
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2010

Modeling the practical performance of switched-capacitor Modeling the practical performance of switched-capacitor

converters and a method for automating state-space model converters and a method for automating state-space model

generation generation

Jordan M. Henry

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Henry, Jordan M., "Modeling the practical performance of switched-capacitor converters and a method for
automating state-space model generation" (2010). Masters Theses. 4862.
https://scholarsmine.mst.edu/masters_theses/4862

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4862?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MODELING THE PRACTICAL PERFORMANCE OF SWITCHED-CAPACITOR

CONVERTERS AND A METHOD FOR AUTOMATING STATE-SPACE MODEL

GENERATION

by

JORDAN MICHAEL HENRY

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2010

Approved by

Jonathan W. Kimball, Advisor

Norman R. Cox

Mehdi Ferdowsi

 2010

Jordan Michael Henry

All Rights Reserved

iii

ABSTRACT

A new modeling technique and a method for automating the modeling process are

introduced for analyzing complex switched-capacitor (SC) converters. The model uses

conventional circuit analysis methods to derive state-space models of each switching

state. Steady-state performance is derived and expressed as an equivalent resistance.

Whereas previous techniques have provided either the detailed performance of a simple

SC converter or the limiting performance of a complex SC converter, this new model is

flexible enough to provide detailed performance for any practical converter. Nonuniform

component choices, asymmetric duty cycles, and other deviations from an ideal converter

can be readily included. Dynamics can also be analyzed. Iterative methods of design

based on this model would require the formulation of many equations, which is time

consuming if done manually. Therefore, an algorithm is introduced to automatically

generate the equations required for this state-space based modeling. The state equations

are generated algorithmically given a standard node incidence matrix generated from a

user-defined netlist. The algorithm enables a designer to quickly iterate SC converter

design solutions based on its predicted performance. The model and algorithm have been

validated through simulation techniques and experimental data collected from laboratory

testing.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Jonathan Kimball for his direction and

guidance that has allowed me to conduct this research. Dr. Kimball’s vast knowledge in

the field of electrical engineering has significantly improved my skills as a student in

engineering and has given me new interest in the field of power electronics.

I would also like to acknowledge the members of my committee, Dr. Norman Cox

and Dr. Mehdi Ferdowsi, for their interest in my research topic and their instruction in

solar energy and advanced power electronics.

I would especially like to thank my family and friends, without whom I couldn’t

have hoped to reach this level of academic achievement. To my mother who, despite the

challenges life has thrown her, has given me so much encouragement throughout my life.

Her tenacity and strength has always inspired me and I am grateful for the many

sacrifices she has made for me. Thank you mom.

Finally, thank you to the National Science Foundation and the University of

Missouri research board for their financial support. This project was funded in part by

NSF grant ECCS-0900940.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... ix

NOMENCLATURE ... x

SECTION

1. INTRODUCTION .. 1

1.1. MOTIVATION ... 1

1.1.1. Modeling the Output Impedance .. 1

1.1.2. State Model Generator .. 4

1.1.3. Document Organization ... 6

2. PRACTICAL PERFORMANCE OF COMPLEX SWITCHED-CAPACITOR

CONVERTERS ... 7

2.1. MODEL DERIVATION ... 7

2.2. MODEL DEVELOPMENT AND SIMULATION FOR A FOUR-STAGE

SC CONVERTER .. 10

2.3. EXPERIMENTAL PROCEDURE AND DATA ... 15

2.4. ANALYSIS OF RESULTS .. 22

2.5. EXTENSION OF MODEL TO OTHER SC CONVERTER TOPOLOGIES

AND MODES .. 26

2.6. DESIGN PROCEDURE USING PROPOSED MODEL 30

3. AUTOMATED SWITCHED-CAPACITOR CONVERTER MODEL

GENERATOR ... 32

3.1. GENERATING NETLISTS ... 32

3.2. LOOP MATRIX DERIVATION .. 34

3.3. MATRIX GENERATION FOR SC CONVERTER MODEL 37

3.4. COMPUTER IMPLEMENTATION .. 43

3.5. ALGORITHM VERIFICATION.. 45

4. CONCLUSIONS .. 53

vi

4.1. SUMMARY OF RESULTS ... 53

4.2. EXTENSIONS .. 54

APPENDICES

A. PRINTED CIRCUIT BOARD DESIGN ... 56

B. MATLAB CODE FOR THE AUTOMATED STATE MODEL GENERATOR ... 63

BIBLIOGRAPHY ... 81

VITA .. 84

vii

LIST OF ILLUSTRATIONS

Figure 1.1. Typical steady-state model of an SC converter ... 2

Figure 2.1. Four-stage ladder converter ... 11

Figure 2.2. Simulation model for a four-stage ladder converter. 14

Figure 2.3. Model and simulation comparison of four-stage ladder converter shown in

Figure 2.1. .. 15

Figure 2.4. Schematic of experimental setup. .. 16

Figure 2.5. Physical bench setup for experimentation. .. 17

Figure 2.6. PCB assembled as four-stage ladder converter. .. 17

Figure 2.7. Model comparison of four-stage ladder converter. 18

Figure 2.8. Expected voltage waveform of last switching capacitor. 19

Figure 2.9. Measured voltage waveform of last switching capacitor. 19

Figure 2.10. Model comparison of two-stage ladder converter. 21

Figure 2.11. Capacitance effect on resonant frequency for two-stage ladder converter. . 23

Figure 2.12. MOSFET gate switching waveform at 50 kHz. .. 24

Figure 2.13. MOSFET gate switching waveform at 150 kHz. .. 24

Figure 2.14. DC voltage characteristics of TMK 325BJ226MM-T ceramic capacitors

[24]. .. 25

Figure 2.15. Equivalent resistance variation due to capacitor voltage coefficient. 26

Figure 2.16. Fibonacci SC converter with 5M  . .. 27

Figure 2.17. Model and simulation results of Fibonacci converter. 28

Figure 2.18. Visualization of spawning technique. .. 30

Figure 2.19. Preferred operating point of an SC converter. ... 31

Figure 3.1. One-stage ladder converter during its first switching state. 32

Figure 3.2. Two-stage ladder converter during its first switching state. 37

Figure 3.3. Block diagram of algorithm implementation. ... 44

Figure 3.4. Two-stage ladder converter. .. 45

Figure 3.5. KVL loops for two-stage ladder converter during its second switching

state. ... 48

Figure 3.6. Comparison of algorithm with experimental and manually calculated

data for the two-stage ladder converter. .. 49

viii

Figure 3.7. Fibonacci converter with gain of 5. ... 49

Figure 3.8. PLECS simulation model for Fibonacci converter. 51

Figure 3.9. Comparison of algorithm to simulated and manually calculated data for

the Fibonacci converter. .. 52

ix

LIST OF TABLES

Table 3.1. Comparison of coefficient matrices generated manually and by the

algorithm ... 50

x

NOMENCLATURE

Symbol Description

SC Switched-capacitor

eqR Converter output impedance

ESR Capacitor equivalent series resistance

KVL Kirchoff's voltage law

KCL Kirchoff's current law

MNA Modified nodal analysis

STF Sparse tableau formulation

p Number of capacitors

v Capacitor voltage vector

i Capacitor current vector

M Static gain of converter

C Diagonal matrix of capacitor values

v Time derivative of capacitor voltage vector

u Input and output source vector

E Capacitor current coefficient matrix

F Capacitor voltage coefficient matrix

G Input and output source coefficient matrix

A State matrix for state space representation

B Input coefficient for state space representation

T Switching period

D Duty ratio of switching signal

x Capacitor voltage matrix used in difference equations

Φ State matrix used for difference equations

Γ Input coefficient matrix notation for difference equations

q Charge delivered by capacitor

SSL Slow switching limit

FSL Fast switching limit

xi

PCB Printed circuit board

n Number of nodes

b Number of branches

N Netlist matrix

N Partitioned netlist matrix containing only source and capacitor branches

N̂ Partitioned netlist matrix containing only parasitic branches

a
A Node incidence matrix

bri Branch current vector

aA Node incidence matrix written in its canonical form

Â Partitioned Aa matrix containing KCL relationships

A Matrix formed after deleting null row of Aa

xi Independent branch current vector

y
i Dependent branch current vector

brv Branch voltage vector

b
B Basic loop matrix

*
N Reordered netlist matrix

Ĝ Matrix fromed after deleting null rows from G matrix

F̂ Matrix fromed after deleting null rows from F matrix

B̂ Parasitic loop matrix

Ê Capacitor current coefficient matrix for parasitic branches

K Capacitor KCL matrix

capi Branch capacitor current matrix

*
E Incomplete capacitor current coefficient matrix

1. INTRODUCTION

1.1. MOTIVATION

Traditionally, switched-capacitor (SC) converters have been used to provide

simple, unregulated power conversion at lower power levels [1]. Recent developments in

capacitor and semiconductor technology have made SC converters more practical in

higher power applications [2-4]. Furthermore, development of sophisticated control

strategies has also added voltage regulation capabilities to SC converters [5]. These

advancements have contributed to the increasing popularity of SC converters, both in

integrated form [6-8] and in discrete circuits [9-10]. As the popularity of SC converters

continues to rise, so does the need for practical analysis techniques to facilitate converter

design.

As the primary performance metric of an SC converter, the output impedance is

an important design parameter. The output impedance, Req, aggregates all losses in

parasitic resistances and determines the voltage drop on the output terminal based on the

load current. To ensure efficiency and output voltage regulation specifications are met,

the design of practical SC converters frequently relies on accurate modeling of the output

resistance. This work develops a new method of modeling the steady-state output

impedance of an SC converter and provides an algorithm for automating the modeling

process.

1.1.1. Modeling the Output Impedance. First, a new analysis

technique is introduced for modeling the output impedance of switched-capacitor

converters. As depicted in Fig. 1.1, a typical steady-state model of an SC converter is an

ideal transformer, with a rational turns ratio governed by the topology, followed by an

equivalent resistance. The equivalent resistance aggregates all the losses in parasitic

resistances, such as MOSFET on-state resistance and capacitor equivalent series

resistance (ESR). Other losses, such as gating power, are usually tallied separately.

2

VIN

Req

RL

1 : n

Figure 1.1. Typical steady-state model of an SC converter.

One existing approach to modeling the equivalent resistance analyzes an

individual SC cell [11-12]. It requires development and solution of differential equations

for each switching mode. It then imposes boundary conditions such that the converter

operates in periodic steady-state. The resultant charge delivered to or from the capacitor

divided by the switching cycle time equals the average current, which can be used to

determine equivalent resistance. The work described in [12] includes asymmetric duty

ratio and unequal resistance values in its analysis. That method remains useful for simple

voltage doublers or other simple circuits.

Another approach directly analyzes charge flows in a complex SC converter [13-

15]. For each switching mode, by inspection, it derives charge flow vectors for the

capacitors and switches. These equations assume only a single input and a single output,

where the charge flow in each capacitor and switch is expressed as the output charge flow

multiplied by a constant vector, denoted j

ca and j

ra , respectively.

j j j out
c c out c

sw

j j j out
r r out r

sw

I
q a q a

f

I
q a q a

f

 

 

 (1)

The “ a ” vectors map the output charge flow outq , which is equal to output current

outI divided by switching frequency swf , onto the charge flow of each capacitor. Using

these vectors, the method derives fast switching and slow switching limits (FSL and SSL,

3

respectively) assuming 50% duty ratio switching. This method is useful for complex SC

converters of regular structure operating at very low or very high frequencies. For

converters with unusual structure, and particularly for converters that operate at practical

intermediate frequencies, this method does not provide results directly.

An additional method expresses the converter losses as a function of the currents

passing through each switching (flying) capacitor [16]. Energy loss is calculated for two

switching modes separately (2), and the losses are summed to express the total as a

function of the average current through each capacitor, where the average capacitor

current is proportional to the output current (3).

 j

2

2j

j

V C
E (1 e)

2

  
  (2)

 
 

 
 

1 2

AV

1 2

2

C

R 1 2

s

1 e 1 eI C
E E E

f C 2 1 e 1 e

 

 

   
       

     

 (3)

In the above equations, j is equal to
jt

RC
,

AVCI represents the average current in each

capacitor, sf is the switching frequency, and j represents the switching mode. Total

power loss TP is derived from the total energy loss and expressed as an equivalent

resistance:

  
 
 

 
 

1 2

AV 1 2

2

T C

s

1 e 1 e1
P I

2f C 1 e 1 e

 

 

    
    

     

 (4)

This method is useful for simple hard and soft switched two-mode converters.

The present work proposes a new method that resembles that in [11-12]. Rather

than analyzing a single cell, however, it analyzes a complete converter using

conventional circuit analysis methods. Kirchoff’s voltage and current laws are applied

4

and as in [11-12], the differential equations for each switching mode are solved, and

periodic steady-state assumptions are invoked. Although generic symbolic results are not

possible, numerical results can be determined for a specific converter. Rather than just

providing performance limits of an SC converter [17], this method also allows the

dynamics of a converter to be analyzed. A typical design flow for an SC converter may

require, first, the method in [13-15] to form the basic design, then the method proposed

here to provide a detailed analysis, with iterations sufficient to develop a suitable design.

This new modeling technique is validated by comparing simulation and experimental

data with that of the projected model. It also describes the experimental procedures used

and discusses the conclusions supported by this work.

1.1.2. State Model Generator. The proposed model relies on the development of

state equations derived from KVL and KCL equations. Deriving these state equations

manually can be very time consuming, especially for converters with large gains (i.e.,

many stages). An algorithm that can automatically generate the state equations would

enable a designer to quickly iterate solutions for SC converter designs.

Previous work developed an automated state model generator to generate KVL

and KCL equations needed for state-space analysis of switching converters [18]. That

approach involved construction of a node incidence matrix used to establish the required

independent KCL relationships. In matrix form, the KCL equations yielded the basic

loop matrix of the circuit, which, along with proper representation of a branch’s volt-

ampere (VI) characteristics, was the basis for the generation of the state model. This

method is useful for linearization and eigensystem analysis, but difficult to integrate with

the model proposed here because the difference equations are not implemented at the

individual branch level.

Another well known method of solving electrical networks algorithmically is

modified nodal analysis (MNA) [19-20]. An extension of nodal analysis, MNA was

developed to mitigate the difficulty of representing voltage-defined components (e.g.,

voltage sources) whose conductances are infinite and currents are unknown. MNA

generates equations on a node-by-node basis by determining not only node voltages, but

also voltage source currents. The equations are expressed in matrix form by augmenting

the node voltage equations by the current equations for the voltage-defined elements.

5

They are solved using Gaussian elimination and LU factorization to find the solution of a

linear system of simultaneous equations. In this method, the unknown variables are node

voltages, voltage source currents, output currents, and controlling source currents. The

MNA formulation is general and easy to implement on a computer. It yields relatively

compact systems of equations, making its use popular in SPICE programs. MNA is

effective for solving a circuit’s VI characteristics numerically, but falls short for state

equation generation.

Predating MNA, sparse tableau formulation (STF) is another approach to network

analysis [21]. The unknowns for STF include node voltages, branch currents, and branch

voltages. Unlike MNA, STF involves no special treatment of voltage sources or any

other elements. The matrix is formed by augmenting three types of equations: KCL

equations written in terms of branch currents for each node, KVL equations relating a

branch voltage to its node voltages, and branch constitutive equations written for each

branch in terms of its branch voltage and current. Generally, the STF matrix is larger

than MNA matrices, but it is more sparse; making it easier to solve by Gaussian

elimination. Although STF generates more equations per system than MNA, it includes

fewer nonzero terms per equation and consequently, fewer mathematical operations are

required to solve those equations. Efficient implementation of this method, however,

requires sophisticated programming techniques and data structures.

Here, an algorithmic method to develop the state equations for complex SC

converters is developed. The method resembles that described in [18]; however, state

equations are generated at the individual branch level to ensure that capacitor voltages are

correctly represented as state variables in the matrix form compatible with the proposed

model. A node incidence matrix is generated for each switching state from user-defined

netlists. Loop matrices are derived to find KVL relationships and used directly to

construct the coefficient matrices for the capacitor voltages and sources used in the

model. Branch currents are expressed as capacitor currents and compiled in matrix form

to complete the model. This paper describes the computer implementation of this

algorithm and presents algorithm simulations for multiple SC converter topologies to

6

illustrate its capabilities. The results of the algorithm simulations have been verified by

Matlab
1
 simulations and experimental data collected through laboratory testing.

1.1.3. Document Organization. The subject matter presented here is organized

by first introducing the state modeling technique in Section 2 followed by the

development of the automated state model generator in Section 3. Conclusions, including

the summary of results and future project extensions, are explained in Section 4.

Following the conclusions, Appendix A contains schematics and board layouts for the

printed circuit boards used for collecting the experimental data and Appendix B includes

the computer code written for the state model and the automated state model generator

algorithm.

 The content in Section 2 has been accepted for publication by IEEE Transactions

on Power Electronics and is currently in press.

1
 Matlab is a registered trademark of The MathWorks, Inc.

7

2. PRACTICAL PERFORMANCE OF COMPLEX SWITCHED-CAPACITOR

CONVERTERS

2.1. MODEL DERIVATION

The derivation of the model may be illustrated with a generic SC converter with

two switching modes. The converter contains p capacitors, whose voltages are

composed into a vector, v, and whose currents are composed into a vector, i. The

capacitors and switches are arranged to provide a static gain M . The value of each

capacitor is arranged in a diagonal matrix, C, where jjC is the capacitance of capacitor j .

Based on the definition of a capacitor,

 i = Cv (5)

On the input and output ports are voltage sources inV and outV , respectively, which are

composed into a vector  
T

in outV Vu .

In the first switching mode, KVL and KCL can be applied to find p independent

equations relating the capacitor voltages and currents, expressed in matrix form as

 1 1 1E i + F v + G u 0 (6)

Each row of 1E , 1
F , and 1

G represent the application of either KVL or KCL. For KVL

rows, entries in 1E are resistances and entries in 1
F and 1

G are ±1 or zero as voltage

drops are summed around a loop. For KCL rows, entries in 1E are ±1 or zero, and

entries in 1
F and 1

G are all zero as currents are summed at a node. If KVL and KCL

have been applied correctly, then 1E is invertible. Solving for i yields

 1 1   
1 1 1 1

i E F v E G u (7)

and substituting (5) gives

8

 1 1 1 1() ()    
1 1 1 1

v = C E F v + C E G u (8)

To simplify symbolic representation, matrices 1
A and 1B are used to consolidate the

coefficient vectors, resulting in

 1 1

1 1

 

 

 

 

 

1 1

1 1 1

1 1 1

v A v B u

A C E F

B C E G

 (9)

Similar analysis can find matrices 2
A and 2

B for the second switching mode. A variety

of other circuit analysis techniques may also be used to find a model in the same form as

(9).

In an SC converter, the switching modes alternate. The switches are in mode 1

for duration 1t and mode 2 for duration 2t . Typically, 1t is equal to 1D T and 2t is equal

to 2D T , where T is the switching period and 1D and 2D are duty ratios of the switching

waveforms. Without loss of generality, the converter is assumed to switch to mode 1 at

0t  and to mode 2 at 1t t , and the cycle ends at 1 2t t t  . (Period T will be used later

in the analysis.) If the capacitor voltages are identified as states, the vector notation can

be modified so that v is equal to x. Thus, the state equations yield

   

   
1

2

1

1 2 1

0

t

t

t

t t t

e

e

 

  





1

2

1 1

2 2

A

1

A

2

x Φ x Γ u

x Φ x Γ u

Φ

Φ

(10)

To complete the model, the  matrices can be calculated as follows:

1

2

t-1

t-1

(e)

(e)

 

 

1

2

A

1 1 1

A

2 2 2

Γ A I B

Γ A I B
 (11)

9

Unfortunately, the symbolic formula involves matrix inversion of 1
A and 2

A . In many

cases, such as a ladder SC converter, one of the two switching modes yields a singular A

matrix. Instead of the symbolic result, therefore, a numerical result is needed. The

conventional algorithm, given in [22], is implemented in the Matlab function c2d (and

similarly in other mathematical programs). For a given SC converter with known values

and switching times, numerical values can be found for  and . The complete sampled-

data model, incorporating both switching modes and the sampling period T , is

      1k T kT kT  



 

2 1

2 1 2

x Φx Γu

Φ Φ Φ

Γ Φ Γ Γ

 (12)

There are two uses for (12). First, this discrete-time model can be used to study

the dynamic characteristics of the SC converter by placing voltage sources on the input

and output terminals. For example, one might wish to determine how quickly voltages

distribute among the capacitors. Second, steady-state conditions for (12) can be used to

find the equivalent resistance of the converter. Recall that the key performance metric

for a switched capacitor converter is this equivalent resistance.

At steady-state, ((1))k Tx is equal to ()kTx . With this assumption, (12) can be

solved for x0, the equilibrium value of x at the beginning of each cycle:

  0

-1
x = I -Φ Γu (13)

Here, I is the p p identity matrix. Thus, one can determine the value of x at the

midpoint of the cycle (i.e., when the switching mode changes from mode 1 to mode 2):

 1 1 0 1x = Φ x +Γ u (14)

10

The designer identifies one capacitor, the i
th

 capacitor, that delivers all of the charge to

the output. For example, in a converter with a ladder topology, the last switching (flying)

capacitor would be chosen. The change in its voltage, multiplied by its capacitance,

gives the charge it delivers, q . This charge divided by time is output current, outi . As a

result, the equivalent resistance of an SC converter with a static gain of M can then be

easily derived as follows:

 1, 0,ii i i

out

in out
eq

out

q C x x

q
i

T

MV V
R

i

 






 (15)

2.2. MODEL DEVELOPMENT AND SIMULATION FOR A FOUR-STAGE SC

CONVERTER

To explore this new technique, an SC converter with a ladder topology was

designed and tested. Figure 2.1 shows a simplified schematic. Each “switch” is actually

two FDMS8460 MOSFETs in parallel, for an equivalent switch resistance of 3 m

(denoted as Rsw below). Each “capacitor” is actually eight TMK325BJ226MM-T ceramic

capacitors from Nichicon (22 F, 25 V), for a total equivalent series resistance of 10 m

(denoted as Rc below). For a four-stage converter, which has a gain of M = 5, KVL and

KCL yield matrices (16) through (21) below. For other numbers of stages, the matrix

structure is maintained; only the dimensions change.

11

Vin

C1 C3

C2

C5

C4

C7

C6 C8 Vout

1 2 1 2 1 2 1 2 1 2

Figure 2.1. Four-stage ladder converter.

1

(2) 0 0 0 0 0 0

(2) 0 0 0 0

0 0 (2) 0 0

0 0 0 0 (2) 0

0 0 0 0 0

0 0 0 0 0 1 1 1

0 0 0 1 1 1 1 0

0 1 1 1 1 0 0 0

sw c sw

sw c sw c sw

sw c sw c sw

sw c sw c

c c c

R R R

R R R R R

R R R R R

R R R R

R R R

  
 

 
 
  
 

  
   
 

 
  
 

   

E (16)

1

1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 


 
 
 

 
    
 
 
 
 
  

F (17)

12

1

1 0

0 0

0 0

0 0

1 1

0 0

0 0

0 0

 
 
 
 
 
 
 
 
 
 
 
  

G (18)

2

(2) 0 0 0 0 0

0 (2) 0 0 0

0 0 0 (2) 0

0 0 0 0 0 (2)

0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0

1 1 1 1 0 0 0 0

sw c c sw

sw sw c c sw

sw sw c c sw

sw sw c c

c c c

R R R R

R R R R R

R R R R R

R R R R

R R R

  
 

 
 
  
 

  
   
 

  
  
 

   

E
 (19)

2

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 


 
 
 

 
    
 
 
 
 
  

F (20)

13

 2

0 0

0 0

0 0

0 0

1 1

0 0

0 0

0 0

 
 
 
 
 
 
 
 
 
 
 
  

G (21)

The dimensions of the E, F, and G matrices are designated by the number of

capacitors in the topology. This topology has eight capacitors that shuttle charge to the

output; thus, the E and F matrix dimensions are 8 8 , and the G matrices relating the

input and output are8 2 . Symbolic computation of the corresponding 1
A , 1B , 2

A , and

2
B matrices results in several pages of output. However, numerical computation is

straightforward. The  and  matrices can be computed for a given switching frequency

with the Matlab function c2d. Figure 2.2 shows the PLECS
2
 schematic constructed for

the four-stage ladder configuration. Simulation results for the equivalent resistance are

compared to the analytical result in Fig. 2.3 for a switch duty cycle of 45%. The

converter was simulated using PLECS, a blockset for Simulink, and it incorporated the

same component parameters and switch duty cycle included in the model. As in the

model, the voltage sources were placed on the input and output terminals of the

converter. The input voltage was set at 5V and the output voltage at 24V.

2
 PLECS is a registered trademark of Plexim GmbH.

14

Figure 2.2. Simulation model for a four-stage ladder converter.

15

Figure 2.3. Model and simulation comparison of four-stage ladder converter shown in

Figure 2.1.

As shown in Fig. 2.3 above, the equivalent resistance predicted by the model

produced the expected results. At lower switching frequencies, the equivalent resistance

is dominated by the impedance of the capacitors, following the slow switching limit

(SSL). At higher switching frequencies, it is dominated by the resistance of the

MOSFETs, following the fast switching limit (FSL). Identical simulation data confirms

these results.

For the case of a single-stage ladder converter (2M ), a voltage doubler with

only one switching capacitor, this new method also agrees with the technique previously

reported in [12].

2.3. EXPERIMENTAL PROCEDURE AND DATA

Experimental data was obtained through bench testing of the four-stage converter

shown in Fig. 2.1. The experimental setup for bench testing is shown in Figures 2.4 and

2.5. The PCB used for testing was designed as a nine-stage ladder converter but was

16

assembled as a four-stage ladder converter. Once the ladder circuit was constructed, as

shown in Fig. 2.6, two Fluke 8845A high-precision digital multimeters where placed on

the input and output terminals to measure both voltage and current. A BK Precision 8502

electronic load placed on the output simulated a constant current load. At a given

switching frequency, the load current was varied between 50 mA and 200 mA. The slope

of output voltage versus current over the range tested revealed the equivalent resistance at

that frequency. This procedure was repeated for switching frequencies between 20 kHz

and 160 kHz due to switching restrictions explained below. The data was compared to

the simulation and model data gathered previously. As expected, the results were

consistent with both; they are in Fig. 2.7 below. The discrepancy at approximately 50

kHz is discussed below.

A

V

A

VDUTVin LOAD

Func.

Gen

Figure 2.4. Schematic of experimental setup.

17

Figure 2.5. Physical bench setup for experimentation.

Figure 2.6. PCB assembled as four-stage ladder converter.

18

Figure 2.7. Model comparison of four-stage ladder converter.

 Also included below are the expected and measured state variable waveforms of

the last switching capacitor’s voltage. This capacitor functions as the primary charge

distributor to the load and, as seen in Figures 2.8 and 2.9, the magnitude of the capacitor

voltage swing is similar to that observed in the simulation, although the shape is different

due to parasitic inductances.

19

Figure 2.8. Expected voltage waveform of last switching capacitor.

Figure 2.9. Measured voltage waveform of last switching capacitor.

20

Experimental data was also collected for a two-stage ladder converter,

where 3M  , to ensure accuracy of the model. The same derivation procedure conducted

for the four-stage converter yielded the following matrices for the two-stage converter:

sw c sw

sw c sw c

1

c c

(2R R) 0 R 0

R R (2R R) 0

0 R 0 R

0 1 1 1

E

  
 

 
 
  
 

 

 (22)

 1

1 0 0 0

0 1 1 0

0 1 0 1

0 0 0 0

F

 
 


 
  
 
 

 (23)

 1

0 0

0 0

1 1

0 0

G

 
 
 
 
 
 

 (24)

sw c c sw

sw sw c c

2

c c

(2R R) R R 0

R 0 (2R R) R

0 R 0 R

1 1 1 1

  
 

 
 
  
 

  

E (25)

 2

1 1 0 0

0 0 1 1

0 1 0 1

0 0 0 0

F

 
 


 
  
 
 

 (26)

21

 2

0 0

0 0

1 1

0 0

G

 
 
 
 
 
 

. (27)

Component values for this converter are identical to those of the four-stage

converter, except that each “capacitor” was replaced with four rather than eight

TMK325BJ226MM-T ceramic capacitors from Nichicon (22 F, 25 V). The same nine-

stage PCB was also used, but assembled as a two-stage converter. Figure 2.10

summarizes the resulting simulation and experimental data. Again, the data match the

model prediction as expected. The discrepancy at approximately 70 kHz is discussed

below.

Figure 2.10. Model comparison of two-stage ladder converter.

22

2.4. ANALYSIS OF RESULTS

The results of both the experiment and the simulation verified the accuracy of the

proposed model. Some practical effects must be considered when implementing the

model. For instance, comparison of the experimental data with those of the two-stage

converter model in Figure 2.10 reveals slight discrepancies at 35 kHz and 70 kHz, where

the experimental data is slightly higher than those of the model. This discrepancy is

explained by the inherent inductance of the PCB board due to its design. This inductance

creates a resonant effect that interacts with the capacitors, increasing the resistance at

harmonics of 35 kHz. This resonant effect becomes more apparent as the capacitance

varies. Figure 2.11 shows the resonant frequency was shifted down by 1 2 when the

capacitance is doubled, and up by 2 when the capacitance is halved. This same change

is also apparent when comparing the experimental data for the two-stage and four-stage

converters. The four-stage converter had double the capacitance of the two-stage

converter; therefore, the resonant frequency of the four-stage converter shifted down

by 2 , from 75 kHz to 50 kHz. Also as expected, when the capacitance increased,

equivalent resistance decreased, because the SSL curve was dominated by the capacitor

impedance. The inherent board inductance causing the resonance was estimated as 30

nH.

23

Figure 2.11. Capacitance effect on resonant frequency for two-stage ladder converter.

Experimental testing was also limited to switching frequencies of less than 160

kHz due to the limitations of the gate drivers selected to switch the MOSFETs. When

switching at frequencies above 100 kHz, the switching waveforms were attenuated and

had equivalent duty cycles of less than 45%, causing the resistance of the converter to

increase sharply. This effect can be seen in the Figures 2.12 and 2.13 below, taken from

a Tektronix TPS 2024 oscilloscope.

24

Figure 2.12. MOSFET gate switching waveform at 50 kHz.

Figure 2.13. MOSFET gate switching waveform at 150 kHz.

25

The voltage coefficient of the capacitors was found to have a major impact on

experimental converter performance. Initially, the experimental data corresponded to a

higher resistance than expected based on the model and simulations. Often overlooked in

power converter design is the variation of capacitance with the applied voltage [23]. This

problem is specific to ceramic capacitors; it is worst for Z5U types and best for C0G

(NPO) types. To achieve the desired capacitance, X7R types were needed. After closer

inspection of the component data sheet [24], capacitance was found to decrease by up to

25% with an applied DC voltage of 5V, as shown in Figure 2.14. After also accounting

for the 20% tolerance cited in the datasheet [15] (confirmed as 15% with an HP4284A

precision LCR meter), the actual working capacitance during operation was found to be

less than 60% of its nominal value. Once these corrections were included in the model,

the experimental and simulation data matched closely. Figure 2.15 shows the impact of

the capacitor’s voltage coefficient on the equivalent resistance of the converter.

Figure 2.14. DC voltage characteristics of TMK 325BJ226MM-T ceramic capacitors

[24].

26

Figure 2.15. Equivalent resistance variation due to capacitor voltage coefficient.

2.5. EXTENSION OF MODEL TO OTHER SC CONVERTER TOPOLOGIES

AND MODES

To demonstrate the model’s flexibility, it was applied to another topology, the

Fibonacci SC converter in Figure 2.16. The input voltage inV was arbitrarily set at 5V and

the topology gain, based on the Fibonacci sequence, was 5. The model was generated by

again applying KVL and KCL for each switching mode, resulting in matrices (28) to

(33).

27

C1 C2 C3

Vin Vout

1

2

2

1

1 2

2

1 2 1

Figure 2.16. Fibonacci SC converter with 5M  .

sw c sw

1 sw c sw c

(2R R) R 0

(R R) 0 (3R 2R)

0 1 1

E

  
 

   
 
  

 (28)

 1

1 0 0

1 1 1

0 0 0

F

 
 

 
 
  

 (29)

 1

1 0

0 0

0 0

G

 
 


 
  

 (30)

sw c sw c

2 sw c sw c

(2R R) (R R) 0

0 (R R) (2R R)

1 1 1

E

   
 

  
 
  

 (31)

 2

1 1 0

0 1 1

0 0 0

F

 
 


 
  

 (32)

28

2

1 0

0 1

0 0

G

 
 

 
 
  

 (33)

The same component values in the two-stage ladder converter were also used in

the model and simulation for this converter. For switching waveforms with a duty cycle

of 45%, the model and simulation results are shown in Figure 2.17. The identical model

and simulation data show the model’s versatility in its application to various converter

topologies.

Figure 2.17. Model and simulation results of Fibonacci converter.

SC converters are becoming increasingly complex as researchers seek to improve

output voltage regulation, giving rise to many different switching modes. This new

model can also be extended to include SC converters with more than two switching

29

modes. As seen in [5], dithering can be used to switch from one conversion ratio, nM , to

another in SC converters based on extended binary or generic fractional number. The

flexibility to change the conversion ratio as necessary allows for maximum converter

efficiency over a range of outputs, especially when the resolution of the conversion ratio

is high. In the method described in [16], codes are generated for multiple conversion

ratios using a spawning technique. If n is equal to 3 and the conversion ratio is 3/8, five

different codes can be spawned for that conversion ratio, each representing a different

converter topology and switching mode. The dependence of the conversion ratio on the

converter topology allows its control by switching between different switching modes, as

shown in Figure 2.18. This technique can be incorporated into the proposed model. For

example, if five switching modes were included by the use of dithering, then the Γ and

matrices would simply be expanded to include five terms resulting in

 5 4 3 2 1 5 4 3 2 5 4 3 5 4 5Γ Φ Φ Φ Φ Γ Φ Φ Φ Γ Φ Φ Γ Φ Γ Γ     (34)

and

 5 4 3 2 1Φ Φ Φ Φ Φ Φ . (35)

The E, F, and G matrices would all be constructed the same way by applying KVL and

KCL for each of the five switching modes, and the model procedure would not change.

30

1
 -

1
 0

-1

1

1
 0

-1

1
 -

1
 -

1

1

1
 -

1
 0

-1

0

0
 1

 1

1
 -

1
 0

-1

1

1
 0

-1

1
 -

1
 -

1

1

1
 -

1
 0

-1

0

0
 1

 1

1
 -

1
 0

-1

1

1
 0

-1

1
 -

1
 -

1

1

1
 -

1
 0

-1

0

0
 1

 1

1
 -

1
 0

 -
 1

1

1
 0

-1

M3=3/8 M3=3/8 M3=3/8

t

time

Figure 2.18. Visualization of spawning technique.

2.6. DESIGN PROCEDURE USING PROPOSED MODEL

The key performance metric of an SC converter is the equivalent resistance at the

desired switching frequency. A typical design flow using the proposed model would

begin with selection of the appropriate SC converter topology based on the particular

application. The work presented in [13] details the performance characteristics of many

SC converter topologies. After the appropriate topology and dc gain requirements are

selected, a basic SC converter design is created incorporating p capacitors, MOSFET

on-state resistances, and capacitor ESR. KVL and KCL is then applied to the circuit for

each switching mode to find models in matrix form (6). These are converted to the

dynamic form of (9) and used to determine the converter’s equivalent resistance. Once

the equivalent resistance is modeled generically, the designer can change component

values to achieve the desired equivalent resistance at a particular frequency. The ideal

operating point for an SC converter is near the inflection point of the resistance curve,

shown in Figure 2.19. This operating point is selected to achieve the lowest possible

equivalent resistance while minimizing switching losses. To achieve maximum

efficiency, design iterations using the proposed model can be done to achieve a particular

operating point. In general, an SC converter with large capacitance and low MOSFET

resistance will achieve the highest efficiency.

The iterative method of determining component values using the proposed model

starts with determination of any limiting factors, such as switching frequency,

31

capacitance, or MOSFET on-state resistance. The designer can then iteratively change

component values to achieve a desired operating point. For example, if the maximum

switching frequency turns out to be a limiting factor, then the designer can increase

capacitance to move the ideal operating point to a lower switching frequency. If the

equivalent resistance is still too high, then lowering MOSFET resistance will shift the

operating point to a lower resistance. This can be accomplished either by paralleling

existing MOSFETs or by finding a device with lower on-state resistance. These

iterations continue until the desired operating point is met. Throughout this process, the

structure of the model is unchanged, so the computational burden is low.

Figure 2.19. Preferred operating point of an SC converter.

32

3. AUTOMATED SWITCHED-CAPACITOR CONVERTER MODEL

GENERATOR

3.1. GENERATING NETLISTS

Automating the model developed in Section 2 involves automating the

construction of the E, F, and G matrices. Before matrix construction begins, branch data

for the SC converter is compiled in a user-defined netlist. The procedure used to generate

a netlist can be illustrated using the SC circuit shown in Fig. 3.1. This ladder topology

with a static gain of 2M  doubles the input voltage by alternating switching states and

shuttling charge to the output. Each resistor indicates the resistance of a closed “switch”

(typically a MOSFET).

Vin

C2

Vout

RSW1 RSW2

RC2

C1RC1

1

3

2

4 5

6 7
1

+ -

+ -

+ -

+ -

+ -+ -

Figure 3.1. One-stage ladder converter during its first switching state.

The circuit, shown during its first switching state, has 7 nodes, 8 branches, and 2

capacitors. Let n denote the number of nodes, b denote the number of branches, and p

denote the number of capacitors. The netlist matrix, N , contains the value of each

branch element and the nodes to which the branch element is incident. Nodes must be

assigned at the individual branch level so that every circuit element has one node incident

33

to its positive terminal and one node incident to its negative terminal. The netlist matrix

can be partitioned as follows:

2,3

2,3
ˆ

p

b p



 

 
  
  

N
N

N
, (36)

where N contains source and capacitor branches, N̂ contains parasitic branches, and the

subscripts denote the dimensions of the partitions. Each row of the matrix represents a

branch element; the first entry of each row represents the node connected to the positive

terminal of the branch element, and the second entry represents the node connected to the

negative terminal of the branch element. The third column stores the value of each

branch element. For each branch, the positive node is assumed to correspond to current

entering the node. To facilitate computer implementation, the netlist matrix shown in

(36) must be filled in the following order: input source branch, output source branch,

capacitor branches, and parasitic branches. If neither an input nor an output voltage

source is connected to the circuit during a particular switching state, zeros would be

entered for all values in the row corresponding to that source. When filling the netlist

with the capacitor branches, the designer must identify the capacitor that delivers all the

charge to the output and enter that branch last. Simple subroutines can be written to

comply with other netlist formats, such as those in SPICE programs, and thus to ensure

compatibility with them. For a ladder topology, the last switching capacitor delivers

charge to the output; thus, for the example SC circuit in Fig. 3.1, the first switching state

netlist matrix is:

T

in out 1 2 SW1 C1 SW2 C2

2 7 7 5 3 4 2 6

1 1 6 4 1 3 5 2

V V C C R R R R

 
 


 
  

N . (37)

34

3.2. LOOP MATRIX DERIVATION

The node incident matrix Aa is constructed in conjunction with the netlist matrix.

Each column corresponds to a branch and contains exactly two nonzero elements, one

equal to 1 for its positive terminal, the other equal to 1 for its negative terminal. Each

row corresponds to a node, where if the positive (negative) terminal of the j
th

 branch

element is connected to node i , then 1ija  (1ija  ). Following this convention, the

node incident matrix for the example SC converter in Fig. 3.1 is

1 1 0 0 1 0 0 0

1 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1

0 1 1 0 0 0 0 0

   
 


 
 
 

  
 
 

 
 
 

a
A . (38)

Next, if bri is the vector of branch currents, then the i
th

 element of a br
A i is the sum of

currents leaving node i ; this sum represents the KCL equation for node i . This equation

can then be written as

 a brA i 0 . (39)

Any matrix aA that is obtained by adding or subtracting one row from another in a
A also

satisfies (39); thus, after performing row operations and possibly reordering the columns

(or branches), aA can be written in row echelon form as

 n 1,n 1 n 1,b n 1

1,n 1 1,b n 1

ˆ
    

  

 
  
  

a

I A
A

0 0
. (40)

35

The null row in aA is created from an inherent property of the a
A matrix. Since each

column of a
A contains exactly one 1 and one 1 , deleting a single row results in no loss

of information because the row can be reconstructed from other rows in a
A . For the

example SC converter in Fig. 3.1,

1 0 0 0 0 0 1 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0

 
 
 
 
 

  
 
 

 
 
 

a
A (41)

and

1 1

0 1

0 1ˆ
1 0

1 0

1 0

 
 
 
 

  
 
 
 
 

A . (42)

The A matrix is defined by deleting the null row in (40). Based on (39),

 brAi 0 , (43)

 where the branch currents in bri may have been reordered due to row reducing operations

performed on a
A . For the example SC converter, re-ordering was not necessary. The

branch currents can then be partitioned into

36

 ˆ  
    

 

y

x

i
I A 0

i
 (44)

where xi is a vector of independent branch currents and the currents in
y

i are dependent,

meaning that they can be calculated from xi using KCL. By expanding (44) and

rearranging,
y

i becomes

 ˆ y xi Ai , (45)

and a new expression for the branch currents written as

ˆ  

    
   

y T

br x b x

x

i -A
i i B i

i I
. (46)

The T

b
B matrix relates the branch currents bri to the independent currents in xi . By

observing Fig. 3.1, it can then be verified that

 
b br

B v 0 , (47)

where brv is the vector of branch voltages. Substituting (42) into (46), b
B for the

example system is

1 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

 
  

 
bB . (48)

Each row of 
b br

B v 0 represents the KVL equations applied to the two smaller loops of

the example SC converter in Fig. 3.1. Thus, b
B represents the basic loop matrix [18, 25].

,

37

3.3. MATRIX GENERATION FOR SC CONVERTER MODEL

After the basic loop matrix is developed, the state matrices for the model can be

constructed algorithmically. The two-stage SC converter shown in Fig. 3.2 better

illustrates matrix generation.

Vin

C2

Vout

RSW1 RSW2

RC2

C1RC1

1

3

2

4 5

6 7
1

+ -

+ -

+ -

+ -

+ -+ -

C4RC4 8 9+ - + -

RSW3

C3RC3

10 11

+ -

+ -+ -

Figure 3.2. Two-stage ladder converter during its first switching state.

This converter has 11 nodes (11n ), 13 branches (13b ), 4 capacitors (4p ),

and a static gain of 3 (3M ). The associated netlist matrix is

1 2 3 4 1 1 2 2 3 3 4

2 11 7 5 11 9 3 6 2 4 7 10 8

1 1 6 4 10 8 1 2 5 3 9 7 5

T

in out SW C SW C SW C CV V C C C C R R R R R R R

 
 


 
  

N . (49)

During row reduction of a
A to aA , branches corresponding to RC2 (column 10 of a

A)

and RSW3 (column 11 of a
A) switch places so that column 10 of b

B corresponds to

branch RSW3 and column 11 corresponds to branch RC2. Any column swapping

performed during this step must also be reflected in N to ensure proper branch

38

assignment. If column i and column j of a
A

are swapped during row reduction, then a

new netlist matrix, *
N , must be created by swapping row i and row j of N.

Recall from Section 2, KVL and KCL equations can be applied to find

p independent equations relating voltages and currents, expressed in matrix form as

shown in (6). The value of each capacitor is arranged in a diagonal matrix, C, where Cjj

is the capacitance of capacitor j. Standard state equations can be written in the form

shown in (9), where the state variables are the capacitor voltages. Therefore, to construct

the state model quickly and accurately, the E, F, and G matrices must be developed

algorithmically.

For each SC converter, there are 1b n  KVL equations and 1p n b   KCL

equations. The F and G matrices can be developed directly from the first 2p  columns

of b
B . In partitioned form,

 1,2 1,
ˆ ˆ ˆ

b n b n p   
 
 bB G F B (50)

where B̂ is the parasitic loop matrix. For the example SC converter in Fig. 3.2,

1 0 0 1 0 0 1 0 1 0 1 0 0

1 1 1 0 1 0 0 1 0 0 0 1 0

0 0 1 0 0 1 0 1 1 1 0 0 1

 
 

 
 
    

bB . (51)

The F and G matrices are defined as

(1),

ˆ

p b n p  

 
  
  

F
F

0
 (52)

and

39

(1),2

ˆ

p b n  

 
  
  

G
G

0
. (53)

Thus, based on equations (50)-(53),

0 1 0 0

1 0 1 0

1 0 0 1

0 0 0 0

 
 
 
 
 
 

F (54)

and

1 0

1 1

0 0

0 0

 
 


 
 
 
 

G . (55)

 The E matrix, however, cannot be developed directly due to the relationship of

the capacitor currents. First, let the E matrix be defined as

 1,

(1),

ˆ
b n p

p b n p

 

  

 
  
  

E
E

K
, (56)

where Ê represents the parasitic branches included in each KVL loop and K represents

the KCL equations. For the model developed in Section 2, only capacitor currents are

used for construction of the E matrix, but the T

b
B matrix relates all branch currents to the

independent branch currents, which may not necessarily be capacitor currents. Thus,

another matrix is created to relate each branch to the appropriate capacitor currents. The

capacitor current matrix capi , size p b , is created by comparing the rows of T

b
B that

relate the capacitor currents to the independent branch currents with the rows that relate

40

the rest of the branch currents to the independent branch currents. Each row of
capi

corresponds to a capacitor current and contains either a 1 (if the branch and capacitor

currents are the same), a 1 (if the branch and capacitor currents are in opposite

directions), or 0 (if the branch currents cannot be related by just one capacitor current).

For example, if the current in the j
th

 branch is the same as the current in the i
th

 capacitor

(i.e., if row j of T

b
B is identical to the row in T

b
B corresponding to the i

th
 capacitor), then

(,)i j
cap

i is equal to 1. Similarly, if the current in the j
th

 branch is the negative of the

current in the i
th

 capacitor (i.e., if row j of T

b
B is equal to the row in T

b
B corresponding to

the i
th

 capacitor multiplied by 1), then

(,)i j
cap

i is equal to 1 . The highlighting in

equations (57) and (58) illustrate the development of capi from T

b
B for the converter in

Fig. 3.2.

1 1 0

0 1 0

0 1 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 1

1 0 1

0 0 1

1 0 0

0 1 0

0 0 1

 
 


 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

T

bB (57)

0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 0 1

 
 
 
 
 
 

capi (58)

Capacitor

Branches

41

The
capi matrix can be verified by examining Fig. 3.2. As shown in (58),

1 1CR Ci i ,

1 2 2SW CR R Ci i i  ,
3 3C outR V Ci i i   , and

3 4 4SW CR R Ci i i  . The ninth column in
capi

corresponding to branch RSW2 contains only zeros, indicating that the current through that

branch cannot be expressed as a single capacitor current.

 After determining which branch currents are equal to capacitor currents, it is

possible to begin filling the Ê matrix. Parasitic branches with branch currents that are

equal to a capacitor current (or the negative of a capacitor current) can be stored in the Ê

matrix directly. Disregarding the source and capacitor branches, multiplying B̂ with the

third column of N̂ element by element, and matching the resulting values to a capacitor

current using
capi places the parasitic resistance values in Ê . At this point, the ˆ 

E matrix

for the example circuit in Fig. 3.2 is

0 0 0

ˆ 0 0

0 0

SW C

C C

C SW C

R R

R R

R R R



 
 


 
   

E , (59)

where the asterisk denotes that the Ê is incomplete. Parasitic branches whose branch

currents are a function of multiple capacitor currents, in this case branch RSW2, are not yet

included. These branches must be matched with KCL equations relating their branch

currents to the capacitor currents.

 Generating the required KCL equations requires finding the rows of T

b
B that

relate the capacitor currents to independent branch currents that are also capacitor

currents. For the converter in Fig. 3.2, equation (46) yields

42

2

3

4

1 1 0

0 1 0

0 1 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 1

1 0 1

0 0 1

1 0 0

0 1 0

0 0 1

C

C

C

R

R

R

i

i

i

 
 


 
 
 
 
 
   
   
   
       
 
 
 
 
 
 
 
 

T

b xB i . (60)

Rows 3 through 6 of (60) represent the currents through capacitors C1 through C4,

respectively. In this case, all currents in ix are capacitor currents since, as established

from (58),
1 1CR Ci i ,

2 2CR Ci i , and
3 3CR Ci i . Thus, the third row of (60) yields the KCL

relationship
1 3 4C C Ci i i  . For the converter in Fig. 3.2, there are three independent KVL

equations; therefore, just one KCL equation is needed to satisfy the p equations required

in the model. Adding the KCL relationship described above yields

  1 0 1 1  K . (61)

From (60), the current in branch RSW2, corresponding to row nine of T

b
B , is related to the

capacitor currents by
2 2 4SWR C Ci i i  ; thus, from (51), Rsw2 is added to the first loop and

subtracted from the third. Adding these parasitic branches to Ê yields

0 2 0

ˆ 0 0

0 2

SW C SW

C C

C SW SW C

R R R

R R

R R R R

  
 


 
    

E . (62)

43

 Comparison of (61) and (62) with (56) yields,

0 2 0

0 0

0 2

1 0 1 1

SW C SW

C C

C SW SW C

R R R

R R

R R R R

  
 
 
   
 
  

E . (63)

3.4. COMPUTER IMPLEMENTATION

The algorithm proposed here was implemented using Matlab. Figure 3.3 shows

the general structure of the algorithm. Bold boxes represent user-entered input quantites,

and the dotted box represents the state model generator algorithm. Input quantities

include the circuit netlist for each switching state, duty ratios for each switching state,

and the converter’s static gain value, M . Only the circuit netlists are used directly to

generate the state matrix because they are needed to generate the node incidence matrix,

Aa. Row reduction of Aa was accomplished through the Matlab command rref(Aa)so

that no extra programming was required; however, if computer implementation relies on

other software, algorithms for performing row reduction are described in [25].

Calculation of the remaining matrices in the state model generator requires only simple

matrix operations.

44

Ĝ F

Branch Data
Circuit

Topology

Switching

State

Calculate

Netlist (36)

Calculate

Aa(39), Ãa(40),

Â(40), Ã(43)

Calculate

Bb (47)

Reorder

Netlist

Calculate

icap (57)

Calculate

KCL eqs. (56)

Calculate E

matrix (56)

Calculate F

matrix (52)

Calculate G

matrix (53)

N

Ãa

Â

T

b
B

icap

Bb

K

N
*

SC Converter

Model

E1, E2 F1, F2 G1, G2

N

Calculate Ĝ

(50)

Calculate F

(50)

Ĝ

Req

Calculate Ĝ

(56)

Ĝ E

Ĝ E Ĝ F

Duty Ratio Static Gain

State Model Generator

d1, d2 M

1, 2

Calculate Ĝ

(36)

Ĝ N Ĝ N

Calculate Ĝ

(50)

Ĝ B

Ĝ B

Figure 3.3. Block diagram of algorithm implementation.

 Once the E, F, and G matrices for each switching state are calculated, they are

used in the SC converter model developed in Section 2. The Φ and Γ matrices can be

computed for a given switching frequency with the Matlab function c2d. Everything in

the state model generator and the model is solved numerically.

45

3.5. ALGORITHM VERIFICATION

To demonstrate the validity of the proposed algorithm, simulation and

experimental data from Sections 2.3 and 2.5 were compared to the algorithm results. The

two-stage ladder converter analyzed above is redrawn more generically in Fig. 3.4 with

ideal switches and their corresponding switching states. When a switch is on, it is

represented by a switching resistor, RSW.

Vin

C2

Vout

RC2

C1RC1

1

3

2

4 5

6 7
1

C4RC4 8 9

C3RC3

10 11

1 12 2 21

Figure 3.4. Two-stage ladder converter.

Each “switch” is actually two FDMS8460 MOSFETs in parallel, for an equivalent

switch resistance of 3 mΩ (denoted as RSW below). Each “capacitor” is actually four

TMK325BJ226MM-T ceramic capacitors from Nichicon (22 µF, 25 V) in parallel, for a

total equivalent series resistance (ESR) of 10 mΩ (denoted as RC below) and capacitance

of 88 µF. The duty ratios for each switching state were 45%, and the input voltage was

set to 10 V. The resultant E, F, and G matrices generated manually and from the

proposed algorithm (barred matrices) for each switching state are

46

0 2 0

0 2

0 0

1 0 1 1

SW C SW

C SW SW C

C C

R R R

R R R R

R R

  
 
  
 
 
 

 

1E , (64)

0 1 0 0

1 0 0 1

1 0 1 0

0 0 0 0

 
 

 
 
 
 

1F , (65)

1 0

0 0

1 1

0 0

 
 
 
 
 
 

1G , (66)

(2) 0

0 (2)

0 0

1 1 1 1

SW c c SW

SW SW c c

c c

R R R R

R R R R

R R

  
 

 
 
  
 

  

2E , (67)

1 1 0 0

0 0 1 1

0 1 0 1

0 0 0 0

 
 


 
  
 
 

2F , (68)

and

0 0

0 0

1 1

0 0

 
 
 
 
 
 

2G . (69)

47

For the first switching state, algorithm values for
1E ,

1F , and
1G were derived above in

(63), (54), and (55), respectively. For the second switching state,

 2

(2) 0

0 0

0 (2)

1 1 1 1

C SW C SW

C C

C SW SW C

R R R R

R R

R R R R

   
 
 
  
 
  

E , (70)

 2

1 1 0 0

1 0 1 0

1 0 0 1

0 0 0 0

 
 
 
 
 
 

F , (71)

and

 2

0 0

1 1

1 1

0 0

 
 


 
 
 
 

G . (72)

A comparison of the matrices demonstrates that the algorithm generates matrices that

differ from those calculated manually. These are due to differences in the KVL loops

selected for each switching stage. The manner in which the KVL loops are selected is

irrelevant as long as all loops are independent of each other. Furthermore, the order in

which the loops are calculated and the selection of KCL equations also changes the

matrices, but does not change the final result. Figure 3.5 shows the loops selected during

manual calculations (solid lines) and those selected by the algorithm (dashed lines)

during the second switching state.

48

Vin

C2

Vout

RSW1

RC2

C1RC1

+ -

+

 -

+ -

+ -+ -

C4RC4 + - + -

C3RC3 + -+ -

RSW2

+

 -

RSW3

+

 -

Figure 3.5. KVL loops for two-stage ladder converter during its second switching state.

 Although the matrices may look different, they are fundamentally equivalent, as

demonstrated in Fig. 3.6. Each set of matrices was used with the converter model,

resulting in the same equivalent resistance curve.

The experimental data collected closely correlates with the algorithm and the

manual calculations. Again, the slight discrepancies at 35 kHz and 70 kHz, where the

experimental data is slightly higher than those of the model, is explained by the inherent

inductance of the PCB board due to its design. This inductance creates a resonant effect

that interacts with the capacitors, increasing the resistance at harmonics of 35 kHz. The

inherent board inductance causing the resonance was estimated to be 30 nH.

49

Figure 3.6. Comparison of algorithm with experimental and manually calculated data for

the two-stage ladder converter.

 The state model generator was designed to work with other SC converter

topologies as well. The Fibonacci SC converter in Fig. 3.7 was analyzed to demonstrate

the flexibility of the algorithm.

Vin Vout

1

2

1

1

RC1

C1

1

2

2

RC2

C2

2

1

1

RC3

C3

2

1

3

4

5

6 9 12

7

8

10

11

2

1 1 1

Figure 3.7. Fibonacci converter with gain of 5.

50

The input voltage Vin was arbitrarily set to 5V and the topology gain, based on the

Fibonacci sequence, is 5. Component values are identical to those of the two-stage ladder

converter, and the duty ratios for each switching state were 45%. The E, F, and G

matrices resulting from manual calculations and the state model generator are

summarized in Table 3.1 below.

Table 3.1. Comparison of coefficient matrices generated manually and by the algorithm

Manually Calculated Matrices Algorithm Calculated Matrices

2 0

() 0 3 2

0 1 1

SW C SW

SW C SW C

R R R

R R R R

  
 

   
 
  

1E

1 0 0

1 1 1

0 0 0

 
 

  
 
  

1F

1 0

0 0

0 0

 
 


 
  

1G

1

2 0

3 2

0 1 1

SW C SW

SW SW SW C

R R R

R R R R

  
 

  
 
  

E

1

1 0 0

0 1 1

0 0 0

 
 

 
 
  

F

1

1 0

1 0

0 0

 
 

 
 
  

G

2

(2) 0

0 () (2)

1 1 1

SW C SW C

SW C SW C

R R R R

R R R R

   
 

    
 
   

E

2

1 1 0

0 1 1

0 0 0

 
 

  
 
  

F

2

1 0

0 1

0 0

 
 


 
  

G

2

(2) 0

(2) 0 (2)

1 1 1

SW C SW C

SW C SW C

R R R R

R R R R

   
 

    
 
   

E

2

1 1 0

1 0 1

0 0 0

 
 

  
 
  

F

2

1 0

1 1

0 0

 
 

 
 
  

G

51

Again, the matrices generated by the algorithm differ slightly from those generated

manually due to the different KVL loops selected by each. Although experimental data

were not collected for the Fibonacci converter, simulation data were. The converter was

again simulated using PLECS, incorporating the same component parameters and switch

duty cycle included in the model and algorithm. As in the model, the voltage sources

were placed on the input and output terminals of the converter. The input voltage was set

at 5V and the output voltage at 24V. The PLECS simulation setup is shown in Fig. 3.8,

and the data collected were compared to the results of manual calculations and the state

model generator. Figure 3.9 reveals identical results for all three, validating the

effectiveness of the SC model generator for the Fibonacci topology.

Figure 3.8. PLECS simulation model for Fibonacci converter.

52

Figure 3.9. Comparison of algorithm to simulated and manually calculated data for the

Fibonacci converter.

53

4. CONCLUSIONS

4.1. SUMMARY OF RESULTS

The work outlined in the previous sections derived a new analysis technique for

modeling the equivalent resistance of complex SC converters and proposed a method of

automating the model’s development. It verified both methods with simulations and

experimentation on a variety of SC converter topologies.

The proposed modeling technique is an analysis and design method superior to

previous methods. The method in [11-12] was simple and direct, but it applied only to

simple voltage doublers. The new model can analyze both simple and complex SC

circuits with greater detail. The method outlined in [13, 15] had the advantage of quickly

modeling regular converter structures operating at very low or very high frequencies; for

converters with unusual structures that operate at intermediate frequencies, however, it

does not provide results directly. The model proposed here can accurately model all

complex converter designs at all frequencies where inductance effects are minimal. The

method proposed in [16] relies on well known energy and power principles and is capable

of analyzing simple, hard and soft switched SC converters, but it is limited to converters

operating with just two switching modes. The method presented here can incorporate

converters with any number of switching modes. Also, the design method in [10]

focused on a particular application, and the analysis method in [26] is useful for results in

steady state without consideration of parasitics. This new model is effective for modeling

and designing SC converters of any topology and at any power level while also

incorporating parasitics. For the degenerate case of a single capacitor, the new method

agrees with a previously published method. This method is also useful when extended to

complex switching techniques. Furthermore, the proposed model replicates the

experimental, simulation, and previously published data while offering a superior means

to analyze SC converters. With the ability to quickly calculate the equivalent resistance

of many complex converters, this model is a powerful tool for SC converter design.

A new state generation algorithm was also introduced to automate the

development of the SC converter model. Other methods of automating circuit analysis,

such as MNA [19-20] and STF [21], are effective for solving a circuit’s VI

54

characteristics, but are not suitable for state model generation. Furthermore, the state

model generator outlined in [18] is difficult to integrate with the SC converter model

because difference equations are not implemented at the individual branch level. The

state model generator outlined here is better suited for integration with the model because

circuit representation is done at the individual branch level. For each switching state, a

user-defined netlist is used to generate the node incidence matrix. The node incidence

matrix is row reduced and partitioned to create the basic loop matrix. The loop matrix is

used to relate capacitor currents to independent branch currents so that state model

matrices can be developed. This algorithm has been verified with simulations and

experimentation for multiple switching topologies, demonstrating speed and accuracy in

implementing the model.

Together, the new SC converter modeling technique and the automated state

model generator algorithm improve SC converter design capabilities. The new modeling

technique improves the accuracy of modeling the output impedance of an SC converter

and the state model generator decreases the time spent on converter design. Combined,

the result is a new valuable SC converter design tool.

4.2. EXTENSIONS

Although the automated state model generator algorithm enables automation of

the SC converter model, further attention can improve its functionality. First, work could

be done to reduce the amount of Matlab code required. The Matlab code for the state

model generator, shown in Appendix B, is copied twice to calculate the state coefficient

matrices for each switching state; however, if the code was modularized, just one set of

code would be needed for all switching states. This feature would be of particular

interest when considering SC converters with more than two switching states. If an SC

converter with five switching states was being modeled, then the code would need to be

copied five times, increasing the amount of code for automating the model substantially.

Integrating netlist compatibility with other circuit analysis software, such as

PSPICE, is another addition worth mentioning. The capability to import text files into

Matlab would be required and code would need to be written to integrate netlists

55

generated from other programs. This addition would facilitate netlist generation by

eliminating manual construction.

Finally, verification testing should be done on cascaded SC converters.

Theoretically, the state model generator would work as long as the correct netlist is

created, but further testing is needed to ensure accuracy.

56

APPENDIX A.

PRINTED CIRCUIT BOARD DESIGN

57

This appendix includes the schematics and board layouts of the printed circuit

boards described in Section 2.3. For clarity, the schematic diagram is broken into three

parts and shown in Figures A.1 through A.3. The physical board layout, pictured in Fig.

2.6, is broken into two parts to show the top and bottom layers of the board separately.

The board layout for the top layer is shown in Fig. A.4 and the board layout for the

bottom layer is shown in Fig. A.5. The dashed polygons in the board layouts represent

solder planes.

58

Figure A.1. Sheet one of printed circuit board schematic.

59

Figure A.2. Sheet two of printed circuit board schematic.

60

 Figure A.3. Sheet three of printed circuit board schematic.

61

Figure A.4. Physical board layout of top layer.

62

Figure A.5. Physical board layout of bottom layer.

63

APPENDIX B.

MATLAB CODE FOR THE AUTOMATED STATE MODEL GENERATOR

64

The automated state-model generator was implemented using Matlab R2009a.

The code includes considerable commenting to explain the purpose of each block of

code. Comments are denoted by text that is preceded by a percent symbol (%). Lines of

code that are too long to fit on one line are continued on the next line and marked by

three consecutive periods (…). The code below incorporates extra coding for

compatibility with netlists that are more general in structure. The extra code, labeled

“Format netlist”, formats user-defined netlists into the format described in Section 3.1.

The new, more general netlist format is described in the section of code labeled

“FUNCTION DESCRIPTION”.

%Copyright by Jordan Henry

%All Rights Reserved

%SCC Model and State Model Algorithm

function [E1,F1,G1,E2,F2,G2,Rmin] = sccmodel(list1,list2,gain,d1,d2)

%FUNCTION DESCRIPTION--

%The sccmodel function is used to model the equivalent resistance of an

%SC converter. For the model to be generated properly, d1 and d2 must be be

%entered as a number between 0 and 1. The list1 and list2 inputs are

%matrices of size bx5, where b is the number of branches. Branch

%information is entered into the netlists in the following fashion:

%*The 1st column must contain the type of branch element ("V" for a voltage

%source, "C" for a capacitor, and "R" for a resistor)

%*The 2nd column must contain the number associated with the branch.

%Numbering starts from 1 for each branch type.

%*The 3rd column must contain the number of the positive node connected to

%the branch.

%*The 4th column must contain the number of the negative node connected to

%the branch.

%*The 5th column must contain the value of the branch element.

%The designer must identify the capacitor that delivers charge to the load

%and label that capacitor as the last capacitor, meaning that capacitor

%should have the highest capacitor number.

%The static gain of the converter must also be entered.

%--

%--

%Assign the letters a number, Matlab must store letters as a number

V = 1;

C = 2;

R = 3;

%Calculate the number of capacitors--

capnum = 0;

for i = 1:length(list1)

 if list1(i,1) == C

 capnum = capnum+1;

 end

end

65

%Format netlists---

%LIST1

append = zeros(1,5);

m = 0;

n = 0;

p = 0;

q = 0;

for y = 1:length(list1)

 for j = 1:length(list1)-m

 if list1(j,1) == V

 for i = 1:length(list1)

 if list1(i,2) == 1+n & list1(i,1) == V

 append = list1(i,:);

 list1(i,:) = [];

 list1 = vertcat(list1,append);

 n = n+1;

 m = m+1;

 end

 end

 end

 end

end

for y = 1:length(list1)

 for j = 1:length(list1)-m

 if list1(j,1) == C

 for i = 1:length(list1)

 if list1(i,2) == 1+p & list1(i,1) == C

 append = list1(i,:);

 list1(i,:) = [];

 list1 = vertcat(list1,append);

 p = p+1;

 m = m+1;

 end

 end

 end

 end

end

for y = 1:length(list1)

 for j = 1:length(list1)-m

 if list1(j,1) == R

 for i = 1:length(list1)

 if list1(i,2) == 1+q & list1(i,1) == R

 append = list1(i,:);

 list1(i,:) = [];

 list1 = vertcat(list1,append);

 q = q+1;

 m = m+1;

 end

 end

 end

 end

end

list1(:,1) = [];

list1(:,1) = [];

%LIST 2

append = zeros(1,5);

m = 0;

n = 0;

66

p = 0;

q = 0;

for y = 1:length(list2)

 for j = 1:length(list2)-m

 if list2(j,1) == V

 for i = 1:length(list2)

 if list2(i,2) == 1+n & list2(i,1) == V

 append = list2(i,:);

 list2(i,:) = [];

 list2 = vertcat(list2,append);

 n = n+1;

 m = m+1;

 end

 end

 end

 end

end

for y = 1:length(list2)

 for j = 1:length(list2)-m

 if list2(j,1) == C

 for i = 1:length(list2)

 if list2(i,2) == 1+p & list2(i,1) == C

 append = list2(i,:);

 list2(i,:) = [];

 list2 = vertcat(list2,append);

 p = p+1;

 m = m+1;

 end

 end

 end

 end

end

for y = 1:length(list2)

 for j = 1:length(list2)-m

 if list2(j,1) == R

 for i = 1:length(list2)

 if list2(i,2) == 1+q & list2(i,1) == R

 append = list2(i,:);

 list2(i,:) = [];

 list2 = vertcat(list2,append);

 q = q+1;

 m = m+1;

 end

 end

 end

 end

end

list2(:,1) = [];

list2(:,1) = [];

%Determine which netlist includes both the input and output sources (used to

%decide which netlist is used in the SC model)-----------------------------

if list1(1,3) ~= 0 & list1(2,3) ~= 0

 list = list1;

elseif list2(1,3) ~= 0 & list2(2,3) ~= 0

 list = list2;

end

%Construct input voltage vector for SCC model------------------------------

input = zeros(2,1);

67

input(1,1) = list(1,3);

input(2,1) = list(2,3);

%Construct capacitor matrix for SCC model

Cmat = zeros(capnum,capnum);

for i = 1:capnum

 Cmat(i,i) = list(i+2,3);

end

%**

%1st phase calculation---

%**

%Determine if any sources are not connected to circuit---------------------

sdis = 0;

for i = 1:2

 if sum(list1(i,:)) == 0

 sdis = sdis+1;

 list1(i,:) = []; %Remove the source from the list

 end

end

%Calculate number of nodes and branches------------------------------------

branch = length(list1);

node = max(list1(:,1));

%Construct Aa matrix---

Aa = zeros(node,branch);

for i = 1:branch

 Aa(list1(i,1),i) = 1;

 Aa(list1(i,2),i) = -1;

end

%Row reduce Aa matrix

Aa = rref(Aa);

%Find Ahat matrix--

Atilda = Aa;

Atilda(node,:) = [];

Ahat = Atilda;

j=1;

k=0;

for i = 1:branch

 if sum(abs(Ahat(:,j)))<=1

 Ahat(:,j) = [];

 else

 j = j+1;

 col(j-1) = i;

 end

end

%Re-order Netlist to reflect column swapping performed in Ahat calculation-

for i = 1:length(col)

 if i <= 1

 append = list1(col(i),:);

 list1(col(i),:) = [];

 list1 = vertcat(list1,append);

 else

 append = list1(col(i)-i+1,:);

68

 list1(col(i)-i+1,:) = [];

 list1 = vertcat(list1,append);

 end

end

%Calculate loop matrix---

loopnum = (branch - node)+1;

Bbtranspose = vertcat(-Ahat,eye(loopnum));

Bb = Bbtranspose';

%Determine the number of KCL equations needed------------------------------

kclnum = capnum-length(Bb(:,1));

%Determine which rows of Bbtranspose are the same as the rows of cap curr--

icap = zeros(capnum,branch);

k=1;

for i = 3-sdis:capnum+2-sdis

 for j = 1:length(list1)

 if Bbtranspose(j,:) == Bbtranspose(i,:)

 icap(k,j) = 1;

 elseif Bbtranspose(j,:) == -Bbtranspose(i,:)

 icap(k,j) = -1;

 end

 end

 k = k+1;

end

%Determine KCL equations---

%Determine which independent currents are not capacitor currents, but are

%dependent of capacitor currents

i_dependent = zeros(1,1);

j=1;

for i = 3-sdis:length(icap)-sdis

 if icap(:,i) == 0

 i_dependent(j,1) = i;

 j = j+1;

 end

end

%Figure out which column these currents correspond to

Bbcol = zeros(length(i_dependent),1);

k=1;

for i = 1:length(i_dependent)

 for j = 1:loopnum

 if i_dependent(i,1) ~= 0

 if Bbtranspose(i_dependent(i,1),j) == 1

 Bbcol(k,1) = j;

 end

 end

 end

 k = k+1;

end

%Check to see if all independent currents are indeed capacitor currents

kcl = zeros(kclnum,capnum);

u=0;

for m = branch-loopnum+1:branch

 if sum(abs(icap(:,m))) >= 1

 u = u+1; %store u value for E matrix construction & KCL equations

 end

end

69

m=1;

g=1;

if u == loopnum %If all indep. curr. are cap curr., KCL is found directly

 for i = 3-sdis:capnum+2-sdis

 if sum(abs(Bbtranspose(i,:))) > 1

 kcl(m,i-2+sdis) = -1;

 for l = 1:loopnum

 if Bbtranspose(i,l) ~= 0

 for j = 1:capnum

 if icap(j,branch-loopnum+l) ~= 0

 kcl(m,j) = Bbtranspose(i,l)*icap(j,branch-lo...

 opnum+l);

 g = g+1;

 break

 end

 end

 end

 end

 end

 m = m+1;

 end

 if g ~= kclnum + 1 %Creates KCL eq. if 2 cap curr. are same or opposite

 for i = 3-sdis:capnum+2-sdis

 if g <= kclnum

 for j = 3-sdis:capnum+2-sdis

 if Bbtranspose(i,:) == -Bbtranspose(j,:)

 kcl(g,i-2+sdis) = 1;

 kcl(g,j-2+sdis) = 1;

 g = g+1;

 end

 end

 end

 end

 end

else %If they are not all cap currents, KCL is not so direct

 for i = 3-sdis:capnum+2-sdis

 k = 0;

 for j = 1:length(Bbcol)

 if Bbtranspose(i,Bbcol(j,1)) == 0

 else

 k = k+1;

 end

 end

 if k == 0

 if sum(abs(Bbtranspose(i,:))) >= 2

 kcl(m,i-2+sdis) = -1;

 m = m+1;

 for j = 1:loopnum

 g = 1;

 if abs(Bbtranspose(i,j)) == 1

 for r = 1:capnum

 if icap(r,branch-loopnum+j) ~= 0

 kcl(m-1,g) = Bbtranspose(i,j);

 else

 g = g+1;

 end

 end

 end

 end

 end

 end

 end

end

70

%Check to see if KCL matrix is full

y=0;

for i = 1:kclnum

 if sum(abs(kcl(i,:))) == 0

 y = y+1;

 end

end

%If y does not equal to zero, then find other kcl equations

m=1;

g=1;

if y ~= 0

 while g <= y

 for i = 3+m-1-sdis:capnum+2-sdis

 k = 0;

 for j = 1:loopnum

 if Bbtranspose(m+2-sdis,j) == -Bbtranspose(i,j)

 k = k+1;

 else

 if j ~= Bbcol(:,1)

 k = k+1;

 end

 end

 end

 if k == loopnum

 for l = 1:loopnum

 if Bbtranspose(m+2-sdis,l) ~= -Bbtranspose(i,l)

 for r = 1:capnum

 if icap(r,branch-loopnum+l) ~= 0

 kcl(kclnum-y+g,m) = -1;

 kcl(kclnum-y+g,i-2+sdis) = -1;

 if Bbtranspose(m+2-sdis,l) ~= 0

 kcl(kclnum-y+g,r) = Bbtranspose(m+2-...

 sdis,l);

 else

 kcl(kclnum-y+g,r) = Bbtranspose(i,l);

 end

 end

 end

 end

 end

 g = g+1;

 end

 end

 m = m+1;

 end

end

%Generate E1 matrix--

E1 = zeros(loopnum,capnum);

%Figure out which rows of Bbtranspose are cap currents

Esetup = zeros(branch-2-capnum,1);

for i = 2+capnum+1-sdis:branch

 for j = 1:capnum

 if icap(j,i) == 1

 Esetup(i-2-capnum+sdis,1) = j;

 elseif icap(j,i) == -1

 Esetup(i-2-capnum+sdis,1) = -j;

 end

 end

end

71

%Shorten list and Bb matrices b/c we don't need to worry about cap currents

%or the currents through the sources

Bbtrunk = Bb;

listtrunk = list1;

for i = 1:2+capnum-sdis

 listtrunk(1,:) = [];

end

for i = 1:2

 listtrunk(:,1) = [];

end

for i = 1:2+capnum-sdis

 Bbtrunk(:,1) = [];

end

Bbtrunk = Bbtrunk';

%Make the list matrix the same number of columns as the Bbtrunk matrix

listtrunkm = listtrunk;

for i = 1:loopnum-1

 listtrunkm = horzcat(listtrunkm,listtrunk);

end

%Multiply the matrices to store the actual KVL loop values

loopval = Bbtrunk.*listtrunkm;

%Begin construction of E matrix: This step does not construct the full E

%matrix if there are currents that are combinations of capacitor currents.

%It only places the resistor values that correspond to actual

%capacitor currents. If there are resistors whose currents are a

%combination of cap currents, such as some MOSFET currents in the ladder

%topology, they will be entered next

for i = 1:branch-2-capnum+sdis

 for j = 1:loopnum

 if Esetup(i,1) > 0

 E1(j,abs(Esetup(i,1))) = E1(j,abs(Esetup(i,1)))+loopval(i,j);

 elseif Esetup(i,1) < 0

 E1(j,abs(Esetup(i,1))) = E1(j,abs(Esetup(i,1)))-loopval(i,j);

 end

 end

end

%So far, E matrix is incomplete if there are currents that can only be

%expressed as a function of other cap currents. For example, for a ladder

%topology, now inlude the MOSFET resistor values whose currents cannot be

%expressed as a single capacitor current

m=1;

e=1;

if i_dependent(:,1) ~= 0 %if there are no dependent cap curr., skip script

 if u == loopnum %use this script if all indepen. curr. are cap currents

 for i = 1:loopnum

 for j = 1:length(i_dependent)

 if Bb(i,i_dependent(j,1)) ~= 0

 for g = 1:loopnum

 if Bbtranspose(i_dependent(j,1),g) ~= 0

 for r = 1:capnum

 if icap(r,branch-loopnum+g) ~= 0

 E1(m,r) = E1(m,r)+Bbtranspose(i_depe...

 ndent(j,1),g)*Bb(i,i_dependent(j...

 ,1))*(list1(i_dependent(j,1),3))...

 *icap(r,branch-loopnum+g);

 break

72

 end

 end

 end

 end

 end

 end

 m = m+1;

 end

 else %use this if all independent currents are not cap currents

 for i = 1:length(Bbcol)

 m = 0;

 for j = 3:2+capnum

 if m < 1

 if abs(Bbtranspose(j,Bbcol(i,1))) == 1

 for r = 3:2+capnum

 k = 0;

 if m < 1

 if Bbtranspose(r,i) == 0

 for g = 1:length(Bbcol)

 if Bbtranspose(j,Bbcol(g,1)) ~= ...

 -Bbtranspose(r,Bbcol(g,1))

 k = k+1;

 end

 end

 end

 end

 if k == 1

 for f = 1:loopnum

 if f ~= Bbcol(:,1)

 if Bbtranspose(j,f) ~= 0

 for p = 1:capnum

 if icap(p,branch-loopnum...

 +f) ~= 0

 E1(e,p) = E1(e,p) - ...

 Bbtranspose(j,Bb...

 col(i))*Bbtransp...

 ose(j,f)*list1(b...

 ranch-f+1,3);

 break

 end

 end

 end

 if Bbtranspose(r,f) ~= 0

 for p = 1:capnum

 if icap(p,branch-loopnum...

 +f) ~= 0

 E1(e,p) = E1(e,p) - ...

 Bbtranspose(j,Bb...

 col(i))*Bbtransp...

 ose(r,f)*list1(b...

 ranch-f+1,3);

 break

 end

 end

 end

 end

 end

 E1(e,j-2) = E1(e,j-2) + Bbtranspose(j,Bb...

 col(i))*list1(branch-f+1,3);

 E1(e,r-2) = E1(e,r-2) + Bbtranspose(j,Bb...

 col(i))*list1(branch-f+1,3);

 m = m+1;

 end

73

 end

 end

 end

 end

 e = e+1;

 end

 end

end

E1 = vertcat(E1,kcl);

%Generate F1 matrix--

F1 = zeros(capnum,capnum);

for j = 1:capnum-kclnum

 k = 1;

 for i = 3-sdis:capnum+2-sdis

 F1(j,k) = Bb(j,i);

 k = k+1;

 end

end

%Generate G1 matrix--

G1 = zeros (capnum,2);

for j = 1:capnum-kclnum

 for i = 1:2-sdis

 G1(j,i) = Bb(j,i);

 end

end

%**

%2nd phase calculation---

%**

%Determine if any sources are not connected to circuit---------------------

sdis = 0;

for i = 1:2

 if sum(list2(i,:)) == 0

 sdis = sdis+1;

 list2(i,:) = []; %Remove the source from the list

 end

end

%Calculate number of nodes and branches------------------------------------

branch = length(list2);

node = max(list2(:,1));

%Construct Aa matrix---

Aa = zeros(node,branch);

for i = 1:branch

 Aa(list2(i,1),i) = 1;

 Aa(list2(i,2),i) = -1;

end

%Row reduce Aa matrix

Aa = rref(Aa);

%Find Ahat matrix--

Atilda = Aa;

Atilda(node,:) = [];

74

Ahat = Atilda;

j=1;

k=0;

for i = 1:branch

 if sum(abs(Ahat(:,j)))<=1

 Ahat(:,j) = [];

 else

 j = j+1;

 col(j-1) = i;

 end

end

%Re-order Netlist to reflect column swapping performed in Ahat calculation-

for i = 1:length(col)

 if i <= 1

 append = list2(col(i),:);

 list2(col(i),:) = [];

 list2 = vertcat(list2,append);

 else

 append = list2(col(i)-i+1,:);

 list2(col(i)-i+1,:) = [];

 list2 = vertcat(list2,append);

 end

end

%Calculate loop matrix---

loopnum = (branch - node)+1;

Bbtranspose = vertcat(-Ahat,eye(loopnum));

Bb = Bbtranspose';

%Determine the number of KCL equations needed------------------------------

kclnum = capnum-length(Bb(:,1));

%Determine which rows of Bbtranspose are the same as the rows of cap curr--

icap = zeros(capnum,branch);

k=1;

for i = 3-sdis:capnum+2-sdis

 for j = 1:length(list2)

 if Bbtranspose(j,:) == Bbtranspose(i,:)

 icap(k,j) = 1;

 elseif Bbtranspose(j,:) == -Bbtranspose(i,:)

 icap(k,j) = -1;

 end

 end

 k = k+1;

end

%Determine KCL equations---

%Determine which independent currents are not capacitor currents, but are

%dependent of capacitor currents

i_dependent = zeros(1,1);

j=1;

for i = 3-sdis:length(icap)-sdis

 if icap(:,i) == 0

 i_dependent(j,1) = i;

 j = j+1;

 end

end

%Figure out which column these currents correspond to

Bbcol = zeros(length(i_dependent),1);

k=1;

75

for i = 1:length(i_dependent)

 for j = 1:loopnum

 if i_dependent(i,1) ~= 0

 if Bbtranspose(i_dependent(i,1),j) == 1

 Bbcol(k,1) = j;

 end

 end

 end

 k = k+1;

end

%Check to see if all independent currents are indeed capacitor currents

kcl = zeros(kclnum,capnum);

u=0;

for m = branch-loopnum+1:branch

 if sum(abs(icap(:,m))) >= 1

 u = u+1; %store u value for E matrix construction & KCL equations

 end

end

m=1;

g=1;

if u == loopnum %If all indep. curr. are cap curr., KCL is found directly

 for i = 3-sdis:capnum+2-sdis

 if sum(abs(Bbtranspose(i,:))) > 1

 kcl(m,i-2+sdis) = -1;

 for l = 1:loopnum

 if Bbtranspose(i,l) ~= 0

 for j = 1:capnum

 if icap(j,branch-loopnum+l) ~= 0

 kcl(m,j) = Bbtranspose(i,l)*icap(j,branch-lo...

 opnum+l);

 g = g+1;

 break

 end

 end

 end

 end

 end

 m = m+1;

 end

 if g ~= kclnum + 1 %Creates KCL eq. if 2 cap curr. are same or opposite

 for i = 3-sdis:capnum+2-sdis

 if g <= kclnum

 for j = 3-sdis:capnum+2-sdis

 if Bbtranspose(i,:) == -Bbtranspose(j,:)

 kcl(g,i-2+sdis) = 1;

 kcl(g,j-2+sdis) = 1;

 g = g+1;

 end

 end

 end

 end

 end

else %If they are not all cap currents, KCL is not so direct

 for i = 3-sdis:capnum+2-sdis

 k = 0;

 for j = 1:length(Bbcol)

 if Bbtranspose(i,Bbcol(j,1)) == 0

 else

 k = k+1;

 end

 end

76

 if k == 0

 if sum(abs(Bbtranspose(i,:))) >= 2

 kcl(m,i-2+sdis) = -1;

 m = m+1;

 for j = 1:loopnum

 g = 1;

 if abs(Bbtranspose(i,j)) == 1

 for r = 1:capnum

 if icap(r,branch-loopnum+j) ~= 0

 kcl(m-1,g) = Bbtranspose(i,j);

 else

 g = g+1;

 end

 end

 end

 end

 end

 end

 end

end

%Check to see if KCL matrix is full

y=0;

for i = 1:kclnum

 if sum(abs(kcl(i,:))) == 0

 y = y+1;

 end

end

%If y does not equal to zero, then find other kcl equations

m=1;

g=1;

if y ~= 0

 while g <= y

 for i = 3+m-1-sdis:capnum+2-sdis

 k = 0;

 for j = 1:loopnum

 if Bbtranspose(m+2-sdis,j) == -Bbtranspose(i,j)

 k = k+1;

 else

 if j ~= Bbcol(:,1)

 k = k+1;

 end

 end

 end

 if k == loopnum

 for l = 1:loopnum

 if Bbtranspose(m+2-sdis,l) ~= -Bbtranspose(i,l)

 for r = 1:capnum

 if icap(r,branch-loopnum+l) ~= 0

 kcl(kclnum-y+g,m) = -1;

 kcl(kclnum-y+g,i-2+sdis) = -1;

 if Bbtranspose(m+2-sdis,l) ~= 0

 kcl(kclnum-y+g,r) = Bbtranspose(m+2-...

 sdis,l);

 else

 kcl(kclnum-y+g,r) = Bbtranspose(i,l);

 end

 end

 end

 end

 end

 g = g+1;

77

 end

 end

 m = m+1;

 end

end

%Generate E2 matrix--

E2 = zeros(loopnum,capnum);

%Figure out which rows of Bbtranspose are cap currents

Esetup = zeros(branch-2-capnum,1);

for i = 2+capnum+1-sdis:branch

 for j = 1:capnum

 if icap(j,i) == 1

 Esetup(i-2-capnum+sdis,1) = j;

 elseif icap(j,i) == -1

 Esetup(i-2-capnum+sdis,1) = -j;

 end

 end

end

%Shorten list and Bb matrices b/c we don't need to worry about cap currents

%or the currents through the sources

Bbtrunk = Bb;

listtrunk = list2;

for i = 1:2+capnum-sdis

 listtrunk(1,:) = [];

end

for i = 1:2

 listtrunk(:,1) = [];

end

for i = 1:2+capnum-sdis

 Bbtrunk(:,1) = [];

end

Bbtrunk = Bbtrunk';

%Make the list matrix the same number of columns as the Bbtrunk matrix

listtrunkm = listtrunk;

for i = 1:loopnum-1

 listtrunkm = horzcat(listtrunkm,listtrunk);

end

%Multiply the matrices to store the actual KVL loop values

loopval = Bbtrunk.*listtrunkm;

%Begin construction of E matrix: This step does not construct the full E

%matrix if there are currents that are combinations of capacitor currents.

%It only places the resistor values that correspond to actual

%capacitor currents. If there are resistors whose currents are a

%combination of cap currents, such as some MOSFET currents in the ladder

%topology, they will be entered next

for i = 1:branch-2-capnum+sdis

 for j = 1:loopnum

 if Esetup(i,1) > 0

 E2(j,abs(Esetup(i,1))) = E2(j,abs(Esetup(i,1)))+loopval(i,j);

 elseif Esetup(i,1) < 0

 E2(j,abs(Esetup(i,1))) = E2(j,abs(Esetup(i,1)))-loopval(i,j);

 end

 end

end

78

%So far, E matrix is incomplete if there are currents that can only be

%expressed as a function of other cap currents. For example, for a ladder

%topology, now inlude the MOSFET resistor values whose currents cannot be

%expressed as a single capacitor current

m=1;

e=1;

if i_dependent(:,1) ~= 0 %if there are no dependent cap curr., skip script

 if u == loopnum %use this script if all indepen. curr. are cap currents

 for i = 1:loopnum

 for j = 1:length(i_dependent)

 if Bb(i,i_dependent(j,1)) ~= 0

 for g = 1:loopnum

 if Bbtranspose(i_dependent(j,1),g) ~= 0

 for r = 1:capnum

 if icap(r,branch-loopnum+g) ~= 0

 E2(m,r) = E2(m,r)+Bbtranspose(i_depe...

 ndent(j,1),g)*Bb(i,i_dependent(j...

 ,1))*(list2(i_dependent(j,1),3))...

 *icap(r,branch-loopnum+g);

 break

 end

 end

 end

 end

 end

 end

 m = m+1;

 end

 else %use this if all independent currents are not cap currents

 for i = 1:length(Bbcol)

 m = 0;

 for j = 3:2+capnum

 if m < 1

 if abs(Bbtranspose(j,Bbcol(i,1))) == 1

 for r = 3:2+capnum

 k = 0;

 if m < 1

 if Bbtranspose(r,i) == 0

 for g = 1:length(Bbcol)

 if Bbtranspose(j,Bbcol(g,1)) ~= ...

 -Bbtranspose(r,Bbcol(g,1))

 k = k+1;

 end

 end

 end

 end

 if k == 1

 for f = 1:loopnum

 if f ~= Bbcol(:,1)

 if Bbtranspose(j,f) ~= 0

 for p = 1:capnum

 if icap(p,branch-loopnum...

 +f) ~= 0

 E2(e,p) = E2(e,p) - ...

 Bbtranspose(j,Bb...

 col(i))*Bbtransp...

 ose(j,f)*list2(b...

 ranch-f+1,3);

 break

 end

 end

 end

 if Bbtranspose(r,f) ~= 0

79

 for p = 1:capnum

 if icap(p,branch-loopnum...

 +f) ~= 0

 E2(e,p) = E2(e,p) - ...

 Bbtranspose(j,Bb...

 col(i))*Bbtransp...

 ose(r,f)*list2(b...

 ranch-f+1,3);

 break

 end

 end

 end

 end

 end

 E2(e,j-2) = E2(e,j-2) + Bbtranspose(j,Bb...

 col(i))*list2(branch-f+1,3);

 E2(e,r-2) = E2(e,r-2) + Bbtranspose(j,Bb...

 col(i))*list2(branch-f+1,3);

 m = m+1;

 end

 end

 end

 end

 end

 e = e+1;

 end

 end

end

E2 = vertcat(E2,kcl);

%Generate F2 matrix--

F2 = zeros(capnum,capnum);

for j = 1:capnum-kclnum

 k = 1;

 for i = 3-sdis:capnum+2-sdis

 F2(j,k) = Bb(j,i);

 k = k+1;

 end

end

%Generate G2 matrix--

G2 = zeros (capnum,2);

for j = 1:capnum-kclnum

 for i = 1:2-sdis

 G2(j,i) = Bb(j,i);

 end

end

%**

%SCC Model---

%**

C = list1(3,3);

A1 = -(Cmat^-1)*(E1^-1)*F1;

B1 = -(Cmat^-1)*(E1^-1)*G1;

C1 = zeros(1,capnum);

C1(1,capnum) = 1;

A2 = -(Cmat^-1)*(E2^-1)*F2;

B2 = -(Cmat^-1)*(E2^-1)*G2;

80

C2 = zeros(1,capnum);

C2(1,capnum) = 1;

sys1 = ss(A1,B1,C1,[0,0]);

sys2 = ss(A2,B2,C2,[0,0]);

D1 = d1;

D2 = d2;

Vdrop = input(1)*gain - input(2);

clear freq T t1 t2 current Req

for i = 1:90

 freq(i) = 10000*10^(i/30);

 T(i) = 1/freq(i);

 t1(i) = D1*T(i);

 t2(i) = D2*T(i);

 sys1d = c2d(sys1,t1(i));

 sys2d = c2d(sys2,t2(i));

 [phi1,gamma1,cj,dj,Tsj] = ssdata(sys1d);

 [phi2,gamma2,cj,dj,Tsj] = ssdata(sys2d);

 phi = phi2 * phi1;

 gamma = phi2*gamma1 + gamma2;

 x0 = (eye(capnum)-phi)^-1*gamma*input;

 x1 = phi1*x0+gamma1*input;

 dv = (x1(capnum)-x0(capnum));

 current(i) = list(capnum+2-sdis,3)*dv/T(i);

 Req(i) = Vdrop/current(i);

end

Rlowfreqonecell = 2*D1*T/C;

topologygain = Req(gain)/Rlowfreqonecell(gain);

Rlowfreq = Rlowfreqonecell * topologygain;

figure(1)

loglog(freq,Req,'b-')

xlabel('Frequency [Hz]')

ylabel('Req [\Omega]')

title('SCC Model (D = 0.45)')

hold on

Rmin = min(Req);

81

BIBLIOGRAPHY

[1] V. W. Ng, M. D. Seeman, and S. R. Sanders, "Minimum PCB Footprint Point-of-

Load DC-DC Converter Realized with Switched-Capacitor Architecture," IEEE

Energy Conversion Congress and Exposition, pp. 1575-1581, 2009.

[2] A. Ioinovici, "Switched-Capacitor Power Electronics Circuits," IEEE Circuits and

Systems Magazine, vol. 1, pp. 37-42, 2001.

[3] F. Z. Peng, F. Zhang, and Z. Qian, "A Magnetic-Less DC-DC Converter for Dual-

Voltage Automotive Systems," IEEE Transactions on Industry Applications, vol.

39, pp. 511-518, 2003.

[4] D. Cao and F. Z. Peng, "Zero-Current-Switching Multilevel Modular Switched-

Capacitor DC-DC Converter," IEEE Energy Conversion Congress and

Exposition, pp. 3516 - 3522 2009.

[5] S. Ben-Yaakov and A. Kushnerov, "Algebraic Foundation of Self Adjusting

Switched Capacitor Converters," Energy Conversion Congress and Exposition,

pp. 1582-1589, 2009.

[6] C.-H. Hu and L.-K. Chang, "Analysis and Modeling of On-Chip Charge Pump

Designs Based on Pumping Gain Increase Circuits With a Resistive Load," IEEE

Transactions on Power Electronics, vol. 23, pp. 2187-2194, 2008.

[7] M.-H. Huang, P.-C. Fan, and K.-H. Chen, "Low-Ripple and Dual-Phase Charge

Pump Circuit Regulated by Switched-Capacitor-Based Bandgap Reference,"

IEEE Transactions on Power Electronics, vol. 24, pp. 1161-1172, 2009.

[8] G. Thiele and E. Bayer, "Voltage Doubler/Tripler Current-Mode Charge Pump

Topology with Simple Gear Box", Power Electronics Specialists Converence, pp.

2348-2352, 2007.

[9] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A New Design Method for High

Efficiency DC-DC Converters with Flying Capacitor Technology," Applied

Power Electronics Conference and Exposition, 2006.

[10] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A New Design Method for High-

Power High-Efficiency Switched-Capacitor DC-DC Converters," IEEE

Transactions on Power Electronics, vol. 23, pp. 832-840, 2008.

[11] J. W. Kimball and P. T. Krein, "Analysis and Design of Switched Capacitor

Converters," Applied Power Electronics Conference and Exposition, vol. 3, pp.

1473-1477, 2005.

82

[12] J. W. Kimball, P. T. Krein, and K. R. Cahill, "Modeling of Capacitor Impedance

in Switching Converters," IEEE Power Electronics Letters, vol. 3, pp. 136-140,

2005.

[13] M. D. Seeman, "Analytical and Practical Analysis of Switched-Capacitor DC-DC

Converters," Ph. D. dissertation, University of California, Berkeley, 2006.

[14] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-

Capacitor DC-DC Converters," IEEE Workshops on Computers in Power

Electronics, 2006.

[15] M. D. Seeman and S. R. Sanders, "Analysis and Optimizaiton of Switched-

Capacitor DC-DC Converters," IEEE Transactions on Power Electronics, vol. 23,

pp. 841-851, 2008.

[16] S. Ben-Yaakov and M. Evzelman, "Generic and Unified Model of Switched

Capacitor Converters," Energy Conversion Congress and Exposition, pp. 3501-

3508, 2009.

[17] M. S. Makowski and D. Maksimovic, "Performance Limits of Switched-Capacitor

DC-DC Converters," Power Electronics Specialists Converence, vol. 2, pp. 1215-

1221, 1995.

[18] O. Wasynczuk and S. D. Sudhoff, "Automated State Model Generation Algorithm

for Power Circuits and Systems," IEEE Transactions on Power Systems, vol. 11,

pp. 1951-1956, 1996.

[19] A. Vladimirescu, The Spice Book: John Wiley & Sons, Inc., 1994.

[20] L. M. Wedepohl and L. Jackson, "Modified Nodal Analysis: An Essential

Addition to Eelectrical Circuit Theory and Analysis," Engineering Science and

Education Journal, vol. 11, pp. 84-92, 2002.

[21] G. D. Hachtel, R. K. Brayton, and F. G. Gustavson, "The Sparse Tableau

Approach to Network Analysis and Design," IEEE Transactions on Circuit

Theory, vol. 18, pp. 101-113, 1971.

[22] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic

Systems: Addison-Wesley Publishing Co., 1990.

[23] R. K. Hester, K.-S. Tan, M. De Wit, J. W. Fattaruso, S. Kiriaki, and J. R.

Hellums, "Fully Differential ADC with Rail-to-Rail Common-Mode Range and

Nonlinear Capacitor Compensation," IEEE Journal of Solid-State Circuits, vol.

25, pp. 173-183, 1990.

83

[24] L. Murata Manufacturing Co. (2006, January 15). Electrical Characteristics Data

1210 X5R 22uF 25V.

[25] L. O. Chua and P.-M. Lin, Computer-Aided Analysis of Electronic Circuits.

Englewood Cliffs: Prentice-Hall, Inc., 1975.

[26] J. Han, A. von Jouanne, and G. C. Temes, "A New Approach to Reducing Output

Ripple in Switched-Capacitor-Based Step-Down DC-DC Converters," IEEE

Transactions on Power Electronics, vol. 21, pp. 1548-1555, 2006.

84

VITA

Jordan Michael Henry was born on August 13, 1986 in Saint Charles, Missouri.

He received the Bachelor’s of Science degree in Electrical Engineering from Missouri

S&T in 2009 and the Master’s of Science degree in Electrical Engineering from Missouri

S&T in 2010.

Jordan has been a student member of IEEE since 2006 and a member of the

engineering honor societies Eta Kappa Nu and Tau Beta Pi since 2008. Jordan was

awarded the Chancellor’s Fellowship in 2009 and was also a Grainger Award recipient in

2009 for academic excellence displayed in the area of power engineering.

	Modeling the practical performance of switched-capacitor converters and a method for automating state-space model generation
	Recommended Citation

	II

