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ABSTRACT 

A new modeling technique and a method for automating the modeling process are 

introduced for analyzing complex switched-capacitor (SC) converters.  The model uses 

conventional circuit analysis methods to derive state-space models of each switching 

state.  Steady-state performance is derived and expressed as an equivalent resistance.  

Whereas previous techniques have provided either the detailed performance of a simple 

SC converter or the limiting performance of a complex SC converter, this new model is 

flexible enough to provide detailed performance for any practical converter.  Nonuniform 

component choices, asymmetric duty cycles, and other deviations from an ideal converter 

can be readily included.  Dynamics can also be analyzed.  Iterative methods of design 

based on this model would require the formulation of many equations, which is time 

consuming if done manually.  Therefore, an algorithm is introduced to automatically 

generate the equations required for this state-space based modeling.  The state equations 

are generated algorithmically given a standard node incidence matrix generated from a 

user-defined netlist.  The algorithm enables a designer to quickly iterate SC converter 

design solutions based on its predicted performance.  The model and algorithm have been 

validated through simulation techniques and experimental data collected from laboratory 

testing. 
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NOMENCLATURE 

Symbol Description         

SC                Switched-capacitor 

eqR                 Converter output impedance 

ESR                Capacitor equivalent series resistance 

KVL                Kirchoff's voltage law 

KCL                Kirchoff's current law 

MNA                Modified nodal analysis 

STF                Sparse tableau formulation 

p                  Number of capacitors 

v                  Capacitor voltage vector 

i                  Capacitor current vector 

M                  Static gain of converter 

C                  Diagonal matrix of capacitor values 

v                  Time derivative of capacitor voltage vector 

u                  Input and output source vector 

E                  Capacitor current coefficient matrix 

F                  Capacitor voltage coefficient matrix 

G                  Input and output source coefficient matrix 

A                  State matrix for state space representation 

B                  Input coefficient for state space representation 

T                  Switching period 

D                  Duty ratio of switching signal 

x                  Capacitor voltage matrix used in difference equations 

Φ                  State matrix used for difference equations 

Γ                  Input coefficient matrix notation for difference equations 

q                  Charge delivered by capacitor 

SSL                Slow switching limit 

FSL                Fast switching limit 



 

 

 

xi 

PCB                Printed circuit board 

n                  Number of nodes 

b                  Number of branches 

N                  Netlist matrix 

N                  Partitioned netlist matrix containing only source and capacitor branches 

N̂                  Partitioned netlist matrix containing only parasitic branches 

a
A                 Node incidence matrix 

bri                  Branch current vector 

aA                 Node incidence matrix written in its canonical form 

Â                  Partitioned Aa matrix containing KCL relationships 

A                  Matrix formed after deleting null row of Aa 

xi                  Independent branch current vector 

y
i                  Dependent branch current vector 

brv                 Branch voltage vector 

b
B                 Basic loop matrix 

*
N                  Reordered netlist matrix 

Ĝ                  Matrix fromed after deleting null rows from G matrix 

F̂                 Matrix fromed after deleting null rows from F matrix 

B̂                 Parasitic loop matrix 

Ê                 Capacitor current coefficient matrix for parasitic branches 

K                 Capacitor KCL matrix 

capi                 Branch capacitor current matrix 

*
E                  Incomplete capacitor current coefficient matrix 

 



 

 

1. INTRODUCTION 

1.1. MOTIVATION 

Traditionally, switched-capacitor (SC) converters have been used to provide 

simple, unregulated power conversion at lower power levels [1].  Recent developments in 

capacitor and semiconductor technology have made SC converters more practical in 

higher power applications [2-4].  Furthermore, development of sophisticated control 

strategies has also added voltage regulation capabilities to SC converters [5].  These 

advancements have contributed to the increasing popularity of SC converters, both in 

integrated form [6-8] and in discrete circuits [9-10].  As the popularity of SC converters 

continues to rise, so does the need for practical analysis techniques to facilitate converter 

design. 

As the primary performance metric of an SC converter, the output impedance is 

an important design parameter.  The output impedance, Req, aggregates all losses in 

parasitic resistances and determines the voltage drop on the output terminal based on the 

load current.  To ensure efficiency and output voltage regulation specifications are met, 

the design of practical SC converters frequently relies on accurate modeling of the output 

resistance.  This work develops a new method of modeling the steady-state output 

impedance of an SC converter and provides an algorithm for automating the modeling 

process.   

1.1.1. Modeling the Output Impedance.  First, a new analysis  

technique is introduced for modeling the output impedance of switched-capacitor 

converters.  As depicted in Fig. 1.1, a typical steady-state model of an SC converter is an 

ideal transformer, with a rational turns ratio governed by the topology, followed by an 

equivalent resistance.  The equivalent resistance aggregates all the losses in parasitic 

resistances, such as MOSFET on-state resistance and capacitor equivalent series 

resistance (ESR).  Other losses, such as gating power, are usually tallied separately.  

 

 

 



 

 

 

2 

VIN

Req

RL

1  :  n

 

 

Figure 1.1.  Typical steady-state model of an SC converter. 

 

 

One existing approach to modeling the equivalent resistance analyzes an 

individual SC cell [11-12].  It requires development and solution of differential equations 

for each switching mode.  It then imposes boundary conditions such that the converter 

operates in periodic steady-state.  The resultant charge delivered to or from the capacitor 

divided by the switching cycle time equals the average current, which can be used to 

determine equivalent resistance.  The work described in [12] includes asymmetric duty 

ratio and unequal resistance values in its analysis.  That method remains useful for simple 

voltage doublers or other simple circuits. 

Another approach directly analyzes charge flows in a complex SC converter [13-

15].  For each switching mode, by inspection, it derives charge flow vectors for the 

capacitors and switches.  These equations assume only a single input and a single output, 

where the charge flow in each capacitor and switch is expressed as the output charge flow 

multiplied by a constant vector, denoted j

ca  and j

ra , respectively. 
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The “ a ” vectors map the output charge flow outq , which is equal to output current 

outI divided by switching frequency swf , onto the charge flow of each capacitor.  Using 

these vectors, the method derives fast switching and slow switching limits (FSL and SSL, 
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respectively) assuming 50% duty ratio switching.  This method is useful for complex SC 

converters of regular structure operating at very low or very high frequencies.  For 

converters with unusual structure, and particularly for converters that operate at practical 

intermediate frequencies, this method does not provide results directly. 

An additional method expresses the converter losses as a function of the currents 

passing through each switching (flying) capacitor [16].  Energy loss is calculated for two 

switching modes separately (2),  and the losses are summed to express the total as a 

function of the average current through each capacitor, where the average capacitor 

current is proportional to the output current (3). 
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In the above equations, j  is equal to 
jt

RC
, 

AVCI  represents the average current in each 

capacitor, sf  is the switching frequency, and j  represents the switching mode.  Total 

power loss TP  is derived from the total energy loss and expressed as an equivalent 

resistance:   
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This method is useful for simple hard and soft switched two-mode converters.      

The present work proposes a new method that resembles that in [11-12].  Rather 

than analyzing a single cell, however, it analyzes a complete converter using 

conventional circuit analysis methods.  Kirchoff’s voltage and current laws are applied 
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and as in [11-12], the differential equations for each switching mode are solved, and 

periodic steady-state assumptions are invoked.  Although generic symbolic results are not 

possible, numerical results can be determined for a specific converter.  Rather than just 

providing performance limits of an SC converter [17], this method also allows the 

dynamics of a converter to be analyzed.  A typical design flow for an SC converter may 

require, first, the method in [13-15] to form the basic design, then the method proposed 

here to provide a detailed analysis, with iterations sufficient to develop a suitable design.  

This new modeling technique is validated by comparing simulation and experimental 

data with that of the projected model.  It also describes the experimental procedures used 

and discusses the conclusions supported by this work. 

1.1.2. State Model Generator.  The proposed model relies on the development of  

state equations derived from KVL and KCL equations.  Deriving these state equations 

manually can be very time consuming, especially for converters with large gains (i.e., 

many stages).  An algorithm that can automatically generate the state equations would 

enable a designer to quickly iterate solutions for SC converter designs.   

Previous work developed an automated state model generator to generate KVL 

and KCL equations needed for state-space analysis of switching converters [18].  That 

approach involved construction of a node incidence matrix used to establish the required 

independent KCL relationships.  In matrix form, the KCL equations yielded the basic 

loop matrix of the circuit, which, along with proper representation of a branch’s volt-

ampere (VI) characteristics, was the basis for the generation of the state model.  This 

method is useful for linearization and eigensystem analysis, but difficult to integrate with 

the model proposed here because the difference equations are not implemented at the 

individual branch level.   

Another well known method of solving electrical networks algorithmically is 

modified nodal analysis (MNA) [19-20].  An extension of nodal analysis, MNA was 

developed to mitigate the difficulty of representing voltage-defined components (e.g., 

voltage sources) whose conductances are infinite and currents are unknown.  MNA 

generates equations on a node-by-node basis by determining not only node voltages, but 

also voltage source currents.  The equations are expressed in matrix form by augmenting 

the node voltage equations by the current equations for the voltage-defined elements.  
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They are solved using Gaussian elimination and LU factorization to find the solution of a 

linear system of simultaneous equations.  In this method, the unknown variables are node 

voltages, voltage source currents, output currents, and controlling source currents.  The 

MNA formulation is general and easy to implement on a computer.  It yields relatively 

compact systems of equations, making its use popular in SPICE programs.  MNA is 

effective for solving a circuit’s VI characteristics numerically, but falls short for state 

equation generation.   

Predating MNA, sparse tableau formulation (STF) is another approach to network 

analysis [21].  The unknowns for STF include node voltages, branch currents, and branch 

voltages.  Unlike MNA, STF involves no special treatment of voltage sources or any 

other elements.  The matrix is formed by augmenting three types of equations: KCL 

equations written in terms of branch currents for each node, KVL equations relating a 

branch voltage to its node voltages, and branch constitutive equations written for each 

branch in terms of its branch voltage and current.  Generally, the STF matrix is larger 

than MNA matrices, but it is more sparse; making it easier to solve by Gaussian 

elimination.  Although STF generates more equations per system than MNA, it includes 

fewer nonzero terms per equation and consequently, fewer mathematical operations are 

required to solve those equations.  Efficient implementation of this method, however, 

requires sophisticated programming techniques and data structures. 

Here, an algorithmic method to develop the state equations for complex SC 

converters is developed.  The method resembles that described in [18]; however, state 

equations are generated at the individual branch level to ensure that capacitor voltages are 

correctly represented as state variables in the matrix form compatible with the proposed 

model.  A node incidence matrix is generated for each switching state from user-defined 

netlists.  Loop matrices are derived to find KVL relationships and used directly to 

construct the coefficient matrices for the capacitor voltages and sources used in the 

model.  Branch currents are expressed as capacitor currents and compiled in matrix form 

to complete the model.  This paper describes the computer implementation of this 

algorithm and presents algorithm simulations for multiple SC converter topologies to 
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illustrate its capabilities.  The results of the algorithm simulations have been verified by 

Matlab
1
 simulations and experimental data collected through laboratory testing.  

1.1.3. Document Organization.  The subject matter presented here is organized 

by first introducing the state modeling technique in Section 2 followed by the 

development of the automated state model generator in Section 3.  Conclusions, including 

the summary of results and future project extensions, are explained in Section 4.  

Following the conclusions, Appendix A contains schematics and board layouts for the 

printed circuit boards used for collecting the experimental data and Appendix B includes 

the computer code written for the state model and the automated state model generator 

algorithm.   

 The content in Section 2 has been accepted for publication by IEEE Transactions 

on Power Electronics and is currently in press.    

 

                                                 

1
 Matlab is a registered trademark of The MathWorks, Inc. 
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2. PRACTICAL PERFORMANCE OF COMPLEX SWITCHED-CAPACITOR 

CONVERTERS 

2.1. MODEL DERIVATION 

The derivation of the model may be illustrated with a generic SC converter with 

two switching modes.  The converter contains p  capacitors, whose voltages are 

composed into a vector, v, and whose currents are composed into a vector, i.  The 

capacitors and switches are arranged to provide a static gain M .  The value of each 

capacitor is arranged in a diagonal matrix, C, where jjC is the capacitance of capacitor j .  

Based on the definition of a capacitor, 

 

 i = Cv  (5) 

 

On the input and output ports are voltage sources inV and outV , respectively, which are 

composed into a vector  
T

in outV Vu . 

In the first switching mode, KVL and KCL can be applied to find p  independent 

equations relating the capacitor voltages and currents, expressed in matrix form as 

 

 1 1 1E i + F v + G u 0  (6) 

 

Each row of 1E , 1
F , and 1

G represent the application of either KVL or KCL.  For KVL 

rows, entries in 1E  are resistances and entries in 1
F  and 1

G  are ±1 or zero as voltage 

drops are summed around a loop.  For KCL rows, entries in 1E  are ±1 or zero, and 

entries in 1
F  and 1

G  are all zero as currents are summed at a node.  If KVL and KCL 

have been applied correctly, then 1E  is invertible.  Solving for i yields 

 

 1 1   
1 1 1 1

i E F v E G u  (7) 

 

and substituting (5) gives 
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 1 1 1 1( ) ( )    
1 1 1 1

v = C E F v + C E G u  (8) 

 

To simplify symbolic representation, matrices 1
A  and 1B are used to consolidate the 

coefficient vectors, resulting in 

 

 1 1

1 1
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 

 

 

1 1

1 1 1

1 1 1

v A v B u

A C E F

B C E G

 (9) 

 

Similar analysis can find matrices 2
A  and 2

B  for the second switching mode.  A variety 

of other circuit analysis techniques may also be used to find a model in the same form as 

(9). 

In an SC converter, the switching modes alternate.  The switches are in mode 1 

for duration 1t  and mode 2 for duration 2t .  Typically, 1t  is equal to 1D T and 2t  is equal 

to 2D T , where T is the switching period and 1D and 2D  are duty ratios of the switching 

waveforms.  Without loss of generality, the converter is assumed to switch to mode 1 at 

0t  and to mode 2 at 1t t , and the cycle ends at 1 2t t t  . (Period T will be used later 

in the analysis.)  If the capacitor voltages are identified as states, the vector notation can 

be modified so that v is equal to x.  Thus, the state equations yield 
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(10) 

 

To complete the model, the  matrices can be calculated as follows: 
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Unfortunately, the symbolic formula involves matrix inversion of 1
A  and 2

A .  In many 

cases, such as a ladder SC converter, one of the two switching modes yields a singular A  

matrix.  Instead of the symbolic result, therefore, a numerical result is needed.  The 

conventional algorithm, given in [22], is implemented in the Matlab function c2d (and 

similarly in other mathematical programs).  For a given SC converter with known values 

and switching times, numerical values can be found for  and .  The complete sampled-

data model, incorporating both switching modes and the sampling period T , is 

 

 

      1k T kT kT  



 

2 1

2 1 2

x Φx Γu

Φ Φ Φ

Γ Φ Γ Γ

 (12) 

 

There are two uses for (12).  First, this discrete-time model can be used to study 

the dynamic characteristics of the SC converter by placing voltage sources on the input 

and output terminals.  For example, one might wish to determine how quickly voltages 

distribute among the capacitors.  Second, steady-state conditions for (12) can be used to 

find the equivalent resistance of the converter.  Recall that the key performance metric 

for a switched capacitor converter is this equivalent resistance. 

At steady-state, (( 1) )k Tx  is equal to ( )kTx .  With this assumption, (12) can be 

solved for x0, the equilibrium value of x at the beginning of each cycle: 

 

  0

-1
x = I -Φ Γu  (13) 

 

Here, I is the p p  identity matrix.  Thus, one can determine the value of x at the 

midpoint of the cycle (i.e., when the switching mode changes from mode 1 to mode 2): 

 

 1 1 0 1x = Φ x +Γ u  (14) 
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The designer identifies one capacitor, the i
th

 capacitor, that delivers all of the charge to 

the output.  For example, in a converter with a ladder topology, the last switching (flying) 

capacitor would be chosen.  The change in its voltage, multiplied by its capacitance, 

gives the charge it delivers, q .  This charge divided by time is output current, outi .  As a 

result, the equivalent resistance of an SC converter with a static gain of M can then be 

easily derived as follows: 

 

 

 1, 0,ii i i

out

in out
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q C x x
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 (15) 

 

2.2. MODEL DEVELOPMENT AND SIMULATION FOR A FOUR-STAGE SC 

CONVERTER 

To explore this new technique, an SC converter with a ladder topology was 

designed and tested.  Figure 2.1 shows a simplified schematic.  Each “switch” is actually 

two FDMS8460 MOSFETs in parallel, for an equivalent switch resistance of 3 m 

(denoted as Rsw below).  Each “capacitor” is actually eight TMK325BJ226MM-T ceramic 

capacitors from Nichicon (22 F, 25 V), for a total equivalent series resistance of 10 m 

(denoted as Rc below).  For a four-stage converter, which has a gain of M = 5, KVL and 

KCL yield matrices (16) through (21) below.  For other numbers of stages, the matrix 

structure is maintained; only the dimensions change. 
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Figure 2.1.  Four-stage ladder converter. 
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  
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G  (18) 
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  
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 

  
  
 

   

E
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 2

0 0

0 0

0 0

0 0

1 1

0 0

0 0

0 0

 
 
 
 
 
 
 
 
 
 
 
  

G  (21) 

 

The dimensions of the E, F, and G matrices are designated by the number of 

capacitors in the topology.  This topology has eight capacitors that shuttle charge to the 

output; thus, the E and F matrix dimensions are 8 8 , and the G matrices relating the 

input and output are8 2 .   Symbolic computation of the corresponding 1
A , 1B , 2

A , and 

2
B matrices results in several pages of output.  However, numerical computation is 

straightforward.  The  and  matrices can be computed for a given switching frequency 

with the Matlab function c2d.  Figure 2.2 shows the PLECS
2
 schematic constructed for 

the four-stage ladder configuration.  Simulation results for the equivalent resistance are 

compared to the analytical result in Fig. 2.3 for a switch duty cycle of 45%.  The 

converter was simulated using PLECS, a blockset for Simulink, and it incorporated the 

same component parameters and switch duty cycle included in the model.  As in the 

model, the voltage sources were placed on the input and output terminals of the 

converter.  The input voltage was set at 5V and the output voltage at 24V. 

 

 

                                                 

2
 PLECS is a registered trademark of Plexim GmbH. 
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Figure 2.2.  Simulation model for a four-stage ladder converter. 
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Figure 2.3.  Model and simulation comparison of four-stage ladder converter shown in 

Figure 2.1. 

 

 

As shown in Fig. 2.3 above, the equivalent resistance predicted by the model 

produced the expected results.  At lower switching frequencies, the equivalent resistance 

is dominated by the impedance of the capacitors, following the slow switching limit 

(SSL).  At higher switching frequencies, it is dominated by the resistance of the 

MOSFETs, following the fast switching limit (FSL).  Identical simulation data confirms 

these results. 

For the case of a single-stage ladder converter ( 2M  ), a voltage doubler with 

only one switching capacitor, this new method also agrees with the technique previously 

reported in [12]. 

 

2.3. EXPERIMENTAL PROCEDURE AND DATA 

Experimental data was obtained through bench testing of the four-stage converter 

shown in Fig. 2.1.  The experimental setup for bench testing is shown in Figures 2.4 and 

2.5.  The PCB used for testing was designed as a nine-stage ladder converter but was 
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assembled as a four-stage ladder converter.  Once the ladder circuit was constructed, as 

shown in Fig. 2.6, two Fluke 8845A high-precision digital multimeters where placed on 

the input and output terminals to measure both voltage and current.  A BK Precision 8502 

electronic load placed on the output simulated a constant current load.  At a given 

switching frequency, the load current was varied between 50 mA and 200 mA.  The slope 

of output voltage versus current over the range tested revealed the equivalent resistance at 

that frequency.  This procedure was repeated for switching frequencies between 20 kHz 

and 160 kHz due to switching restrictions explained below.  The data was compared to 

the simulation and model data gathered previously.  As expected, the results were 

consistent with both; they are in Fig. 2.7 below.  The discrepancy at approximately 50 

kHz is discussed below. 
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Figure 2.4.  Schematic of experimental setup. 

 

 



 

 

 

17 

 

 

Figure 2.5.  Physical bench setup for experimentation. 

 

 

 

 

Figure 2.6.  PCB assembled as four-stage ladder converter. 
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Figure 2.7.  Model comparison of four-stage ladder converter. 

 

 

 Also included below are the expected and measured state variable waveforms of 

the last switching capacitor’s voltage.  This capacitor functions as the primary charge 

distributor to the load and, as seen in Figures 2.8 and 2.9, the magnitude of the capacitor 

voltage swing is similar to that observed in the simulation, although the shape is different 

due to parasitic inductances.   
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Figure 2.8.  Expected voltage waveform of last switching capacitor. 

 

 

 

 

Figure 2.9.  Measured voltage waveform of last switching capacitor. 
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Experimental data was also collected for a two-stage ladder converter, 

where 3M  , to ensure accuracy of the model.  The same derivation procedure conducted 

for the four-stage converter yielded the following matrices for the two-stage converter: 

 

 

sw c sw

sw c sw c

1

c c

(2R R ) 0 R 0

R R (2R R ) 0

0 R 0 R

0 1 1 1

E

  
 

 
 
  
 

 

 (22) 

 

 1

1 0 0 0

0 1 1 0

0 1 0 1

0 0 0 0

F

 
 


 
  
 
 

 (23) 

 

 1

0 0

0 0

1 1

0 0

G

 
 
 
 
 
 

 (24) 

 

 

sw c c sw

sw sw c c

2

c c

(2R R ) R R 0

R 0 (2R R ) R

0 R 0 R

1 1 1 1

  
 

 
 
  
 

  

E  (25) 

 

 2

1 1 0 0

0 0 1 1

0 1 0 1

0 0 0 0

F

 
 


 
  
 
 

 (26) 
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 2

0 0

0 0

1 1

0 0

G

 
 
 
 
 
 

. (27) 

 

Component values for this converter are identical to those of the four-stage 

converter, except that each “capacitor” was replaced with four rather than eight 

TMK325BJ226MM-T ceramic capacitors from Nichicon (22 F, 25 V).  The same nine-

stage PCB was also used, but assembled as a two-stage converter.  Figure 2.10 

summarizes the resulting simulation and experimental data.  Again, the data match the 

model prediction as expected.  The discrepancy at approximately 70 kHz is discussed 

below. 

 

 

 

 

Figure 2.10.  Model comparison of two-stage ladder converter. 
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2.4. ANALYSIS OF RESULTS 

The results of both the experiment and the simulation verified the accuracy of the 

proposed model.  Some practical effects must be considered when implementing the 

model.  For instance, comparison of the experimental data with those of the two-stage 

converter model in Figure 2.10 reveals slight discrepancies at 35 kHz and 70 kHz, where 

the experimental data is slightly higher than those of the model.  This discrepancy is 

explained by the inherent inductance of the PCB board due to its design.  This inductance 

creates a resonant effect that interacts with the capacitors, increasing the resistance at 

harmonics of 35 kHz.  This resonant effect becomes more apparent as the capacitance 

varies.  Figure 2.11 shows the resonant frequency was shifted down by 1 2 when the 

capacitance is doubled, and up by 2 when the capacitance is halved.  This same change 

is also apparent when comparing the experimental data for the two-stage and four-stage 

converters.  The four-stage converter had double the capacitance of the two-stage 

converter; therefore, the resonant frequency of the four-stage converter shifted down 

by 2 , from 75 kHz to 50 kHz.  Also as expected, when the capacitance increased, 

equivalent resistance decreased, because the SSL curve was dominated by the capacitor 

impedance.  The inherent board inductance causing the resonance was estimated as 30 

nH.  
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Figure 2.11.  Capacitance effect on resonant frequency for two-stage ladder converter. 

 

 

Experimental testing was also limited to switching frequencies of less than 160 

kHz due to the limitations of the gate drivers selected to switch the MOSFETs.  When 

switching at frequencies above 100 kHz, the switching waveforms were attenuated and 

had equivalent duty cycles of less than 45%, causing the resistance of the converter to 

increase sharply.  This effect can be seen in the Figures 2.12 and 2.13 below, taken from 

a Tektronix TPS 2024 oscilloscope. 
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Figure 2.12.  MOSFET gate switching waveform at 50 kHz. 

 

 

 

 

Figure 2.13.  MOSFET gate switching waveform at 150 kHz. 
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The voltage coefficient of the capacitors was found to have a major impact on 

experimental converter performance.  Initially, the experimental data corresponded to a 

higher resistance than expected based on the model and simulations.  Often overlooked in 

power converter design is the variation of capacitance with the applied voltage [23].  This 

problem is specific to ceramic capacitors; it is worst for Z5U types and best for C0G 

(NPO) types.  To achieve the desired capacitance, X7R types were needed.  After closer 

inspection of the component data sheet [24], capacitance was found to decrease by up to 

25% with an applied DC voltage of 5V, as shown in Figure 2.14.  After also accounting 

for the 20% tolerance cited in the datasheet [15] (confirmed as 15% with an HP4284A 

precision LCR meter), the actual working capacitance during operation was found to be 

less than 60% of its nominal value. Once these corrections were included in the model, 

the experimental and simulation data matched closely.  Figure 2.15 shows the impact of 

the capacitor’s voltage coefficient on the equivalent resistance of the converter. 

 

 

 

 

Figure 2.14.  DC voltage characteristics of TMK 325BJ226MM-T ceramic capacitors 

[24]. 
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Figure 2.15.  Equivalent resistance variation due to capacitor voltage coefficient. 

 

 

2.5. EXTENSION OF MODEL TO OTHER SC CONVERTER TOPOLOGIES 

AND MODES 

To demonstrate the model’s flexibility, it was applied to another topology, the 

Fibonacci SC converter in Figure 2.16.  The input voltage inV was arbitrarily set at 5V and 

the topology gain, based on the Fibonacci sequence, was 5.  The model was generated by 

again applying KVL and KCL for each switching mode, resulting in matrices (28) to 

(33). 
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Figure 2.16.  Fibonacci SC converter with 5M  . 

 

 

 

sw c sw
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E

  
 
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 
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 1

1 0 0

1 1 1

0 0 0

F

 
 

 
 
  

 (29) 

 

 1

1 0

0 0

0 0

G

 
 


 
  

 (30) 
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1 1 1

E
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 
  

 (31) 

 

 2

1 1 0

0 1 1

0 0 0

F

 
 


 
  

 (32) 
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2

1 0

0 1

0 0

G

 
 

 
 
  

 (33) 

 

The same component values in the two-stage ladder converter were also used in 

the model and simulation for this converter.  For switching waveforms with a duty cycle 

of 45%, the model and simulation results are shown in Figure 2.17.  The identical model 

and simulation data show the model’s versatility in its application to various converter 

topologies.  

 

 

 

 

Figure 2.17.  Model and simulation results of Fibonacci converter. 

 

 

SC converters are becoming increasingly complex as researchers seek to improve 

output voltage regulation, giving rise to many different switching modes.  This new 

model can also be extended to include SC converters with more than two switching 
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modes.  As seen in [5], dithering can be used to switch from one conversion ratio, nM , to 

another in SC converters based on extended binary or generic fractional number.  The 

flexibility to change the conversion ratio as necessary allows for maximum converter 

efficiency over a range of outputs, especially when the resolution of the conversion ratio 

is high.  In the method described in [16], codes are generated for multiple conversion 

ratios using a spawning technique.  If n  is equal to 3 and the conversion ratio is 3/8, five 

different codes can be spawned for that conversion ratio, each representing a different 

converter topology and switching mode.  The dependence of the conversion ratio on the 

converter topology allows its control by switching between different switching modes, as 

shown in Figure 2.18.  This technique can be incorporated into the proposed model.  For 

example, if five switching modes were included by the use of dithering, then the Γ and 

matrices would simply be expanded to include five terms resulting in 

 

 5 4 3 2 1 5 4 3 2 5 4 3 5 4 5Γ Φ Φ Φ Φ Γ Φ Φ Φ Γ Φ Φ Γ Φ Γ Γ      (34) 

 

and 

 

 5 4 3 2 1Φ Φ Φ Φ Φ Φ . (35) 

 

The E, F, and G matrices would all be constructed the same way by applying KVL and 

KCL for each of the five switching modes, and the model procedure would not change. 
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Figure 2.18.  Visualization of spawning technique.  

 

 

2.6. DESIGN PROCEDURE USING PROPOSED MODEL 

The key performance metric of an SC converter is the equivalent resistance at the 

desired switching frequency.  A typical design flow using the proposed model would 

begin with selection of the appropriate SC converter topology based on the particular 

application.  The work presented in [13] details the performance characteristics of many 

SC converter topologies.  After the appropriate topology and dc gain requirements are 

selected, a basic SC converter design is created incorporating p  capacitors, MOSFET 

on-state resistances, and capacitor ESR.  KVL and KCL is then applied to the circuit for 

each switching mode to find models in matrix form (6).  These are converted to the 

dynamic form of (9) and used to determine the converter’s equivalent resistance.  Once 

the equivalent resistance is modeled generically, the designer can change component 

values to achieve the desired equivalent resistance at a particular frequency.  The ideal 

operating point for an SC converter is near the inflection point of the resistance curve, 

shown in Figure 2.19.  This operating point is selected to achieve the lowest possible 

equivalent resistance while minimizing switching losses.  To achieve maximum 

efficiency, design iterations using the proposed model can be done to achieve a particular 

operating point.  In general, an SC converter with large capacitance and low MOSFET 

resistance will achieve the highest efficiency.  

The iterative method of determining component values using the proposed model 

starts with determination of any limiting factors, such as switching frequency, 



 

 

 

31 

capacitance, or MOSFET on-state resistance.  The designer can then iteratively change 

component values to achieve a desired operating point.  For example, if the maximum 

switching frequency turns out to be a limiting factor, then the designer can increase 

capacitance to move the ideal operating point to a lower switching frequency.  If the 

equivalent resistance is still too high, then lowering MOSFET resistance will shift the 

operating point to a lower resistance.  This can be accomplished either by paralleling 

existing MOSFETs or by finding a device with lower on-state resistance.  These 

iterations continue until the desired operating point is met.  Throughout this process, the 

structure of the model is unchanged, so the computational burden is low. 

 

 

 

 

Figure 2.19.  Preferred operating point of an SC converter.  
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3. AUTOMATED SWITCHED-CAPACITOR CONVERTER MODEL 

GENERATOR 

3.1. GENERATING NETLISTS 

Automating the model developed in Section 2 involves automating the 

construction of the E, F, and G matrices.  Before matrix construction begins, branch data 

for the SC converter is compiled in a user-defined netlist. The procedure used to generate 

a netlist can be illustrated using the SC circuit shown in Fig. 3.1.  This ladder topology 

with a static gain of 2M   doubles the input voltage by alternating switching states and 

shuttling charge to the output.  Each resistor indicates the resistance of a closed “switch” 

(typically a MOSFET).  

 

 

Vin
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Vout
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Figure 3.1.  One-stage ladder converter during its first switching state. 

 

 

The circuit, shown during its first switching state, has 7 nodes, 8 branches, and 2 

capacitors.  Let n  denote the number of nodes, b  denote the number of branches, and p  

denote the number of capacitors.  The netlist matrix, N , contains the value of each 

branch element and the nodes to which the branch element is incident.  Nodes must be 

assigned at the individual branch level so that every circuit element has one node incident 
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to its positive terminal and one node incident to its negative terminal.  The netlist matrix 

can be partitioned as follows: 

 

 
2,3

2,3
ˆ

p

b p



 

 
  
  

N
N

N
, (36) 

 

where N  contains source and capacitor branches, N̂  contains parasitic branches, and the 

subscripts denote the dimensions of the partitions.  Each row of the matrix represents a 

branch element; the first entry of each row represents the node connected to the positive 

terminal of the branch element, and the second entry represents the node connected to the 

negative terminal of the branch element.  The third column stores the value of each 

branch element.  For each branch, the positive node is assumed to correspond to current 

entering the node.  To facilitate computer implementation, the netlist matrix shown in 

(36) must be filled in the following order: input source branch, output source branch, 

capacitor branches, and parasitic branches.  If neither an input nor an output voltage 

source is connected to the circuit during a particular switching state, zeros would be 

entered for all values in the row corresponding to that source.  When filling the netlist 

with the capacitor branches, the designer must identify the capacitor that delivers all the 

charge to the output and enter that branch last.  Simple subroutines can be written to 

comply with other netlist formats, such as those in SPICE programs, and thus to ensure 

compatibility with them.  For a ladder topology, the last switching capacitor delivers 

charge to the output; thus, for the example SC circuit in Fig. 3.1, the first switching state 

netlist matrix is: 

 

 

T

in out 1 2 SW1 C1 SW2 C2

2 7 7 5 3 4 2 6

1 1 6 4 1 3 5 2

V V C C R R R R

 
 


 
  

N . (37) 
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3.2. LOOP MATRIX DERIVATION 

The node incident matrix Aa is constructed in conjunction with the netlist matrix.  

Each column corresponds to a branch and contains exactly two nonzero elements, one 

equal to 1  for its positive terminal, the other equal to 1  for its negative terminal.  Each 

row corresponds to a node, where if the positive (negative) terminal of the j
th

 branch 

element is connected to node i , then 1ija  ( 1ija   ).  Following this convention, the 

node incident matrix for the example SC converter in Fig. 3.1 is 

 

 

1 1 0 0 1 0 0 0

1 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1

0 1 1 0 0 0 0 0

   
 


 
 
 

  
 
 

 
 
 

a
A . (38) 

 

Next, if bri is the vector of branch currents, then the i
th

 element of a br
A i  is the sum of 

currents leaving node i ; this sum represents the KCL equation for node i .  This equation 

can then be written as 

 

 a brA i 0 . (39) 

 

Any matrix aA that is obtained by adding or subtracting one row from another in a
A  also 

satisfies (39); thus, after performing row operations and possibly reordering the columns 

(or branches), aA  can be written in row echelon form as 

 

 n 1,n 1 n 1,b n 1

1,n 1 1,b n 1

ˆ
    

  

 
  
  

a

I A
A

0 0
. (40) 
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The null row in aA  is created from an inherent property of the a
A  matrix.  Since each 

column of a
A  contains exactly one 1 and one 1 , deleting a single row results in no loss 

of information because the row can be reconstructed from other rows in a
A .  For the 

example SC converter in Fig. 3.1,  

 

 

1 0 0 0 0 0 1 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0

 
 
 
 
 

  
 
 

 
 
 

a
A  (41) 

 

and 

 

 

1 1

0 1

0 1ˆ
1 0

1 0

1 0

 
 
 
 

  
 
 
 
 

A . (42) 

 

The A  matrix is defined by deleting the null row in (40).  Based on (39), 

 

 brAi 0 , (43) 

 

 where the branch currents in bri may have been reordered due to row reducing operations 

performed on a
A .  For the example SC converter, re-ordering was not necessary.  The 

branch currents can then be partitioned into 
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 ˆ  
    

 

y

x

i
I A 0

i
 (44) 

 

where xi  is a vector of independent branch currents and the currents in 
y

i  are dependent, 

meaning that they can be calculated from xi  using KCL.  By expanding (44) and 

rearranging, 
y

i  becomes 

 

 ˆ y xi Ai , (45) 

 

and a new expression for the branch currents written as 

 

 
ˆ  

    
   

y T

br x b x

x

i -A
i i B i

i I
. (46) 

 

The T

b
B matrix relates the branch currents bri to the independent currents in xi . By 

observing Fig. 3.1, it can then be verified that 

 

 
b br

B v 0 , (47) 

 

where brv is the vector of branch voltages.  Substituting (42) into (46), b
B  for the 

example system is  

 

 
1 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

 
  

 
bB . (48) 

 

Each row of 
b br

B v 0  represents the KVL equations applied to the two smaller loops of 

the example SC converter in Fig. 3.1. Thus, b
B represents the basic loop matrix [18, 25]. 

 

, 
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3.3. MATRIX GENERATION FOR SC CONVERTER MODEL 

After the basic loop matrix is developed, the state matrices for the model can be 

constructed algorithmically.  The two-stage SC converter shown in Fig. 3.2 better 

illustrates matrix generation. 

 

 

Vin

C2

Vout

RSW1 RSW2

RC2

C1RC1

1

3

2

4 5

6 7
1

+               -

+               -

+               -

+          -

+          -+               -

C4RC4 8 9+               - +          -

RSW3

C3RC3

10 11

+               -

+          -+               -

 

 

Figure 3.2.  Two-stage ladder converter during its first switching state. 

 

 

This converter has 11 nodes ( 11n  ), 13 branches ( 13b  ), 4 capacitors ( 4p  ), 

and a static gain of 3 ( 3M  ).  The associated netlist matrix is 

 

1 2 3 4 1 1 2 2 3 3 4

2 11 7 5 11 9 3 6 2 4 7 10 8

1 1 6 4 10 8 1 2 5 3 9 7 5

T

in out SW C SW C SW C CV V C C C C R R R R R R R

 
 


 
  

N . (49) 

 

During row reduction of a
A to aA , branches corresponding to RC2 (column 10 of a

A ) 

and RSW3 (column 11 of a
A ) switch places so that column 10 of b

B  corresponds to 

branch RSW3 and column 11 corresponds to branch RC2.  Any column swapping 

performed during this step must also be reflected in N to ensure proper branch 
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assignment.  If column i  and column j  of a
A

 
are swapped during row reduction, then a 

new netlist matrix, *
N , must be created by swapping row i  and row j  of N.  

Recall from Section 2, KVL and KCL equations can be applied to find 

p independent equations relating voltages and currents, expressed in matrix form as 

shown in (6).  The value of each capacitor is arranged in a diagonal matrix, C, where Cjj 

is the capacitance of capacitor j.  Standard state equations can be written in the form 

shown in (9), where the state variables are the capacitor voltages.  Therefore, to construct 

the state model quickly and accurately, the E, F, and G matrices must be developed 

algorithmically. 

For each SC converter, there are 1b n   KVL equations and 1p n b    KCL 

equations.  The F and G matrices can be developed directly from the first 2p   columns 

of b
B .  In partitioned form, 

 

 1,2 1,
ˆ ˆ ˆ

b n b n p   
 
 bB G F B  (50) 

 

where B̂ is the parasitic loop matrix.  For the example SC converter in Fig. 3.2, 

 

 

1 0 0 1 0 0 1 0 1 0 1 0 0

1 1 1 0 1 0 0 1 0 0 0 1 0

0 0 1 0 0 1 0 1 1 1 0 0 1

 
 

 
 
    

bB . (51) 

 

The F and G matrices are defined as 

 

 
( 1),

ˆ

p b n p  

 
  
  

F
F

0
 (52) 

 

and 
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( 1),2

ˆ

p b n  

 
  
  

G
G

0
. (53) 

 

Thus, based on equations (50)-(53), 

 

 

0 1 0 0

1 0 1 0

1 0 0 1

0 0 0 0

 
 
 
 
 
 

F  (54) 

 

and 

 

 

1 0

1 1

0 0

0 0

 
 


 
 
 
 

G . (55) 

 

 The E matrix, however, cannot be developed directly due to the relationship of 

the capacitor currents.  First, let the E matrix be defined as 

 

 1,

( 1),

ˆ
b n p

p b n p

 

  

 
  
  

E
E

K
, (56) 

 

where Ê represents the parasitic branches included in each KVL loop and K represents 

the KCL equations.  For the model developed in Section 2, only capacitor currents are 

used for construction of the E matrix, but the T

b
B matrix relates all branch currents to the 

independent branch currents, which may not necessarily be capacitor currents.  Thus, 

another matrix is created to relate each branch to the appropriate capacitor currents.  The 

capacitor current matrix capi , size p b , is created by comparing the rows of T

b
B that 

relate the capacitor currents to the independent branch currents with the rows that relate 
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the rest of the branch currents to the independent branch currents.  Each row of 
capi  

corresponds to a capacitor current and contains either a 1  (if the branch and capacitor 

currents are the same), a 1  (if the branch and capacitor currents are in opposite 

directions), or 0 (if the branch currents cannot be related by just one capacitor current).  

For example, if the current in the j
th

 branch is the same as the current in the i
th

 capacitor 

(i.e., if row j  of T

b
B is identical to the row in T

b
B corresponding to the i

th
 capacitor), then 

( , )i j
cap

i  is equal to 1.  Similarly, if the current in the j
th

 branch is the negative of the 

current in the i
th

 capacitor (i.e., if row j of T

b
B is equal to the row in T

b
B corresponding to 

the i
th

 capacitor multiplied by 1 ), then
 

( , )i j
cap

i  is equal to 1 .  The highlighting in 

equations (57) and (58) illustrate the development of capi  from T

b
B  for the converter in 

Fig. 3.2. 

 

 

1 1 0

0 1 0

0 1 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 1

1 0 1

0 0 1

1 0 0

0 1 0

0 0 1

 
 


 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

T

bB  (57) 

 

 

0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 0 1

 
 
 
 
 
 

capi  (58) 

 

Capacitor 

Branches 
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The 
capi  matrix can be verified by examining Fig. 3.2.  As shown in (58), 

1 1CR Ci i , 

1 2 2SW CR R Ci i i  , 
3 3C outR V Ci i i   , and 

3 4 4SW CR R Ci i i  .  The ninth column in 
capi  

corresponding to branch RSW2 contains only zeros, indicating that the current through that 

branch cannot be expressed as a single capacitor current. 

 After determining which branch currents are equal to capacitor currents, it is 

possible to begin filling the Ê matrix.  Parasitic branches with branch currents that are 

equal to a capacitor current (or the negative of a capacitor current) can be stored in the Ê  

matrix directly.  Disregarding the source and capacitor branches, multiplying B̂  with the 

third column of N̂  element by element, and matching the resulting values to a capacitor 

current using 
capi  places the parasitic resistance values in Ê .  At this point, the ˆ 

E  matrix 

for the example circuit in Fig. 3.2 is 

 

 

0 0 0

ˆ 0 0

0 0

SW C

C C

C SW C

R R

R R

R R R



 
 


 
   

E , (59) 

 

where the asterisk denotes that the Ê  is incomplete.  Parasitic branches whose branch 

currents are a function of multiple capacitor currents, in this case branch RSW2, are not yet 

included.  These branches must be matched with KCL equations relating their branch 

currents to the capacitor currents.   

 Generating the required KCL equations requires finding the rows of  T

b
B  that 

relate the capacitor currents to independent branch currents that are also capacitor 

currents.  For the converter in Fig. 3.2, equation (46) yields 
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2

3

4

1 1 0

0 1 0

0 1 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 1

1 0 1

0 0 1

1 0 0

0 1 0

0 0 1

C

C

C

R

R

R

i

i

i

 
 


 
 
 
 
 
   
   
   
       
 
 
 
 
 
 
 
 

T

b xB i . (60) 

 

Rows 3 through 6 of (60) represent the currents through capacitors C1 through C4, 

respectively.  In this case, all currents in ix are capacitor currents since, as established 

from (58), 
1 1CR Ci i ,

2 2CR Ci i , and 
3 3CR Ci i .  Thus, the third row of (60) yields the KCL 

relationship
1 3 4C C Ci i i  .  For the converter in Fig. 3.2, there are three independent KVL 

equations; therefore, just one KCL equation is needed to satisfy the p  equations required 

in the model.  Adding the KCL relationship described above yields 

 

  1 0 1 1  K . (61) 

 

From (60), the current in branch RSW2, corresponding to row nine of T

b
B , is related to the 

capacitor currents by 
2 2 4SWR C Ci i i  ; thus, from (51), Rsw2 is added to the first loop and 

subtracted from the third.  Adding these parasitic branches to Ê  yields 

 

 

0 2 0

ˆ 0 0

0 2

SW C SW

C C

C SW SW C

R R R

R R

R R R R

  
 


 
    

E . (62) 
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 Comparison of (61) and (62) with (56) yields, 

 

 

0 2 0

0 0

0 2

1 0 1 1

SW C SW

C C

C SW SW C

R R R

R R

R R R R

  
 
 
   
 
  

E . (63) 

 

3.4. COMPUTER IMPLEMENTATION 

The algorithm proposed here was implemented using Matlab.  Figure 3.3 shows 

the general structure of the algorithm.  Bold boxes represent user-entered input quantites, 

and the dotted box represents the state model generator algorithm.  Input quantities 

include the circuit netlist for each switching state, duty ratios for each switching state, 

and the converter’s static gain value, M .  Only the circuit netlists are used directly to 

generate the state matrix because they are needed to generate the node incidence matrix, 

Aa. Row reduction of Aa was accomplished through the Matlab command rref(Aa)so 

that no extra programming was required; however, if computer implementation relies on 

other software, algorithms for performing row reduction are described in [25]. 

Calculation of the remaining matrices in the state model generator requires only simple 

matrix operations. 
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Figure 3.3.  Block diagram of algorithm implementation. 

 

 

 Once the E, F, and G matrices for each switching state are calculated, they are 

used in the SC converter model developed in Section 2.  The Φ and Γ matrices can be 

computed for a given switching frequency with the Matlab function c2d.  Everything in 

the state model generator and the model is solved numerically. 
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3.5. ALGORITHM VERIFICATION 

To demonstrate the validity of the proposed algorithm, simulation and 

experimental data from Sections 2.3 and 2.5 were compared to the algorithm results.  The 

two-stage ladder converter analyzed above is redrawn more generically in Fig. 3.4 with 

ideal switches and their corresponding switching states.  When a switch is on, it is 

represented by a switching resistor, RSW. 

 

 

Vin

C2

Vout

RC2

C1RC1

1

3

2

4 5

6 7
1

C4RC4 8 9

C3RC3

10 11

1 12 2 21

 

 

Figure 3.4.  Two-stage ladder converter. 

 

 

Each “switch” is actually two FDMS8460 MOSFETs in parallel, for an equivalent 

switch resistance of 3 mΩ (denoted as RSW below).  Each “capacitor” is actually four 

TMK325BJ226MM-T ceramic capacitors from Nichicon (22 µF, 25 V) in parallel, for a 

total equivalent series resistance (ESR) of 10 mΩ (denoted as RC below) and capacitance 

of 88 µF.  The duty ratios for each switching state were 45%, and the input voltage was 

set to 10 V.  The resultant E, F, and G matrices generated manually and from the 

proposed algorithm (barred matrices) for each switching state are 
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0 2 0

0 2

0 0

1 0 1 1

SW C SW

C SW SW C

C C

R R R

R R R R

R R

  
 
  
 
 
 

 

1E , (64) 

 

 

0 1 0 0

1 0 0 1

1 0 1 0

0 0 0 0

 
 

 
 
 
 

1F , (65) 

 

 

1 0

0 0

1 1

0 0

 
 
 
 
 
 

1G , (66) 

 

 

(2 ) 0

0 (2 )

0 0

1 1 1 1

SW c c SW

SW SW c c

c c

R R R R

R R R R

R R

  
 

 
 
  
 

  

2E , (67) 

 

 

1 1 0 0

0 0 1 1

0 1 0 1

0 0 0 0

 
 


 
  
 
 

2F , (68) 

 

and 

 

 

0 0

0 0

1 1

0 0

 
 
 
 
 
 

2G . (69) 
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For the first switching state, algorithm values for 
1E , 

1F , and 
1G were derived above in 

(63), (54), and (55), respectively.  For the second switching state, 

 

 2

(2 ) 0

0 0

0 (2 )

1 1 1 1

C SW C SW

C C

C SW SW C

R R R R

R R

R R R R

   
 
 
  
 
  

E , (70) 

 

 2

1 1 0 0

1 0 1 0

1 0 0 1

0 0 0 0

 
 
 
 
 
 

F , (71) 

 

and 

 

 2

0 0

1 1

1 1

0 0

 
 


 
 
 
 

G . (72) 

 

A comparison of the matrices demonstrates that the algorithm generates matrices that 

differ from those calculated manually.  These are due to differences in the KVL loops 

selected for each switching stage.  The manner in which the KVL loops are selected is 

irrelevant as long as all loops are independent of each other.  Furthermore, the order in 

which the loops are calculated and the selection of KCL equations also changes the 

matrices, but does not change the final result.  Figure 3.5 shows the loops selected during 

manual calculations (solid lines) and those selected by the algorithm (dashed lines) 

during the second switching state. 
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Figure 3.5.  KVL loops for two-stage ladder converter during its second switching state. 

 

 

 Although the matrices may look different, they are fundamentally equivalent, as 

demonstrated in Fig. 3.6.  Each set of matrices was used with the converter model, 

resulting in the same equivalent resistance curve.   

The experimental data collected closely correlates with the algorithm and the 

manual calculations.  Again, the slight discrepancies at 35 kHz and 70 kHz, where the 

experimental data is slightly higher than those of the model, is explained by the inherent 

inductance of the PCB board due to its design.  This inductance creates a resonant effect 

that interacts with the capacitors, increasing the resistance at harmonics of 35 kHz.  The 

inherent board inductance causing the resonance was estimated to be 30 nH. 
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Figure 3.6.  Comparison of algorithm with experimental and manually calculated data for 

the two-stage ladder converter. 

 

 

 The state model generator was designed to work with other SC converter 

topologies as well.  The Fibonacci SC converter in Fig. 3.7 was analyzed to demonstrate 

the flexibility of the algorithm.     
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Figure 3.7.  Fibonacci converter with gain of 5. 
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The input voltage Vin was arbitrarily set to 5V and the topology gain, based on the 

Fibonacci sequence, is 5.  Component values are identical to those of the two-stage ladder 

converter, and the duty ratios for each switching state were 45%.  The E, F, and G 

matrices resulting from manual calculations and the state model generator are 

summarized in Table 3.1 below. 

 

 

Table 3.1.  Comparison of coefficient matrices generated manually and by the algorithm 

 

Manually Calculated Matrices Algorithm Calculated Matrices 

 

2 0

( ) 0 3 2

0 1 1

SW C SW

SW C SW C

R R R

R R R R

  
 

   
 
  

1E  

1 0 0

1 1 1

0 0 0

 
 

  
 
  

1F
 

1 0

0 0

0 0

 
 


 
  

1G
 

 

 

1

2 0

3 2

0 1 1

SW C SW

SW SW SW C

R R R

R R R R

  
 

  
 
  

E  

1

1 0 0

0 1 1

0 0 0

 
 

 
 
  

F
 

1

1 0

1 0

0 0

 
 

 
 
  

G  

 

 

2

(2 ) 0

0 ( ) (2 )

1 1 1

SW C SW C

SW C SW C

R R R R

R R R R

   
 

    
 
   

E

2

1 1 0

0 1 1

0 0 0
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Again, the matrices generated by the algorithm differ slightly from those generated 

manually due to the different KVL loops selected by each.  Although experimental data 

were not collected for the Fibonacci converter, simulation data were. The converter was 

again simulated using PLECS, incorporating the same component parameters and switch 

duty cycle included in the model and algorithm.  As in the model, the voltage sources 

were placed on the input and output terminals of the converter.  The input voltage was set 

at 5V and the output voltage at 24V.  The PLECS simulation setup is shown in Fig. 3.8, 

and the data collected were compared to the results of manual calculations and the state 

model generator.  Figure 3.9 reveals identical results for all three, validating the 

effectiveness of the SC model generator for the Fibonacci topology. 

 

 

 

 

Figure 3.8.  PLECS simulation model for Fibonacci converter. 
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Figure 3.9.  Comparison of algorithm to simulated and manually calculated data for the 

Fibonacci converter. 

 



 

 

 

53 

4. CONCLUSIONS 

4.1. SUMMARY OF RESULTS 

The work outlined in the previous sections derived a new analysis technique for 

modeling the equivalent resistance of complex SC converters and proposed a method of 

automating the model’s development.  It verified both methods with simulations and 

experimentation on a variety of SC converter topologies. 

The proposed modeling technique is an analysis and design method superior to 

previous methods.  The method in [11-12] was simple and direct, but it applied only to 

simple voltage doublers.  The new model can analyze both simple and complex SC 

circuits with greater detail.  The method outlined in [13, 15] had the advantage of quickly 

modeling regular converter structures operating at very low or very high frequencies; for 

converters with unusual structures that operate at intermediate frequencies, however, it 

does not provide results directly.  The model proposed here can accurately model all 

complex converter designs at all frequencies where inductance effects are minimal.  The 

method proposed in [16] relies on well known energy and power principles and is capable 

of analyzing simple, hard and soft switched SC converters, but it is limited to converters 

operating with just two switching modes.  The method presented here can incorporate 

converters with any number of switching modes.  Also, the design method in [10] 

focused on a particular application, and the analysis method in [26] is useful for results in 

steady state without consideration of parasitics.  This new model is effective for modeling 

and designing SC converters of any topology and at any power level while also 

incorporating parasitics.  For the degenerate case of a single capacitor, the new method 

agrees with a previously published method.  This method is also useful when extended to 

complex switching techniques.  Furthermore, the proposed model replicates the 

experimental, simulation, and previously published data while offering a superior means 

to analyze SC converters.  With the ability to quickly calculate the equivalent resistance 

of many complex converters, this model is a powerful tool for SC converter design.  

A new state generation algorithm was also introduced to automate the 

development of the SC converter model.  Other methods of automating circuit analysis, 

such as MNA [19-20] and STF [21], are effective for solving a circuit’s VI 
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characteristics, but are not suitable for state model generation.  Furthermore, the state 

model generator outlined in [18] is difficult to integrate with the SC converter model 

because difference equations are not implemented at the individual branch level.  The 

state model generator outlined here is better suited for integration with the model because 

circuit representation is done at the individual branch level.  For each switching state, a 

user-defined netlist is used to generate the node incidence matrix.  The node incidence 

matrix is row reduced and partitioned to create the basic loop matrix.  The loop matrix is 

used to relate capacitor currents to independent branch currents so that state model 

matrices can be developed.  This algorithm has been verified with simulations and 

experimentation for multiple switching topologies, demonstrating speed and accuracy in 

implementing the model. 

Together, the new SC converter modeling technique and the automated state 

model generator algorithm improve SC converter design capabilities.  The new modeling 

technique improves the accuracy of modeling the output impedance of an SC converter 

and the state model generator decreases the time spent on converter design.  Combined, 

the result is a new valuable SC converter design tool. 

 

4.2. EXTENSIONS 

Although the automated state model generator algorithm enables automation of 

the SC converter model, further attention can improve its functionality.  First, work could 

be done to reduce the amount of Matlab code required.  The Matlab code for the state 

model generator, shown in Appendix B, is copied twice to calculate the state coefficient 

matrices for each switching state; however, if the code was modularized, just one set of 

code would be needed for all switching states.  This feature would be of particular 

interest when considering SC converters with more than two switching states.  If an SC 

converter with five switching states was being modeled, then the code would need to be 

copied five times, increasing the amount of code for automating the model substantially. 

Integrating netlist compatibility with other circuit analysis software, such as 

PSPICE, is another addition worth mentioning.  The capability to import text files into 

Matlab would be required and code would need to be written to integrate netlists 
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generated from other programs.  This addition would facilitate netlist generation by 

eliminating manual construction. 

Finally, verification testing should be done on cascaded SC converters.  

Theoretically, the state model generator would work as long as the correct netlist is 

created, but further testing is needed to ensure accuracy.   
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PRINTED CIRCUIT BOARD DESIGN 
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This appendix includes the schematics and board layouts of the printed circuit 

boards described in Section 2.3.  For clarity, the schematic diagram is broken into three 

parts and shown in Figures A.1 through A.3.  The physical board layout, pictured in Fig. 

2.6, is broken into two parts to show the top and bottom layers of the board separately.  

The board layout for the top layer is shown in Fig. A.4 and the board layout for the 

bottom layer is shown in Fig. A.5.  The dashed polygons in the board layouts represent 

solder planes. 
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Figure A.1.  Sheet one of printed circuit board schematic. 
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Figure A.2.  Sheet two of printed circuit board schematic. 
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 Figure A.3.  Sheet three of printed circuit board schematic. 
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Figure A.4.  Physical board layout of top layer. 
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Figure A.5.  Physical board layout of bottom layer. 
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APPENDIX B. 

MATLAB CODE FOR THE AUTOMATED STATE MODEL GENERATOR 
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The automated state-model generator was implemented using Matlab R2009a.  

The code includes considerable commenting to explain the purpose of each block of 

code.  Comments are denoted by text that is preceded by a percent symbol (%).  Lines of 

code that are too long to fit on one line are continued on the next line and marked by 

three consecutive periods (…).  The code below incorporates extra coding for 

compatibility with netlists that are more general in structure.  The extra code, labeled 

“Format netlist”, formats user-defined netlists into the format described in Section 3.1.  

The new, more general netlist format is described in the section of code labeled 

“FUNCTION DESCRIPTION”.  

 

%Copyright by Jordan Henry 

%All Rights Reserved 

%SCC Model and State Model Algorithm 

  

function [E1,F1,G1,E2,F2,G2,Rmin] = sccmodel(list1,list2,gain,d1,d2) 

 

%FUNCTION DESCRIPTION------------------------------------------------------ 

%The sccmodel function is used to model the equivalent resistance of an  

%SC converter. For the model to be generated properly, d1 and d2 must be be 

%entered as a number between 0 and 1. The list1 and list2 inputs are  

%matrices of size bx5, where b is the number of branches. Branch  

%information is entered into the netlists in the following fashion: 

  

%*The 1st column must contain the type of branch element ("V" for a voltage 

%source, "C" for a capacitor, and "R" for a resistor) 

%*The 2nd column must contain the number associated with the branch. 

%Numbering starts from 1 for each branch type. 

%*The 3rd column must contain the number of the positive node connected to 

%the branch. 

%*The 4th column must contain the number of the negative node connected to 

%the branch. 

%*The 5th column must contain the value of the branch element. 

  

%The designer must identify the capacitor that delivers charge to the load 

%and label that capacitor as the last capacitor, meaning that capacitor 

%should have the highest capacitor number. 

%The static gain of the converter must also be entered. 

  

%-------------------------------------------------------------------------- 

%-------------------------------------------------------------------------- 

%Assign the letters a number, Matlab must store letters as a number 

V = 1; 

C = 2; 

R = 3; 

  

%Calculate the number of capacitors---------------------------------------- 

capnum = 0; 

for i = 1:length(list1) 

    if list1(i,1) == C 

        capnum = capnum+1; 

    end 

end 
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%Format netlists----------------------------------------------------------- 

%LIST1 

  

append = zeros(1,5); 

m = 0; 

n = 0; 

p = 0; 

q = 0; 

  

for y = 1:length(list1) 

    for j = 1:length(list1)-m 

        if list1(j,1) == V 

            for i = 1:length(list1) 

                if list1(i,2) == 1+n & list1(i,1) == V 

                    append = list1(i,:); 

                    list1(i,:) = []; 

                    list1 = vertcat(list1,append); 

                    n = n+1; 

                    m = m+1; 

                end 

            end 

        end 

    end 

end 

for y = 1:length(list1) 

    for j = 1:length(list1)-m 

        if list1(j,1) == C 

            for i = 1:length(list1) 

                if list1(i,2) == 1+p & list1(i,1) == C 

                    append = list1(i,:); 

                    list1(i,:) = []; 

                    list1 = vertcat(list1,append); 

                    p = p+1; 

                    m = m+1; 

                end 

            end 

        end 

    end 

end 

for y = 1:length(list1) 

    for j = 1:length(list1)-m 

        if list1(j,1) == R 

            for i = 1:length(list1) 

                if list1(i,2) == 1+q & list1(i,1) == R 

                    append = list1(i,:); 

                    list1(i,:) = []; 

                    list1 = vertcat(list1,append); 

                    q = q+1; 

                    m = m+1; 

                end 

            end 

        end 

    end 

end 

  

list1(:,1) = []; 

list1(:,1) = []; 

  

%LIST 2 

append = zeros(1,5); 

m = 0; 

n = 0; 
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p = 0; 

q = 0; 

  

for y = 1:length(list2) 

    for j = 1:length(list2)-m 

        if list2(j,1) == V 

            for i = 1:length(list2) 

                if list2(i,2) == 1+n & list2(i,1) == V 

                    append = list2(i,:); 

                    list2(i,:) = []; 

                    list2 = vertcat(list2,append); 

                    n = n+1; 

                    m = m+1; 

                end 

            end 

        end 

    end 

end 

for y = 1:length(list2) 

    for j = 1:length(list2)-m 

        if list2(j,1) == C 

            for i = 1:length(list2) 

                if list2(i,2) == 1+p & list2(i,1) == C 

                    append = list2(i,:); 

                    list2(i,:) = []; 

                    list2 = vertcat(list2,append); 

                    p = p+1; 

                    m = m+1; 

                end 

            end 

        end 

    end 

end 

for y = 1:length(list2) 

    for j = 1:length(list2)-m 

        if list2(j,1) == R 

            for i = 1:length(list2) 

                if list2(i,2) == 1+q & list2(i,1) == R 

                    append = list2(i,:); 

                    list2(i,:) = []; 

                    list2 = vertcat(list2,append); 

                    q = q+1; 

                    m = m+1; 

                end 

            end 

        end 

    end 

end 

  

list2(:,1) = []; 

list2(:,1) = []; 

  

%Determine which netlist includes both the input and output sources (used to 

%decide which netlist is used in the SC model)----------------------------- 

if list1(1,3) ~= 0 & list1(2,3) ~= 0 

    list = list1; 

elseif list2(1,3) ~= 0 & list2(2,3) ~= 0 

    list = list2; 

end 

  

%Construct input voltage vector for SCC model------------------------------ 

input = zeros(2,1); 
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input(1,1) = list(1,3); 

input(2,1) = list(2,3); 

  

%Construct capacitor matrix for SCC model 

Cmat = zeros(capnum,capnum); 

  

for i = 1:capnum 

    Cmat(i,i) = list(i+2,3); 

end 

  

  

%************************************************************************** 

%1st phase calculation----------------------------------------------------- 

%************************************************************************** 

  

%Determine if any sources are not connected to circuit--------------------- 

sdis = 0; 

for i = 1:2 

    if sum(list1(i,:)) == 0 

        sdis = sdis+1; 

        list1(i,:) = []; %Remove the source from the list 

    end 

end 

  

%Calculate number of nodes and branches------------------------------------ 

branch = length(list1); 

node = max(list1(:,1)); 

  

%Construct Aa matrix------------------------------------------------------- 

Aa = zeros(node,branch); 

  

for i = 1:branch 

    Aa(list1(i,1),i) = 1; 

    Aa(list1(i,2),i) = -1; 

end 

  

%Row reduce Aa matrix 

Aa = rref(Aa); 

  

%Find Ahat matrix---------------------------------------------------------- 

Atilda = Aa; 

Atilda(node,:) = []; 

  

Ahat = Atilda; 

j=1; 

k=0; 

for i = 1:branch 

    if sum(abs(Ahat(:,j)))<=1 

        Ahat(:,j) = []; 

    else 

        j = j+1; 

        col(j-1) = i; 

    end 

end 

  

%Re-order Netlist to reflect column swapping performed in Ahat calculation- 

for i = 1:length(col) 

    if i <= 1 

        append = list1(col(i),:); 

        list1(col(i),:) = []; 

        list1 = vertcat(list1,append); 

    else 

        append = list1(col(i)-i+1,:); 
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        list1(col(i)-i+1,:) = []; 

        list1 = vertcat(list1,append); 

    end 

end 

  

%Calculate loop matrix----------------------------------------------------- 

loopnum = (branch - node)+1; 

Bbtranspose = vertcat(-Ahat,eye(loopnum)); 

  

Bb = Bbtranspose'; 

  

%Determine the number of KCL equations needed------------------------------ 

kclnum = capnum-length(Bb(:,1));  

  

%Determine which rows of Bbtranspose are the same as the rows of cap curr-- 

icap = zeros(capnum,branch); 

k=1; 

for i = 3-sdis:capnum+2-sdis 

    for j = 1:length(list1) 

        if Bbtranspose(j,:) == Bbtranspose(i,:) 

            icap(k,j) = 1; 

        elseif Bbtranspose(j,:) == -Bbtranspose(i,:) 

            icap(k,j) = -1; 

        end 

    end 

    k = k+1; 

end        

  

%Determine KCL equations--------------------------------------------------- 

%Determine which independent currents are not capacitor currents, but are 

%dependent of capacitor currents 

i_dependent = zeros(1,1); 

j=1; 

for i = 3-sdis:length(icap)-sdis 

    if icap(:,i) == 0 

        i_dependent(j,1) = i; 

        j = j+1; 

    end 

end 

  

%Figure out which column these currents correspond to 

Bbcol = zeros(length(i_dependent),1); 

k=1; 

for i = 1:length(i_dependent) 

    for j = 1:loopnum 

        if i_dependent(i,1) ~= 0 

            if Bbtranspose(i_dependent(i,1),j) == 1 

                Bbcol(k,1) = j; 

            end 

        end 

    end 

    k = k+1; 

end 

  

%Check to see if all independent currents are indeed capacitor currents 

kcl = zeros(kclnum,capnum); 

u=0; 

for m = branch-loopnum+1:branch 

    if sum(abs(icap(:,m))) >= 1 

        u = u+1; %store u value for E matrix construction & KCL equations 

    end 

end 
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m=1; 

g=1; 

if u == loopnum  %If all indep. curr. are cap curr., KCL is found directly 

    for i = 3-sdis:capnum+2-sdis 

        if sum(abs(Bbtranspose(i,:))) > 1 

            kcl(m,i-2+sdis) = -1; 

            for l = 1:loopnum 

                if Bbtranspose(i,l) ~= 0 

                    for j = 1:capnum 

                        if icap(j,branch-loopnum+l) ~= 0 

                            kcl(m,j) = Bbtranspose(i,l)*icap(j,branch-lo... 

                                opnum+l); 

                            g = g+1; 

                            break 

                        end 

                    end 

                end 

            end 

        end 

        m = m+1; 

    end 

    if g ~= kclnum + 1 %Creates KCL eq. if 2 cap curr. are same or opposite 

        for i = 3-sdis:capnum+2-sdis 

            if g <= kclnum 

                for j = 3-sdis:capnum+2-sdis 

                    if Bbtranspose(i,:) == -Bbtranspose(j,:) 

                        kcl(g,i-2+sdis) = 1; 

                        kcl(g,j-2+sdis) = 1; 

                        g = g+1; 

                    end 

                end 

            end 

        end 

    end 

else %If they are not all cap currents, KCL is not so direct 

    for i = 3-sdis:capnum+2-sdis 

        k = 0; 

        for j = 1:length(Bbcol) 

            if Bbtranspose(i,Bbcol(j,1)) == 0 

            else 

                k = k+1; 

            end 

        end 

        if k == 0 

            if sum(abs(Bbtranspose(i,:))) >= 2 

                kcl(m,i-2+sdis) = -1; 

                m = m+1; 

                for j = 1:loopnum 

                    g = 1; 

                    if abs(Bbtranspose(i,j)) == 1 

                        for r = 1:capnum 

                            if icap(r,branch-loopnum+j) ~= 0 

                                kcl(m-1,g) = Bbtranspose(i,j); 

                            else 

                                g = g+1; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 
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%Check to see if KCL matrix is full 

y=0; 

for i = 1:kclnum 

    if sum(abs(kcl(i,:))) == 0 

        y = y+1; 

    end 

end 

  

%If y does not equal to zero, then find other kcl equations 

m=1; 

g=1; 

if y ~= 0 

    while g <= y 

        for i = 3+m-1-sdis:capnum+2-sdis 

            k = 0; 

            for j = 1:loopnum 

                if Bbtranspose(m+2-sdis,j) == -Bbtranspose(i,j) 

                    k = k+1; 

                else 

                    if j ~= Bbcol(:,1) 

                        k = k+1; 

                    end 

                end 

            end 

            if k == loopnum 

                for l = 1:loopnum 

                    if Bbtranspose(m+2-sdis,l) ~= -Bbtranspose(i,l) 

                        for r = 1:capnum 

                            if icap(r,branch-loopnum+l) ~= 0 

                                kcl(kclnum-y+g,m) = -1; 

                                kcl(kclnum-y+g,i-2+sdis) = -1; 

                                if Bbtranspose(m+2-sdis,l) ~= 0 

                                    kcl(kclnum-y+g,r) = Bbtranspose(m+2-... 

                                        sdis,l); 

                                else 

                                    kcl(kclnum-y+g,r) = Bbtranspose(i,l); 

                                end 

                            end 

                        end 

                    end 

                end 

                g = g+1; 

            end 

        end 

        m = m+1; 

    end 

end 

  

%Generate E1 matrix-------------------------------------------------------- 

E1 = zeros(loopnum,capnum); 

  

%Figure out which rows of Bbtranspose are cap currents 

Esetup = zeros(branch-2-capnum,1); 

for i = 2+capnum+1-sdis:branch 

    for j = 1:capnum 

        if icap(j,i) == 1 

            Esetup(i-2-capnum+sdis,1) = j; 

        elseif icap(j,i) == -1 

            Esetup(i-2-capnum+sdis,1) = -j; 

        end 

    end 

end 
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%Shorten list and Bb matrices b/c we don't need to worry about cap currents 

%or the currents through the sources 

Bbtrunk = Bb; 

listtrunk = list1; 

  

for i = 1:2+capnum-sdis 

    listtrunk(1,:) = []; 

end 

for i = 1:2 

    listtrunk(:,1) = []; 

end 

  

for i = 1:2+capnum-sdis 

    Bbtrunk(:,1) = []; 

end 

Bbtrunk = Bbtrunk'; 

  

%Make the list matrix the same number of columns as the Bbtrunk matrix 

listtrunkm = listtrunk; 

for i = 1:loopnum-1 

    listtrunkm = horzcat(listtrunkm,listtrunk); 

end 

  

%Multiply the matrices to store the actual KVL loop values 

loopval = Bbtrunk.*listtrunkm; 

  

%Begin construction of E matrix: This step does not construct the full E 

%matrix if there are currents that are combinations of capacitor currents. 

%It only places the resistor values that correspond to actual  

%capacitor currents. If there are resistors whose currents are a 

%combination of cap currents, such as some MOSFET currents in the ladder 

%topology, they will be entered next 

for i = 1:branch-2-capnum+sdis 

    for j = 1:loopnum 

        if Esetup(i,1) > 0 

            E1(j,abs(Esetup(i,1))) = E1(j,abs(Esetup(i,1)))+loopval(i,j); 

        elseif Esetup(i,1) < 0 

            E1(j,abs(Esetup(i,1))) = E1(j,abs(Esetup(i,1)))-loopval(i,j); 

        end 

    end 

end 

  

%So far, E matrix is incomplete if there are currents that can only be 

%expressed as a function of other cap currents. For example, for a ladder  

%topology, now inlude the MOSFET resistor values whose currents cannot be 

%expressed as a single capacitor current 

m=1; 

e=1; 

if i_dependent(:,1) ~= 0 %if there are no dependent cap curr., skip script 

    if u == loopnum %use this script if all indepen. curr. are cap currents 

        for i = 1:loopnum 

            for j = 1:length(i_dependent) 

                if Bb(i,i_dependent(j,1)) ~= 0 

                    for g = 1:loopnum 

                        if Bbtranspose(i_dependent(j,1),g) ~= 0 

                            for r = 1:capnum 

                                if icap(r,branch-loopnum+g) ~= 0 

                                    E1(m,r) = E1(m,r)+Bbtranspose(i_depe... 

                                        ndent(j,1),g)*Bb(i,i_dependent(j... 

                                        ,1))*(list1(i_dependent(j,1),3))... 

                                        *icap(r,branch-loopnum+g); 

                                    break 
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                                end 

                            end 

                        end 

                    end 

                end 

            end 

            m = m+1; 

        end                 

    else %use this if all independent currents are not cap currents 

        for i = 1:length(Bbcol) 

            m = 0; 

            for j = 3:2+capnum 

                if m < 1 

                    if abs(Bbtranspose(j,Bbcol(i,1))) == 1 

                        for r = 3:2+capnum 

                            k = 0; 

                            if m < 1 

                                if Bbtranspose(r,i) == 0 

                                    for g = 1:length(Bbcol) 

                                        if Bbtranspose(j,Bbcol(g,1)) ~= ... 

                                                -Bbtranspose(r,Bbcol(g,1)) 

                                            k = k+1; 

                                        end 

                                    end 

                                end 

                            end 

                            if k == 1 

                                for f = 1:loopnum 

                                    if f ~= Bbcol(:,1) 

                                        if Bbtranspose(j,f) ~= 0 

                                            for p = 1:capnum 

                                                if icap(p,branch-loopnum... 

                                                        +f) ~= 0 

                                                    E1(e,p) = E1(e,p) - ... 

                                                        Bbtranspose(j,Bb... 

                                                        col(i))*Bbtransp... 

                                                        ose(j,f)*list1(b... 

                                                        ranch-f+1,3); 

                                                    break 

                                                end 

                                            end 

                                        end 

                                        if Bbtranspose(r,f) ~= 0 

                                            for p = 1:capnum 

                                                if icap(p,branch-loopnum... 

                                                        +f) ~= 0 

                                                    E1(e,p) = E1(e,p) - ... 

                                                        Bbtranspose(j,Bb... 

                                                        col(i))*Bbtransp... 

                                                        ose(r,f)*list1(b... 

                                                        ranch-f+1,3); 

                                                    break 

                                                end 

                                            end 

                                        end 

                                    end 

                                end 

                                E1(e,j-2) = E1(e,j-2) + Bbtranspose(j,Bb... 

                                    col(i))*list1(branch-f+1,3); 

                                E1(e,r-2) = E1(e,r-2) + Bbtranspose(j,Bb... 

                                    col(i))*list1(branch-f+1,3); 

                                m = m+1; 

                            end 
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                        end 

                    end 

                end 

            end 

            e = e+1; 

        end 

    end 

end 

  

E1 = vertcat(E1,kcl); 

  

%Generate F1 matrix-------------------------------------------------------- 

F1 = zeros(capnum,capnum); 

  

for j = 1:capnum-kclnum 

    k = 1; 

    for i = 3-sdis:capnum+2-sdis 

        F1(j,k) = Bb(j,i); 

        k = k+1; 

    end 

end 

  

%Generate G1 matrix-------------------------------------------------------- 

G1 = zeros (capnum,2); 

  

for j = 1:capnum-kclnum 

    for i = 1:2-sdis 

        G1(j,i) = Bb(j,i); 

    end 

end 

  

%************************************************************************** 

%2nd phase calculation----------------------------------------------------- 

%************************************************************************** 

  

%Determine if any sources are not connected to circuit--------------------- 

sdis = 0; 

for i = 1:2 

    if sum(list2(i,:)) == 0 

        sdis = sdis+1; 

        list2(i,:) = []; %Remove the source from the list 

    end 

end 

  

%Calculate number of nodes and branches------------------------------------ 

branch = length(list2); 

node = max(list2(:,1)); 

  

%Construct Aa matrix------------------------------------------------------- 

Aa = zeros(node,branch); 

  

for i = 1:branch 

    Aa(list2(i,1),i) = 1; 

    Aa(list2(i,2),i) = -1; 

end 

  

%Row reduce Aa matrix 

Aa = rref(Aa); 

  

%Find Ahat matrix---------------------------------------------------------- 

Atilda = Aa; 

Atilda(node,:) = []; 
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Ahat = Atilda; 

j=1; 

k=0; 

for i = 1:branch 

    if sum(abs(Ahat(:,j)))<=1 

        Ahat(:,j) = []; 

    else 

        j = j+1; 

        col(j-1) = i; 

    end 

end 

  

%Re-order Netlist to reflect column swapping performed in Ahat calculation- 

for i = 1:length(col) 

    if i <= 1 

        append = list2(col(i),:); 

        list2(col(i),:) = []; 

        list2 = vertcat(list2,append); 

    else 

        append = list2(col(i)-i+1,:); 

        list2(col(i)-i+1,:) = []; 

        list2 = vertcat(list2,append); 

    end 

end 

  

%Calculate loop matrix----------------------------------------------------- 

loopnum = (branch - node)+1; 

Bbtranspose = vertcat(-Ahat,eye(loopnum)); 

  

Bb = Bbtranspose'; 

  

%Determine the number of KCL equations needed------------------------------ 

kclnum = capnum-length(Bb(:,1));  

  

%Determine which rows of Bbtranspose are the same as the rows of cap curr-- 

icap = zeros(capnum,branch); 

k=1; 

for i = 3-sdis:capnum+2-sdis 

    for j = 1:length(list2) 

        if Bbtranspose(j,:) == Bbtranspose(i,:) 

            icap(k,j) = 1; 

        elseif Bbtranspose(j,:) == -Bbtranspose(i,:) 

            icap(k,j) = -1; 

        end 

    end 

    k = k+1; 

end        

  

%Determine KCL equations--------------------------------------------------- 

%Determine which independent currents are not capacitor currents, but are 

%dependent of capacitor currents 

i_dependent = zeros(1,1); 

j=1; 

for i = 3-sdis:length(icap)-sdis 

    if icap(:,i) == 0 

        i_dependent(j,1) = i; 

        j = j+1; 

    end 

end 

  

%Figure out which column these currents correspond to 

Bbcol = zeros(length(i_dependent),1); 

k=1; 
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for i = 1:length(i_dependent) 

    for j = 1:loopnum 

        if i_dependent(i,1) ~= 0 

            if Bbtranspose(i_dependent(i,1),j) == 1 

                Bbcol(k,1) = j; 

            end 

        end 

    end 

    k = k+1; 

end 

  

%Check to see if all independent currents are indeed capacitor currents 

kcl = zeros(kclnum,capnum); 

u=0; 

for m = branch-loopnum+1:branch 

    if sum(abs(icap(:,m))) >= 1 

        u = u+1; %store u value for E matrix construction & KCL equations 

    end 

end 

  

m=1; 

g=1; 

if u == loopnum  %If all indep. curr. are cap curr., KCL is found directly 

    for i = 3-sdis:capnum+2-sdis 

        if sum(abs(Bbtranspose(i,:))) > 1 

            kcl(m,i-2+sdis) = -1; 

            for l = 1:loopnum 

                if Bbtranspose(i,l) ~= 0 

                    for j = 1:capnum 

                        if icap(j,branch-loopnum+l) ~= 0 

                            kcl(m,j) = Bbtranspose(i,l)*icap(j,branch-lo... 

                                opnum+l); 

                            g = g+1; 

                            break 

                        end 

                    end 

                end 

            end 

        end 

        m = m+1; 

    end 

    if g ~= kclnum + 1 %Creates KCL eq. if 2 cap curr. are same or opposite 

        for i = 3-sdis:capnum+2-sdis 

            if g <= kclnum 

                for j = 3-sdis:capnum+2-sdis 

                    if Bbtranspose(i,:) == -Bbtranspose(j,:) 

                        kcl(g,i-2+sdis) = 1; 

                        kcl(g,j-2+sdis) = 1; 

                        g = g+1; 

                    end 

                end 

            end 

        end 

    end 

else %If they are not all cap currents, KCL is not so direct 

    for i = 3-sdis:capnum+2-sdis 

        k = 0; 

        for j = 1:length(Bbcol) 

            if Bbtranspose(i,Bbcol(j,1)) == 0 

            else 

                k = k+1; 

            end 

        end 
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        if k == 0 

            if sum(abs(Bbtranspose(i,:))) >= 2 

                kcl(m,i-2+sdis) = -1; 

                m = m+1; 

                for j = 1:loopnum 

                    g = 1; 

                    if abs(Bbtranspose(i,j)) == 1 

                        for r = 1:capnum 

                            if icap(r,branch-loopnum+j) ~= 0 

                                kcl(m-1,g) = Bbtranspose(i,j); 

                            else 

                                g = g+1; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

%Check to see if KCL matrix is full 

y=0; 

for i = 1:kclnum 

    if sum(abs(kcl(i,:))) == 0 

        y = y+1; 

    end 

end 

  

%If y does not equal to zero, then find other kcl equations 

m=1; 

g=1; 

if y ~= 0 

    while g <= y 

        for i = 3+m-1-sdis:capnum+2-sdis 

            k = 0; 

            for j = 1:loopnum 

                if Bbtranspose(m+2-sdis,j) == -Bbtranspose(i,j) 

                    k = k+1; 

                else 

                    if j ~= Bbcol(:,1) 

                        k = k+1; 

                    end 

                end 

            end 

            if k == loopnum 

                for l = 1:loopnum 

                    if Bbtranspose(m+2-sdis,l) ~= -Bbtranspose(i,l) 

                        for r = 1:capnum 

                            if icap(r,branch-loopnum+l) ~= 0 

                                kcl(kclnum-y+g,m) = -1; 

                                kcl(kclnum-y+g,i-2+sdis) = -1; 

                                if Bbtranspose(m+2-sdis,l) ~= 0 

                                    kcl(kclnum-y+g,r) = Bbtranspose(m+2-... 

                                        sdis,l); 

                                else 

                                    kcl(kclnum-y+g,r) = Bbtranspose(i,l); 

                                end 

                            end 

                        end 

                    end 

                end 

                g = g+1; 



 

 

 

77 

            end 

        end 

        m = m+1; 

    end 

end 

  

%Generate E2 matrix-------------------------------------------------------- 

E2 = zeros(loopnum,capnum); 

  

%Figure out which rows of Bbtranspose are cap currents 

Esetup = zeros(branch-2-capnum,1); 

for i = 2+capnum+1-sdis:branch 

    for j = 1:capnum 

        if icap(j,i) == 1 

            Esetup(i-2-capnum+sdis,1) = j; 

        elseif icap(j,i) == -1 

            Esetup(i-2-capnum+sdis,1) = -j; 

        end 

    end 

end 

  

%Shorten list and Bb matrices b/c we don't need to worry about cap currents 

%or the currents through the sources 

Bbtrunk = Bb; 

listtrunk = list2; 

  

for i = 1:2+capnum-sdis 

    listtrunk(1,:) = []; 

end 

for i = 1:2 

    listtrunk(:,1) = []; 

end 

  

for i = 1:2+capnum-sdis 

    Bbtrunk(:,1) = []; 

end 

Bbtrunk = Bbtrunk'; 

  

%Make the list matrix the same number of columns as the Bbtrunk matrix 

listtrunkm = listtrunk; 

for i = 1:loopnum-1 

    listtrunkm = horzcat(listtrunkm,listtrunk); 

end 

  

%Multiply the matrices to store the actual KVL loop values 

loopval = Bbtrunk.*listtrunkm; 

  

%Begin construction of E matrix: This step does not construct the full E 

%matrix if there are currents that are combinations of capacitor currents. 

%It only places the resistor values that correspond to actual  

%capacitor currents. If there are resistors whose currents are a 

%combination of cap currents, such as some MOSFET currents in the ladder 

%topology, they will be entered next 

for i = 1:branch-2-capnum+sdis 

    for j = 1:loopnum 

        if Esetup(i,1) > 0 

            E2(j,abs(Esetup(i,1))) = E2(j,abs(Esetup(i,1)))+loopval(i,j); 

        elseif Esetup(i,1) < 0 

            E2(j,abs(Esetup(i,1))) = E2(j,abs(Esetup(i,1)))-loopval(i,j); 

        end 

    end 

end 
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%So far, E matrix is incomplete if there are currents that can only be 

%expressed as a function of other cap currents. For example, for a ladder  

%topology, now inlude the MOSFET resistor values whose currents cannot be 

%expressed as a single capacitor current 

m=1; 

e=1; 

if i_dependent(:,1) ~= 0 %if there are no dependent cap curr., skip script 

    if u == loopnum %use this script if all indepen. curr. are cap currents 

        for i = 1:loopnum 

            for j = 1:length(i_dependent) 

                if Bb(i,i_dependent(j,1)) ~= 0 

                    for g = 1:loopnum 

                        if Bbtranspose(i_dependent(j,1),g) ~= 0 

                            for r = 1:capnum 

                                if icap(r,branch-loopnum+g) ~= 0 

                                    E2(m,r) = E2(m,r)+Bbtranspose(i_depe... 

                                        ndent(j,1),g)*Bb(i,i_dependent(j... 

                                        ,1))*(list2(i_dependent(j,1),3))... 

                                        *icap(r,branch-loopnum+g); 

                                    break 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

            m = m+1; 

        end                 

    else %use this if all independent currents are not cap currents 

        for i = 1:length(Bbcol) 

            m = 0; 

            for j = 3:2+capnum 

                if m < 1 

                    if abs(Bbtranspose(j,Bbcol(i,1))) == 1 

                        for r = 3:2+capnum 

                            k = 0; 

                            if m < 1 

                                if Bbtranspose(r,i) == 0 

                                    for g = 1:length(Bbcol) 

                                        if Bbtranspose(j,Bbcol(g,1)) ~= ... 

                                                -Bbtranspose(r,Bbcol(g,1)) 

                                            k = k+1; 

                                        end 

                                    end 

                                end 

                            end 

                            if k == 1 

                                for f = 1:loopnum 

                                    if f ~= Bbcol(:,1) 

                                        if Bbtranspose(j,f) ~= 0 

                                            for p = 1:capnum 

                                                if icap(p,branch-loopnum... 

                                                        +f) ~= 0 

                                                    E2(e,p) = E2(e,p) - ... 

                                                        Bbtranspose(j,Bb... 

                                                        col(i))*Bbtransp... 

                                                        ose(j,f)*list2(b... 

                                                        ranch-f+1,3); 

                                                    break 

                                                end 

                                            end 

                                        end 

                                        if Bbtranspose(r,f) ~= 0 
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                                            for p = 1:capnum 

                                                if icap(p,branch-loopnum... 

                                                        +f) ~= 0 

                                                    E2(e,p) = E2(e,p) - ... 

                                                        Bbtranspose(j,Bb... 

                                                        col(i))*Bbtransp... 

                                                        ose(r,f)*list2(b... 

                                                        ranch-f+1,3); 

                                                    break 

                                                end 

                                            end 

                                        end 

                                    end 

                                end 

                                E2(e,j-2) = E2(e,j-2) + Bbtranspose(j,Bb... 

                                    col(i))*list2(branch-f+1,3); 

                                E2(e,r-2) = E2(e,r-2) + Bbtranspose(j,Bb... 

                                    col(i))*list2(branch-f+1,3); 

                                m = m+1; 

                            end 

                        end 

                    end 

                end 

            end 

            e = e+1; 

        end 

    end 

end 

  

E2 = vertcat(E2,kcl); 

  

%Generate F2 matrix-------------------------------------------------------- 

F2 = zeros(capnum,capnum); 

  

for j = 1:capnum-kclnum 

    k = 1; 

    for i = 3-sdis:capnum+2-sdis 

        F2(j,k) = Bb(j,i); 

        k = k+1; 

    end 

end 

  

%Generate G2 matrix-------------------------------------------------------- 

G2 = zeros (capnum,2); 

  

for j = 1:capnum-kclnum 

    for i = 1:2-sdis 

        G2(j,i) = Bb(j,i); 

    end 

end 

  

%************************************************************************** 

%SCC Model----------------------------------------------------------------- 

%************************************************************************** 

C = list1(3,3); 

  

A1 = -(Cmat^-1)*(E1^-1)*F1; 

B1 = -(Cmat^-1)*(E1^-1)*G1; 

C1 = zeros(1,capnum); 

C1(1,capnum) = 1; 

  

A2 = -(Cmat^-1)*(E2^-1)*F2; 

B2 = -(Cmat^-1)*(E2^-1)*G2; 
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C2 = zeros(1,capnum); 

C2(1,capnum) = 1; 

  

sys1 = ss(A1,B1,C1,[0,0]); 

sys2 = ss(A2,B2,C2,[0,0]); 

  

D1 = d1; 

D2 = d2; 

  

Vdrop = input(1)*gain - input(2); 

  

clear freq T t1 t2 current Req 

for i = 1:90 

    freq(i) = 10000*10^(i/30); 

    T(i) = 1/freq(i); 

    t1(i) = D1*T(i); 

    t2(i) = D2*T(i); 

    sys1d = c2d(sys1,t1(i)); 

    sys2d = c2d(sys2,t2(i)); 

  

    [phi1,gamma1,cj,dj,Tsj] = ssdata(sys1d); 

    [phi2,gamma2,cj,dj,Tsj] = ssdata(sys2d); 

  

    phi = phi2 * phi1; 

    gamma = phi2*gamma1 + gamma2; 

  

    x0 = (eye(capnum)-phi)^-1*gamma*input; 

    x1 = phi1*x0+gamma1*input; 

    dv = (x1(capnum)-x0(capnum)); 

    current(i) = list(capnum+2-sdis,3)*dv/T(i); 

     

    Req(i) = Vdrop/current(i); 

end 

  

Rlowfreqonecell = 2*D1*T/C; 

topologygain = Req(gain)/Rlowfreqonecell(gain); 

Rlowfreq = Rlowfreqonecell * topologygain;     

  

figure(1) 

loglog(freq,Req,'b-') 

xlabel('Frequency [Hz]') 

ylabel('Req [\Omega]') 

title('SCC Model (D = 0.45)') 

hold on 

  

Rmin = min(Req); 
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