Thurstone Psychological Pxaminations; the Brown Scale; and the Thorndyke Intelifeence Test, especislly designed to meet college needs. The average correlations of these tests mith college marks ss aetermined by various investigators are given in Table l. 2
${ }^{1}$ rifis table is acaoted from bymonds: leacurements in Secondary Education, Table III, page 4I9, and from otoudard: Iowa Placement Exarinations, University of Iowe Studies in Education, Vol. III, lVo. 2, pages II-12.

```
    Correlation of Intelligence Examination Scores
                        With College Gredes
        Test Jordan Nchaal Toops Hoke
    Thorndyke
    Brown .47 .40
    Thurstone .33 .40 .125
    Otis .44 .06
    Terman .48 .45 .48
    Army ilpha
    .415 . 39 . 40
    Similar data for these and other placenent exami-
nations are given in Table z.
Table 2
Predictions by Farious Tests of First
Semester Grade Averages in Collegeı
\begin{tabular}{|c|c|c|}
\hline ivame of test & \(r\) & Source \\
\hline Army Alpha & . 45 & Stone (192\%) \\
\hline Army Alpha & . 44 & Stone (1922) \\
\hline Army Alpha & .35 & Stone (1922) \\
\hline Army Alpha & . 50 & Stone (1922) \\
\hline Army Alpha & . 41 & De Camp (1921) \\
\hline
\end{tabular}
```

Table 2, continuea.

Mane of test	r	wource
Army ilpha	. 49	Stocdard (1925)
irmy ilpha	. 44	I.CPhail (1924)
Array Alphe	. 45	Colvin (1919)
Army Alpha	. 56	Eriages (1920)
Arny Alpha	. 38	Briages (190\%
Aximy alpha	. 55	Eridges (19~N)
Army inlpha	. 28	Eridges (1922)
Srmy Alpha	. 46	Van Hagenen (19\%0)
Thorndyke I-III	. 60	Thorndyke (18w,
Thorndyke I	. 47	Thorndyke (1922)
Thorndyke II	. 45	Thorndyke (1928)
Thorndyke I-III	. 51	Wood (1925)
rhorndyke	. 53	McPhail (1924)
Thorndyke	. 41	Nowhail (1924)
Thorndyke	. 41	Nophail (1924)
Thorndyke	. 41	MoPhail (19\%4)
Council on Education .	. 62	itoddara (1925)
Council on Education .	. 54	Thurstone (1925)
Thurstone	. 13	Hoke (192: ${ }^{\text {) }}$
Thurstone	. 22	Thurstone (1920)
Linnesota 68	rohnston (1924)
Terman Group 48	Toke (1922)
Erom Univeruity	. 46	Lichail (1904)

Table \sim, cortinued.

W20 of teat	\because	Eurare
Erown Universityr . .	. 58	Topheij (1964)
Erown Univereity	. 69	I.cracil (1924)
Erown Tniverwity	.67	Wowneil ($120 s^{\text {a }}$)
University of Texss	. 49	Perrin (1964)
Iowe Placerient axeminetions	65 to	.75 Stocidard (1900)
Ione Physios aptitude	. 55	:ilison (1850)
Iowa rhysice mptitude	. 59	..illson (1931)
Lo. Scinool of lines		
Eng. Lrawirie 65	Himn (1989)

${ }^{2}$ adapted from various sources, the chief one being Fammond and stoddard: sisudy of placernent Pxaminations, Eull. No. IE, Investigation of Engineering Education, E.P.I.T.

The tables indicate that the preaictive value of the various examinations is quite variable and is in most cases undesirably low. It must be noteu that the correlations given are between the examinations and average grades. When these tests are used to predict success in a single subject, results are even less satisfactory. C. L. Stone (17, pages 298-302) attempted to use Army Alpha for this purpose, obtaining
coefficients of correlation ranging from. 11 to . 50 . He tried to use the various perts of the test for guiding students in their choice of courses, but he determined that the test wes valueless for such purposes.

The general conclusions derived from the work of verious investigators concernine the use of intelligence examinations for prediction are:

1. Such examinations have more worth for predicting general academic success than attainment in specific subjects.
2. Euch examinations are better for prediction of college success than are high sohool marks.

己. They are superior to subject-matter examinations for the prediction of general academic suacess, but inferior to such examinations for prediction of attainment in single subjects.

During recent years great development has been made of subject-matter exauninations for general anả specific predictive purposes. Outstanding are the tests prepared under the direction of Professor L. L. Thurstone in response to a demand made in a resolution passed by the Society for the Promotion of Engineering Education at its Baltimore meeting in June, 191e (16): "That this society through its Committee on Admission, or otherwise, recommend that as a
matter of experiment and research, psychological, 'ovjective', 'trade', or other similar tests be given to all students after admission to engineering courses of stuay and that the ratincs trus obtainea be compared with their subsequent schom lestic success."
six tests were prepared, five of which may be considered as subject-matter tests, winle the sixth is the Thurstone Psychological Examination. Fesults obtained from administration to nearly eicht thousand students entering engineering colleges are given in Table

Table 3

Correlation between the Thurstone Group Tests and First Year Engineering Echolarship ${ }^{ \pm}$

Test r
Aritmetic .38
4igebra .42
Geometry . 30
Physics . 34
Technical Information . 23
Psycholagical Examination . 29
${ }^{1}$ Engineering Eduaation, Vol. XIII, No. 5, pages 263-318.

The complete series of tests given as a battery gave correlations running from . 19 to . 26 , the median being .46. It was found that single tests in a specific subject were not of thernselves very reliable bases for prediction of general academic success, but that they were more reliable than high school grades. It should be noticed that the Thurstone Group of tests did not propose to predict results in specific subjects. Anong the first stuaies devoted to a test for prognosis in a particular subject was that of Dr. Agnes Kogers (15, pages 78-74), referred to above. Dr. Rogers was interested in predicting mathematical ability in high school students. She prepared a battery of six diagnostic tests which she administered to a group of 114 students, all of whom were girls. Correlations obtained between the marks on the test battery and mathematics grades were . $6 z$ for one group of 53 individuals and .82 for another group of 61 individuals. These coefficients are quite higl, but the working groups were not sufficiently large to assure their reliability. The outstanding attempt at prediction in specific subjects is the series of tests known as the Iowa Placement Examinations constructed at the State University of Iowa by Dr. George D. Stoddard under the general direction of Dean C. E. Seashore of the Graduate College

Anc Pofessor a. W. Fuch of the College of Education. These examinations constitute a series of educstional tests designed to mesure the training end aptitude of students for subjects comonly included in the first year of engineering curricula. Lach subject is represerited by two exminstions: an aptitude examination which is a speciel kind of intelligence test, and a training examination which is an objective content examination. As outinea by the authors (10), the aptitude examination is designed to measure those particular mental abilities which probably constitute a factor in subsequent success in the particular subject, while the training examination messures the character of the previous training in the subject, also, the amount of previous training. The Society for the Promotion of Engineering Education cooperated in the study of the Iowa lixaminations by heving the examinations given to students in a large number of schools throughout the country, thus anassing considerable data on the validity and reliability of the examinations. Their accuracy of prediction is shown in Table 4. It will be noted that the correlation coefficients in this table are relatively higher than those in Table 1 , page 8 , which gives correlations between general intelligence examinations and general scholastic success.

Correlation between Iowa Placement Examinations and First Semester Grades in the subjectı

Exanination

liean coef- Range of coefficient ficients

Chemistry Aptitude	.48	.65 to .63	
Chemistry Training	.52	.25	.67

Chemistry Aptitude plus Chemistry Training	.52	.35	.65
English Aptitude	.46	.35	.69
English Training	.54	.28	.67

English Aptitude plus
English Training
.52
$.33 \quad .74$
Foreign Language Aptitude .52 . 36 . 73

French Training	.56	.45	.65
Spanish Training	.53	.48	.57
Mathematics Aptitude	.46	.16	.65
Mathematics Training	.51	.34	.65

Mathematics Aptitude plus			.37
Mathematics Training	.51	.71	
Physics Aptitude	.47	.28	.62
Physics Training	.61	.57	.69

${ }^{1}$ Adapted from A Study of Placement Exarinations, Bulletin 15, Society for the Promotion of Engineering Education.

A comparison of true worth can be made, however, only between the data given above for the Iowa Examinations and similar data concerning examinations useã to preaict in a single subject. Table 5 furnishes such a comparison. A study of Tables 4 and 5 leads to the conclusion that the Iowa Examinations excel.

Table 5

Frediction by Intelligence Tests of First Semester Grades in Specific Subjects in College ${ }^{2}$
Description of test r Source

University of Texas (Chemistry) . 30 Btocidard
Thorndyke I (Chemistry) . 27 Stodadard
Thorndyke I (Chemistry) . 41 Stociderd
University of Texas (English) . 54 Perrin
Thorndyke I (English) . 4己 Stoddard
Thorndyke I (English) . 36 Stodadard
University of Texas (Nathematics). 56 Perrin
Thorndyke I (Nathematics) . 23 Stoddard
Thorndyke I (Romance Language) . 25 Stoddard
University of Texas (Physics) . 31 Perrin
No. School of Nines (Drawing) . 63 Mann
${ }^{1}$ Adapted from various publications.

Description of the Missouri school of hines
Physics Placement Examination

The examination is divided into four parts. Part One measures the elementary mathematical processes used in physics. It contains thirty items which belong to two distinct types. Bome of the items are tests in logic designed to measure the ability of the student to draw conclusions from given observations. The majority of the items measure the simple arithmetic and algebra involved in problems frequently occuring in a course in college physics.

Part Two is essentially an interest test. Its form might be called pictorial recognition. It consists of thirty-four sketches or aiagrams of devices involving some comion important physical principle. The pictures are numbered consecutively. They are accompanied by a list of the names of the devices illustrated. These names are arranged in random order with a blank before each in which the student is to place the number of the corresponding sketch. While this part to some extent presupposes a partial knowledge of elementary physics, it is expected that the majority of students will have acquired more of
this information through their various indivicual associations than through formal instruction, and the extent of knowleage displayed by the student in this part of the examination should be a measure of his interest in applied physics. It is logical to assume that interest in a subject will be a factor in success in the subject.

Part Three is made up of three selections of material from a standerd textbook in college physics written especially for tecinical schools. Based upon these selections is a set of precisely worded true or false statements which are intended to measure the ability of the student to grasp and utilize whet he has read. One of the selections makes use of a lettered diagram in order to test the student's ability to make use of the pictures and diagrams that supplement his text.

Part Four is also essentially an interest test. It is held that the student who has particular fitness and liking for physics will have built up a fund of knowledge through his reading and other activities, and that the extent of this fund of knowledge will be a measure of probable scholastic success in the subject. Accordingly, Part Four is made up of tlirty statements involving fundamental concepts of physics and their
application. The recognition type of question.with choice of answer to be made from five offered was used in order to eliminate as completely as possible the effectis of chance answers.

The entire test consumes forty-eight minutes of actual working tirne, distributed as follows: Part one, Pourteen minutes; Part Two, eight minutes; Part Three, firteen minutes; Pert Four, ten minutes.

PATT II

Results of idministration to High School Students Introductory staterment

The examination was administered in the spring of 1950 to 113 high school pupils distributed among seven schools. Approxinately ninety-five per cent of the IlE pupils were seniors mithin a few days of graduation. The remainder, with one exception, were juniors. One sophomore who expressed a desire to take the examination was permitted to do so. His score was the second highest from his school and relatively high among the 115 scores.

The aims for administering the test in the kigh schools were:

1. To obtain a set of papers to serve as an evaluation index for the examination.
z. To discover any inherent defect in content, arrangement, time limits, etc.
2. To determine what differences, if any, the examination might bring out between students who had taken a course in physics in the high school and students who had not taken such a course.

The hissouri school: cooperating in the stuay and the number of students used from each were as follows: Rolla, (45); St. Janes, (18); Pacific, (12); Sullivan, (11); Webster Groves, (1ش); Salen, (8); Dixon, (7). All the students were boys except one of the Webster Groves group and sixteen of the folla group. Of these girls who were permitted to take the examination, six had completed a course in high school physics.

Discussion of Norms

Norms are standards which enable comperisons between individual scores, group scores, or the scores of individuals and group scores. A student's accomplishment may be compared with that of his class; one class may be compared with another; one instructor's results with another's, etc.

Norms in general are of two types--measures of central tendency and measures of variability. Most important among the former are the mean, the median, the quartiles, and the percentiles. Nost important among the latter are the quartile deviation, the average deviation, and the standard deviation. The latter is most often used. The particuler measure to be used will depend upon the purpose for which it is
to be used. It is quite possible for one type of neasure to be of little value for comparative purposes, While another type has great value. For enample, two sets of measures might have the sane mean, but the distributions be such that the standard deviation of one be twice that of the other. Obviously, comparison of the means of the two sets of measures accomplishes nothing; we must utilize some measure wich will furnish a comparison of the variation of the trait being measured in the two groups from the average of the trait for each group. The stendard deviation is such a measure.

The distribution, rean, median, and range of the scores made by the composite high school group are given in Table 6.

Table 6

Ieans, Redians, and Ranges Obtained from Papers Written by High School Students

Group IV hean Median Range 1

Entire
High School physics
NO H. S. physics
$61.85 \quad 57.0$ 118-17
$45 \quad 80.8 \quad 81.0 \quad 118-44$
$68 \quad 48.35 \quad 46.5$
38-17

[^0]The arithretic mean is quite satisfectory, considering the nature of the examination and the nature of the groups to winich it was administered. The ratio between the mean score and the perfect score coripares quite well with this ratio for various examinations of the same general type as the exanination being stuaiea. The ratio mean score \div perfect score is . 49 . This ratio for the Iowa Placement Examinations ranges from .37 for the Chemistry Training Examination to .62 for the English Aptitude Examination.

For a perfect distribution, that is, one following the normal probability curve, the mean and median scores should be identical. They actually differ by 4.85 points and by seven test papers. Increasing the number of cases would likely cause the mean and median scores to approach each other.

Variability norms obtained for the high school distribution are given in Table 7.

Table 7
Variability Norms for High School Group
Norm

Quartile deviation	15.6
Average deviation	21.8
Standard deviation	24.05

Critical study of the Examination

Among other questions which this prelininary investigation with high school students attempts to answer are the following: (1) Is the exarination sufficiently valid? (2) Is it reliable? (3) Does it detect sufficient differences in student ability to be used as a criterion for sectioning classes?

A worthmile examination must have high validity. Ruch (2) defines validity as follows: "By validity is meant the degree to which a test or examination measures what it purports to measure. Validity might also be expressed more simply as the 'worth-whileness' of the examination." He states further, "For an examination to possess validity it is necessary that the materials actually included be of prime importance, that the questions sample widely among the essentials over which complete mastery can reasonably be expected on the part of the pupils, and that proof can be brought forward that the test elements (questions) can be defended by arguments based on more than personal opinion." The chief methods of validation for this test were analysis of text books and courses of study, analysis of similar examinations, and judgement of competent persons. The content of the examination is such that it should
have high validity.
Comparison of the scores made by students having a high school course in physics with the scores made by students not having such a course indicates that the examination does contain sufficient matter pertaining to knowledge of physics to be selective. Consequently, one may expect that anong students. who have had no advance preparation the higher scores will be made by inđividuals having a natural liking for things of a physical nature. It is reasonable to assume that such students will have a better chance of survival than other types, and it shouid be a function of this type of test to discover such students.

Reliability is a highly important criterion of a good examination. Ruch (2) defines reliability es follows: "By reliability is meant the degree to which a test or examination measures what it really does measure, not necessarily what it purports to measure. Reliability is synonymous with accuracy of measurement. In mathematical terms it is often identical with self-correlation, or the extent to which two samples of the sane thing, e.g., ability in arithnetic, yield the same numerical scores."

The reliability of the test and its various parts as calculated by standard statistical proceaure is quite satisfactory. The reliabilities are given in Table 8.

Table 8

Helisuility Goefficients

Part	r_{x}	r_{∞}
One	$.905 \pm .021$.951
Two	$.949 \pm .01 \approx$.974
Three	$.896 \pm .023$.946
Four	$.892 \pm .024$.944
Entire	$.906 \pm .0044$.988

These coefficients were obtained by the chance-half method of correlation. The 113 scored papers were split into two hypothetical forms by summing separately the scores on the even-numbered and oda-numbered items. Pearson product moment coefficients of correlation were then obtained between these two forms. This gave the reliability of one-half the test. The reliability of the entire test was tren determined by substituting $n=2$ in the Spearman (Brom) prophecy, formula, Wich is:

$$
r_{X}=\frac{n r}{1+(n-1) r}
$$

in which r is the coefficient of correlation between the half forms.

The column in the above table headed "re" gives the index of reliability. This is the coesficient of correlation between a set of obtained scores and their
corresponding true scores, the true score of an individuai being the avercge of a large number of measurements made of the given inaividual on the same or duplicate tests under recisely the same conaitions. rhe index of reliability is also the maximum value which the relisoility coefficient r_{X} can take. This follows from the statenent by elley (lí, page 3z7) "....the highest possible corlelation which can be obtained (except as chance might occasionally led to higher spurious correlation) betreen a test and a second measure is with that anich truly represents wat the test actually measures, --that is, the correlation betreen the test and true scores of incividuals in just such tests." Felley hes show (1: pages 34-71) that the correlation between a series of obtained scores and their corresponding "true" scores may be found fron the formula

$$
r_{\infty}=\sqrt{r_{X}}
$$

in which r_{X} is the reliability coefficient obtained from duplicate forms of the same test. Since the value of r_{x} can never be greater than unity, it is seen that the index of reliability can never exceed unity. mhe values of r obtainea in this study are quite high. Comparison of the quertile range (31.2) with the total range (96) indicates that the exa ination has high selectivity which mill enable high, medium, or low
sections to be determinge from the results of its administration to a large group of stuaenta. Mis is ell indiceted eremicelly by the apperded curve, Fig. I. The vaidaity of these results for sectioning Hust be detemined from a study of their use for thet purpose.

The preliminary investigation revealea a few mechanical faults mich could be and ere corrected before the examinabion was preparea in final form for adninistration to colleee students. It was found that the arrangenent of parts was not perhaps most advantageous for administration to high school students. Part One seems to have been the hardest and Part Three the eabiest for high school pupils, and these parts perhaps should have been interchenged for the best psychological effect. In an atternpt to discover the apparent cause of the difficulty of Part one for high school students the writer discussed that nart with a number of the students taling the exanination. The general opinion was that they had forgotten much of their. algebra, which most of them had completed approximately three years previously. The explanation appears rather lame, however, in view of the simple nature of the mathematics involved in Part one. Inasmuch as the students of the lissouri School of lines will have completed a year of freshman mathematios before the

```
examination is administerea to them, it is thought
that for these students the original arrangement of
parts should prove satisfactory.
    The time lirits as set seemed to be quite satis-
factory. In generel, the omissions were well scattered
throughout the answers to the test items rather than
concentrated near the ends of the various parts. This
would indicate that the omissions were due chiefly to
ignorance of the answer rather than to lnck of tiae.
Sixty-three of the students took the examination under
the direct supervision of the writer, who noticed few
evidences of insufficient or surplus time.
    A summary of the statistical analysis of the high
school papers is given in Table 9 on the following
page.
```

Table 9
Statistical Data on the Examination PapersWritten by High School Students
N (Number of cases) 113
Laximum possible score 126
Minimum possible score 0
Range 11 $5-17$
Arithmetic mean 61.85
Median score 57
Upper quartile 76.3
Lower quartile 45.1
Quartile range 31.2
Quartile deviation 15.6
Average deviation 21.8
Standard deviation (S.D.) 24.03
Probable error of a score 4.578
P. E. score ${ }^{\div S . D .}$ 0.18
$r_{x}, ~ c o e f f i c i e n t ~ o f ~ r e l i a b i l i t y ~$ $0.966 \pm .0044$
r_{∞}, index of reliability 0.988
$r_{x} \div S . D$. 0.041

PAET III

Results of idministration to College Students

Introductory statement

The examination was administered to high school students merely to obtain material for a preliminary study as outiined in Part II. With such a group the test is probably an ''aptitude'' examination to a greater degree than with the college group. With the latter the examination becomes more of the nature of a training test, since the students have had greater opportunity to learn something of the material over which the testing is done. since the examination is to be used with college groups for prognostic purposes, its value as a prognostic test cen best be determined by administering it to a group of college students and studying the results.

Accordingly, after a few slight changes had been made in the exarnination where need for them was pointed out by the set of high school papers, an edition was prepared for administration to college students. The examination was administered in September, 1950, to a class of 130 second-year men students at the Missouri School of Wines. This group of papers served as a basis for an exhaustive study of the test, results of
which will be found on succeeding pages.
To secure a supplementary group of papers arrangements were inade with the departments of physics at Washington University, liissouri University, and Central College to give the examination to their basic physics classes at the first meeting of each class. The Washington University group of 213 students was approximately two-thirds first-year engineers. The Nissouri University group consisted of 118 individuals, approximately all of whom were engineering students. The Central College group of 49 students was comprised chiefly of students of liberal arts, some of whom were women.

The final standing of each student at the end of the term was obtained to deternine the degree to which the student's accomplishment might be predicted by his placement examination score.

Distribution of scores

The scores obtained on the examination indicate a tremendous variation in the skills and abilities tested. The total number of students taking the test was 510. The score frequencies for this group are given in Table 10. That the examination adequately measures differences of individual performance is grephically shown by Fig. 2.

Frequency Distribution of Bcores (Frequency column gives the number of students whose scores fell within corresponaing score groups in adjacent column.)

Score group	Frequency
$35-39$	1
$40-44$	5
$45-49$	6
$50-54$	5
$55-59$	13
$60-64$	20
$65-69$	36
$70-74$	45
$75-79$	63
$80-84$	41
$85-89$	57
$90-94$	48
$95-99$	47
$100-104$	42
$105-109$	$410-114$
$115-119$	$120-124$

Fig 2 Distribution of scores made by 510 college students on the examination

Norms for the College Group

Norms are measures by which the results of a test may be compared with the results of other tests. The meaning and use of the various norms are discuased on page 2l. Table 11 gives percentile norms and means for the composite college group and for the groups from the four different schools. All papers in a given group were used to determine the norms for that group. Table 11

Percentile Norms and kedians for College Groups

| | Com- | Lissouri | Missouri Wash. Central | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | posite | Mines | U. | U. | College |
| N | 510 | 130 | 118 | 213 | 49 |
| Mean score | 84.28 | 81.27 | 84.17 | 91.46 | 72.91 |
| Percentiles: | | | | | |
| 10 | 65.14 | 65.0 | 66.0 | 70.85 | 41.25 |
| 20 | 71.77 | 68.25 | 75.77 | 76.2 | 55.0 |
| $25\left(Q_{1}\right)$ | 74.61 | 70.0 | 78.08 | 78.4 | 58.03 |
| 30 | 76.74 | 72.0 | 80.5 | 80.79 | 63.33 |
| 40 | 81.22 | 75.94 | 86.0 | 86.39 | 70.0 |
| Median | 86.75 | 79.05 | 90.0 | 93.21 | 75.0 |
| 60 | 91.46 | 85.29 | 93.66 | 98.48 | 79.0 |
| 70 | 96.81 | 88.88 | 96.43 | 103.18 | 85.0 |
| $75\left(Q_{3}\right)$ | 99.52 | 91.36 | 98.55 | 105.48 | 87.5 |
| 80 | 102.5 | 94.08 | 100.55 | 107.03 | 89.16 |
| 90 | 108.49 | 101.66 | 105.71 | 113.75 | 95.0 |

Variability norms for the college groups are given in Table l\%. All papers written by a given group were used in calculating the norms for that group.

Table 12

Variability Norras for College Groups

| Norm | AlI | M.S.M. No. U. W. U. Central | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Quartile deviation | 12.45 | 10.68 | 10.23 | 13.54 | 14.08 |
| Average deviation | 13.04 | 11.87 | 13.24 | 14.07 | 14.91 |
| Standard deviation | 16.72 | 14.05 | 16.19 | 16.24 | 17.33 |
| No. of papers | 510 | 130 | 118 | 213 | 49 |

Reliability of the Examination

Table 15 gives reliability coefficients and indexes of reliability for the examination and each of its four parts as determined from the 130 papers written by students at the Hissouri School of mines. The meanine of these coefficients and the method of their calculation are discussed on pages 25 to 28 in the account of the preliminary investigation with high school students.

Table 13

Reliability of the Examination

Part	r_{X}	r_{∞}	PE $_{\text {rx }}$	PE $_{r_{\infty}}$
One	.822	.907	.019	.0103
Two	.924	.967	.008	.004
Three	.866	.969	.015	.007
Four	.879	.937	.013	.007
Entire	.881	.938	.011	.007

The probable errors in the last columns of the table are the probable errors of the coefficients due to rendom sampling of cases. They were determined from the formula

$$
P E=\frac{I-r E}{\sqrt{N}}
$$

in which r is the coefficient and N is the number of cases from which it was determined. A probable error of, say, . Ol for a coefficient of .80 signifies that the chance: are even that the value of the coefficient lies between . 79 and .81. It may be inferred that as the number of cases becomes larger the value of PEr becomes smaller.

The probable error of an individual score may be obtained by use of the formula

$$
\mathrm{PE}_{\text {Score }}=.6745 \mathrm{SD} \sqrt{\bar{I}-\mathrm{Y}}
$$

in which $S D$ is the standard deviation of the measures
and r is the reliability coerficient of the exemination. For the Missouri whool of mines groun the 2wcore was found to be 3.37. This may be interpeted as follows: The chances are rifty out of a hundred that an obtained sore of, ba,", SC on the examination represents a true score of $50 \pm .87$, or, expressed in another way, fifty per cent of the obtained scores are in error (as compared with their true scores) by not more than ± 5.87 points.

Comparisons of probable errors for a single score for different examinations will not give a comparison of reliabilities unless the size of the scale unit for each exanination is the same. If the probable error is divided by the standard deviation, this factor is equalized. This ratio, $\frac{\mathrm{PE}_{\text {score }}}{\mathrm{SD}}$, is a good comparative measure of reliability. The smaller this ratio, the more efficient is the examination. The ratio $\frac{\mathrm{PE} \text { score }}{\text { Mean }}$ is also sometimes used to compare the reliabilities of different tests, but is usually not so well regarded as the other.

The reliability measures of the examination are compared in Table 14 with similar measures for various other examinations. The close agreement of the figures indicates satisfactory reliability for the Nissouri School of Mines physics examination.

Feliability Data for Various Tests

Test	IT	SD	r_{X}	PEscore	PEscore/ad
M.e.lu. Physios	130	16.7	. 88	5.9	0.23
1..-. I. . Drawing	160	22.0	. 81	e. 41	. 29
Iowe Phy . Apt.	100	19.0	. 89	4.2	. 22
Iowa Phy. Tr .	100	24.4	. 85	6.4	. 26
Iowa Chem. Apt.	100	17.5	. 88	4.0	. 25
Iowa Chem. Tr.	100	28.0	. 93	5.1	.18
Iowa liath. Apt.	100	7.0	. 86	1.7	. 24
Iowa Math. Tr.	100	10.4	. 88	2.4	. 23

Another method of indicating the reliability of the different parts of an examination is the coefficient of correlation between the parts of a test and the entire test. Generally speaking, a part which shows low intercorrelation with other parts but high correlation with the whole test is desirable. Inter-part correlations will usually not be relatively high because the different parts of a test usually contain different linds of material. High inter-part correlation is likely to indicate that the two parts represented by the coefficient measure the same trait, and the only advantage obtained by using both parts is the greater reliability secured from the increased length of the test.

Interpart correlations are given in Tables $15 a$ to 15e. The results given for Missouri University, Central College, and the vissouri School of lines were obtained from the entire group of test papers from each school. The data of Table $15 a$ were obtained from a chance sample of one hundrea papers chosen alphabetically from the college groups, the number chosen from each being proportional to the number of papers in the group. Alphabetical sampling was also used to obtain one hundred papers from the Washington University group to obtain the data of Table 15c.

Table 15a
Interpart Correlations, All Colleqes
Part I Part 2 Part 3 Part 4 Total

Part 1	$\ldots-1$.319	.379	.563	.637
Part 2	.319	$\ldots--$.298	.346	.823
Part 3	.379	.298	$-\ldots-$.516	.713
Part 4	.563	.346	.516	.--	.852
Total	.637	.823	.713	.852	$-\ldots-$

Table 15b
Interpart Correlations, Mo. School of Mines ${ }^{1}$ Part 1 Part 2 Part 3 Part 4 Total

Part 1	.822	.205	.387	.508	.609
Part 2	.205	.924	.343	.591	.877

	Table 15b, continued				
	Part 1	Part z	Part 3	Part 4	Total
Part 3	.387	.343	.066	.502	.627
Part 4	.508	.591	.502	.879	.875
Total	.609	.877	.602	.895	.881

IUnderlined figures are part reliabilities discussed on page 38.

$$
\text { Table } 15 c
$$

Interpart Correlations, Missouri University
Part 1 Part 2 Part 3 Part 4 Total

Part I	----	. 362	. 357	. 522	. 687
Part 2	. 362	----	. 289	. 554	. 814
Part 3	. 357	. 289	ד-	. 608	. 720
Part 4	. 522	. 554	. 608	-n--	.783
Total	. 697	. 814	. 720	. 783	---

Table 15d
Interpart Correlations, Washington University
Part I Part 2 Part 3 Part 4 Total

Part 1	$\ldots-\ldots$.289	.417	.535	.642
Part 2	.289	$-\ldots$.439	.503	.853
Part 3	.417	.439	$-\ldots$.563	.619
Part 4	.535	.503	.563	$-\ldots$.873
Total	.642	.853	.619	.873	$-\ldots$

Table $15 e$

Interpart Correlations, Central College
Part 1 Part 2 Part 3 Part 4 Total

Part 1	$\ldots-$.802	.632	.515	.623
Part 2	.802	$\ldots-\ldots$.156	.587	.747
Part 5	.532	.156	$-\ldots$.468	.627
Part 4	.515	.587	.468	$-\ldots$.875
Total	.623	.747	.627	.875	$\ldots \ldots$

Comparison of Results Obtained from College Group having High School Physics and College Group not Having High School Physics

It is to be expected that the student who has successfully completed a course in physics in the high school might obtain a higher score on the examination than the student who has not completed such a course. This, perhaps, is the desirable thing; it is reasonable to assume that the average student who enters a course in college physics should be better prepared to pursue the work if he has successfully completed a high school course than if he has not had such a course. If this hpothesis be valid, it may be inferred that a placement examination designed for sectioning purposes should be able to differentiate
between the two classes of students.
The papers obtained from the various colleges were studied to determine to what extent the examination might aifferentiate between the two classes of students. Of the 510 students who took the examination, 492 indicated whether or not they had taken a high school physics course. Of this number 362 had completed the high school course, while 130 had not.

The frequency distribution of scores for the two groups is given in Table 16. Direct comparison of the data given in the table is facilitated by Fig. 3, which shows the per cent of each group having scores within given deciles of the range.

A study of Table 16 reveals an interesting situation. From the thintieth up through the seventieth decile it is noted that the larger per cents are found in the group which did not have physics in high school. Beginning with the eightieth decile and continuing through the remainder of the table it is noted that the larger per cents are found in the group which had physics in high school. If the decile intervals of the score range of the examination be considered approximate measures of the intelligence levels of the groups falling within the respective deciles, it may be concluded that the general class of students electing high school
physics is composed of students of superior mental ability.

Table 16
Frequency Distribution of Scores Niade by College Students Having Physics in High School and College Students not Having Physics in High School

Score	Number		Per cent	
Interval	No $\mathrm{H} . \mathrm{B}$. Physics	İ. Physics	NO H.S. Physics	H. Physics
30-39	1	0	. 8	0
40-49	9	3	7.0	. 8
50-59	15	3	11.5	. 8
60-69	25	31	19.2	8.5
70-79	43	62	33.1	17.1
80-89	15	78.	11.5	21.6
90-99	18	75	10.0	20.7
100-109	6	76	4.6	21.0
110-119	3	33	2.3	9.1
120-126	0	1	0	. 3
Totals	130	362	99.9	99.9

Measures of पariability and central tendency for both groups are given in Table 17. It must be remerbered in comparing these measures that the group having high school physios was about three times the size of

Fig 3. Comparison of distribution of scores made by group having physics in high school and group not having Physics in high school.
the other. Measures for the entire group are also given for purposes of comparison.

Table 17
Measures of Central Tendency and Variability for College Groups Having and not Having High School Physics and for the Composite Group

Measure	Group having	Group not having	Composite
	H.S. physics	H.E. physics	group

Men	90.14	74.15	84.28
Median	90.52	73.26	86.75
Q $_{1}$	78.87	63.88	74.61
Q $_{3}$	102.57	85.42	95.52
A.D.	12.68	12.53	13.04
S.D.	15.23	16.45	16.72

$\mathrm{PE}_{\text {score }}{ }^{1}$	3.53	3.82	3.87
$\mathrm{PE}_{\text {score }} / \mathrm{S.D}$.	.23	.23	.23

${ }^{2} \mathrm{PE}_{\text {Score }}=.6745 \mathrm{~S} . \mathrm{D} . \sqrt{1-r}$, where r is the reliability coefficient. The reliability coefficient used is that obtained from the entire group of Missouri School of Nines papers.

The group of papers written by Missouri school of Wines students wes studied to determine the effect of a high school physics course on the number of correct
answers appearing for each item. It was found that on the majority of the items of the test the per cent of correct answers given by the group having physics in high school was larger than the per cent of correct ansvers given by the group not having high school physics. There was little difference apperent for Part Three of the test; the greatest differences sppeared on Parts Two and Four. These differences were expected, in view of the nature of the material contained in these parts. a complete tabulation of these data is rather lengthy to indude here; it is given at the close of the paper in appendix A.

It now becomes necessery to test the hypothesis that completion of a high school course in vhysics contributes to the student's ability to proceea with college physics.

It is evident that the results obtained fron the examination indicate differences between students who have studied physics in high achool and those who have not. is study of the final grade distributions for the two groups reveals only slight differences in the per cent of each group receiving the same letter grades. A study of failures and withdrawals likewise indicates few differences. Sixty-five of the test group were reported as failures and forty-five as withdrawals.

Of the failures, forty-five had studied physics in high school while twenty had not. Of the withdrawals, - twenty-seven had atudied physics in high school; eighteen nad not. The ratios between these numbers are roubhly the same as that between the total numbers of the two groups.

From these considerations it might seem that completion of high school physics has little to do with subsequent success in college physics. The apparent value of the high school physics course will be approached from another point of view presented in the next section.

PART IV

Quality of Preliminary Training as Shown by the Results of the Examination

Analysis of the examination papers throws considerable light upon the quality of preparation with which the student enters upon his course in college physics. Qareful analysis was made for this purpose of the 130 papers written by Missouri School of Mines Students. This group of students is representative of varied types of high schools, consisting as it does of students from both rural and urban communities scattered among many different states. Of the 130 students comprising the group, 96 had completed a course in physics in the high school, and the entire group presumably had completed a course in trigonometry during the freshman year in college.

Table 18 gives the number of correct and incorrect answers and the number of times omitted for some selected questions from Parts One and Four of the examination. The results from the two groups of students, those having high school physics snd those not having high school physics, are tabulated separately for purposes of comparison. These are typical questions dealing with fundamental physical laws, concepts,
and processes, anc are thought to be representative of the entire examination.

Table 18

utuaent sccomplishment upon Selected Items
from the Examination
High wohool Physics No High School Physics Itern No. No. No. $\%$ No. No. No. $\%$ right wrong amit- right right wrong onit- right
ted
ted Part One

1	60	27	9	63	17	11	6	50
2	39	41	16	41	11	17	6	32
3	3	71	23	3	1	27	5	neg.
4	17	21	58	18	7	10	17	21
5	33	20	43	34	13	11	10	38
6	87	5	4	91	31	2	1	91

1	54	42	0	58	14	17	3	41
2	31	33	32	32	8	12	14	24
3	58	38	0	60	23	3	8	67
4	29	65	2	30	8	21	5	24
5	39	41	16	41	9	9	16	26
6	36	60	0	37	10	20	4	29

The test items referred to in the first column of the above table are given in full below.

Test Items Refierred to in Table 18
Part One
Item l. $\dot{\sim}=1 / 2$ ati . solve for t.
2. $I / z^{2} v^{2}=m g h$. wimplify and solve for v.
3. Express in symbols: m is proportional to the cube of b.
4. Solve (to one decimal place): $120\left(\frac{273}{530}\right)\left(\frac{770}{760}\right)$.
5. What is the mean of $1,4,0,5,5$?
6. Express in symbols: P_{1} is to P_{2} as V_{2} is to V_{1}. Part Four
(hultiple answers from which the best is to be chosen)
I. A common unit of mass is the (1) liter, (2) cubic foot, (3) centimeter, (4) gram, (5) erg.
2. The quantity commonly indicated by 'g' is (I) ecceleration of gravity, (2) gas constant, (B) ionization constant of gases, (4) universal gravitational constant, (5) temperature gradient.
3. The ampere is the unit used for expressing (1) resistance, (2) electric eurrent, (3) electrical conductance, (4) electromotive force, (5) potential gradient.
4. The time rate of change of position of a body is known as (1) force, (2) acceleration, (3) speed, (4) rotation, (5) displacement.

Table leia, continued
5. The quantity of heat liberated by unit mass of weter upon freezine is called (l) specific heat, (a) mechonical equivalent of leat, (3) latent heat of fusion, (4) radiant heat, (5) latent heat of varorization.

- The velooity of a body may be expressed in (I) foot pounds, (i) dynes, (3) grams per second, (4) filew per hour, (5) feet per second per second.

Little comment need be made on the figures given above; they speak plainly for themselves. The differences between the accomplishment of the two groups-those having physics in high school and those not having phyisics in high school-are not very great. One nust conclude that the high school training in physics must be of little value as a foundation for college physics. However, it was pointed out earlier in the rerort (page 44) that in the lower deciles of the score range there was a greater per cent of stuacnts who had not taken physics in high school, while in the higher deciles there was a greater per cent of students who had taken physics in high school. This may indicate that the upper stratum of students do profit from their high
school physics course, or it may indicate as stated above that those stuaents electing high school physios in general fral in the upper intelligence level groups. Obviously, if a student enters upon his college physias course unable to find the mean of a set of simple observations, or to do the simple multiplications and divisions needed for the solution of a problem based upon the general gas equation, or to express symbolically a simple proportionality, he must of necessity spend a great part of his time in acquiring mechenical skills anä processes, leaving him less time for the acquisition of general information. What can the student who dees not recognize the simple definition of speed or a common unit of velocity be expected to know of the physics of motionf What does the student know of the physics of heat who does not know the meaning of the latent heat of fusion Can the student's knowledge of electricity be very extensive if he does not recognize the practical unit of current? It would seem from the results of the examination that the teacher of college physics may not assume much initial knowledge of physics on the part of most of his students. This agrees with the conclusion reached by Hammond and Stodard (10) in their study of the Iowa Examinations: "-----we fear-----that the college teacher of physics
cannot assume any beginning knowledge on the port of most of his class. -......- this is the actual case in most institutions, and the teaching of physics to engineering students is sajusted accordingly."

A general idea of the extent of the preliminary training of a group may be obtained by noting the character of the answers to the various test items. The response to each iteri was tabulated for the Missouri School of Mines group of 130 students. It was found that the results of the twelve selected items discussed above were fairly representative of the entire examination, except for Part Three. This part requires no previous preparation except the ability to read fairly difficult text material. The summary giving the right, wrong, and omitted responses is given in Appendix C, as it is deemed rather long for inclusion here.

PARTV

Use of the Examination for Prognosis

Predictive Power of the Examination

The chief purpose for which the examination is designed is to predict the quality of future scholastic performance and afford the instructor a basis for sectioning his classes. In order to gccomplish this purpose the exauination must differentiate sharply between students and yield scores over a considerable range. That it does this has been previously shown (pages 33-35). To be useful for prognosis the differences between students detected by the examination must be closely associated with the differences in subsequent accomplishment.

The simplest mechanical procedure for predicting is to arrange the test scores in sequence and divide them into thirds or quarters, as preferred. A better method, perhaps, is to plot the scores in descending order and make arbitrary divisions where distinct breaks occur in the curve. Fig. 4 gives such a graphical representation of the scores made on the exanination by 130 students at the Missouri School of Nines and indicates how the curve may be used to divide the group into three sections. If the examination has

any predictive worth, it is to be expected that the upper group thus determined will contain those individuals who are likely to lead the class in success in the subject, while the lower third or fourth should contain those students who will encounter aifficulty and are most likely to fail in the course. The validity of this method of sectioning on the results of the placement examination is well shown in Table 19, which gives the first semester grades made by students falling in various quarters of the group according to placement examination scores. The tabulation represents 416 students distributed anong the four cooperating colleges.

Table 19
Distribution of Grades in Physics Made by Students Falling in Quarters of the Class as Determined by Placement Examination
(All figures give per cents)

Quarter of	Semester grades in physics		$\begin{gathered} \text { Pass } \\ \% \end{gathered}$	Non-pass 1
class in				
placement scores	$\mathrm{E}, \mathrm{S}(\mathrm{A}, \mathrm{B}) \mathrm{N}, \mathrm{I}(\mathrm{C}, \mathrm{D})$			
1 (high)	41.7	52.2	93.9	6.1
2	18.3	75.6	93.9	6.1
3	20.0	60.0	80.0	20.0
4 (low)	6.1	66.1	72.2	27.8

The above table incicates noticeable scholastic superiority of the upper quarter, scholastic inferiority of the low quarter, and medium accomplishment of the midale quarter. This is about the distribution which is usually desired or expected in the various sections of a given class of any size. i similar tabulation for each school is given in Table 20.

Table 20

Distribution of Grades lvade by Btudents Falling
in quarters of the Class
(All figures give per cents)

Quarter of class in placement scores

$$
\begin{aligned}
& \text { Semester grades } \\
& \text { in physics } \\
& E, S(A, B) M, I(C, D)
\end{aligned}
$$

Missouri School of Mines

1	47	53	100	0
2	23	73	96	4
3	14	76	90	10
4	3	77	80	20
	Missouri University			
1	58	42	100	0
2	11	89	100	0
3	26	63	89	11
4	0	81	81	19

Table 20 , continued

1	31	63	94	6
2	31	51	82	18
3	23	52	75	25
4	10	67	77	23
	Central College			

1	20	80	100	0
2	10	74	84	16
3	10	55	65	35
4	0	55	55	45

Each section of the above table is quite similar to the table representing the composite group in that it points out the different abilities of the various quarters. The set of papers from Washington University afforās an interesting additional study, inasmuch as it represents three groups of students. Two groups of approximately fifty students each are comprised of liberal arts and premedical students respectively. The third group, containing approximately one hundred individuals, is made up of engineering students. Table $2 l$ shows the grade distribution for these three groups.

Table 21
Distribution of Washington University Grades

Quarter of	iemester grades	Pass	Non-pass	
class in	in physics			
placement	A,B	C, D	$\%$	$\%$
scores	$\%$	$\%$		

Liberal arts group

1	61	39	100	0
2	29	71	100	0
3	15	77	92	8
4	21	64	85	15
	Premedicsl group			
1	20	80	100	0
2	40	50	90	10
3	30	60	90	10
4	0	54	54	46

Engineering group

1	29	63	92	8
2	24	64	88	12
3	24	48	72	28
4	4	42	46	54

The engineering group differs somewhat from the other two in the grade distribution. The failures are more numerous and are not so well concentrated in the lower quarters as they are in the liberal arts and premedical groups. The reasons for this are not apparent. The writer is not sufficiently well acquainted
with the three courses taken by these groups to estinate any probable e rect due to the content or presentation of the courses. The course taken by the engineers contains more material chá leads to more credit than the courses taxen by the other students. mother cumon way to determine the accuracy of preaiction is to use the Pearson coefficient of correiation between two measures, the two in this case beins the placement examination scores and the termi grades. The higher the coeficient, the closer is the agreerient Letween the t:o correlated measures. i coefficient or 1.0 represents perfect agreenent, o represents just no agreement, and -1.0 represents complete divergence or disagreement between the two sets of Lessures. Pable wa gives the values of this coefzicient for egch of the four groups of pepers obtainea for this stuady. It will be noted that two values are given for the Missouri Echool of mines group. The first is the correlation coefficient between the placement examinstion scores and the semester grades given as per cents, while the second is the coefficient between the placenent soores and the semester grades expressed in the conventional letter systen used by the school for expressing final grades. The coeffi-
cient for the ventral vollege erour makes use of $\because \in r$ cent grades. The otyers are based on letter grades.

Table 22
Pescoun Coefficients of Correlation between
rlacenent kxemination bcores nd Grades
Group Cases r
Iissouri Uchool of lines li7 . Eb?
Missouri School of ines 117 .5世
Lissouri Univereity 101 .584
Washinston Univereity $148 \quad .665$
Central College $44 \quad .663$

In interpreting such coefficients as those in the above table it must be remembered that the value of the coefficient sust be dependent upon what is to be predicted. If the examination were to predict actual rank of students in the class, as, for example, to say that a certain individual should be third or seventh or twentieth in a class, a coefficient of .5 perhaps is not significant. However, if the thing to be predicted is merely in what letter group a certain individual will fall, a coefficient of .5 is quite satisfactory and indicates that the placement examination may be used with considerable acouracy in predicting scholastic achievement. (10, page 703)

Regression equations nay be utilized in predicting an individual's most probable standing in a group of measures from his standine in another set of measures. A regression equation is the equation of a line expressing the dependence of one variable upon another. If the variables we designated as x and y, the equations of the regression lines may be expressed as

$$
y=r \frac{\sigma_{y}}{\sigma_{x}} x \text { and } x=r \frac{\sigma_{x}}{\sigma_{y}} y
$$

where r is the Pearson coefficient of correlation between the two measures and σ_{x} and σ_{y} are the standard deviations of the two sets of measures. The above equations are expressed in deviation form. They are often more conveniently used̉ when expressed in score form. The score form may readily be obtained from the deviation form by standard procedure. Thus expressed, the equations are

$$
Y-Y^{\prime}=r \frac{\sigma}{\sigma_{X}}\left(X-X^{\prime}\right) \text { or } Y=r \frac{\sigma_{X}}{\sigma Y}\left(X-X^{\prime}\right)+Y^{\prime}
$$

and

$$
X-X^{\prime}=r \frac{\sigma_{Y}}{\sigma_{X}}\left(Y-Y^{\prime}\right) \text { or } X=Y \frac{\sigma_{X}}{\sigma_{Y}}\left(Y-Y^{\prime}\right)+X^{\prime}
$$

Where X ' and Y ' are the means of the two distributions
and X and Y are any individual $X-$ and Y - scores.

To set up a regression equation for prediction in this study, the placement examination results from a group of 118 Lissouri School of Lines students were used as the x-variable and the corresponding semestergrades as the y-variable. Neans and signas for the two sets of data were calculated to be

$$
X^{\prime}=85.67, \quad Y^{\prime}=76.31, \quad \sigma_{X}=12.75, \quad \sigma_{Y}=9.35
$$

The correlation coefficient between the two was found to be 0.569. Substitution of these values in the Y regression equation stated above gives

$$
Y-76.31=.569 \frac{9.33}{12.75}(X-85.67)
$$

which upon simplification gives

$$
Y=.4164 X+40.64 .
$$

This equation may be used to "predict" the most probable score, or term grade, of any individual whose score on the placement examination is known. By plotting the line which this equation represente upon a system of coordinate axes in which absaissae represent placement examination scores nnd ordinates represent term grades, the prediction of grades becomes merely a mechanical process of reading values from the graph. This procedure is illustrated by Fig. 5.

The above determined regression equation was used to predict term grades for each placement examination
100
90


```
Grades
```

```
Grades
```

```
Grades
```


Abstract

score representea in the sets of papers written at Misiouri University, Washineton University, and Central College. These predicted grades were then cormparea with the earned grades by computing the correlation coefficients between the two sets of marks. rhe results are given in Table 23.

Table 23
Correlation between Predicted Grades and
Earned Grades
Institution No. of cases r

Missouri University	108	$.656 \pm .038$
Washington Uriversity ${ }^{1}$	148	$.007 \pm .050$
Uentral UoIIege	43	$.548 \pm .071$
Wabhington University		

Includes all students.
${ }^{2}$ Includes liberal arts and premedical students but not the engineering students.

The predicted grades were referred to above as "most probable". The probable error of these predicted grades can be shown by calculating the standard error of estimate, witich may be expressed as

$$
\left.\sigma_{\text {est. }}\right)=\sigma_{\mathrm{y}} \sqrt{1-\mathrm{r}^{2}}
$$

where σ_{y} is the standard deviation of the y-distri-
bution and r is the coefficient of correlation between x and y. Substituting the numerical values for σ_{y} sind r gives

$$
\sigma(\text { est. })=9.33 \sqrt{1-.569^{2}}= \pm 6.12
$$

The significance of this standard error of estimate will now be discussed. Ey the use of the regression equation a term grade of 8 can be predicted for an inäividual whose placement exarination score is 100. It may now be said that the most probable term grade for this individuel is $8 \sim$ ith a σ (est. $)$ of ± 6.12, and that the chances are 68 to 100 that the actual term grade for the individual will fall between the limits of 76 and 88. The predicted grade corresponaing to a score of 60 on the placement exai ination is 65. Then the chances are 68 in 100 that the individual scoring 60 will have a term grade between the linits of 59 and 71 .

In general, the value of prediction will depend upon the size of the error of estimate, the fineness of the units of measurement, and the purposes for which the prediction is made. The prediction for which this examination is devised need not be exact -- it needs only to locate an individual in a given quarter or third of his class. In view of this fact, consideration of the foregoing discussion indicates that the examination can be used for prediction with a fair degree of success.

In the early pages of this report aention was mede of the fact that the students entering the physics classes at the hissouri Echool of ines have completed one year of college work. This makes available gr de averages for use in helping to section a class. unch use can best be effected by building a regression equation involvine three veriables whereby a student's most probable term grade can be predicted from his placement exemingtion score and his first year scholastic average. a regression equation of this sort can be developed by the tech ique of pertial correlation. The develoment of such an equation is discussed briefly in summarized form belov. The methods used in obtaining the partial and maltiple oorrelations are those discussed in utatistics in Psychology and Education by Garret (4). Subscript notation is used to refer to the variables, 1 being term grades, 2 the grade average, and $\underline{3}$ the placcment score.

Step I.

Step II. Calculation of partial coefficients of corselation.

Step III. The regression equations.

$$
\begin{aligned}
x_{1} & =b_{12 \cdot 3} x_{2}+b_{13 \cdot 2} x_{3} \quad \text { (Deviation form), } \\
\text { or } \quad X_{1} & =b_{12 \cdot 3} X_{2}+b_{13 \cdot 2} X_{3} \quad \text { (Score form) }
\end{aligned}
$$

$$
\text { in which } b_{12 \cdot 3}=r_{12 \cdot 3} \frac{\sigma_{1 \cdot 33}}{\sigma_{2 \cdot 13}} \text { and } b_{13 \cdot 2}=r_{13 \cdot 2} \frac{\sigma_{1 \cdot 23}}{\sigma_{3 \cdot 12}}
$$

Step IV Calculation of sigmas.

$$
\begin{aligned}
& \sigma_{1.23}=\sigma_{1} \sqrt{1-r_{12}^{2}} \sqrt{1 \sum_{13}^{2} r_{13}^{2}}=6.13 \\
& \sigma_{2 \cdot 13}=\sigma_{8} \sqrt{1-r_{23}^{2}} \sqrt{1-r_{12 \cdot 3}^{2}}=.493 \\
& \sigma_{3.12}=\sigma_{3} \sqrt{1-r_{83}^{2}} \sqrt{1-r_{13}^{2} \cdot 2}=12.2
\end{aligned}
$$

step V. Regression coefficients and the regression equation.

Substituting for $r_{18 \cdot 8}, r_{13 \cdot 2}, \sigma_{1 \cdot 25}, \sigma_{2 \cdot 13}$, ansi $\sigma_{3.12}$ gives

$$
b_{12.8}=7.81 \quad \text { and } b_{13.2}=.179
$$

This gives the equations

$$
\begin{aligned}
& x_{1}=7.81 x_{i}+.179 x_{3} \text { (Deviation form) } \\
& x_{1}=7.81 x_{2}+.179 x_{3}+53.58 \text { (Lcore form) }
\end{aligned}
$$

mà
step VI. Calculation of the standard error of estinate.

$$
\sigma\left(\text { est } \cdot x_{1}\right)=\sigma_{1} \cdot a 3= \pm 6.15
$$

$$
P E\left(\text { est. } x_{1}\right)=.6745 \sigma_{1} \cdot 83= \pm 4.1 \dot{3}
$$

wtep VII. The coefficient of mutiple correlation.

$$
H_{1} \cdot\left(2_{3}\right)=\sqrt{1-\frac{\sigma^{2} \cdot \cdot_{23}}{\sigma_{1}^{2}}}
$$

The regression equation is expressed above in two forms--the deviation form and the score form. The latter is the more convenient of the to in that raw scores may be used, thereby avoicing the teaious arithmetical calculations necessary before the deviation form can be applied. Ey means of this equation, having at hand a student's grede point average (X_{2}) and his placement examination score $\left(X_{3}\right)$, one can calculate the most probable grade which the individual is likely $\ddagger 0$ obtain in college physics. Two examples will make the use of the equation clear. Suppose a student has a grade point average of 2.00 and makes a score of 100 on the placenent examination. Substitution of $X_{2}=2.00$ and $X_{2}=100$ in the regress-
ion equation gives

$$
x_{1}=7.81 \text { 主 } 2.00+.179 \times 100+50.58=87.1
$$

Therefore, using the given oriteria as the basis of estimate, the most probable grade this individual is likely to receive is 87.1. Again, suppose a student. has a grade point average of 1.00 and a score of 75 on the placement exarination. Substituting and wolving as terore, this student's most probable term grade is found to be 74.81.

The grades preaicted above are referred to as most probable. Their reliability may be expressed by the standard errox of estinate or the probable error of estinate given in step VI of the summary above. The predioted term grade of 87.1 has a probable error of estimate of 4.13. This means that the chances are even that this student's'grade will not be lower than 82.97 or higher than 91.23. The reliability of any other grade estimate may be found in the sanie manner.

The coefficient of multiple correlation, $R_{1}\left(\varepsilon_{s}\right)$, is numerically the coefficient of correlation between the set of measures actually nade of a variable trait and the set of measures of this variable predicted by neans of the regression equation. Mathematically, $R_{1}\left(g_{3}\right)$ is the correlation between the de-
pendent variable (l) ana the two independent variables (2) and (Z) taken together. R as obtained above in Gtep VII is .772. This means that if the most probable term grades were predicted by the regression equation for, say, two hundred students, the correlation between these two hundred preaicted grades and the two hundred grades actually made by these students will be .772. This, then, is a measure of how closely term grades in physics are related to grade point averages and placement exaination scores taken together. Inasmuch as grade point averages were not available for the students in the cooperating schools, it was impossible to predict grades by means of this regression ecuation involving two independent variables and determi.e the actual correlation between such predicteä grades and earned grades.

Comparison of the Examination with the

Iowa Physics Aptitude Fxamination

The Iowa Physics Aptituae Examination was administered to the Missouri school of Mines group of students in order thet the results obtained from the whe exanination might be compared directly with those obtained from a standardized examination. A comparison of the results is given below.

The scale unit of the two examinations is different. The range for the Iowa exanination is 0-175; that of the MSN examination is 0-126. In order that the two sets of data might be more directiy comparable, the scores on the Iowa examination were expressed in terms of the scale of the WSNi examination; This was done by dividing each Iowa score by the ratio between the two perfect scores, 175/126.

The scores obtained on the Iowa examination were relatively higher, as shown by Table 24 and Fig. 6 . Both distributions are skewed, but in opposite directions. The form of the two curves in.Fig: 6 inaicates that the MSM examination should be more selective in the upper part of the range, while the Iowa examination perhaps should be the more selectige in the lower part

Fig 6 Frequency distribution of scores made on the Iowa and MS.M. eximinations by 116 Missouri School of Mines students.
of the range. Consequently, the former should be of the greater value in forming a section of superior men.

Table. 24
Distribution of scores Iade on Iowa Physics Aptitude end lisk Physios Placement Exarinations by IlG Lissouri Echool of Mines students ${ }^{1}$ Dcore interval Frequency of scores Iowa exam. nisle exan.

$50-59$	1	5
$60-69$	3	23
$70-79$	19	29
$80-89$	22	24
$90-99$	25	18
$100-109$	32	12
$110-119$	13	5
$120-126$	1	0

${ }^{1}$ Iowa scores converteā, as explained on page 74 .
lieasures of central tendency and variability are given for the two sets of measures in Table 25. Central tendency measures for the Iowa exanination are much the larger, as would be expected from Fig. 6, while little difference can be noted in the varialility measures.

Table 25

Lieasures of Central Tendency and Variability
for the Sets of Scores in Table 24^{1}

Measure	Iowa exam.	ISM exam.
Mean	95.95	81.27
Nedian	95.20	79.05
Q_{1}	82.73	70,0
Q 3	105.31	91.30
Quartile deviation	11.28	10.68
Average deviation	11.79	11.87
Standard deviation	14.18	14.05
$\mathrm{PE}_{\text {score }}$	3.19	3.87
$\mathrm{PE}_{\text {score }} \div \mathrm{S.D}$.	. 22	. 23
Correlation with term grades	. 59	. 57

${ }^{1}$ Converted Iowa scores used.

Comparison of the coefficients of correlation between the placement examination scores and the term grades favors the Iowa examination slightly. On the other hand, Table 26, showing the distribution of term grades falling in quarters of the class as determined by the placement examination scores indicates a slight
advantege of the MLN examination for preaiction.

$$
\text { TabIe } 26
$$

Distribution of Grades Lade by Students Falling in Given quarters of the Class as Determined by the Iowa Examination and by the hsim Exanination
(ill figures express per cents)

quarter	Iowa Examination				MEl Examination			
of class	3-6	H-I	Pass	inonpais	E-S	-I	Pass	$\begin{aligned} & \text { Mon- } \\ & \text { pass } \end{aligned}$
1 high	48	52	100	0	47	53	100	0
2	21	79	100	0	23	73	96	4
3 ----	14	58	72	28	14	76	90	10
4 low	7	86	93	7	3	77	80	20

GUMMRV AML CONCLUSIONE

in survey of atteripts at prognosis by means of placement examinations revealed that much work had been done with varying success. Such exeminations were found to be better for prediction of college success than were either attaiment in a upecific subject or high sciool marks. It was revealed that intelligence examinations are superior to subjectmatter examinations for preciction of general academic success but inferior for prediction of attainment in specific subjects.

The Iow series of Placement Examinations appeared to Le anong the most highly successful of such examinations for the preaiction of success in specific subjects.
rine function of the placement examination and its need in the physice classes et the Missouri wchool of Ivines were pointed out.
an objective subject-matter examination in physic: wes constructed and administered to more than five hundred students distributed among several schools. The results were carefully studied. From this study the following conclusions are drawn:

1. A range of scores is obtained wich is
sufficiently brod to make the examination selective. It facilitates aivision of a large class into sections of differing abiiities.
2. The reliability and validity of the examination are quite satisfactory. The reliability compares favorably with the reliabilities of the various Iowa Examinations.
3. The correlation of the scores inade on the exarination ith subsequent achievenent in physics cmares fevorebly ith such correlstions for sixiler ere inations.
4. The examantion is st least egul in orformance with othar enticutone availuble for the rurpose for wich it was designed.

BIDITOCRETY

General References on the Preparation of Examinations

1．Paterson，L．G．Preparation and U＂se of Nev－ype Examinations．World Eook Company，Yonkers－on－ Hudson，Mew York．1927．

2．Ruch，G．M．Improvement of the Written Examination． Soott Foresmen and Co．，IJew York．19：4．

3．Ruch，G．M．The Objective or New－Tipe Examination． Soott Foresman and Co．，New Z̈ori． 1929.

General References on itatistical Proceaure

4．Gerrett，L．L．statistics in Psecholcey and education． Longranc，Green aná Co．，wew York．19a6．

5．Kelley，I．I．Etatistical hethod．Nachillan，New York．19ジす。

6．Rugg，H．O．Statistical Rethods Appliec to Education． Houghton iiffiin，New York． 1917.

7．Symonds，P．I．Leasurements in Secondary Rducation． Nackillen，New York． 1928.

8．Trabue，M．R．Measuring Results in Raucation．Amer－ ican Book Co．，New York． 1924.
9. Yule G. U. An Introduction to the Theory of Statistics. C. Griffin and Co., London. 1919.

Periodical References

10. Hammond, H. P. and Stoddara, G. D. is Study of Placement Examinations. Bulletin ${ }^{\text {No. }} \overline{1} 5$, InVestigation of Engineering Education, Society for Promotion of Engineering Education (S.P. \#.E.). Lanoaster Press, Lancaster, Pa. 1920.
11. Kelley, T. $\overline{\text { L. Educational Guidance: An Experi- }}$ mental study in the Analysis and Prediction of High School Pupils. Teachers College, Columbia University, Contributions to Education. No. 71.
12. Telley, T. L. The Reliability of Test Scores. Journal of Educational Research, 1921. Vol. III, pages 312-378.
13. Kelley, T. L. \angle Sirmplified Method of Using Bcaled Data for Purposes of Testing. School and Society, 1916. Vol. IV, pages 34-71.
14. Langlie, T. A. What Is Neasured by the Iowa Aptitude Testsf Journal of Applied Psychology, 1820. Vol. XIII, No. 6.
15. Rogers, A. I. Experimental Tests of Mathematical Ability and their Prognostic Value. Teachers College, Columbia University, Contributions to Education, No. 89.
16. Society for the Promotion of Engineering Raucation. Under this number are grouped various publications of the society: Ingineerins fducation, Investigations of Engineering Education, etc.
17. Stone, C. I. The Significance of Alpha in Colleges. Journal of Educational Psychology, 1922. Vol. XIII, pages 298-302.

KPPTILTX 昷

In this appendix are incluaed two tables wioh were aeeme ${ }^{\text {a }}$ too long for inclusion in the text.

Table 27
Correct inswers Given for Each rest Item by Mro Groups of Nissouri school of Nines stuants (see text above, page 43)
Test Test No. of correct Fer cent of correct
part item answers
 physics physics physics physics

One	1	30	88	80.2	91.5
	2	27	81	79.4	84.2
	3	17	60	50.0	62.4
	4	25	85	73.5	88.4
	5	19	60	55.9	62.4
	6	1	3	neg.	5.2
	7	11	38	32.	42.8
	8	25	77	73.5	80.0
	9	31	87	91.2	90.8
	10	16	48	47.1	50.0
	11	13	43	38.2	44.7
	12	26	79	76.4	82.2
	13	26	72	76.4	74.9
	14	3	95	94.1	98.8
	15	27	76	79.4	79.0
	16	24	74	70.6	76.9
	17	6	10	17.7	10.4
	18	13	33	38.1	34.2
	19	6	10	17.7	10.4
	20	14	55	41.2	57.2
	21	20	51	58.8	53.1
	22	28	67	82.3	69.7
	23	21	62	61.7	64.5
	24	1:	39	35.3	40.6
	25	25	73	73.5	85.9
	26	13	47	38.2	48.9
	27	12	46	35.3	47.8

Table 27 , continued
Test Test
pert item
No. of correct per cent of correct
answers answers

No H.S. II.S. NOH.S. H.S. physics physics physics physics

One	28	24	71	70.6	73.8
	29	14	56	41.2	58.2
	30	28	75	82. 3	78.2
Two	1	23	83	67.5	86.4
	2	32	81	94.0	94.7
	3	21	81	61.7	84.3
	4	23	79	67.5	82.1
	5	30	95	88.2	98.8
	6	21	78	61.7	81.2
	7	15	38	44.1	39.5
	8	6	56	17.6	58.3
	9	29	90	85.2	93.8
	10	19	77	55.8	79.9
	11.	17	60	50.0	62.4
	12	6	34	17.6	35.3
	13	17	87	50.0	65.7
	14	6	69	17.6	71.7
	15	17	69	50.0	71.7
	16	2	13	5.9	13.5
	17	7	62	12. 5	64.5
	18	6	30	17.6	81.2
	19	21	76	61.6	79.1
	20	5	46	14.7	47.8
	~1	20	86	58.8	89.5
	22	8	49	23.4	51.0
	23	31	91	91. ${ }^{\text {a }}$	94.7
	24	0	9	0	9.4
	25	5	20	14.7	20.8
	26	29	88	85.2	91.5
	27	22	74	64.0	77.2
	28	4	26	11.7	27.1
	29	28	88	82.2	91.5
	30	15	69	44.1	71.7
	31	7	52	20.5	54.1
	32	12	42	35.2	43.7
	33	9	66	26.4	68.6
	34	19	66	55.8	68.6
Three	1	23	85	67,8	88.4
	2	34	93	100.0	96.7
	3	31	89	91.2	92.6

Test part	Test item	No. of correct answers		Per cent of cor answers	
		No H. physics	I.:. physics	NO H.L. physics	II.S. physics
Three	4	32	94	94.1	97.7
	5	29	68	85.2	70.6
	6	27	75	79.3	78.1
	7	28	84	82.2	87.3
	8	31	88	91.2	91.5
	9	15	65	44.1	67.6
	10	29	84	85.2	97.7
	11	30	82	88.2	85.1
	12	23	78	67.8	81.2
	13	34	86	100.0	100,0
	14	31	87	91.2	90.6
	15	32	87	94.1	90.6
	16	34	96	100.0	100.0
	17	27	82	79.3	85.1
	18	93	97	97.0	95.6
	19	20	92	76.8	95.6
	20	32	84	94.1	87.2
	二1	29	88	85.2	91.5
	22	¢	87	94.1	90.6
	as	E1	00	G1. w	20.5
	04	\% 5	ci	35.2	¢5. ${ }^{\text {c }}$
	25	:O	91	88.2	84.7
	26	S1	86	91.	80.5
	27	27	Si	79.5	85.1
	28	$\because 7$	84	79.3	87.6
	二9	26	89	76.3	92. 6
	50	19	59	55.8	81.4
	31	29	80	85.2	82.2
	32	25	E4	73.4	87.3
Four	1	23	87	67.6	90.6
	2	14	54	41. ${ }^{\text {c }}$	56.2
	3	10	79	29.4	82.1
	4	19	69	55.8	71.7
	5	23	34	67.6	87.2
	6	0	\%	0	3.1
	7	7	31	20.5	32.2
	8	22	81	64.6	84.5
	9	10	30	25.4	37.4
	10	22	68	64.6	70.6
	11	23	77	67.6	79.9

Table 27, continued

Pest part	Test item	No. of correct answers		Per cent of correct	
		No H. H. physics	I. E . physics	No H. physics	H.S. plysics
Four	12	13	34	38.2	35.4
	13	23	58	67.6	60.3
	14	9	41	26.4	42.7
	15	8	28	23.4	30.1
	16	22	79	64.6	82.1
	17	22	74	64.6	77.2
	18	3	10	8.8	10.4
	19	6	55	17.6	57.3
	20	14	55	41.2	57.3
	21	8	57	23.4	59.5
	22	16	72	47.1	75.2
	23	4	20	11.7	20.9
	24	13	58	38.2	60.3
	25	10	38	29.4	39.5
	26	5	28	14.6	29.2
	27	11	22	32.5	2.4 .9
	28	3	45	14.6	46.9
	\% 9	8	48	20.8	44.8
	50	1	4	22.9	4.2

Fight, wrong, and Omitted answers Aopearing in a Group of 130 Parers Written by hissouri Echool of lines u tudents (Wee page 55)

Part	Item	Right	Wrong	Omitted
One	1	118	11	1
	2	108	19	3
	3	77	38	15
	4	110	14	6
	5	79	35	15
	6	4	98	28
	7	50	58	22

Part	Item	Right	Wrong	Omitted
One	8	102	19	9
	9	118	7	5
	10	64	47	19
	1.7	56	67	7
	12	105	23	2
	13	98	30	2
	14	127	3	0
	15	103	22	5
	16	98	9	23
	17	24	31	75
	18	46	31	53
	19	16	74	40
	20	69	8	53
	21	71	29	30
	22	73	19	38
	23	83	17	30
	24	51	46	33
	25	98	18	13
	26	60	41	29
	27	58	50	22
	28	95	7	28
	28	70	18	42
	30	103	3	25
Mwo	1	106	7	17
	2	123	2	5
	3	10\%	18	10
	4	102	8	20
	5	125	0	5
	6	99	16	15
	7	53	30	47
	8	62	9	59
	9	119	3	8
	10	96	6	28
	11	77	19	34
	12	40	33	57
	13	84	25	21
	14	75	23	32
	15	86	2	42
	16	15	10	205
	17	68	22	39
	18	36	29	65
	19	87	15	18
	20	51	28	50
	21	106	8	16

Part	Item	Right	Wrong	Ornitted
Four	1	110	18	2
	2	68	59	3
	3	89	41	0
	4	88	31	11
	5	107	21	2
	6	3	37	90
	7	38	45	47
	8	103	27	0
	8	46	81	3
	10	90	33	7
	11	100	30	0
	12	47	57	26
	13	81	41	8
	14	50	28	52
	15	37	86	7
	16	101	17	12
	17	96	27	7
	18	12	54	63
	19	61	39	30
	20	69	41	20
	21	65	84	31
	22	88	67	5
	23	24	27	29
	24	71	46	13
	25	48	50	22
	26	33	27	70
	27	55	15	60
	28	50	33	47
	29	51	13	66
	E0	10	50	70

APPENDIX B

Glossary of Terms Used

Norms. Composite scores for comparative purposes.

Niean. The average of a group of scores. The sum of the separate scores divided by the number of separate scores.

Median. The middle score, or the score above which are one fourth of the scores.

Upper Quartile (Qs). The score below which are three fourths of the scores.

Lower quartile (eq). The score below which sre one fourth of the scores.

Percentile. The p percentile is the score below which are p of the scores. The median is the fiftieth percentile; the quartiles are the twenty-fifth and seventy-fifth.

Quartile deviation (Q). One half of the distence between Q_{1} and Q_{3} for a given distribution.

Everage deviation (A.D.). The average of the deviations of all the measures in a series from their nean. A.D. is always larger than $\dot{\text { o }}$
standard deviation (S.D. or σ). The square root of the average squared deviations of the respective measures of a series from their arithmetical mean. S.D. is always larger than A.D.

Coefficient of correlation. An index figure stating the degree of relationwhip between two sets of data.

Placement examination. A test used as a criterion for diviđing a class into sections.

Prognostic test. A test wiich attempts to predict subsequent success in a given subject.

APPENDIX C

The Correlation Coefficient and Its Calculation

The coefficient of correlation is an index figure summarizing the relationship between two measurements of the same group of individuals in much the same way that an arithmetic mean summarizes a distribution of scores. It gives in a single two- or three-place decimal number the amount of relationship existing between two more or less lengthy series of marks involving two different variables.

The formula comnonly used for finding the correlation coefficient, cesignated by r, is

$$
r=\frac{\sum X y}{\sqrt{\sum X z \sum y z}}
$$

where the x 's and y 's are the deviations of the measures in the series from their averages and Σ is a sign of summation. This formula is commonly known as the Pearson ''product moment'' formula. There are several variants which yield the same arithmetical value for r, and various charts and diagrams have been devised to simplify the calculations.

The correlation coefficients given in this study were calculated by use of the Otis Correlation Chart prepared by Arthur \mathbb{L}. Otis and distributed by the World

Book Company. The formula upon which this chart is based is

$$
r=\frac{\Sigma X^{2}+\sum Y^{2}-\Sigma V^{2}-2 \Sigma X \sum \div N}{\sqrt{\left[\sum X^{2}-(\Sigma X)^{2} \div N\right]\left[\Sigma Y^{2}-(\Sigma Y)^{2} \div N\right]}}
$$

in which Y and X are measures on the two scales, and $V=Y-X$. The three, X, Y, and V, are reasured from arbitrary zero points. This is the same formula as

$$
r=\frac{\Sigma x^{2}+\Sigma y z-\Sigma V^{2}}{2} \frac{\sqrt{\Sigma x^{2} \Sigma y^{2}}}{}
$$

in which $v=Y-x$, and in which x, y, and V are all measured from their true means.

Calculation of a coefficient by means of this chart is merely a matter of routine arithmetic after the frequencies of the scures are plotteä. The procedure is well illustrated by the accompenying chart, ing. 7 , on which has been calculatea the coefficient of correlation between the scores made by 116 wissouri University students and the scores nade by the same students on Part Four of the examination. The process may be summarized briefly as follows. Suitable class intervals were chosen for the two score ranges and written in the proper places. A point was plotted on the diagran for each pair of scores, the horizontal position being determined by the $v a l u e$ of tine Part Four score and the vertical position by the total

soore. The $X-, Y-$, and V-frequencies were determined by counting the tallies in the respective vertical, horizontal, and diagonal colums. The various parts of the general formula were calculated according to the instructions clearly given on the chart itself. The order of computations is indicated on the chart Dy alphabetical designations, A, B, C, etc.

The magnitude wlich a given coefficient of correlation must have in order to be significant depends to some extent upon the use to which it is to be put. The following summary, taken from heasurements in Seconaary Education, by P. G. Symonds, hill give a general idea of the value wich a coeficient must have to be useful.

```
r = 0.90 the correlation of form i with form B
    of a forty-minute intelligence test in
    high school.
r = 0.80 the correlation of form A with form B
    of a forty-minute achievement test in
    high school.
r = 0.70 the correlation of first-semester marks
    Of the same class and same teacher in a
    school that has a fairly good system of
    marking.
r = 0.60 the correlation of an average of elemen-
```

tary school marks with an arerage of first-year high school marks.
$r=0.50$ the correlation of marks in one academic subject in high school with marks in another academic subject.
$r=0.40$ the correlation of marks in an academic subject with marks on an intelligence test.

Another indication is given by Fugg (6, page 256), Who says,
"The experience of the present writer in examining nany correlation tables has led am to regard correlation as "negligible" or "indifferent" wer r is less than .15 to . 20 ; as being "present but low" when r ranges from .15 or .20 to . 55 or .40 ; ss being "markedly present" or "marked" wien r ranges from . 35 or .40 to .50 or .60 ; as being thigh" whon it is above .60 or .70. With the present Iimitations on educational testing few correlations in testing Will run above. 70 , and it is safe to regard this as a very high coefficient."

Army Alpha, 7.
correlation with college grades, 8,.9.
E3ibliography, 81.
Brown scale, 7 .
correlation with college grades, 8.
Goefficient of correlation
calculation of, 93.
meaning of, 93
use of, 62.
value of for significance, $96,97$.
Coefficient of multiple correlation, 72.
Correlation, see coefficient of correlation. partial, 69.

Dffect of high school physics, 4S-49.
Function of placenent examinations, 5.
High sohool physics, effect of, 40-49.
Historical development of placement examinations, 6.
Iowa Placement Examinations
accuracy of preaiction, 15.
comparison with MSN Examination, 74.
correlation with college grades, 10.
description of, 14.
Intelligence tests, use of for prediction, ll.
Lissouri School of Mines Physics Examination
administration to high school students, 20.
administration to college students, 32.
comparison with Iowa Physics Aptitude Examination, 74.
comparison with other examinations, 40.
description of, 17.
predictive power of, 56.
reliability of, 26,38 .
validity of, む6, 38.
Multiple correlation, coefficient of, 72.
Norms, 91.
definition of, 21.
for MSN Physics Examination, ä2, 23, 36, 37.
list of, 2l, $2 厶, 91$.

Otis Group Intelligence Scale, 7. correlation with college grades, 8.

Partial correlation, use of, 69.
Placement examinations
comparisons of various, 16. functions of, 5 . historical development of, 5 . prediction of results by, 15.
Predictive value of examinations, 10.
Preliminary training of students, value of, 54. ananlysis of, 50.
Probable eror of neasures, 58.
Prognosis, 56.
accuracy of , 6\%
methods of, 56, 64, 69.
studies of 15.
use of Mm Physics Exemimation for, 56.
Regression equations
deviation form, 64, 71.
involving one ondependent variable, 64. involving two independent variables, 69. meaning of, 64. score form, 64, 7i.
Reliability, 25.
coefficient of, 26 . probable er-or of, 58. value of, 26,48 .
index of, 58.
probable error of, 88. value of, 26,38 .

Schools cooperating in the study, $20,32$. Scope of work done, 4 .
Scores, tobulation of, $28,34,35,76$.
sectioning of students at Missouri School of Mines, 1. criteria for, む. methods of, 2. purposes of 1.
Bociety for Promotion of Engineering Education, 83.
Baltimore meeting of, ll.
Sumary and conclusions, 79.
Terman Group Test of Mental Ability, 7. correlation with college grades, 8,9.
Thorndyke Intelligence Test, 7 . correlation with college grades, 8,9.

Thurstone Psychological Examination, 7, le. construation of, lZ.
correlation with college grades, 8, l\&́, 1:. sponsored by S. P. K. E., ll, l¿.
Training examinations, 14.
Training of students in high school, 50. value of, 54, 55.

Validity
a requisite for examinations, 24. how obtained, ¿4. of the MSM Physics Examination, 25. meaning of, 24.
Variability norms, 23, 37,77.
Bridges, J. W. 10
Colvin, S. S. 10
De Camp. J. E. 8
Garret, H. E. 69,81
Hammond, H. P. 10,54
Foke, Elmer 8,9
Jordan, A. Mi. 8
Kelley, T. L. 6, 27, i8,81
Lnglie, H. A. 82
hann, O. V. 10,16
incrhail, A. H. 8,9
Otis, A. S. 93
Paterson, D. G. 81
Pearson, Karl 96
Perrin, $\mathrm{F} \cdot \mathrm{A}$. C 16
Hogers, í. L. 6,13
Ruch, G. H 14,24,25,81
Rugg, F .0 81,97
Seashore, C. E. 13
Stodarda, G. D. $10,13,16,54$
Stone, C. I. 8,10
symonds, P. L. 6,81,96
Thorndyke, E. L. 10
Thurstone, $2 . L$. 10,11,1~
Toops, F. 8
mabue, m. R 81
Wood, E. D. 10
Tule, G. Z 。 81
\qquad

A
PLEGEMEITT EXGMINATION
IN
GENJRAL FHYSICS

Student's name:

$$
\overline{(\text { Surname })} \text { (Initials) Sex: }
$$

\qquad Age:
\qquad

\qquad State:
High Schpol attended: \qquad
Have you had a course in physics in high school?

Test administereū at

on TDate!

SCORING DATA

Copyrighted 1930 by John M. Willson. All rights reserved.

Acknowledgment: The selections used in Fart 3 were chosen from Anderson's PHYSICS FOF TECHYICAL STUDENTS, published by McGrawHill Rook Company. Used by permission.

DIRECTIONS: Flace the answer to each question on the corresponding dotted line at the right. Use blank spaces of the page for necessary figuring. You have 14 minutes Ior Part ene.
SAMPIE: $2 x=6$. What does x equal?
I. $W=F d$. Solve for d.
2. What is one eighth of seven?
3. $s=\frac{1}{2} a t^{2}$. Solve for t.
4. $a^{3}=8$. Express a without using radicals.
5. R is less than $S . R \not S=S \neq 6$. Does R equal 6?
6. Express in symbols: m is proportional to the cube of d.
1.
\qquad
3.
\qquad
5.
6.
7. $\frac{1}{2} m v^{2}=m g h . \quad$ simpiify and solve for ∇.
7. \qquad
8. If $\frac{x \neq I}{a}=\frac{y+2}{a}$, is x larger or smaller than y ?
8. \qquad
9. Express in symiols: P_{I} is to P_{2} as ∇_{2} is to ∇_{I}
9. \qquad 18.
12. Ada: $\frac{1}{x}+\frac{1}{y}$. \qquad
11. x^{2} is less than y. Cen x be greater than y ?
11. \qquad
12. Which expression is imaginary: $\sqrt{a},-\sqrt{a}, \sqrt{1}, \sqrt{-2 b}$?
12.
13. \qquad
13. Multiply $2.5 \times 2 \mathrm{ky} 3 \times 0$.
14. What is one-half of one-fourth?
14. \qquad
15. $m=$ eit. Solve for e.
15. \qquad
16. What is the reciprocal of $\frac{2 x}{a}$?
17. Solve (to one deaimal place): $120\left(\frac{273}{330}\right)\left(\frac{770}{760}\right)$.
18. That is the mean of $1,4,0,5,5$?
16. \qquad 17.
18. \qquad
19. A is less than B. Is the mean of A and B less than B ?
19. \qquad
20. $F=4 /{ }^{2} n^{2} r m$. Solve for r.
21. Write with an exponent: $\sqrt{x-y}$.
20.
21. \qquad
22. Add the next two terms to the series: $160,80,40,20$.
23. The reciprocal of a number is a. What is the number?
24. $c^{2} \not \subset I=0$. What is the value of c ?
22. \qquad
23. \qquad
25. What does $\frac{0}{5}$ equal?
24. \qquad
2.6. What is the cube of $4 x y^{2}$?
25. \qquad
27. What does $\frac{5}{0}$ equal?
26. \qquad
28. $I=\frac{E}{R}$. If I is 10 and E is 220 , what is the value of R ?
27. \qquad
29. By how much does B exceed A if $A=B-C$?
28. \qquad
30. Write as a decimal fraction: $3 / 4$
29. \qquad

| Maximum Score:Character of responses
 30 | How scored:
 Right: Wrong: Omit: | Score: |
| :---: | :---: | :---: | :---: |

DIREMIONS: Below are sketches and diagrams representing various physical devices or principles used in engineering practice. Each sketch is numbered. To the right is a list of the principles or devices illustrated. On the blank preceding the rame wite the number of the sketch illustrating it. You will find it helpful to cross out each sketch as it is identified. You have 8 minutes for Part Two. SAMPIE: Sketch 12 is a simple pendulum. Hence, place the number 12 on the blank hefore the name, as shown to the right.

DIRECTIONS: This section consists of selections from a standard college text in physics. To the right are a number of statements which may or may not be true. Read each selection and compare the statements with the material in the selection. If the statement is true, place $A T$ on the dotted line following it; if false, place anF on the dotted line. DO NOT GUESS. Part Three contains two pages; go on to the second without interruption. You have 15 minutes for Part Three.

1. FARADAY'S ICE-PAIL EXPIRTIENT.

The experiment received this name because
Faraday happened to use an ice-pail in perform ing the experiment the first time. Any hollow conductor, such as B (Fig. 1), would have answered equally as well. E is a goldleaf electroscope connected to B by a wire. In the top of B is an openins large enough to admit the charged body A. If A is positively charged, then, as it is trought near the uncharged, insulated vessel B, electrical separation takes place, the negative being attracted and the positive repelled. A small part of the repelled positive charge passes to the electroscope and causes the leaves to separate. As snon as A is well in the vessel B, the leevas cease to separate farther, and simply remain stationary as a is moved about within 8 .

It will now be shown thet the charge fQ on A, the induced charge $-Q$, on the inside of B, and the induced charge $f Q^{\prime \prime}$ on the outside of B are all equal. That the charges Q : and $Q^{\prime \prime}$ are equal (disregarding sign) is shown by the fact that, if A is withdrawn without coming in contact with B , the gold leaves collapse, for, if Q^{\prime} were (say) - 10 and Q " were fll, there would te one f unit not meutralized, and the leaves would still diverge slightly. If, on the other hand, A is lowered until it touches the bottom of B, the leaves neither rise nor fall. This fact shows that Q equals Q^{*}, numerically, since they just neutralize each other and leave Q" unchanged.

1. Any deep hollow conductor with a small opening may be used in this experiment.
2. The materials for this experiment must be cooled by ice.
3. As discussed, the body a carries a positive charge.
4. An electroscope is indicated by E in the diagram.
5. If A is meved akout in B, the leaves of the clectroscope romain stationary.
6. The induced charge on the inside of the pail is equal to the charge on $\mathbb{A}($ neglecting sign).
7. The induced charge on the outside of the pail is groater than that on the inside of the pail (neglecting sign).
8. If \mathbb{A} is withdrawn without touching B, the leaves of the electroscope collapse.
9. Collapse of the leaves proves that the charge has reen lost.
10. The leaves of this olectroscope are made of aluminum.
11. If \mathbb{A} is lowered to touch the bottom of 3 , the leaves of the electroscope collapse.
12. Negative charges are attracted by A, while poaitive chargea are repelled.
13. The energy of a body may le defined as the ability of a body to do wcrk. The potential erergy of a body is its acility to do work by virtue of its position or enndition. The kinetio energy of a body is its ability to do work by virtue of its motion. Energy may be transformed from potential to kinetic energy and vice versa, or from kinetic energy into heat, or by a suitable hoat engine, e.g., the steam engino, from heat into kinetic energy, kut whatever transformation is experienced, in a technicel sense, none is lost. In practice, energy is lost, as far as useful work is concerned, in the operation of sli machines, through friction of bearings, etc. This energy is spent in overcoming friction. It is not actually lost, but is trensformed. into heat energy which cannot re profitably reconverted into mechenical energy. In all cases of onergy transformations, the energy in the new form is exactly equal in magnitude to the energy in the old form. This fact, that energy can neither be created nor destroyed, is referred to as the law of the Conservation of Energy.
14. The elactron theory. According to this theory, now generally accepted, electricity is corpuscular in its nature. Indeed, it may be said that electricity consists of negatively charged particles, the electrons, each of which has a mass about $1 / 1845$ that of the hydrogen atom. Streams of these electrons constitute the β-rays (beta rays) emitted by radioactive substances, and they also constitute the cathodo rays which give rise to the x -rays. The γ-rays (gamna rays) which accompany f-rays, and also the x-rays, are radiations rof exceedingly short wave length. The electrons, as they rapidly revolve about the atoms, are also considered to be the ultimate source of the ether vibrations in radiation. According to the electron theory, an excess of electrons upon a body causes the cody to be negatively charged; a deficiency, positively charged. din uncharged or neutral hody has its normal supply of electrons. It is of interost to know that the charge on the electron has been measured and thgit unit negative charge is equel to $2 . I \times 10^{\circ}$ electrons.

Maximum Score:	Character of responses right: wronf: omit:
Now soored:	Score:

1. Energy of a body is the ability of the bcdy to do work.
2. A hody has only one kind of onergy.
3. Kinetic energy is ability to do work hy virtue of position.
4. Energy may be transformed from potential into kinetic ancrgy.
5. Heat converts energy inte friction.
6. A steam ongine converts heat into kinetic energy.
7. The amount of energy in existence is constant.
ع. Energy used in overcoming friction is destroyed.
8. Potential energy is the ability to do work by virtue of motion.
9. The magnitude of energy after transformation is less than the magnitudo before transformation.
10. According to the electron theory, electricity consists of negatively charged particles.
11. \mathbb{A} negative olectric charge rosults when a body has an excess of electrons.
12. Tho charge on an electron has keen measured.
13. Streams of eleutrons knewn as cathode rays are the cause of x-rays.
14. An unchargod body lacks some electrons.
15. Electricity is generally accepted to be corpuscular in nature.
16. The oleetron is larger than the hydragen atem.
17. Eleetrons aro caused by ether vikratiens.
18. Electrons revolve rapidly around the atoms.
19. (positively charged body has the normal number of olectrons.

DIRECTIONS: Read each question and select the best answer from the five given. Place the number of this answer on the line at the rigit, as show in the sample. This part consists of two pages; go on to the second without interruption. You have 10 minutes for Part Four.
SAMPLES: 1. A mile is most nearly (1) 1000 yards, (2) 2000 yards, (3) 3000 yards, (4) 4000 yardis, (5) 5000 yarãs.
2. The unit for measuring electrical resistance is (I) ampere, (2) watt, (3) volt, (4) erg, (5) ohm.
I. The measure nearest the yard in length is the (I) milimeter, (2) centimeter, (3) meter, (4) foot, (5) rod.
2. A common unit of mass is the (1) Iiter, (2) cubic foot, (3) centimeter, (4) gram, (5) erg.
3. Three forces acting at an angie may be replaced by a single force producing the same effect. This force is called a (I) component, (2) equilibrant, (3) rasultant, (4) diagonal, (5) force polygon.
4. Light which passes through an ordinery prism is (I) polarized, (2) diffused, (3) refracted, (4) reflected, (5) absorbed.
5. The freezing point on the Centigrade thermometer is (1) 0°, (2) 212°, (3) 100°, (4) -273°, (5) 32°.
6. A device involving Bernoulli's principle is the (1) siphon, (2) hygrometer, (3) electrophorus, (4) interferometer, (5) atomizer.
7. The quantity commonly indicated by " g " is the (1) acceleration of gravity, (2) gas constant, (3) ionization constant of gasas, (4) universal gravitational constent, (5) temperature gradient.
8. An instrument often used to measure the density of liquids is a (1) hygrometer, (2) barometer, (3) anemometor, (4) hydrometer, (5) pedometer.
9. The velocity of a body may be expressed in (1) foot pounds, (2) dynes, (3) grams per second, (4) miles per hour, (5) feet per second per second.
10. The transfer of an electric current through a liquid is called (1) transmission, (2) conductance, (3) magnetism, (4) penetration, (5) permeability.
11. The quantity of heat in a body is moasured in (1) degrees, (2)杖ts, (3) calories, (4) coulombs, (5) poundals.
12. An object is placed outside the center of curvature of a concave mirror. The imase formed is (1) virtual, (2) upright, (3) larger than the object, (4) smaller then the object, (5) situated behind the mirror.
13. The ampere is the unit used for expressing (1) resistance, (2) electric current, (3) electrical conductance, (4) electromotive force, (5) potential gradient.
14. Vectors are distinguished from scalars by having (1) Iength, (2) magnitude, (3) mass, (4) direction, (5) force.
15. The time rate of change of position of a body is knomn as (1) force, (2) acceleration, (3) speed, (4) rotation, (5) displacement. \square
I6. The kilometer corresponds most closely in length to the (1) foot, (2) yard, (3) rod, (4) mile, (5) inch.
27. Energy possessed by virtue of motion is called (1) potential, (2) latent, (3) frea, (4) kinetic, (5) static.
18. Lines plotting relationship between pressure and volume are called (1) isotherms, (2) isobars, (3) components, (4) isoclinic lines, (5) critical lines.
19. Hest can pass through a vacuum only by (I) capillsity, (2) conduction, (3) convection, (4) radiation, (5) absorption.
20. The speed of sound in air is approximately (1) 1080 feet per second, (2) 186,000 miles per second, (3) 980 centimeters per second, (4) 32 feet per second, (5) $300,000 \mathrm{kilometers}$ per second.

2I. A man whose name is associated with falling bodies is (1) Watt, (2) Galileo, (3) Faraday, (4) Archimedos, (5) Copernicus.
22. Ice melts at (1) $30^{\circ} \mathrm{F}$, (2) $30^{\circ} \mathrm{C}$, (3) $212^{\circ} \mathrm{F}$, (4) $32^{\circ} \mathrm{F}$, (5) $32^{\circ} \mathrm{C}$.
23. The stress commonly experienced by a rafter in a building is a (I) shear, (2) tension, (3) compression, (4) twist, (5) torque.
24. An instrument used to detect electric charges is the (1) spectroscope, (2) electroscope, (3) vol tmeter, (4) dynemometer, (5) polari-

* scope.

25. The quantity of heat liberated by unit mess of water upon freezing is called (1) specific heat, (2) mechanical equivalent of heat, (3) latent heat of fusion, (4) radiant heat, (5) latent heat of vaporization.
26. A manometer gauge measures (1) depth, (2) speed, (3) density, (4) pressure, (5) temperature.
27. A 150-1b. man climbs to a height of 20 feet in five seconds. The foot-pounds of mork done are (1) 150 , (2) 20 , (3) 100 , (4) 3000 , (5) 750 .
28. The time rate of change of speed of a body is called (1) force (2) momentum, (3) velocity, (4) scceleration, (5) force of restitution. \qquad
29. The acceleration of gravity in feet per second per second is approximately (1) 980, (2) 4.187 , (3) 772, (4) 2.54, (5) 32.
30. The unit of electrical capacitance is called the (1) dyne, (2) coulomb, (3) ampere, (4) forad, (5) watt.

Maximum Score:	Charector of responses		How scored:	Score:
30	Right: Wrong:	Omit:	Number right	

[^0]: 1Maximum range is l26-0.

