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ABSTRACT 

A contrast enhancement algorithm is developed for digital mammograms aiming to 

assist radiologists in discerning early breast cancer easily. The algorithm is based on a 

Laplacian pyramid framework image processing technique. The mammogram is 

decomposed into three frequency sub-bands, low, mid, and high frequency sub-band 

images. The lower sub-band image contains very fine details and higher level contains 

coarser features. In this method contrast enhancement is achieved from high and mid sub-

bands by decomposing the image based on multi-scale Laplacian pyramid and enhance 

contrast by image processing. Several mapping functions are applied on sub-band images 

based on experimental analysis. After modifying sub-band images using mapping 

functions, the final image is derived from reconstruction of the Laplacian images from 

lower resolution level to upper resolution level. To demonstrate the effectiveness of the 

algorithm, two mammogram images are analyzed. To validate the algorithm, quantitative 

measurements are performed. Several existing contrast enhancement techniques are 

compared with the developed algorithm. Experimental results and quantitative evaluation 

prove that the proposed algorithm offers improved contrast of digital mammograms.  
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1. INTRODUCTION 

Breast cancer is a heterogeneous progressive asymptomatic disease of women all 

over the world. It develops from within the branching ductal system of the breast. About 1 

in 8 women in the United States (12%) develops invasive breast cancer of her lifetime.  In 

2010, an estimated 207,090 new cases of invasive breast cancer were expected to be 

diagnosed in women in the U.S., along with 54,010 new cases of non-invasive breast 

cancer [2]. About 39,840 women in the U.S. were expected to die in 2010 from breast 

cancer. Breast cancer can be developed in different areas of the breast- the ducts, the 

lobules or even the tissue in between. From 2000, digital mammography has become the 

superior over film mammography due to better contrast, resolution and dynamic range.  

In x- ray imaging like digital mammography, enhancement of low contrast features 

is necessary since most of the important features are barely seen by the human eye.  

Contrast enhancement helps the radiologist to visualize features and diagnose disease more 

accurately. Contrast enhancement can be done globally and locally. Global contrast 

enhancement changes image contrast regardless of image contents. In digital 

mammography local contrast enhancement methods are more suitable because of the size 

and non-uniformity of the digital mammogram. Like all other x-ray images, 

mammographic images have histograms of similar shape. Two sets of components that 

dominate in the histogram of the image, one is the background that has gray values near 

zero and the other is the object. For contrast enhancement, either global or local, the 

background should be removed to make the background gray level distribution narrower. 

Contrast enhancement is necessary for making microcalcification stand out from the breast 

tissue in a dense breast. 

This thesis is organized in the following way. Section 2 describes the theory and 

background of the thesis. This includes a synopsis of screen film mammography and digital 

mammography and recent advances of contrast enhancement. Section 3 describes the 

method of the proposed image processing algorithm. Detail explanation of the process and 

mathematical derivation of applying the method is presented. Section 4 contains the result 

and analysis of the algorithm. Experimental analysis and quantitative evaluation is 

demonstrated in this section. Section 5 presents the comparison of the proposed technique 
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with traditional well-known image processing techniques. Section 6 presents the 

concluding remarks of this thesis. The code of this algorithm is in appendix section. For 

generating the code MATLAB is used.  
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2. BACKGROUND 

2.1. USE OF X-RAY IN MEDICAL IMAGING  

X-rays were discovered by William Roentgen (1895) while experimenting with a 

cathode radiation. In the health and medical areas, x-rays have been used for both diagnosis 

and treatment of patients’ conditions for over a century. X-rays are used in a wide variety 

of examinations in diagnostic medical imaging. Some applications of x-ray in medical 

images are illustrated in Table 2.1:  

 

Table 2.1.  Applications of x-ray in medical imaging 

 

General Radiography Single projection images of chests, skull, spines, breasts, etc  

Fluoroscopy  Single projection images to display continuous x-ray images like 

x-ray movie  

Angiography  Series of single projection images to view body’s blood vessels 

Computed 

Tomography  

Multiple projection imaging system to view anatomical cross 

sections  

Bone Mineral 

Densitometry  

Multiple projection imaging to measure the density of minerals 

per cubic centimeter of bones 

 

 

2.2. SCREEN FILM MAMMOGRAPHY  

A set of screening mammogram actually consists of two x-ray images, one taken 

from the side (called as “mediolateral oblique view”) and the other from above (called as 

“craniocaudal view”) for each breast. . The mammographic process involves exposure of 

the breast to x-rays of mammographic energies (kVp) followed by the transmission and 

scattering of x-rays through breast tissue (Figure 2.1).  

Screening mammography has been shown to reduce breast cancer mortality by 

approximately 18%–30% in the past decade [18]. 
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Figure 2.1.  Typical process of screen film mammography [18] 

 
 
Due to high-quality images obtained with screen-film mammography (SFM) 

systems, the mortality rate for breast cancer has been reduced. SFM systems are considered 

the standard of reference in diagnosing breast cancer.  But approximately 10%–20% of 

breast cancers detected at breast self-examination or physical examination are not visible to 

SFM. However, only 5%–40% of the lesions detected with SFM and recommended for 

biopsy are found to be malignant [14]. This indicates a high level of false-positives, 

resulting in unnecessary biopsies and related psychological stress to patients.  

The attenuated x-ray photons pass through the grid and interact with the image 

receptor. The photons are finally absorbed as a latent image on the film. After processing, 

the film is then displayed for diagnosis. The entire process is captured, displayed, and 

archived with a single medium, which is the film. The SFM has some inherent advantages, 

mentioned in [12]: 

1. High spatial resolution (up to 20 line pairs per millimeter), which can demonstrate 

fine spiculation and microcalcification. 

2. High contrast, which allows visualization of subtle differences among soft-tissue 

densities [14].  

3. Use of high-luminance view boxes, which improves visualization of dense tissues. 
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4. Ease of display, rearrangement, and masking of film during diagnosis, which 

allows simultaneous display of images made during screening examinations and 

supplementary views of previous images on multiple panel illuminators.  

5. Use of multiple image receptor sizes enables imaging breasts of different sizes.  

6. Film acts as an efficient medium for long-term storage with low cost. 

 

Although SFM has some advantages, there are a number of inherent limitations 

with SFM. The major disadvantage of SFM is the limited dynamic range as shown in 

Figure 2.2. There are trade-offs between dynamic range and contrast resolution, noise due 

to film granularity, and compromise between resolution and efficiency.  

 
 

 

 

Figure 2.2. Comparison of dynamic range between SFM and digital mammography [18] 

 
 

The film acts as the only medium for acquisition, display, and storage of images. 

Image quality can be affected by suboptimal condition of any step and limit the full 

capability of the mammography process. The limitation of SFM is explained in Figure 2.3, 

which is composed of wide range of tissues.  

From Figure 2.3, it can be demonstrated that, while the system is optimized for the 

dense part of the breast, all other tissues fall on the upper plateau of the film response 

curve, making them impossible to visualize. 
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Figure 2.3. Different regions of the breast image are represented according to the 
characteristic response of a typical mammographic film [18] 

 
 

In addition, technical factors such as film processing, developing, and image 

artifacts can limit the use of SFM. Digital mammography has the potential to overcome the 

limitations of SFM and improve early breast cancer detection and lesion characterization.   

 

2.3. DIGITAL MAMMOGRAPHY 

Mammograms can be delivered in a digital format in two different ways: 

Conventional screen-film mammograms (SFM) can be converted to a digital image, 

referred to as a digitized film screen mammogram. Furthermore, mammograms can be 

generated as a digital image directly, referred to as a direct full-field digital mammogram 

(FFDM).  Both systems are distinguishable as the images are generated in two different 

ways.  

For the development of FFDM systems, various approaches have been taken as 

described in [18], [22], [30]. The system can be classified as direct or indirect system. 

Indirect capture uses a two-step process whereby a scintillator such as cesium iodide (CsI) 

absorbs the x-rays and generates a light scintillation which is similar to SFM. The 

scintillation is then detected by an array of photodiodes or charge-coupled devices (CCDs). 

With the direct capture process, the x-ray photons are directly captured by a 
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photoconductor such as amorphous selenium (a-Se) and converts absorbed x-rays to a 

digital signal [1]. The possibilities of resolution degradation due to light spread at indirect 

capture are eliminated in these systems. Moreover, the spatial resolution with direct capture 

is limited to the pixel size and not to the thickness of the photoconductor.  

The physics of x-ray image acquisition in mammography can be demonstrated 

through a simple model of a breast containing a structure of interest. The structure of 

interest might be a tumor, a microcalcification, or some normal aspect of the breast 

anatomy. For a monoenergetic x-ray beam, the mean number of x-rays transmitted along 

path ‘A’ through normal breast tissue and arriving at a hypothetical plane beyond the 

breast, referred to as the image plane, is [23]: 

 

                                      												�� = ���
���              (1) 

 

where n0 is the mean number of x-rays incident on the breast, X is the thickness, and μ is 

the x-ray attenuation coefficient of the tissue. 

Assuming that the divergence of x-rays from a point source has been ignored and 

no scattered radiation reaches the image plane. The number of x-rays that are transmitted 

along path ‘B’ (Figure 2.4.) is passing through the structure of interest in the breast having 

x-ray linear attenuation coefficient, μ' is: 

 

                        �� = ���
��(���)��′�                                   (2) 

 

Where a is the thickness of the structure in the direction of travel of the x-rays. 

 
The signal difference produced by the presence of the structure is: 

 

                                          �� = �� − ��                                       (3) 

   

The resultant radiation contrast is: 

 

                                               ���� =
�����

�����
                         (4) 
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Figure 2.4. Schematic diagram of the breast illustrating the basic imaging problem of 
detecting differences in x-ray transmission between path A passing through normal tissue 
and path B passing through a region containing a structure of interest such as a lesion in a 

breast of varying thickness [24]. 
 

 

Substituting eq. (1) and eq. (2) into eq. (4), we can get: 

 

                                      ���� =
����(��� ′)�

����(��� ′)�                       (5) 

 

This expression shows that the radiation contrast is determined by two factors, the 

difference in the attenuation coefficient between the background breast tissue and the 

structure and the thickness of the structure.  

If a mammogram is converted into a digital format, the image can be manipulated in 

a variety of ways to highlight lesion conspicuity. The radiologist can alter the orientation, 

magnification, brightness and contrast of the images as desired. Digital images can be 

viewed in several ways, such as on a high-luminance computer monitor or printed as a film. 

From the patient’s point of view, mammography with a digital system is essentially the 

same as with the screen-film system. Unlike SFM, digital images can be stored and 

transferred electronically, which facilitates their quick and easy retrieval as well as 

allowing remote evaluation by distant specialists. The outcomes proposed for measuring 

the efficacy of digital mammography are the potential to detect breast cancer at an earlier 
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stage, reduce the number of false positive mammograms, decreased radiation dose to the 

breast, increased accuracy of images, facilitation of long distance consultations with 

mammography specialists, and ease of mammography storage. 

 

2.4. ADVANTAGES OF DIGITAL MAMMOGRAPHY 

The advances in digital detectors offer improved detection due to the improved 

efficiency of absorption of incident x-ray photons. Some of the inherent advantages of 

digital detectors are the linear response over a wide range of x-ray intensities and low 

system noise. The processes of image acquisition, displaying, and archiving is decoupled 

which provides an opportunity to independently optimize each process. Wide dynamic 

range (1,000:1) compared with that of SFM (40:1), dynamic image manipulation, and the 

ability to postprocess, which allows improvement in lesion visibility are some of the 

advantages of digital mammography. The overall mammography process can be improved 

by soft-copy reading accompanied by computer-aided diagnosis (CAD) and three-

dimensional imaging [18]. 

A well-optimized digital mammography system can provide the following benefits 

[22]: 

1. More efficient acquisition of the x-ray data for the mammogram because 

(a) The detector can be made thick enough to absorb a large fraction of the x-

rays transmitted by the breast 

(b) Granularity noise should be eliminated.  

(c) Radiation dose should be reduced.  

2. The image data is captured in numerical form. 

3. Display brightness and contrast can be controlled.  

4. For adapting the image to match visual performance of the eye and overcome 

limitations of the display device image processing can be performed.  

5. Able to remove other structural noises by flat-field correction.  

 

2.5. CONTRAST ENHANCEMENT OF DIGITAL MAMMOGRAPHY  

The purpose of contrast enhancement is to enhance image feature against its 

background to visualize the image properties in an open eye. X-ray beam is used for digital 



 

 

10

mammography and the x-ray density controls the relevant detail information of the 

mammogram. The patient should not get more doses. Less exposure reduces patient dose as 

well as image contrast. Suitable image processing for contrast enhancement can reconcile 

the limitation. Pertinent information remains in the high frequency region of mammogram 

but the large density variation mostly crop up in low frequencies. Contrast enhancement 

enhances the high frequency information of an image while suppressing the unnecessary 

low frequency information thus visualizes the subtle information of the digital 

mammogram. The digital format of digital mammography allows image processing to be 

applied to digital images without additional exposure to the patient. Contrast enhancement 

is one such technique whereby the contrast of different structures in the breast is altered to 

improve detectability. Image processing also involves edge enhancement or smoothing the 

image and zooming in on a suspicious region in an image for better viewing. Image 

enhancement can be divided into types: direct and indirect contrast enhancement.  

2.5.1. Direct Contrast Enhancement. Direct contrast enhancement establishes a 

criterion of contrast measure and enhances the images by improving the contrast directly. 

Establishment of a suitable image contrast measure is the key step of direct image 

enhancement. Local contrast is measured by using the mean gray values in two rectangular 

windows centered on a given pixel.  

  2.5.1.1. Optimal adaptive neighborhood contrast enhancement. The direct 

contrast enhancement algorithm is based on measurement of local contrast. The method 

takes a neighbor consisting of a square of coefficients surrounding the center of a given 

coefficient. The center pixel is called the center of the neighborhood and a large annulus 

called the surround. The contrast measure is defined by [8]  

 

                                                � =
|���|

|���|
                  where 0 ≤  C ≤1          (6) 

 

where p is the average density of the center and ‘a’ is the average density of the surround.  

The contrast value for each pixel was transformed to a new contrast value by using a 

suitable contrast enhancement function. The enhanced contrast can be obtained by 

replacing the old pixel value with enhanced pixel values.  
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2.5.1.2. Adaptive fuzzy logic contrast enhancement. In fuzzy logic approach both 

global and local contrast can be enhanced. The method is based on fuzzy entropy principle 

which transforms the image to a fuzzy domain, and computes the fuzzy entropy and 

measures the local contrast. The histogram provides the global information of the contrast. 

Finally, the enhanced image can be obtained by defuzzification to transform the enhanced 

mammogram from fuzzy domain to spatial domain.  

2.5.1.3. Contrast enhancement in the wavelet domain. A local contrast measure 

for direct contrast enhancement can also be described in wavelet domain. The contrast 

values are manipulated in the wavelet domain by using high frequency and low frequency 

information. The contrast value is defined by the ratio of the bandpass filtered image at that 

frequency to which the image lowpass-filtered to an octave below the same frequency. A 

contrast manipulation factor is used to enhance the measured contrast value. The image is 

reconstructed by using inverse wavelet transform and the enhanced mammogram can be 

seen. The inherent advantage of the proposed algorithm is that, this technology can be 

applied to JPEG2000 compressed image in the decompression stage to reduce the time 

required for enhancement.  Also this technology matches the human visual system which 

results a better visual quality.  

2.5.2. Indirect Contrast Enhancement. Indirect contrast enhancement cannot 

manipulate the image contrast directly; rather it modifies the histogram or high frequency 

image and thus increases contrast. Several methods are being adopted for indirect contrast 

enhancement of digital images.  

  2.5.2.1. Contrast stretching. Contrast stretching improves an image contrast by 

stretching the range of intensity values uniformly. It expands the full intensity range of the 

recording medium [11] as shown in Figure 2.5. 

If f (x, y) is the original image and a and b are the lower and upper limits of the 

desired stretching respectively and c and d are the maximum and minimum gray value of 

the original image respectively then the contrast stretching can be defined as:  

 

                           �′(�,�) = � +
���

���
∗ [�(�, �) − �]             (7) 
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This is the type of global contrast enhancement. For digital image processing local contrast 

enhancement is more suitable, so the method is not widely used in digital mammography.  

 

 

 

 

2.5.2.2. Histogram equalization. In histogram equalization, the high contrast 

appearance can be achieved by distributing the image pixels to the entire intensity levels 

that is increasing the dynamic range of the histogram of the image. The overall contrast 

improvement can be achieved by flattens and stretched the dynamic range of the histogram 

of the image. Histogram equalization can be applied on the digital mammograms but since 

this method enhances the contrast globally so there are losses of details outside the denser 

parts of the image. 

Some modification of histogram equalization has been performed on recent days. 

For example bi-histogram equalization [32], recursive mean separate histogram 

equalization [4], minimum mean brightness error histogram equalization [5], partially 

overlapped sub-block histogram equalization [15], etc. Those methods are well established 

for optical images but they are not suitable for digital mammography.  

2.5.2.3. Adaptive histogram equalization. In this method, based on local 

neighborhood, a different grayscale transform is computed at each location in the image, 

and the pixel value at that location is mapped accordingly. The local window is selected as 

Figure 2.5.  Linear contrast stretching 
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a square tile centered at the pixel to be processed. The regions occupy different gray scale 

ranges and those would be enhanced locally by using histogram equalization. In order to 

eliminate the artificial boundaries created by the process, interpolation is necessary across 

the block regions. Contrast can be increased by changing the slope of the transform that 

converts pixel values from the original to the processed image. With adaptive histogram 

equalization, noise will be increased to an unacceptable level in image regions that have 

little signal variation, that is, homogeneously dense tissue areas or background. This is the 

inherent problem of this technique [1].   

2.5.2.4. Contrast limited adaptive histogram equalization. To reduce contrast 

amplification in dense breast tissue or background, contrast limited adaptive histogram 

equalization (CLAHE) has been proposed. The slope of the transform computed by 

histogram equalization is proportional to the height of the histogram. The slope can be 

limited by clipping and renormalizing the histogram before computing the transform. 

Maximum contrast enhancement can be adjusted by introducing an additional parameter. 

But CLAHE does not give the performance of the algorithm in fatty areas of the breast 

[24].   

2.5.2.5. Unsharp masking. Unsharp masking is a well recognized image 

sharpening method in digital image processing. Recently this method was attributed on 

digital mammography to enhance mammographic feature. In this method, a low pass 

filtered version of the original image is subtracted from the latter and the resultant image is 

multiplied by a weighing factor. This multiplied image is to be added to the original image 

to get the enhanced version of the image. The sharpness of the border of mass lesion will 

be enhanced in this method but it has some inherent limitations. The details and noise are 

obvious in this method and in the high contrast areas some undesirable overshoot artifacts 

can be generated [31].  

  2.5.3. Multiscale Contrast Enhancement. For tuning contrast enhancement to 

certain frequency bands it is possible to use multi-scale image processing. Enhance of 

contrast can be done at different scales.  It is possible to enhance micro-calcifications and 

masses in a range of scales, while suppressing other structures. Two well-known multi-

scale processing are: wavelet transform and Laplacian pyramid.  
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  2.5.3.1. Multiscale wavelet based enhancement. A common multi-scale 

processing technique is wavelet based enhancement. Laine et al first proposed the multi-

scale wavelet based enhancement of digital mammography in 1994 [16]. A wavelet 

transform is a decomposition of an image onto a family of functions called wavelet family.  

This decomposition divides the frequency spectrum of an image into a low pass sub-band 

image and a set of band pass sub-band images which contain the wavelet coefficients. 

Research has been performed on both discrete and continuous wavelets [13].The wavelet 

coefficients can be modified locally or globally by suitable enhancement functions. In both 

cases, edges and gain parameters are identified adaptively by a measure of energy within 

each level of scale space [16]. Mammograms are reconstructed from modified wavelet 

coefficients modified at one or more levels. Adaptive wavelet based enhancement had been 

proposed in [16] where an adaptive denoising and contrast enhancement was proposed 

together. For contrast enhancement, non-linear modification on wavelet coefficient based 

on non-linear gain operator was presented. Wavelet processing can reveal features that are 

barely seen in unprocessed traditional mammograms [17]. However, the clinical benefit of 

displaying such features has not been demonstrated.  

2.5.3.2. Laplacian based enhancement. The Laplacian Pyramid was first 

introduced for image compression [3]. Multi-scale image contrast amplification 

(MUSICATM) [29] is a well-known technique for contrast enhancement by using Laplacian 

Pyramid.  The method used a power law with a linear lower and upper cutoff. The lower 

cutoff value was introduced to avoid too strong amplification of noise and is the upper limit 

for the nonlinear contrast enhancement. MUSICATM  used the same remapping parameters 

in all sub-bands, but in [28] Stahl et al. introduced a remapping function with a variation of 

the gain in all sub-bands. These special features include noise robustness and a density-

dependent enhancement. In [9] it was shown that for the enhancement of radiographs, 

decomposition by wavelet transform leads to undesirable artifacts in the enhanced images. 

The Laplacian Pyramid decomposition is a more suitable decomposition method for 

multiscale enhancement, since it is free from such artifacts and results in a very balanced 

image impression. 
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3. METHOD 

The proposed contrast enhancement algorithm is based on a multi - scale Laplacian 

pyramid.  Pyramid representations are the decomposition of the image combining with 

subsampling and smoothing operation. Laplacian Pyramid signifies the image into a set of 

the different sub-band images. The purpose of using Laplacian decomposition is that most 

digital mammogram contains subtle information; it is difficult to enhance features from one 

frequency band.  

 

3.1. MULTISCALE IMAGE DECOMPOSITION 

The concept of scale in an image is mostly used in image and video processing. 

Scale corresponds to the amount of details and resolution corresponds to the size of details 

that can be perceived by an observer. An image consists of two types of scale: coarse scale 

and fine scale. Original shapes and general features lie on the coarse scales of the image 

and detail structures and indistinguishable features lie on fine scales. The purpose of 

multiscale decomposition is to separate coarse and fine scales of an image and extracting 

important features from the fine scales. The advantage of using multiscale decomposition is 

the ability to modify coarse scales and fine scales separately. The separation into coarse 

and fine scales has a wide application in image processing that include image segmentation 

[25], image registration [19], pattern recognition, medical image reconstruction [7], etc.  

The key factor of overall performance and quality of decomposition depends on the 

selection of smoothing operator. Two main requirements are needed for selecting a good 

smoothing filter [20]. First, the filter spectrum has to be smooth and band-limited in the 

frequency domain, and the other is the spatial localization constraint on the filter 

characteristics. This means that pixels in the smoothed image should be computed from the 

weighted average of nearby pixels. The first requirement introduces ringing artifacts which 

can be prevented by the second requirement. Gaussian like filter is the best possible 

smoothing filter that fulfills the requirements.   

3.1.1. Gaussian Pyramid. The Gaussian pyramid is the representation of an image 

at different scales and at different resolutions. The Gaussian pyramid can be generated by 

convolving the image with a 2-D Gaussian lowpass kernel and subsamples it by a factor of 



 

 

16

2. The pyramid decomposes an image into a hierarchy of low pass filtered images such that 

successive levels correspond to lower frequencies. 

If I0 denotes the original image then G0 = I0 is the first level of the Gaussian 

pyramid. The next level, G1, is computed by convolving G0 with a Gaussian filter kernel 

and down sampling it by a factor of 2. The Gaussian pyramid for l-th level is computed by: 

 

  Gl = REDUCE (Gl−1);   l ≥ 1             (8) 

 

where the REDUCE is an operator which represents the convolution with the filter kernel 

and down-sampling by a factor of 2. Therefore, if the size of the original image I0 is 2N 

×2M, then Gl has size 2N−l × 2M−l. 

 

The 2-D Gaussian filter can be expressed as:  

 

                    �(�,�) =
�

���� �
�	

�����

���                                    (9) 

 

The parameter σ determines the size of the filter. The degree of smoothing increases with 

the increase of the kernel or scale size but the bandlimit of the image decreases. the image 

can be reduced proportionally to this bandlimit without losing any information. The filter 

kernel is typically chosen to be a 5 × 5 pattern of weights. If the kernel is denoted by w, 

then the REDUCE operation can be written as:  

            

��(�,�) = � � �	(�,�) × ����(2� + �,2� + �)

�

����

�

����

																																																		 (10) 

 

The kernel will satisfy the following constraints [21]:  

 

1. The kernel w would be separable: w (x, y) = ŵ(x) ŵ(y) which denotes that the filter 

can be implemented as the cascade of 1-D filters operating along columns and rows.  
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2. The one dimensional filter ŵ is normalized.  

                                             

� ŵ(�) = 1

�

����

																																																														(11) 

       

3. The one dimensional filter ŵ is symmetric: ŵ (i) = ŵ (−i) for i = 0, 1, 2. 

4. All pixels at a given level must contribute equally to pixels at the next level. This is 

shown in Figure 3.1  

 
 
 

 

 

Figure 3.1. Pyramidal structure of the image 

 
 
The Gaussian Pyramid represents a smoothed version of the original image at each 

level. Figure 3.2 illustrates the first five levels of the Gaussian pyramid of a mammogram 

image selected from the Mammographic Image Analysis Society (MIAS) database.  

3.1.2. Laplacian Pyramid. The convolution of the original image with a Gaussian 

kernel is a lowpass filtering operation with the bandlimit reduced correspondingly by one 

octave with each level [10].  A Laplacian image is the difference between the two levels of 

the  Gaussian pyramid and the Laplacian pyramid is a sequence of the differences L0, 

L1,….., Ln. The adjacent levels Gl and Gl+1 in the Gaussian pyramid are of different size, 

Gl+1 is expanded to achieve the same size of Gl. This can be obtained by an operator 

EXPAND, which is the reverse of the operator REDUCE. 
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Figure 3.2.  The first 5th  levels of the Gaussian pyramid of a mammogram cropped in 
256×256 size 

 
 

   �� = ������(����)           (12) 

 

The effect of the EXPAND operator is to up-sample the 2N−l  × 2M−l  image matrix 

into a 2N−l+1 × 2M−l+1  array by inserting zeros in between each pixel and convolve it by the 

Gaussian kernel. If the EXPAND operation is applied to image Gl of the Gaussian pyramid, 

then the resultant image would be an image of size Gl-1 which has the same size as the 

image Gl−1 in the previous level of the Gaussian pyramid. The EXPAND operation can be 

mathematically written as:  

 

��(�,�) = 4 � � �	(�,�) × ���� �
� − �

2
,
� − �

2
�																																																	 (13)

�

����

�

����

 

 

The Laplacian pyramid is obtained by the following formula:  

 

             	�� = �� − ������(����)						          (14) 

 

A single level Laplacian image is shown in Figure 3.3 
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Figure 3.3. Generation of one level Laplacian image  

 

The difference between Gaussian Pyramid and Laplacian Pyramid is that the 

Gaussian Pyramid smoothes brighter values over larger areas and produces a set of lowpass 

filtered copies of the original image and the Laplacian Pyramid differentiates smoothed 

brightness values and produces a set of bandpass filtered copies of the original image.  

Figure 3.4 illustrates the first five levels of the Laplacian pyramid of a mammogram image 

selected from MIAS database. 

 

3.2. MATHEMATICAL DERIVATION 

The Laplacian derivative operator is given by:  

 

                                           ���(�,�) =
���

���
+

���

��� 

 

The 1-D Gaussian kernels can be expressed as:  

 

                                          �(�; �) =
�

√���
�
���
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Differentiating with respect to x 
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Differentiating with respect to x again:  
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Figure 3.4. The first 5th levels of Laplacian pyramid of a mammogram cropped in 

256 × 256 size 
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Differentiating with respect to σ: 
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Therefore: 

 

                                  	
���(�;�)

���
= ��(�)

��(�;�)
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                                                ≈ ��(�)(�(�; �) − �(�; � + ∆� )) 

 

So, if the low-pass filter used to create the Laplacian Pyramid is Gaussian, then the 

Laplacian pyramid levels approximate the second derivative of the image at scale σ.  

 

3.3. CONTRAST ENHANCEMENT  

3.3.1. Development of Mapping Function. The contrast enhancement was 

achieved by modifying the Laplacian pyramid coefficients. The Laplacian pyramid images 
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are a series of different images which contains subtle features of the mammogram. The 

lowest level of the pyramid contains the high frequency components of the image and the 

highest level contains low frequency components. Modification at the high frequency 

coefficients is necessary and the lower frequency coefficient should be attenuated. But, the 

high frequency coefficients contain fine details as well as noise, so enhancement of high 

frequency coefficients will enhance fine structures and noise too. The non-linear mapping 

function has been developed to enhance the high frequency coefficients without 

amplification of noise. The mapping function that has been developed is:  

 

  �′ = � +	
�∗����	(�)��

�

�
�
�

�
               (15) 

																										�′ = � ∗ �                               (16) 

																										�′	 = � ∗ (� − (2� − �)�) ×
�

�(���)
													                    (17) 

 

where x represents the original pyramid coefficient and x' represents the modified 

coefficients. M is the maximum value of the coefficients of a particular level, a and b are 

the amplification factors.  � is an exponent that controls the non-linearity of the 

coefficients.  K is the upper bound of the coefficient values. Since high frequency bands 

contain noise content, so the global amplification factors a, b, c and the non-linear 

exponent γ should be chosen selected accordingly. Laplacian pyramid coefficients contain 

positive and negative values. The low coefficient values correspond to subtle details in the 

image, and should be enhanced. Equation (15) and (16) are used for this purpose based on 

the degree of enhancement. The higher coefficient values should be reduced in order to 

prevent the blurring effect and noise enhancement. Equation (17) is used for this purpose.  

The signum is a sign function that extracts the sign of a real number.  

3.3.2. Implementation of Mapping Function. The developed mapping function 

was applied to each level of the Laplacian pyramid. For each level, the maximum value 

was found from the Laplacian image. For example, if the first level of Laplacian image is 

L0, the maximum value of L0 was selected from the image. Suitable upper bound K was 

chosen from L0 and based on the experimental analysis the mapping functions are applied. 

The global amplification factors a, b and c are chosen for L0 and a non-linear exponent was 
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selected to enhance the coefficient values.  By applying the mapping function and selecting 

proper values for K, M, γ, a, b and c at each level of Laplacian pyramid, modified 

Laplacian pyramid was generated. The mapping functions are applied to each level and are 

shown in Figure 3.5.  

The multiscale analysis provides the access of image feature that lie on intermediate 

bands. The purpose of multiscale processing is to remove unnecessary and disturbing 

details of the image and enhance the fine details so that calcifications can be more visible 

in the human visual system. Various multi-scale methods have been already proposed 

recently as described in 2.4.3, where the image was split up into a number of sub-bands. 

But, all sub-bands were processed by using single mapping functions. However, different 

mapping functions were used to visualize subtle important structures of the mammogram. 

Smaller positive and most negative coefficients carry important information. 

 

 

         (a)                                              (b) 

Modified Lower Coefficients at Level 1         Modified Higher Coefficients at Level 1 

 

Figure 3.5. Structure of the mapping function from level 1 to level 5 of the modified 
Laplacian coefficients  

 

 

If the positive coefficients are treated similarly as lower coefficient there is more 

blurring effect on the overall image after reconstruction. So, the higher coefficients should 

be reduced. 
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      (c) 

Modified Coefficients at Level 1 

 
 

 

      (d) 

Modified Coefficients at Level 2 

 

Figure 3.5. Structure of the mapping function from level 1 to level 5 of the modified 
Laplacian coefficients (cont.) 
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         (e) 

Modified Coefficients at Level 3 

 
 

     

   (f)             (g) 

 

Modified Higher Coefficients at Level 4      Modified Lower Coefficients at Level 4 

 

Figure 3.5. Structure of the mapping function from level 1 to level 5 of the modified 
Laplacian coefficients (cont.) 
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      (h) 

Modified Coefficients at Level 4 

 
 

 

   (i)         (j) 

Modified Higher Coefficients at Level 5     Modified Lower Coefficients at Level 5 

 

Figure 3.5. Structure of the mapping function from level 1 to level 5 of the modified 
Laplacian coefficients (cont.) 
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      (k) 

Modified coefficients at Level 5 

 

Figure 3.5. Structure of the mapping function from level 1 to level 5 of the modified 
Laplacian coefficients (cont.) 

 
 

In order to suppress the higher coefficients different mapping function (Eq. 17) was 

used. Only the first level sub-band L0 contains subtle features of the image. Therefore, the 

coefficients of this sub-band should be treated differently. Figures 3.5 (b), (f) and (i) show 

the attenuation of the higher coefficients. Moreover, the lower positive coefficients and the 

negative coefficients were enhanced but they were modified differently to enhance the 

overall contrast of the image as shown in Figure 3.5 (a), (e), (g), (j). From L1 through L4 

except L2,, the higher positive coefficients were attenuated to reduce the blurring effect and 

suppressing the noise. Also, the brightness of the overall reconstructed image increases if 

those positive coefficients are increased. Higher coefficients of L2 were enhanced same as 

negative coefficients since it has been observed experimentally that this level contains the 

most important features of the mammogram and does not enhance brightness much. Lower 

positive coefficients and all negative coefficients were enhanced based on suitable contrast 

requirements. The conclusion of this new method would be that this modified technique is 

more versatile and efficient method than conventional multi-scale methods.  
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3.4.  PYRAMID RECONSTRUCTION  

The modified Laplacian pyramid images were reconstructed by using pyramid 

reconstruction. The residual Gaussian image was upsampled by a factor of 2 and smoothed 

by the 5×5 Gaussian kernel. The upsampled image was added with the modified Laplacian 

coefficients of the lowest level of the Laplacian pyramid and a reconstructed image is 

generated.  The image is up-sampled again to its upper resolution level by a factor of 2, 

smoothed and added to the corresponding level’s modified Laplacian image. The operation 

is repeated up to original image size is obtained. The resultant image is the image that has 

better contrast than the original image.   

The last level of Laplacian Pyramid is shown in Figure 3.6  

 
 

 

 

Figure 3.6. Reconstruction of Laplacian image 

 
 
3.5.  FLOW DIAGRAM 

The overall structure of the algorithm is shown in Figure 3.7. The diagram shows 

the five levels of decomposition that is used in this thesis. As described, for each level two 

mapping functions are used. After applying the mapping function the Laplacian images are 

reconstructed with the residual Gaussian image. Finally, the output image is formed which 

has better contrast than the original image. D0, L0, L0', R0 represents decomposition, 

Laplacian coefficients, modified Laplacian coefficients and reconstruction respectively. 

The last level of downsampled image is called Residual image.   
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Figure 3.7.  Developed algorithm using Laplacian pyramid 

 

3.6.  EVALUATION CRITERIA  

3.6.1. Signal-to-Noise Ratio (SNR). The signal to noise ratio is the power ratio of 

the original signal to noise. The original signal is the mean or expected value of the signal 

whereas the noise is the standard deviation of the signal. The power is expressed as square 

of the amplitude.  
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SNR can be measured in decibels.  
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         (19) 

 

3.6.2. Contrast-to-Noise Ratio (CNR). CNR is a measure of ability to visualize 

physiological structures, lesions, abnormalities of an image. Contrast is a local feature 

which can be described by the difference between the gray value of the object and the 

background.  
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       �(�,�) = 	
���������������������

��������	�����������
            (20) 

CNR is expressed as:  

 

      ��� =	
���������������������

�	(�,�)
            (21) 

 

where σ (x, y) is the standard deviation of noise in an image.  

3.6.3. Distribution Separation Measure. For any image, a distribution of target, T 

and background, B can be plotted as two normal Probability Density Functions (PDF's) 

with mean and standard deviations. Typically there is an overlap between the two 

distributions as shown in Figure 3.8 (b). The goal of contrast enhancement technique is to 

maximize the distance between these two distributions to ensure that the target is visible 

against the background. A measurement to separate these two PDFs would be an indicator 

of the performance of the technique. The technique is described in [27].  

 

 

  

 

Figure 3.8. (a) shows the histogram of an image, and Figure 3.8 (b) shows the overlapping 
PDFs of target and background 

 

 
Mathematically DSM is expressed as:  

 

Object  
Background 
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  ��� = (|��
� −	��

�|)+ ( |��
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�|)          (22) 

 

where ��
� and ��

� correspond to the mean of target and background before enhancement 

and ��
�  and ��

�correspond the mean target and background after enhancement. Ideally, 

DSM value should be greater than zero. Good contrast enhancement reduces the overlap 

between the spread of target and background distribution, hence maximize the distance 

between the two distributions. 

3.6.4. Target-to-Background Contrast Based on Standard Deviation. Other 

metrics to evaluate contrast enhancement technique is to maximize the difference between 

background and target mean gray level. The quantifiable metrics have been developed in 

[27]:  
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where ��
�, ��

�, ��
� correspond to the mean and standard deviation of target and background 

before enhancement and ��
� , ��

� , ��
� correspond the mean and standard deviation of target 

and background after enhancement. TBCs > 0 represents the enhancement of the image.   

3.6.5. Target-to-Background Contrast Based on Entropy. To quantify the 

homogeneity ratio other metrics used is target-to-background contrast enhancement 

measurement based on entropy. The concept is similar to TBCs except that the standard 

deviation is replaced with the entropy.  
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where ��
� and ��

� are the entropy of the image before and after enhancement respectively. 

The contrast enhanced image should give TBCe value greater than 1.  
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3.6.6. Combined Enhancement Measure. The DSM, TBCs and TBCe values are 

combined together to get a single value D which is another metric of contrast enhancement. 

 

  � = �(1 − ���)� + (1 − ����)� + (1 − ����)�                   (25) 

 

It is expected that the smallest D value should give best enhancement. The D value 

compares the enhancement techniques to select the best method for contrast enhancement.  
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4. RESULTS AND ANALYSIS 

4.1. EXPERIMENTAL ANALYSIS 

For testing the performance of new algorithm several mammogram images were 

selected from the Mammographic Image Analysis Society (MIAS) database. The images 

are digitized to 50 micron pixel edge and reduced to 200 micron pixel edge and padded to 

make the image 1024×1024 pixels. The algorithm was developed in MATLAB 7.8.0 

(R2009a). The computer used was a core i5 CPU with 4.0 GB memory.  

 

Case 1: Fatty tissue with well defined mass.  

The first mammogram contains fatty tissue with well-defined mass. The original 

mammogram and the enhanced mammogram are shown in Figure 4.1 (a) and Figure 4.1 (b) 

respectively. The histogram of the original image and the enhanced image is shown in 

Figure 4.2 (a) and Figure 4.2 (b) respectively.   

 

 

  

 

Figure 4.1.  (a) shows the original mammogram with fatty tissue and well-defined masses 
with malignant tumor, and Figure 4.1.  (b) shows the processed mammogram 
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Figure 4.2. (a) shows the histogram of the original image, and Figure 4.2. (b) shows the 
histogram of the processed image. 

 

 

It was clearly seen from the image that the lesion and the anatomical structures 

were obvious in the human visual system. From histogram it can be proved that the 

intensity values are well distributed which makes the anatomical structure of the 

mammogram more visible.   

In the experiment the level of Laplacian pyramid was five and the 5×5 Gaussian 

kernel was used at each level to construct the Laplacian pyramid. The purpose of using 

same Gaussian kernel is to prevent the ringing effect that can give a worse output image. 

For first level Eq. (15) was used for the low coefficient values and Eq. (16) was used for 

high coefficient values. For second level Eq. (15) was used but since there was no upper 

bound, so the maximum coefficient value was used for upper bound. The purpose of 

avoiding upper bound was analyzed experimentally. It was seen that the second and third 

level coefficients carry the most important features of the image and the higher positive 

coefficients should enhance proportionally as the lowest coefficients. At fourth and fifth 

level, the higher coefficient values mostly contain the edge information of the image and 

more blurring effect over the image appeared if those coefficients enhance. The reduction 

of those coefficients has largely increased the contrast of the image as well as sharpens the 
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edges. Eq. (17) was developed empirically to attenuate the high coefficients. A horizontal 

scan line profile is created to show the local enhancement of the mammogram which 

clearly shows the contrast enhancement of the mammogram. Figure 4.3 shows the ROI and 

the original and processed image and Figure 4.4 shows the line profiles of them.   

 

 

         

 

Figure 4.3. (a): ROI of the original image, and Figure 4.3. (b) ROI of the processed image 
for plotting line profile 

 

 

      

 

Figure 4.4.  (a): shows the line profile of original image, and Figure 4.4. (b) shows the line 
profile of the processed image 

 

 

Case 2: Fatty-glandular tissue with calcification  

The mammogram contains fatty-glandular tissue with calcification. The original 

image and the enhanced image are shown in Figure 4.5.  

Contrast enhancement is the variation of gray scales of the surrounding gray values. 

From the scan line it was shown that on the selected ROI there was more variation of the 

gray scales on the processed mammogram which verifies that the contrast was improved in 

the local region of the mammogram.   
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Figure 4.5. (a) shows the original mammogram with fatty-glandular tissue that containing 
malignant calcification, and Figure 4.5. (b) shows the processed image. 

 

 

The histogram of the original image and the processed image is shown in Figure 4.6 

(a) and Figure 4.6 (b).  

 

  

 

Figure 4.6. (a) shows the histogram of the original image, and Figure 4.6. (b) shows the 
histogram of the processed image. 



 

 

36

The ROI of the original image and the ROI of the processed image is shown in 

Figure 4.7 (a) and Figure 4.7 (b). The scan lines are shown in Figure 4.8 (a) and Figure 4.8 

(b).  

 

 

 

 

Figure 4.7. (a): ROI of original image, and Figure 4.7. (b) ROI of processed image for 
plotting line profile 

 

 

 

 

Figure 4.8.  (a): shows the line profile of original mammogram, and Figure 4.8. (b) shows 
the line profile of the processed mammogram 

 

 

4.2. QUANTITATIVE PERFORMANCE EVALUATION 

For verifying the contrast enhancement, some quantitative measurement is 

performed. The SNR, CNR, DSM, TBCs, TBCe and D for both cases are shown in table 

4.1.  

From the table, it is clearly seen that in case 1, the enhanced image has better 

contrast compare to original image. The SNR value is 18.42 dB. The higher SNR value 

represents that the object is more visible when the contrast is large enough to overcome the 

random noise. 
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Table 4.1.  Quantitative values of the enhanced image 

 

Case SNR CNR DSM TBCs TBCe D 

Case 1 18.42 54.0593 19.96 0.4635 0.917 18.97 

Case 2 16.96 91.07 11.70 1.47 0.962 10.71 

 

Therefore higher SNR value of the enhanced image represents better contrast than 

the original image. The CNR value for the first case is 54.0593 which mean the image 

features are more visible from its surroundings. The DSM of the enhanced image is found 

as 19.96. Since higher DSM represents a better enhancement so it can be claimed that the 

contrast has improved. Also from Figure 4.9 it is clear that the overlap between the PDFs 

are less which means separation of background and object is more. This also proves the 

enhancement of the image.  

 

 

   

 

Figure 4.9 (a) shows the PDF of original image, and Figure 4.9 (b) shows the PDF of 
enhanced image (Case 1) 

 

 

The TBCs value of the enhanced image is 0.4635 and the TBCe value of the 

enhanced image is 0.917. Both values are greater than zero prove that the output image is 

enhanced properly. Also, the combined enhancement measure, D is 18.97. Since the DSM 

Object  
Background 

Object  
Background 
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is much higher, the D value will also be higher. The value of D is mainly used for 

comparing image processing techniques.  

In case-2, the SNR value is 15.34 dB which proves the enhancement of the 

mammogram. The DSM of the enhanced image is found as 11.70. Since higher DSM 

represents better enhancement so we can say that the contrast is improved. The CNR value 

is 91.07 which represents better enhancement.  Also from Figure 4.10, it is clear that the 

overlap between the PDFs are less which means separation of background and object is 

more. This also proves the enhancement of the image.  

 

 

 

 

Figure 4.10 (a) shows the PDF of original image and Figure 4.10. (b) shows the PDF of 
enhanced image (Case 2) 

 

 

The TBCs value of the enhanced image is greater than 1 which also proves the 

enhancement criteria. The TBCe value of the enhanced image is 0.962 that also greater 

than zero proves the validity of the new contrast enhancement technique.  

 

Object  
Background 

Object  
Background 
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5. DISCUSSION  

The proposed image processing algorithm attempts to improve contrast of digital 

mammogram by enhancing image feature based on multi-scale decomposition. Several 

well-known image processing techniques, histogram equalization (HE), contrast limited 

adaptive histogram equalization (CLAHE), and multi-scale image contrast amplification 

(MUSICATM), were compared with the proposed algorithm.  

In case 1, the result of HE is shown in Figure 5.1 (a). It enhances the contrast, but 

the image quality decreases. The detailed information of the image was lost and noise in the 

image increased. From Table 5.1, it was seen that the SNR was negative. The contrast was 

improved but the overall appearance of the image was severe. Also, the DSM value was 

positive but the value was less than the value of the new technique. Also, the TBCs value 

should be greater than zero, but here the value was negative.  

 

 

 

 

Figure 5.1. (a) shows the result of HE, Figure 5.1. (b) shows the result of CLAHE, and 
Figure  5.1. (c) shows the result of MUSICA (case-1) 
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The enhancement result of CLAHE is shown in Figure 5.1 (b). The enhancement is 

better than HE, and SNR is 15.34 dB which means the noise is suppressed from the original 

feature of the image. The proposed algorithm had an SNR value 16.78 dB which indicates 

the result was better than CLAHE. Although, the CNR value was less in the new algorithm, 

the DSM value was greater than CLAHE. The combined enhancement measure was also 

higher than both HE and CLAHE which established the validity of the proposed algorithm.  

The result of MUSICA was shown in Figure 5.1 (c). The SNR value is higher in the 

proposed algorithm and the quantitative data also proved that the proposed technique has 

superiority over conventional algorithms.  

In the second case, similar comparison was performed as shown in Figure 5.2 and 

the final outcome was that the new image processing algorithm is promising for contrast 

enhancement of digital mammography than the traditional approaches. The calcification in 

the mammogram is visible to the human eye, which was not seen in the original image. A 

clinical study is needed to verify the proposed technique. Image contrast enhancement is a 

subjective process. Although, some metrics can verify the result but the contrast 

enhancement should be qualified by human visual system.  

 

Table- 5.1: Quantitative comparison of new technique with traditional techniques. 

 

Case Methods SNR (dB) CNR DSM TBCs TBCe D 

 

Case 1 

HE -0.977 175.93 24.08 -1.81 Inf 23.03 

CLAHE 15.34 120.94 2.88 11.60 Inf 10.77 

MUSICA 15.50 54.15 15.98 0.60 -10.17 11.05 

 

Case 2 

HE -4.67 198.77 18.50 4.008 Inf 17.76 

CLAHE 20.89 100.82 3.35 8.21 Inf 3.23 

MUSICA 14.733 86.37 17.53 5.58 -15.26 7.90 
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Figure 5.2 (a) shows the result of HE, Figure 5.2 (b) shows the result of CLAHE, and 
Figure 5.2 (c) shows the result of MUSICA (case-2) 
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6. CONCLUSION 

A contrast enhancement technique for digital mammography based on a multi - 

scale Laplacian pyramid is proposed. Several mapping functions based on empirical 

analysis were developed to enhance the subtle contrast of the digital mammogram. Since, 

subtle information such as, calcifications lie on different scales, this technique has special 

importance in digital mammography. The method enhances both the global and local 

features of the image by suppressing noise content of the image. Conventional image 

processing algorithms were compared experimentally with the proposed image processing 

algorithm which proves the acceptance of the algorithm for enhancing the contrast of 

digital mammography. The proposed method would be helpful for other image processing 

applications.  
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APPENDIX 

MATLAB CODE 

clc                             % clear Command Window  

clear all                        % Clear all Variables  

close all                        % Close all Figures   

I0= imread('mdb028.pgm');              % Read Image from Directory  

K0= 50;                      % Upper Bound of Level 1  

K1=97;                       % Upper Bound of Level 2 

K2= 40;                      % Upper bound of Level 3  

K3= 0;                                 % Upper Bound of Level 4  

K4= 2;                       % Upper Bound of Level 5 

Ip= padarray(I0,[16 16],'replicate','both');% Pad the image  

Ip= double(Ip);        % Convert to Double Precision  

sigma=.7;            % Selection of sigma in Gaussian Kernel  

for i= -7:7 

for j= -7:7 

A (i+8, j+8)= (1/(2*pi*sigma^2)).*exp (-(i^2+j^2)./(2*sigma^2));  

        % Generation of Gaussian Kernel  

end 

end 

gauss= A./sum(A(:));   % sum of all Gaussian components equals 1  

blur= conv2(Ip, gauss,'same'); % convolution of the image  

DSI128= imresize(blur,.5,'bicubic'); % Downsampling the image  

im1_256= imresize(DSI128,2,'bicubic'); % Upsampling the image  

im2_256= conv2(im1_256, gauss, 'same'); % Convolution  

L0 = Ip- im2_256;    % Laplacian Image at Level 1 generated  

gamma1=.1;          % Selection of non-linear exponents  

ind= find(L0<K0); % Finding coefficients that are less than upper bound  

L0(ind)= 1.5*L0(ind)+sign(L0(ind)).*(abs((L0(ind).* 

(max(L0(:)))).^gamma1)).*(max(L0(:))/K0);     



 

 

44

                                                                 % enhance the Laplacian Coefficients  

ind1= find(L0>K0); % Coefficients that are greater than upper bound  

L0(ind1)= .8*L0(ind1); % Attenuating Laplacian Coefficients  

blur128= conv2(DSI128, gauss, 'same'); % Gaussian Image of level 2  

DSI64= imresize(blur128,.5, 'bicubic');  % Downsampling Image  

im1_128= imresize(DSI64,2, 'bicubic'); % Upsampling the image  

im2_128= conv2(im1_128,gauss,'same'); % Convolution  

L1= DSI128-im2_128;                             % Laplacian Image of Level 2                       

L1= 5*L1;              % Modified Laplacian Coefficients  

blur64= conv2(DSI64, gauss, 'same');    % Convolution  

DSI32= imresize(blur64,.5, 'bicubic');   % Downsampling  

im1_64= imresize(DSI32,2, 'bicubic');  % Upsampling  

im2_64= conv2(im1_64,gauss,'same');   % Convolution  

L2= DSI64-im2_64;                                % Laplacian Image of Level 3  

gamma5=.1;                                            % non-linear exponent      

L2= .05*L2+ sign(L2).*(abs((L2.*(max(L2(:)))).^gamma5));  

                                                                % Modified Laplacian Coefficients at Level 3  

blur32= conv2(DSI32, gauss, 'same');   % Convolution  

DSI16= imresize(blur32,.5, 'bicubic');    % Downsampling  

im1_32= imresize(DSI16,2, 'bicubic');    % upsampling  

im2_32= conv2(im1_32,gauss,'same');    % Convolution  

L3= DSI32-im2_32;                                 % Laplacian Image at Level 4          

gamma8=.9;                                             % Non-linear exponent  

ind= find(L3<K3);                            % Finding Coefficients less than upper bound  

L3(ind)= 4*L3(ind);                                % Modification of coefficients                                                                     

ind1= find(L3>K3);                                 % finding Coefficients greater  

     than upper bound                               

L3(ind1)=.01*sign(L3(ind1)).*(max(L3(:))-(K3-

(abs(L3(ind1)).^gamma8))).*(max(L3(:)/2)./(max(L3(:))-K3)); % Modification 

blur16= conv2(DSI16, gauss, 'same');   % Convolution  

DSI8= imresize(blur16,.5, 'bicubic');              % Downsampling  
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im1_16= imresize(DSI8,2, 'bicubic');   % Upsampling  

im2_16= conv2(im1_16,gauss,'same');   % Convolution  

L4= DSI16-im2_16;        % Laplacian Image at Level 5                    

gamma10=.3;       % Non-linear exponent  

ind= find(L4<K4);  % finding coefficients less than upper bound  

L4(ind)= 1.8*L4(ind);                          % Modified Laplacian Coefficients  

ind1= find(L4>K4);                     % Finding Coefficients greater than Upper bound                                                  

L4(ind1)=.05*sign(L4(ind1)).*(max(L4(:))-(K4-(abs(L4(ind1)).^gamma10))).* 

(max(L4(:)/2)./(max(L4(:))-K4)); % Modified laplacian Coefficients  

R4= im2_16+L4;      % Reconstruction  

USI16= imresize(R4, 2, 'bicubic');    % Upsampling  

Rblur16= conv2(USI16,gauss,'same');   % Convolution  

R3= Rblur16+L3;      % Reconstruction  

USI32= imresize(R3, 2, 'bicubic');    % Upsampling  

Rblur32= conv2(USI32,gauss,'same');  % convolution  

R2= Rblur32+L2;      % Reconstruction  

USI64= imresize(R2, 2, 'bicubic');    % Upsampling  

Rblur64= conv2(USI64,gauss,'same');   % Convolution  

R1= Rblur64+L1;     % Reconstruction  

USI128= imresize(R1, 2, 'bicubic');   % Upsampling  

Rblur128= conv2(USI128,gauss,'same');   % Convolution  

R0= Rblur128+L0;      % Reconstruction  

R0(1:16,:)=[];       % Removing Pad  

R0(:,1:16)=[];       % Removing Pad  

R0(1025:end,:)=[];       % Removing Pad  

R0(:,1025:end)=[];      % Removing Pad  

figure, imshow(uint8(R0),[]);    % Final Image  
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