
 e-ISSN: 2289-8131 Vol. 9 No. 2-2 171

Test Case Generation Model for UML Diagrams

Yasir Dawood Salman, Nor Laily Hashim

College of Arts and Sciences, Universiti Utara Malaysia, Sintok, Kedah, 06010, Malaysia.

laily@uum.edu.my

Abstract—The complexity and size of software have been

sequentially increasing, and the scope of testing is expanding. To

insure deadline delivery and decrease development test cost, the

efficiency of software testing needs to be improved. Several

approaches for automated test case generation have been

proposed over the last few years. However, models for

automated test case generation for unified modeling language

(UML) diagrams are still in the early stage of development.

UML is the most widely used language to describe software

analysis and design. Given that test cases can be efficiently

derived from UML models, the generation of test cases from

UML diagrams has attracted increasing research attention.

However, no model currently exists for mapping the generation

procedure. This paper proposes a model for automatic test case

generation from UML diagrams.

Index Terms—Software Testing; Unified Modeling Language;

Test Cases.

I. INTRODUCTION

Currently, high-quality systems and applications with

minimum faults and errors are in high demand. Furthermore,

decreasing time and expenses is a major concern [1]. Thus,

testing techniques from requirement specifications and

design documents need to be structured and automated.

Automated testing techniques accelerate the delivery of

services or products [2]. If the objective is to decrease

expenses and improve existing technology, the use of testing

automation is mandatory.

Despite the importance of testing, this process is still

considered costly and time consuming [3]. Software testing

cost is often calculated as more than 50% of total

development cost [4]. One of the software testing methods is

test case generation, which can define a test case as a

classification of variables or conditions that fulfill specific

test coverage criteria. By executing test cases, software

testers can discover whether a software system is executed

according to the system requirements or according to the

sequence of its executions [5].

The unified modeling language (UML) is a widely

accepted standard for modeling software systems [6]. It

consists of a set of modeling concepts to support an object-

oriented approach to software development. UML consists of

a set of diagrams that model both the static and dynamic

behavior of a system. Various aspects of the system are

elaborated at different levels of abstraction by using diagrams

such as use case diagram, class diagram, activity diagram,

sequence diagram, and state diagram [7].

Test cases help the user to set the entire coverage to the

application and test all possible combinations in the

application. These cases also provide the user with easily

specified steps that were processed to uncover a defect

detected during a test. Test coverage also provides the testing

progress and the areas in which the application has no errors

[8]. Furthermore, test cases can be generated from the system

requirement specification and design document [9].

Therefore, test cases can be generated in the early stage of

development. The input values inside the test case reflect the

system specifications and design; thus, the test case will be

used to test the selected operations in detail. Improving the

effectiveness and reducing the cost of software testing is

beneficial, and these processes can be achieved by

automating the test case generation [10] from requirement

specifications and design documents.

For software development, the automatic generation of test

cases will improve the efficiency and effectiveness of

software testing [11]. Enhancing the necessary tools and

increasing the automation of software testing will help

decrease the expenses of software development and improve

software reliability [10], thus decreasing the negative

economic issue of defective software. Although many parts

of the testing process can be automated, only professional

software developers can currently write test cases [12].

However, few studies on automated test case generation

revealed the proposed algorithms or testing processes used

while conducting the testing, e.g., Refs. [13-17]. This

scenario will lead to difficulties in updating or improving

their work. Furthermore, the findings in these studies will be

difficult to implement in a large scale or will be difficult to

use in generating test cases in a fully automated manner.

Given the abovementioned problem, the processes

involved in automating test case generation should be

identified. From these processes, important components in

the test case generation model can be proposed. Therefore,

the current study will focus on the problem by proposing a

test case generation model by using a state chart as inputs.

The rest of the paper is organized as follows. Section 2

presents the related works in the area of test case generation.

Section 3 illustrates the test case generation processes.

Section 4 shows the proposed test case generation model.

Section 5 provides the conclusions and the discussions on

future research directions.

II. RELATED WORKS

Many studies on test case generation have been proposed

and implemented [18]. Some of the few important works is

cited in this section. Researchers have also proposed many

approaches with different methods and algorithms.

Nevertheless, these methods share similarities in the use of

intermediate models, path extraction, and coverage criteria.

UML is a widely accepted standard for modeling object-

oriented software systems. As a semi-formal language, UML

is widely used to specify requirements and depict software

design. UML provides diagrams to represent the static and

dynamic behavior of a system. Class, component, and

deployment diagrams are used to represent the static behavior

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229275416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

172 e-ISSN: 2289-8131 Vol. 9 No. 2-2

of a system, whereas activity, sequence, and state diagrams

are used to represent the dynamic behavior [7].

Santiago, et al. [16] proposed a method to automate the test

case generation from UML state chart diagrams by using a

software specification model. This method converts UML

state chart diagrams model into an XML-based language

table. Furthermore, they generated an intermediate model as

a finite-state machine (FSM) based on control flow by using

the perform charts tool. They aimed to determine the

possibility of representing complex software with clarity and

rich detail by using a high-level technique, such as UML state

chart diagrams. UML state chart diagrams can be used to

model a complex system realistically and provide hierarchy

and parallelism to this model. Although these conditions are

insufficient for guaranteeing the success of a test case

generation approach, these conditions still show an

improvement compared with the FSM specification use of

Condado as an unconnected tool. Furthermore, Condado

implements the switch cover method for the control part. A

switch is a transition-to-transition pair, and their method

generates test cases to cover all pairs of transitions in the

model of the coverage criteria.

Boghdady, et al. [19] proposed a new enhanced

methodology to generate test cases automatically from UML

activity diagrams by using XML. The XML for each UML

activity diagram in any system is transferred to a table called

an activity dependency table, which covers all functionalities

in the UML activity diagram in a reduced form. A directed

graph called activity dependency graph will be automatically

generated by using the activity dependency table. This graph

is then used in combination with the table to generate all

possible test case paths. To achieve minimization, they

reduced the test case paths before generating the final

efficient set of test cases. To accomplish their validation, they

implemented the cyclomatic complexity technique to the

generated test case paths and calculated the lower bound for

the generated test case paths. Hence, the general performance

of the testing process was optimized in terms of time and

convenience.

Santiago, et al. [17] presented an environment-name-

automated generated test case based on state chart (GTSC),

which allows a test designer to generate test cases on the basis

of state chart test criteria and FSM methods. This interesting

characteristic allows test sequences to be generated from both

the state chart and FSM. However, other comparisons need to

be made on the all-paths-k-C0-configuration of the state chart

coverage criteria family (SCCF), the round-trip route testing

offered by Binder [20], and all-paths-k-configurations.

Similarly, comparisons can be made between the latest FSM-

based methods, such as state counting, and some SCCF

criteria. Such an analysis will be enabled with the help of

mutation testing by GTSC in applying these test criteria

methods.

Shirole, et al. [21] worked on the automatic generation of

test cases by using UML state chart diagrams. They used the

genetic algorithm (GA) as a medium for their tool by

combining information from state chart diagrams. They

proposed a search-based approach to handle infeasible paths

and test data generation. They used the following steps to

generate the test cases. First, they transformed the UML

specifications into extend FSM (EFSM). Second, they

transformed the EFSM into an extended control flow graph.

Third, they generated test sequences by using GA and depth-

first search (DFS). Finally, they selected the test cases by

using data-flow techniques. In the coverage criteria, they

focused on state coverage, transition coverage, all-definition

coverage, and all du-path coverage.

Hashim and Salman [22] proposed a test case generation

algorithm from an UML activity diagram. They generated the

test case by converting the UML activity diagram to an

activity graph that stores all activity information. The graph

will be used to automatically generate an activity path that

contains all possible test case paths. From all the stored

information and paths, the test case will be generated

automatically. Furthermore, a prototype was created to

implement and test the algorithm.

Kundu and Samanta [23] proposed an approach for

generating test cases by using UML activity diagrams. In

their approach, they translated UML activity diagrams into an

activity graph to generate test cases. From the result of the

activity graph, they used DFS and the breadth first search

algorithm to generate test cases. These generated test cases

are based on an activity path coverage criterion and are used

to cover loop faults and organization. To achieve UML

activity diagram coverage, they considered a coverage

criterion called activity path coverage criterion.

Swain, et al. [24] proposed an approach to generate test

cases from UML state chart diagrams. They named their

approach automatically generating test cases from state chart

diagram. First, they constructed a state chart diagram for a

given object. Second, they traversed the state chart diagram,

selected the conditional predicates, and transformed these

conditional predicates into source code. Finally, the test cases

are generated and stored by using function minimization

technique. From the state chart diagram, they performed a

DFS to select the associated predicates. After selecting the

predicates, they guessed an initial dataset. They then

generated test predicate conditions from a state chart diagram

to generate test cases. Their technique accomplishes little

coverage in test cases such as transition pair coverage, state

coverage, action coverage, and transition coverage. It also

achieves fully predicate coverage by generating a test data for

each conditional clause. Furthermore, their approach can

handle transitions with guards and achieves transition path

coverage.

Swain, et al. [25] proposed an approach for test case

generation called test generation and minimization for O-O

software with state charts. This method analyzes the system

that will be tested and accepted by a user and then builds the

state chart diagram. They then converted the given UML state

chart diagram into an intermediate model and named it a state

transition graph. DFS is used to form test sequences and

generate all possible paths. Thereafter, they obtained all the

valid sequences of the application until a final edge is

reached. Finally, they minimized a set of test cases by

calculating the node coverage for each test sequence. In the

same year, Swain, et al. [26] performed a similar experiment

to generate test cases from UML state chart diagrams and

named their method generation and minimization of test cases

from state charts. First, they built a state chart diagram model

for SUT. Second, they conjugated a state transition graph

from the state chart diagram. Third, by using the graph, they

extracted all of the required information. Fourth, by applying

the algorithm of Wang [27] they generated the test cases.

Finally, they minimized the set of test cases by calculating the

node coverage for each test case to help them determine

which test case are covered by other test cases.

Test Case Generation Model for UML Diagrams

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 173

III. TEST CASE GENERATION PROCESSES

This section present studies that explained the processes

and important components used in generating test cases.

The components of a test case will differ from system to

system. However, in its simplest form, the components will

be a series of events that lead to a certain execution path with

certain conditions. The values for attributes and parameters

can be generated on the basis of any constraints and then

supplied to the program for test execution [28].

Test case generation has a strong influence on the

effectiveness and efficiency of the complete testing process

is one of the most critical knowledge demanding tasks [29,

30]. Test cases are typically generated from manual or

automatic inputs. Manual generation depends on the expertise

of the software testers. However, existing methods for the

automatic generation of test cases still need to be enhanced

and improved [31].

Various test case generation methodologies using UML

diagrams have been proposed by a number of researchers,

software developers, and software testers by using many

algorithm types and methods. From the UML diagrams, test

case generation starts by storing the UML diagram

information in a database; and the diagram is then

transformed into a graph model [32]. Thereafter, the test paths

are generated from the graph model; these paths will help

identify all possible routes that the software will follow and

form them into test case [33].

The test case generator contains three main phases, which

are essential in generating a test case diagram. These phases

are shown in Figure 1. The first phase analyzes the developed

components of the system and delivers the data to the second

phase. The second phase investigates the data to determine

the appropriate paths; these paths may represent the high

coverage criteria. The third phase tests these paths as

arguments. The third phase may provide feedback to the

second phase regarding any impracticable paths [34].

According to Verma and Dutta [35], Shanthi and Kumar

[36], Boghdady, et al. [37], a reduced form of the stored

database (i.e., a dependency table) is needed. This table is

generated from the database created for each UML diagram

in any system and will be called a chart dependency table

(CDT), which covers all the functionalities in the UML

diagram. The CDT is then used to automatically generate a

directed graph called chart dependency graph (ADG), which

is used in conjunction with the CDT as an intermediate

model. The ADG will be used later to generate all possible

test paths. Furthermore, the reliability of the intermediate

model will increase because of consistency checking

constraints and automatic information entering.

Figure 1: Adopted Architecture of a Test Case Generator System [34]

While converting a UML diagram specification into a

CDT, a blind ADG product of the basic states is not generated

within each parallel component. The generated machine is the

possible combination of configurations based on simulated

events.

Moreover, one or more arcs can be pruned to avoid

generating a larger machine [16]. On one hand, class graph

pruning has a significant drawback of not testing the entire

machine. On the other hand, applications of test case

generating methods are feasible on complex systems.

A graph describes the logic structure of a software module:

the nodes represent computational statements or expressions,

the edges represent transfer of control between nodes, and

each possible execution path of the module has a

corresponding path from the entry to the exit node of the

graph [21].

Therefore, after formulating all the necessary information,

an algorithm is needed to generate all possible paths [22, 23]

on the basis of several possible coverage criteria. From the

generated paths, a test case generation algorithm will generate

the test case [25, 38].

IV. PROPOSED TEST CASE GENERATION MODEL

On the basis of reviews in Sections 2 and 3, the common

processes and components implement by these studies are

extracted to produce a test case generation model where a

UML diagram is used an input and generate test cases as an

output. Furthermore, a database that contains the information

from the UML diagram should be used to generate the test

cases by extracting the correlating information [8].

The proposed model is composed of six components for

test case generation: CDT, chart dependency graph,

consistency checking, class graph pruning, test path

generation, and test case generation. The proposed model is

shown in Figure 2.

On the basis of the proposed model in Figure 2, the

development targets will be achieved by using the following

processes:

1. Use a UML diagram to define and represent the

software development specifications.

2. Construct the CDT automatically as follows: (a) for

each pair of distinct classes, fulfill the hierarchical

relationships on the basis of the influences entered

from the UML diagram; (b) the automatic checking

and storing for existence symmetric parent–child or

ancestor descendent hierarchical relations for any pair

of states; (c) avoid the inconsistency problem by the

automatic detect for classes relationships based on set

of rules; (d) automatic deduction of new hierarchical

relations (if possible).

3. Create the chart dependency graph automatically from

the CDT by using the relation stored in the table.

4. Remove the duplication sub-tree from the chart

dependency graph to avoid illegitimate test cases and

generate the test paths by using class graph pruning.

5. Generate all possible paths by using test path

generation from the pruning chart dependency graph.

6. Generate test cases automatically from test path

generation.

Journal of Telecommunication, Electronic and Computer Engineering

174 e-ISSN: 2289-8131 Vol. 9 No. 2-2

Figure 2: Proposed Automated Test Case Generation Model

Test cases will be generated with the help of stored strings

in the database in the form of tables. In the database, the table

of the UML diagram has three columns: pre-condition, test

chart, and post-condition. The pre- and post-conditions in the

UML diagram are given in the documentation of each

particular message of the UML diagram [8].

When the class name is found, it has been entered into the

database with the related class attributes, along with its

attributes, operations, inheritance classes, dependency, and

cardinality. Furthermore, every string is stored.

V. CONCLUSIONS

This study discusses the concept of test case generation by

using UML diagrams to investigate the current models and

processes related to test case generation. A model for

performing automated test case generation is proposed to help

researchers map the generation of test cases in their work by

using UML diagrams. This model will help in settling the

requirement for future algorithms and methods. Furthermore,

an intermediate graph should be constructed and the steps

should be checked continually.

This model can be implemented in many types of UML

diagrams, such as state chart, activity diagram, and sequence

diagram. This paper also focuses on proposing general

processes of test case generation. In the future, an algorithm

will be developed on the basis of this model to achieve high

coverage in the process.

REFERENCES

[1] Kull A., 2009.Model-Based Testing of Reactive Systems: TUT Press.
[2] Dustin E., Garrett T., and Gauf B., 2009. Implementing Automated

Software Testing: How To Save Time And Lower Costs While Raising

Quality: Pearson Education.
[3] A. Kaur and S. S. Harwinder, 2013. Automatic Test Case Generation

with SilK Testing. International Journal of Computer Applications.

79:32-34.
[4] Anand S., Burke E. K., Chen T. Y., Clark J., Cohen M. B., Grieskamp

W., et al., 2013. An Orchestrated Survey Of Methodologies For

Automated Software Test Case Generation. Journal of Systems and
Software. 86:1978– 2001.

[5] Li L., Li X., He T., and Xiong J., 2013. Extenics-based Test Case
Generation for UML Activity Diagram, Procedia Computer Science.

17:1186-1193.

[6] Specification O. A., 2007. OMG Unified Modeling Language (OMG
UML), Superstructure, V2. 1.2. Object Management Group.

[7] Sapna P. and Balakrishnan A., 2015. An Approach for Generating

Minimal Test Cases for Regression Testing,Procedia Computer
Science. 47:188-196.

[8] Karambir and Kuldeep K., 2013. Survey of Software Test Case

Generation Techniques. International Journal of Advanced Research
in Computer Science and Software Engineering. 937-942.

[9] Hooda I. and Chhillar R., 2014. A Review: Study of Test Case

Generation Techniques. International Journal of Computer
Applications. 107.

[10] Rafi D. M., Moses K. R. K., Petersen K., and Mäntylä M. V., 2012.

Benefits And Limitations Of Automated Software Testing: Systematic

Literature Review And Practitioner Survey. in Proceedings of the 7th

International Workshop on Automation of Software Test. 36-42.
[11] Kumaran U. S., Kumar S. A., and Kumar K. V., 2011. An Approach to

Automatic Generation of Test Cases Based on Use Cases in the

Requirements Phase. International Journal on Computer Science and
Engineering. 3: 102-113.

[12] Hierons R. M., Merayo M. G., and Nunez M., 2011. Scenarios‐Based

Testing Of Systems With Distributed Ports, Software: Practice and
Experience. 41:999-1026.

[13] Hartmann J., Imoberdorf C., and Meisinger M., 2000. UML-based

integration testing. in ACM SIGSOFT Software Engineering Notes. 60-
70.

[14] Kansomkeat S. and Rivepiboon W., 2003. Automated Generating Test

Case Using UML Statechart Diagrams, in Proceedings Of The 2003
Annual Research Conference Of The South African Institute Of

Computer Scientists And Information Technologists On Enablement

Through Technology.296-300.
[15] Kosindrdecha N. and Daengdej J., 2010. A Test Generation Method

Based On State Diagram. JATIT. 28-44.

[16] Santiago V., do Amaral A. S. M., Vijaykumar N., Mattiello-Francisco

M. F., Martins E., and Lopes O. C., 2006. A Practical Approach for

Automated Test Case Generation using Statecharts. in Computer

Software and Applications Conference, COMPSAC'06. 30th Annual
International.183-188.

[17] Santiago V., Vijaykumar N. L., Guimarães D., Amaral A. S., and

Ferreira É., 2008. An Environment for Automated Test Case
Generation from Statechart-based and Finite State Machine-based

Behavioral Models. in Software Testing Verification and Validation
Workshop. ICSTW'08. IEEE International Conference on. 63-72.

[18] Indumathi C. andSelvamani K., 2015. Test Cases Prioritization Using

Open Dependency Structure Algorithm. Procedia Computer Science.
48:250-255.

[19] Boghdady P. N., Badr N. L., Hashim M. A., and Tolba M. F., 2011. An

Enhanced Test Case Generation Technique Based On Activity
Diagrams, in Computer Engineering & Systems (ICCES), 2011

International Conference on. 289-294.

[20] Binder R. V., 2000. Testing Object-Oriented Systems: Models,

Patterns, and Tools. : Addison-Wesley Professional.

[21] Shirole M., Suthar A., and Kumar R., 2011. Generation of Improved

Test Cases from UML State Diagram Using Genetic Algorithm, in
Proceedings of the 4th India Software Engineering Conference.125-

134.

[22] Hashim N. L. and Salman Y. D., 2011. An Improved Algorithm in Test
Case Generation from UML Activity Diagram Using Activity Path.

Proceedings of the 3rd International Conference on Computing and

Informatics, ICOCI.
[23] Kundu D. and Samanta D., 2009. A Novel Approach to Generate Test

Cases from UML Activity Diagrams, Journal of Object Technology.

8:65-83.
[24] Swain R. K., Panthi V., Behera P., and Mohapatra D., 2012. Automatic

Test case Generation From UML State Chart Diagram. International

Journal of Computer Applications. 26-36,
[25] Swain R. K., Behera P. K., and Mohapatra, D. P. 2012. Minimal

TestCase Generation for Object-Oriented Software with State Charts.

arXiv preprint arXiv:1208.2265.
[26] Swain R. K., Behera P. K., and Mohapatra D. P., 2012. Generation and

Optimization of Test cases for Object-Oriented Software Using State

Chart Diagram. arXiv preprint arXiv:1206.0373.
[27] Linzhang W., Jiesong Y., Xiaofeng Y., Jun H., Xuandong L., and

Guoliang Z., 2004. Generating test cases from UML activity diagram

based on Gray-box method. presented at the Software Engineering
Conference 2004. 11th Asia-Pacific.

[28] Rapos E., 2012. Understanding The Effects Of Model Evolution

Through Incremental Test Case Generation For UML-RT Models.
[29] Zhu H., Hall P. A., and May J. H., 1997. Software unit test coverage

and adequacy. Acm computing surveys (csur). 29:366-427.

[30] Bertolino A., 2007. Software testing research: Achievements,
challenges, dreams. in 2007 Future of Software Engineering. 85-103.

[31] Koong C.-S., Shih C., Hsiung P.-A., Lai H.-J., Chang C.-H., Chu W.

C., et al., 2012. Automatic testing environment for multi-core
embedded software—ATEMES, Journal of Systems and Software.

85:43-60.

[32] Priya S. S. and Sheba P., 2013. Test Case Generation from UML
models-A survey. in Proc. International Conference on Information

Systems and Computing (ICISC-2013), INDIA.

[33] Werner E. and Grabowski J., 2012. Mining Test Cases: Optimization
Possibilities. International Journal On Advances in Software. 5:200-

211.

Test Case Generation Model for UML Diagrams

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 175

[34] Edvardsson J., 1999. A survey on automatic test data generation.

in Proceedings of the 2nd Conference on Computer Science and
Engineering. 21-28.

[35] Verma A. and Dutta M., 2014. Automated Test case generation using

UML diagrams based on behavior. International Journal of
Innovations in Engineering and Technology (IJIET). 4

[36] Shanthi A. and Kumar G. M., 2012. Automated Test Cases Generation

from UML Sequence Diagram. International Proceedings of Computer
Science & Information Technology. 41.

[37] Boghdady P. N., Badr N. L., Hashem M., and Tolba M. F., 2011. A

proposed test case generation technique based on activity diagrams.
International Journal of Engineering & Technology IJET-IJENS. 11.

[38] Swain S. K., Mohapatra D. P., and Mall R., 2010. Test case generation

based on use case and sequence diagram. International Journal of
Software Engineering. 3:21-52.

