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ABSTRACT 

Centrifugal casting provides the opportunity of combining large centrifugal forces 

and directional solidification to reduce non-metallic inclusions in the cast steel product. 

Calcium treatment in the ladle has the potential of reducing and modifying non-metallic 

inclusions to achieve better machinability and mechanical properties. The objective of 

this research is to analyze the combined effects of calcium wire ladle treatment and 

centrifugal casting on the number, size, composition and morphology of non-metallic 

inclusions in centrifugally cast steel products.   

 All experiments were completed at an industrial foundry. The experiments 

involved feeding calcium wire into the ladle after argon oxygen decarburization (AOD) 

and prior to centrifugal casting. Samples were collected throughout the ladle treatment 

process and from the centrifugally cast products. Inclusions analysis was performed using 

an ASPEX automated inclusion analyzer. Charpy impact testing was performed after heat 

treatment to evaluate the relationship between toughness and non-metallic inclusions on 

the centrifugally cast products.  

It was found that the efficiency of calcium wire fed just prior to casting was 

slightly higher than calcium fed at earlier stages of the ladle treatment (just after AOD), 

providing better Ca- reactions with the melt. Alumina (Al2O3) inclusions were 

transformed into low melting point calcium aluminates (12CaO•7Al2O3 and CaO•Al2O3), 

but the cleanliness of the centrifugally cast products depended more on the centrifugal 

forces applied to the system than on the calcium wire ladle treatment.
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1. LITERATURE SURVEY 

New applications for centrifugally cast low alloy steels have been proposed due to 

the improved steel cleanliness and superior mechanical properties from the centrifugal 

casting process. Centrifugally cast near net shape preforms that are sufficiently free from 

defects have the potential of replacing forged preforms for applications such as cannons, 

reducing the manufacturing cost by eliminating many steps to produce the near net 

shaped product. However, centrifugally cast preforms would need to be equivalent or 

better in properties to the forged product. One primary defect reducing properties of steel 

castings is non-metallic inclusions formed during steelmaking, ladle treatment, pouring 

and solidification. Non-metallic inclusions degrade the quality or “cleanliness” of the cast 

steel based on the volume, size and distribution in the casting, as well as shape and type 

of morphology. Therefore, for centrifugally cast low alloy steels to be accepted in more 

critical applications, micro-defects such as inclusions and micro-porosity must be 

controlled and minimized to result in the required quality for the final product. The 

purpose of this thesis is to investigate the effects of calcium treatment on the cleanliness 

of centrifugally cast products. 

 

1.1. CENTRIFUGAL CASTING TECHNIQUE 

Centrifugal casting is used to manufacture highly engineering castings, turbine 

blades, dental parts, fittings, mass production pipes and tubes [1]. The critical step in 

centrifugal casting involves pouring liquid metal into a rotating mold and continuing 

rotation until solidification is achieved [2]. The rotating mold tends to deform under high 

temperatures and mechanical stresses during the casting process. In order to minimize 

mold deformation, a ceramic mold material is centrifugally applied to the permanent 

mold (metal flask) and preheated to reduce thermal damage [2], [3]. Molten metal is then 

poured into the mold and an antioxidant flux is used to reduce re-oxidation and promote 

unidirectional solidification from the outside towards the inside diameter. The heat flux 

from the inside diameter to the air is very low, producing little heat loss at this location 

[4]. These conditions along with large centrifugal forces reduce significantly the 

inclusion and shrinkage formation in the centrifugally cast products [1], [3], [5]. 



 

 2 
 

Low alloy steels are typically suitable for horizontal centrifugal casting. 

Horizontal centrifugal casting is preferred when the length is at least double the inside 

diameter of the centrifugally cast product [1]. In Figure 1.1, the mold and molten metal 

rotate rapidly about their central axis along the horizontal plane. Water sprays are 

typically applied to the outside surface of the mold to cool down the casting during 

solidification [3].  

 

 

 
Figure 1.1. A schematic illustration of a horizontal centrifugal casting machine [3] 

 

 

The quality of the centrifugally cast product is influenced by the pouring 

temperature, pouring rate, heat transfer coefficient (h), and mold rotational speed [5]. A 

low pouring temperature and rate produce large heat losses in the first molten metal 

delivered against the mold surface, minimizing the solidification temperature and time of 

the casting. The first molten metal delivered against the mold circumference during the 

first revolution may solidify midway, restraining its flow to the end of the mold. The 

succeeding molten metal will then cover the solidified layer. In the interface of these two 

layers, inclusions and gasses are trapped in the centrifugally cast product, which can 

result in hot cracks at these locations. A hot crack is formed in alloys with a large 

solidification interval that are prone to shrinkage [5]. Hot cracks are reduced by faster 

pouring rates and a uniform pre-heating of the mold to avoid different cooling rates in 

centrifugal casting [1], [5]. 

The heat transfer coefficient (h) at the outside diameter is typically larger than at 

the inside diameter of the centrifugally cast product.  When the rate of heat transfer from 

the outside of the casting to the mold is insufficient, hot cracks are formed due to a coarse 
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solidification structure in the centrifugally cast product. A high mold temperature also 

leads to longer solidification time, multidirectional solidification and more intense 

segregation. Segregation degrades the mechanical properties and wear resistance of the 

cast product [2]. In order to improve heat dissipation, rapid cooling of the mold is 

required by spraying water on the mold [4].    

The mold rotational speed needs to be maintained below a critical point to prevent 

high tensile stresses at the outside diameter that may produce longitudinal layer cracking. 

Taylor vortices are produced through a wavy and disturbed flow (Ekmann flow) caused 

by an extremely high rotational speed and a low viscosity fluid [6]. These vortices create 

an irregular surface in the centrifugally cast product. The effect of the Ekmann flow can 

be reduced through larger mold diameters or with an increased length with respect to the 

mold diameter. In either the small diameter or decreased length case, the rotational speed 

must be high enough to form a uniform cylindrical layer in the rotating mold [6].  In 

contrast, a low and inappropriate mold rotational speed causes liquid to drop from the top 

to the bottom of the mold during the filling process as illustrated in Figure 1.2, creating 

casting defects in the final product [7]. 

 

 

 
a)                        b) 

Figure 1.2. Water model experiments of mold filling indicating a) liquid dropping from 

the top to the bottom of the mold at low rotation speed (305 rpm) and b) a thin and 

uniform liquid film that is picked up by the mold surface friction at high rotation speeds 

(600 rpm) during horizontal centrifugal casting [7] 

 

 

The process of varying the rotational speed is often used in centrifugal casting in 

order to increase the service life of the mold and equipment, as well as to reduce the 

power consumption and crack formation in the centrifugally cast product. Figure 1.3 

shows how a typical centrifugal casting operation would change the rotational speed (n) 
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and time (t) during casting, with n1>n3>n2>n4 and t4> t>3 >t2>t1. The rotational speed at 

the beginning of the centrifugal casting process, n1 (960-980 rpm), is high enough to 

spread the molten metal over the entire mold length to prevent double-skin and cold shut 

defects [1], [5]. The rotation speed n1 will lead to a uniform thin layer in the mold [6], 

[7]. The uniform thin layer is subjected to high pressure, leading to quick solidification of 

the outside diameter of the centrifugally cast product [7]. However, time t1 cannot be too 

long with the mold rotation speed at n1 due to the fact that a large concentration of 

centrifugal forces will form cracks in the centrifugally cast product. The rotation speed is 

then dropped to n2 (800-820 rpm) to minimize the pressure on the thin solidified casting. 

Once the solidified thickness is sufficient, the rotation speed is increased to n3 (800-900 

rpm), to improve the formation of the casting and encourage a compact structure. The 

time t3 at n3will depend on the strength of the centrifugally cast product to withstand large 

centrifugal forces without cracking. The final rotation speed, n4 (720-740 rpm), is reduced 

to prevent crack formation due to large internal stresses produced by rapid cooling of the 

casting. After n4 and t4, the centrifugal casting machine is stopped. The centrifugally cast 

product is then removed from the mold to allow further cooling of the casting at a lower 

rate, reducing the residual stresses in the casting. 

 

 

 
Figure 1.3. Schematic diagram illustrating the theoretical change in variable speed during 

centrifugal casting, especially for centrifugally cast steel products [5] 

 

 

Casting removal proceeds after the centrifugal casting process is completed. Some 

of the methods that are typically used for casting removal involve either pulling the 
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casting out of the mold and later removing the refractory from the mold, or pushing the 

casting and refractory out of the mold at the same time. Generally, the casting can be 

easily removed from the mold, but as the life of the mold reaches its end, the casting 

removal will be progressively more difficult to perform. This is due to the deterioration 

of the mold surface caused by cracks and localized burned layers, which can be 

minimized by welding and re-grinding the mold surface [1]. 

  

1.2. CASTING DEFECTS IN CENTRIFUGAL CASTING 

1.2.1. Non-metallic Inclusions. Non-metallic inclusions have a significant 

influence on the mechanical properties due to the fact that their thermal expansion 

coefficients are different in comparison to the surrounding metal, inducing stresses and 

void nucleation during solidification.  Crack propagation is then produced due to the low 

bond energy of inclusions with the steel matrix [8]. The volume fraction of non-metallic 

inclusions (vf) and the spacing between them are related to the fracture toughness of steel 

(KIC). KIC is the ability of a material to withstand an applied load in the presence of flaws 

or inclusions as described in Eq. 1 [9], 

EdvK yieldfIC 


3/1

6/1

6
2 








             (1) 

where, vf  is the volume fraction of inclusions, yield is the applied stress, E is the Young’s 

modulus and d is the inclusion diameter [9]. 

By using Eq. 1, Hahn et al. determined that the fracture toughness is indirectly 

proportional to the volume fraction of inclusions in steel [9]. The relationship between 

fracture toughness and inclusion spacing is given by Eq. 2, 

  2/1
2 EsK yieldIC               (2) 

where, s is the average spacing between non-metallic inclusions [9]. 

V. Singh et al. confirmed that fracture toughness of steel is enhanced by 

decreasing the volume fraction of inclusions and increasing the spacing between non-

metallic inclusions in steel [9].   
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1.2.1.1. Non-metallic inclusion distribution in centrifugally cast products. The 

centrifugal forces in the mold are influenced by the gravitational coefficient, G, which is 

typically 75 to 120 times greater than gravity, g, forcing molten metal against the 

spinning surface (Eq. 3) [1].  

grG /2                                    (3) 

where, is the  angular velocity and r is the distance between the rotation axis and a 

given position in the centrifugally cast product [10]. 

The movement of a particle, M, in centrifugal casting is influenced by two forces, 

the gravity force (mg) and centrifugal force, FC, as illustrated in Figure 1.4 (Eq. 4) [10],  

rmFC

2                       (4) 

where, m is the mass of the particle M [10]. 

 

 

 
Figure 1.4.  Schematic force diagram showing the centrifugal and gravitational forces in 

the centrifugal cast product [10] 

 

 

The centrifugal force (2
r) is far greater than the gravitational force, g, neglecting 

the influence of g on the particle distribution in the centrifugally cast product. The 

centrifugal force (2
r) replaces g in Stokes law, and the velocity vM is then expressed by 

Eq. 5 [11].  

L

LMM
M

rd
v





18

)( 22 
                     (5) 
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where, dM is the diameter of a spherical particle, M is the particle density, L is the liquid 

density and L is its dynamic viscosity. 

 The position r influences the motion of each single spherical particle, resulting in 

different velocities [2], [11]. If vM<0 because M<L, the particle will move to the inside 

diameter of the centrifugally cast product. If vM>0 because M>L, the particle will move 

to the outside diameter of the centrifugally cast product [10].  

Equation 5 is based on Stokes law, implying that the particle Reynolds number 

(ReM) must be less than one (ReM<1), usually known as creeping flow. The particle 

Reynolds number (ReM) is calculated using the particle velocity (vM) and its diameter 

(dM), as well as the velocity (vL) and viscosity (L) of molten steel (Eq. 6) [12]. 

L

MLML
M

vvd



 )(
Re


            (6) 

The molten steel in creeping flows (ReM<1) tends to wrap a spherical particle 

smoothly [13]. However, the motion of a particle in centrifugal casting is turbulent, 

leading to the development of new models to improve the prediction of particle 

segregation in the centrifugally cast product [11].  

Gao and Wang developed a model based on Eq. 5, assuming that there is only 

heat transfer throughout the outside of the casting.  Three different balances are 

established and combined in the Gao and Wang model: mass balances for particles, 

molten metal and the solidified matrix; momentum balances for particles and the molten 

metal; and a thermal balance, including the heat contribution of each constituent phase, 

like gas, molten metal, and solid, within the system [10], [11]. The combination of 

balances leads to the velocity of particles, vM, in the molten metal in the centrifugally cast 

product, shown in Eq. 7, 

 

 22

2

4 LML

MMLM
M

ff

df
v









           (7) 

where, fM is the volume fraction of the particles and fL is the volume fraction of the molten 

steel.  is given by Eqs. 8 and 9, 

2

)1(9 Cf L
             (8) 
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  65.4
1


 MfC             (9) 

where, C is the sedimentation rate that takes into account the inter-particle collisions, 

impeding particle motion to some extent, while the rest of the particles move through the 

molten metal according to the ideal Stokes formula (Eq. 5), assuming single spherical 

particles within the system [11]. 

The Gao and Wang model also indicates that the particle motion is influenced by 

two opposing forces; the centrifugal force and a viscous drag force. A centrifugal force 

drives particles towards the inside diameter of the centrifugally cast product. A viscous 

drag force tends to reduce and oppose the particle motion as the melt viscosity increases. 

Gao and Wang show the relationship between the viscous force by unit volume (MM
D
) 

and the contribution of a particle in the intrinsic viscosity (L) of the melt and volume 

fraction (fL) in Eq. 10. 

 
)(

118 2

2 MLL

M

LLD

M vvf
d

Cf
M 





                   (10) 

The study of the flow and melt deformation due to the particle motion can also be 

studied using the apparent viscosity, app. The apparent viscosity (ηapp) depends 

significantly on the volume fraction of particles (fM), as well as the melt or liquid phase 

viscosity (ηL) [14]. The apparent viscosity of the melt (ηapp) can be determined using Eq. 

11 [11]. 

 205.105.21 MMLapp ff          (11) 

The inclusion motion and viscosity of the molten metal are also influenced by the 

melt temperature. The melt temperature continuously decreases during the centrifugal 

casting process, increasing the solid volume fraction,  fs, referred to as solidification front, 

from the outside towards the inside diameter of the centrifugally cast product. At the 

beginning of the solidification process, the solid volume fraction is present in small 

quantities and is surrounded by a continuous liquid film. As the solidification proceeds, 

the solid volume fraction increases and the dendritic coherency is finally reached when a 

continuous solid skeleton is formed [11].  
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The advancement of particles by their size in the solid skeleton relies on the time 

taken to reach the maximum acceleration in the centrifugally cast mold, tmax. If tmax is 

short, large particles are prone to attain great velocities and be concentrated at the inside 

diameter of the centrifugally cast product due to the fact that the solidification front is not 

too dense at the beginning of the casting process. If tmax is long, a well defined and 

coherent solidification front pushes the large particles towards the inside diameter, 

suggesting the particle pushing effect [11]. In both cases, small particles in the melt are 

eventually captured between the secondary dendrite arms of the solid skeleton (Figure 

1.5) [11]. 

 

 

 

SOLIDIFICATION FRONT  

               
a) b) 

Figure 1.5. A schematic illustration showing a) the inclusion flotation towards the ID at 

the early stages of the solidification process and b) the particle pushing effect after the 

formation of a coherent solidification front [11] 

 

 

1.2.1.2. Types of non-metallic inclusions. There are two classifications for non-

metallic inclusions:  

a) Exogenous Inclusions. Exogenous inclusions are large and irregularly shaped 

particles that are macroscopically visible either at or beneath the external casting surface. 

These types of inclusions easily float out, but they can be trapped in regions that solidify 

rapidly or where their flotation is hindered due to insufficient flotation time [15]. 

Exogenous inclusions are primarily derived from external causes, including, re-oxidation, 

entrained slag and lining erosion [8], [15].  
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Svoboda et al. performed a research project to analyze 500 macro-inclusions from 

carbon and low alloy steel samples collected in 14 U.S foundries (Figure 1.6) [16]. It was 

shown that the majority of exogenous inclusions come from re-oxidation, representing 83 

% of the total macro-inclusions. This means, the free radicals in the melt are extremely 

reactive with their environment [16]. The entrainment of air and slag is due to the 

turbulent mixing of the molten steel during the transfer between vessels. Furthermore, the 

lining erosion may be caused either by the chemical reactions between the refractory and 

melt or by the high steel volume that impacts the refractory lining during pouring [15]. 

b) Indigenous Inclusions. Indigenous inclusions are formed either during de-

oxidation or solidification [8], [14], [15]. The majority of indigenous inclusions are 

formed by the thermodynamic affinity of reactive components with the remaining 

impurities (oxygen and sulfur) in the melt. Inclusions nucleate and grow shortly after 

adding the de-oxidizer to the melt. Large indigenous inclusions typically float to the slag 

surface. In contrast, small indigenous inclusions are trapped in the melt and passed to the 

next casting process. Indigenous inclusions are also formed and trapped near the liquidus 

temperature inside the mushy zone during solidification. The solubility of the remaining 

impurities (oxygen, nitrogen and sulfur) decreases as their concentration becomes larger 

in steel, inducing inclusion precipitation during dendrite solidification [14], [15].  

 

 

 
Figure 1.6. Comparison and classification of inclusion distribution (>10m) in low alloy 

steel castings using a total sample of 500 inclusions from 14 foundries in the U.S. [16] 
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1.2.1.3. Experimental analysis on non-metallic inclusion distribution in 

centrifugally cast products. There are few researchers that have studied the non-metallic 

inclusion distribution in centrifugally cast products or the complex effects of centrifugal 

forces within the system. Katavić and Odanović studied centrifugally cast CrMo steel 

pipes (0.3%C, 0.08%Al, 0.025%S, 0.44%Si and 0.60% Mn) to analyze the inclusion 

distribution from the outside to inside diameter of the cast product. It was observed that 

the maximum size of inclusions in the CrMo cast steel pipe was less than 15 µm. The 

largest amount of inclusions was concentrated at the outside diameter (Figure 1.7). 

Katavić and Odanović stated that the outside diameter of the cast tube solidifies first and 

the microstructure in this zone differs from the inside diameter. This means, fine 

precipitates are observed in ferrite grains at the outside diameter and a more dispersed 

microstructure is shown at the inside diameter of the CrMo steel pipe (Figure 1.8). The 

radial segregation of non-metallic inclusions is also influenced by high mold rotational 

speeds and the ratio of the mold wall thicknesses (k) and tube wall thickness (). If the 

k/ >1, a higher cooling rate is achieved, producing a finer grained structure at the 

outside diameter (bainite and martensite) [17].  

 

 

 
Figure 1.7. Average inclusion area (m

2
) in the radial direction of the centrifugally cast 

CrMo steel pipe showing inclusion distribution from the outside (3 mm) to the inside 

region (40.5 mm) [17] 
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   a)        b) 

Figure 1.8. a) Fine precipitates are irregular in shape and size in a matrix of ferrite and 

pearlite at the outside diameter (1-3 mm) of the centrifugally cast tube, b) A more 

disperse microstructure is observed in a matrix of ferrite and pearlite at the inside 

diameter (17-23 mm) of the centrifugally cast tube [17]  

 

 

The inclusion distribution analysis made by Katavić and Odanović requires 

further examination because neither stock removal from the inside diameter (if 

applicable), nor the location of the centrifugally cast steel samples were specified in their 

study. Mirzoyan and Pavperova analyzed the inclusion distribution in centrifugal casting 

using several cross sections around semi-finished 15kh1M1F steel products (Figure 1.9). 

Mirzoyan and Pavperova revealed that the inside diameter of the centrifugally cast 

15kh1M1F steel product showed the largest amount of non-metallic inclusions, especially 

coarse slag inclusions up to 120µm and porosity. The outside diameter consisted of 

macro-inclusions due to the interaction of the molten steel and refractory during the 

pouring process. The center of the centrifugally cast 15kh1M1F steel product was 

characterized by an extremely low content of both individual and agglomerated non-

metallic inclusions that were distributed almost uniformly throughout [18]. 

 Mirzoyan and Pavperova also studied the inclusion distribution along the length 

of the centrifugally cast 15kh1M1F steel product (Figure 1.10). Figure 1.10 shows that 

the amount of non-metallic inclusions increased towards the non-pouring end of the 

casting. This means, the metal temperature at the pouring end is usually 104-140 ºF (40-

60 ºC) higher than the opposite end, reducing significantly the movement of inclusions at 

the non-pouring end [18]. 
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Figure 1.9. Area covered (Sni) by non-metallic inclusions from the outside (h=0 mm) to 

the inside diameter (h=45 mm) of the centrifugally cast 15kh1M1F steel product [18] 

 

 

 
Figure 1.10. Non-metallic inclusion distribution along the length of the centrifugally cast 

steel product (Z=0 m= pouring end; Z=5 m= opposite pouring end) based on the standard 

scale of inclusion analysis (GOST 1778-70) [18] 

 

 

1.2.2. Porosity. There are different types of porosity that may be detrimental to 

the mechanical properties of the cast product. The extent of the impact is based on the use 

and type of the final casting. 

1.2.2.1. Gas porosity. Gas porosity is influenced by the gas dissolved in liquid 

steel, which is non-soluble in solid product and nucleates and grows as entrapped gas 

porosity during solidification. Pore nucleation theories involve homogeneous and 

heterogeneous nucleation.  

Homogeneous nucleation of a bubble in the interior of a liquid is associated with 

the pressure Pe and the amount of work PeV to repel the liquid far enough to produce a 

bubble of volume V. The new liquid-gas interface of area A requires work equals to A, 

where  is the interfacial energy per unit area. In order to fill the bubble with vapor or 

gas, the work must be equal to – PiV. The negative sign is due to the pressure inside the 
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bubble, allowing the formation of the bubble. The total work for the bubble formation is 

described in Eq. 12, 

VPPAG ie                                                          (12) 

 where, the pressure difference between the exterior and the interior of the bubble (Pe-Pi) 

is now designated as P.  

G is also associated with the bubble radius r. This relationship is the dense phase 

nucleation in which a maximum value or critical radius is achieved, resulting in an 

energy barrier to nucleation. The critical radius r* is given by Eq. 13, 

*/2* Pr                    (13)  

where, P* is the critical pressure difference and  is the interfacial energy per unit area 

at which nucleation occurs. Small bubbles with radii less that r* will disappear from the 

liquid. If the critical radius r* is exceeded, the bubble will tend to grow to an observable 

size in the liquid [16]. 

Eq. 13 along with experimental values of interfacial energy () and atomic sizes 

(nm) were used by J. Campbell to estimate an interfacial energy () of 1.9 N/m and a P* 

of 76,000 atm for liquid iron. This means that homogeneous nucleation is extremely 

difficult because the required pressure for nucleation is so high. However, the nucleation 

problem may be reduced by the presence of surface active impurities in the molten steel. 

Impurities, such as non-metals O, P and S, react in liquid iron, reducing the interfacial 

energy and pressure required for nucleation (liquid iron at 0.2 wt% O  1.0 N/m). The non-

metals can also precipitate as liquid inclusions during solidification or at the solidification 

front. Liquid FeO inclusions at the solidification front decrease the interfacial energy to 

0.6-0.5 N/m and the critical pressure to approximately 17,000 atm. However, the critical 

pressure of 17,000 atm is still unattainable, impeding gas pore nucleation [16].  

Heterogeneous nucleation considers that a good nucleation site for porosity 

entails solid substrates like non-metals. Non-metals like O, P and S, can precipitate as 

inclusions and make an angle   with the liquid iron.  If the angle between the solid 

substrate and the liquid iron is =0º, complete wetting occurs in which the cohesion 

energy of the solid and the liquid is high. In complete wetting, the bubble is out of 
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contact with the solid, displacing itself to a more favored position in the liquid iron. If the 

angle between the solid substrate and the liquid iron is =180º, complete non-wetting 

occurs in which easy decohesion of the liquid from the solid substrate is attained. In 

complete non-wetting, the bubble is in direct contact with the solid substrate and the 

liquid, promoting the void nucleation in the liquid iron. Figure 1.11 indicates that there is 

no difficulty for heterogeneous nucleation in the presence of complete non-wetting 

substrates. Nevertheless, many researches like Livingston and Swingley were not able to 

observe a contact angle greater than 160 degrees. Instead, Figure 1.11 establishes that the 

optimum nucleation occurs when the contact angle   exceeds 60 or 70 degrees [16]. If 

this assumption is correct, the non-wetted solid substrates only requires about one-

twentieth of the critical pressure for heterogeneous nucleation in the liquid. If a highly 

non-wetting solid substrate or inclusion were present inside the liquid FeO inclusion, the 

critical lowest pressure of this complex inclusion can be reduced further to 850 atm 

(17,000 atm/20= 850 atm) [16].  

 

 

 
Figure 1.11. - Relationship between the contact angle of a bubble against a solid substrate 

and critical pressure showing the changes of a solid substrate from wetting (= 0) to non-

wetting (= 180) [16]  

 

 

The critical pressure, P*, also depends on the relationship between pressure, 

velocity and elevation within castings, provided by the Bernoulli equation. The Bernoulli 
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equation cannot be applied everywhere in the fluid flow, but rather in regions where the 

frictional forces are negligibly small compared to other forces acting on the system. This 

implies that the Bernoulli equation does not apply on regions that are very close to solid 

walls (boundary walls) and directly downstream of particles (wakes). The Bernoulli 

equation is then used in regions in which the fluid motion depends on the combined 

effects of pressure and centrifugal forces (Eq. 14) [13], [19]. 

22

2

1
rgzPP O       (14) 

where, P is the total pressure along the streamline, PO is the initial pressure,  is the fluid 

density, g is gravity, z is the differential height,  is the  angular velocity and r is the 

distance between the rotation axis and a given position in the centrifugally cast product. 

Each term of this equation represents different pressures within the system: PO is the 

static pressure; gz is the hydrostatic pressure, taking into account the elevation effects of 

fluid weight on pressure; and ½2
r

2
 is the dynamic pressure, considering the pressure 

rise when the fluid motion is stopped within the system [13]. 

The total pressure, P, in centrifugally casting is typically higher than gravity 

casting due to the effect of centrifugal forces on the dynamic pressure, creating pressure 

far in excess within the system. The critical pressure, P*, for porosity nucleation in 

centrifugal casting is so high that the probability of gas pore formation either by 

homogeneous or heterogeneous is minimized significantly in comparison to gravity 

casting. 

 1.2.2.2. Microposity in cast alloys. Microporosity is composed of very small 

voids that are formed in the interdentritc residual liquid of the casting. Nucleation of 

bubbles may be either homogeneous or heterogeneous, but in some cases, there is no 

need of nucleation to grow pre-existing stable micro-bubbles. Pre-existing micro-bubbles 

grow by the pressure drop of a liquid in the mushy zone during solidification. Over a 

longer period of time, the bubble may interact with the solutes in the liquid, like 

hydrogen, resulting in growth of gaseous pores. The growth of pre-existing micro-

bubbles is also influenced by the dendrite arm spacing (DAS) and cooling rate of the 

casting. If the DAS size is decreased, the growth of the bubble and the probability of 

microporosity formation are limited at high cooling rates [20].  
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Pre-existing bubbles may also originate cracks that are formed along a continuous 

array of fine solid particles in the grain boundary. These cracks are hot tears that can lead 

to embrittlement of the solid by the presence of solid inclusions. Pore formation will 

occur inside hot tears during the end of the solidification process [20]. 

1.2.2.3. Shrinkage porosity in centrifugally cast products. A better thermal 

conductivity and interfacial heat transfer coefficient (h) between the molten steel and the 

centrifugally cast mold result in points of increased pressure and a higher solidification 

rate [11]. However, there are void spaces in the centrifugally cast tube formed by 

contraction and thermal expansion during the solidification process. Entrapped gasses are 

usually found at void spaces, reducing the conductivity and pressure of the casting [2], 

[21]. A low pressure portion, especially near the hollow surface of the centrifugally cast 

tube (inside diameter), solidifies last, producing macro-porosity due to insufficient liquid 

feeding to accommodate the shrinkage of the casting [21].  

 

1.3. CALCIUM WIRE INJECTION IN MOLTEN STEEL 

The calcium treatment of liquid steel has proven to be an effective method of non-

metallic inclusion modification and improvement of steel cleanliness.  

1.3.1. Method of Ca-Addition. The challenges and limitations of several 

techniques for calcium alloy treatment in the ladle have been analyzed since the late 

1960s. The Thyssen Group in Germany was one of the first companies to develop the 

Thyssen Niederrhein (TN) process for steel desulfurization. In the TN process, pulverized 

solid particles of calcium alloys were contained in a pressure vessel that was mounted to 

a swing arm. The vessel was connected to an immersion lance over a piping system. The 

swing arm, pressure vessel and the immersion lance were lowered to inject the solid 

particles through an inert gas carrier into the molten steel. The TN process produced 

acceptable steel products due to the calcium ladle treatment, but the clogging of the lance 

outlet tended to occur at low gas pressures, interrupting the calcium ladle treatment of the 

steel. Oscillation of the lance also produced breakage of the ladle lining, as well as the 

destruction of the lance [22]. 

Addition of calcium alloys to the tap stream was performed by Washburn Wire 

Co, but this technique was unacceptable due to the severe metal splashing. The plunging 
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technique was then developed in which a calcium cylinder was placed over the bottom 

end of a refractory covered rod. The calcium cylinder and the rod were lowered to the 

bottom ladle, producing uncontrolled re-oxidation and metal splashing in all directions of 

the slag surface [23]. By late 1979, the cored wire injection technique was performed and 

improved by AFFIVAL (Figure 1.12) [24], [25]. AFFIVAL deformed the calcium cored 

filler into a rectangular tube, and later, into a round shape. The purpose of deformation of 

the calcium core filler was to produce a compact powder, resulting in better calcium 

reaction with the melt [25]. Typically, the rate of the reaction is more controlled, 

increasing the amount of calcium dissolved into liquid steel. The amount of impurities 

and metal splashing in the molten steel are also reduced in the calcium wire ladle 

treatment [23].  

 

 

 
Figure 1.12. Schematic illustration of the typical calcium wire injection method [24] 

 

 

 1.3.2. Calcium Wire Ladle Treatment. Calcium cored fillers like CaSi30 (30% 

Ca and 60% Si), FeCa, CaSiBa, and CaSiBaAl are commonly used for treating molten 

steel after de-oxidation. The sequence of reactions regardless of the type of calcium filler 

composition is the same [26]: 

 Ca (s) Ca (l) Ca (g)                (15) 

Ca (g) [Ca]       (16)  

[Ca] + [O] CaO      (17) 

[Ca] + [S] CaS      (18) 
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[Ca]+ (x +1/3) Al2O3 CaO• x Al2O3+ 2/3[Al]   (19) 

Some of the calcium from the cored filler is combusted with air, causing the 

emission of fumes during the calcium treatment. Typically, the emission of CaO vapors 

is decreased for aluminum killed steels with relatively low sulfur content (10ppm <S 

<40ppm), in which the calcium retained in the molten steel modifies most of the alumina 

inclusions to low melting point calcium aluminates [23], [26]. 

The calcium retained in the molten steel after ladle wire injection and prior to 

casting often forms calcium aluminates that float to the ladle surface, reducing the 

calcium yield in the molten steel [26]. The calcium yield is the ratio between the 

dissolved (CaTotal- CaNon-metallic Inclusions) and injected calcium in the post-tap treatment. In 

low melting point, pure calcium wire fillers (FeCa~ 1472 F, 800C), the calcium yield is 

minimized due to the prompt calcium powder evaporation and combustion with air at 

molten steel temperatures (2910F, 1600C). Calcium wire fillers containing Si, Al, Ni or 

Cu (melting point~ 2012 F, 1100 C) increase the calcium yield in the residual melt, 

improving the calcium absorption in the molten steel [27]. The calcium yield in CaSi40 is 

reported to be greater than CaSi30 due to the fact the calcium content in CaSi40 is around 

10% greater than CaSi30, minimizing the wire consumption, production cost and 

injection time [28].  

A guide tube is usually used to introduce the calcium cored fillers into the melt 

vertically. The guide tube exit is 12-16 in (300-400 mm) above the molten steel leading 

to almost complete immersion without hitting the bottom of the ladle and reaction of the 

cored wire with the melt. The wire injection rate is also important to assure the melting of 

both cladding and filler. An effective injection rate avoids the cluster of supersaturated 

local regions of steel. Supersaturated regions can be carried up to the slag and the calcium 

yield decreases significantly in the molten steel [28].  

1.3.3. Effect of Calcium Treatment on Non-metallic Inclusions. One of the 

elements that is used for de-oxidation due to its greater affinity for oxygen than carbon is 

aluminum [29]. After aluminum de-oxidation, the aluminum oxide rich inclusions are 

formed at a very low nucleation rate. A low nucleation rate results from high interfacial 

energy between the aluminum oxide rich inclusions and molten steel (Al2O3=2290 

erg*cm
2
), increasing the inclusion size distribution [30]. In industrial practice, a broad 
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inclusion size distribution minimizes the cleanliness of the molten steel, but the size 

distribution can be enhanced by the calcium wire ladle treatment. The calcium activity in 

the molten steel gradually increases to form low melting point calcium aluminates with 

low interfacial energy (CaO-Al2O3=1300 erg*cm
2
), decreasing the inclusion size 

distribution in steel [30], [31].  

Low melting point calcium aluminates, consisting of 3CaO•Al2O3, 12CaO•7Al2O3 

and CaO•Al2O3, are liquid at steel casting temperatures [32]. These type of calcium 

aluminates usually melt in the temperature range of 2543- 2921 F (1395-1605°C) 

(Figure 1.13) [24]. The melting temperature for calcium aluminates is significantly lower 

than the alumina inclusions (3762F, 2072°C) [31]. Low melting point calcium 

aluminates are easier to remove from the molten steel because of their rapid coagulation 

to form round aggregates with Al2O3 and other inclusions that easily float to the ladle 

surface [22]. The Ca wire ladle treatment reduces the tendency for the modified 

inclusions to attach to the refractory surface, preventing nozzle blockage during teeming 

and continuous casting. 

  

 

 
Figure 1.13. The binary phase diagram of CaO- Al2O3 [14] 
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1.3.4. Effect of Calcium Treatment on Mechanical Properties. The 

improvement of ductility and mechanical properties is influenced by the suppression of 

manganese sulfide and brittle inclusions like Al2O3 in steel [33]. Brittle inclusions like 

Al2O3 are typically angular in nature that becomes fragmented during rolling, promoting 

void nucleation in the steel [33]. Mn and S are ejected from the solidifying dendrites to 

the remaining liquid. Their concentration in the remaining liquid tends to precipitate MnS 

in the interdendritic spaces towards the end of the solidification process [34], [35]. The 

manganese sulfides produce MnS stringers that cause stress concentrations at the steel/ 

inclusion interface, reducing the ductility of the cast steel product [31].Theoretically, 

sulfides are classified into three categories: globular sulfides that are randomly 

distributed in the metal matrix (Type I); thin films that embrittle the cast steel due to the 

chainlike formation along the grain boundaries (Type II); Sulfides that have angular or 

irregular geometric shape, which are less harmful than type II, but are more harmful than 

type I (Type III) (Figure 1.14) [16], [36].   

Multiphase inclusions involve manganese and calcium sulfides ((Mn, Ca) S) 

around low melting point CaO• Al2O3, known as bi-phase inclusions. A bi-phase 

inclusion is composed of an oxide prime phase surrounded by a sulfide secondary phase, 

lowering the oxygen and sulfur contents in the melt. The oxisulfide inclusions containing 

calcium form non-deformable round inclusions that prevent cracking and deformation 

during rolling, providing better mechanical properties when compared to other types of 

inclusions (Figure 1.15) [26], [31], [33], [36], [37].  

The activity of calcium in the molten steel will increase gradually and form low 

melting point calcium aluminates that will surround the outer layers of oxide inclusions 

in the melt. An oxide inclusion does not require to be transformed completely into low 

melting point inclusions, as long as the liquid inclusion at the outside layer is thick 

enough to prevent crack formation and voids at the inclusion-steel matrix during rolling 

(Figure 1.16) [31].  
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a)         b)  

 

 

 
        c) 

Figure 1.14. Percentage reduction area, percentage elongation and izod impact of 0.20% 

C steel castings after aluminum deoxidation (a, b and c) [36] 

 

 

 
Figure 1.15. Comparison of mechanical properties of 0.20 %C cast steel treated with Al 

followed by CaSiBaAl wire injection [36] 
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Figure 1.16. SEM-mappings showing a combination of a high melting point inclusion 

(MgO) in the center and a low melting point inclusion with high calcium content at the 

outer surface [31] 

 

 

1.4. EFFECTIVENESS OF INCLUSION MODIFICATION BY CALCIUM WIRE         

       LADLE TREATMENT 

1.4.1. Inclusion Modification with Respect to Time. The interaction of a high 

basicity slag (42-45 %CaO and 6-7% SiO2) with the molten steel has also shown to 

modify angular oxide inclusions to low melting point calcium aluminates. M. Jiang et al 

performed experiments to analyze the steel/ high basicity slag reaction in steel melts held 

from 30 to 80 minutes without stirring at 2910 F (1600C). The total oxygen (T.O) 

decreased significantly after 90 minutes and the sulfur content was quiet low throughout  

the metal holding time in the ladle, enhancing the cleanliness of steel (Table 1.1). Table 

1.2 shows that spherical inclusions are formed with increased calcium reaction time. It 

reveals that most of the angular oxide inclusions decreased and are transformed into low 

melting point inclusions containing calcium with longer time, especially after 180 

minutes [31].  
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Table 1.1 Chemical composition of steel held for 30, 60, 90 and 180 minutes with no 

stirring at 2910F (1600C) [31] 

Time (min) %C %Si %Mn %Al %Ca %S T.O.

30 0.46 1.52 0.84 0.038 0.0003 0.0005 0.0014

60 0.37 1.52 0.84 0.041 0.0002 0.0006 0.0012

90 0.46 1.50 0.84 0.042 0.0005 0.0008 0.0008

180 0.41 1.46 0.84 0.036 0.0010 0.0005 0.0007

CHEMICAL COMPOSITION OF MOLTEN STEEL

 
 

 

Table 1.2 Modification of inclusion morphology with respect to calcium reaction time 

[31] 

30 min 60 min 90 min 180 min

MgO-Al2O3 -- --

MgO-based --

CaO-MgO-Al2O3

INCLUSION SHAPE WITH CALCIUM REACTION TIME

 
 
 

1.4.2. Inclusion Modification with Different Ca Amounts and Injection 

Speeds. V. Singh et al. performed calcium injection experiments in static casting. The 

steel was melted in a 2,200 lb (998 kg) medium frequency induction furnace (IF) 

followed by the post-tap treatment. In the post-tap treatment, five heats were calcium 

treated using different calcium additions and injection speeds in a 1,100 lb (499 kg) ladle. 

One of the heats was the base case with no calcium added in the ladle. Figure 1.17 

illustrates that the amount of oxide inclusions increases after aluminum and FeTi 

additions in the ladle. This indicates that re-oxidation occurs during pouring and from the 

transfer ladle to the gating system. Similarly, re-oxidation is also observed in the calcium 

treated heats, but the amount and type of alumina inclusions changed after CaSi wire 

injection, especially with increased calcium and higher injection speeds. A high injection 

speed improves the Ca-reaction due to more Ca addition in less time and deeper 

penetration of the wire into the melt to form calcium aluminates. However, the silicon 

content in the CaSi wire promotes MnSiO3 inclusions in the steel (Figure 1.18) [32].  
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Figure 1.17. The base case heat with no calcium treatment showing re-oxidation from 

tapping after aluminum and Fe70Ti additions to the final casting [32]  
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Figure 1.18. Calcium injection experiments with different additions and injection speeds 

showing better inclusion modification with increased CaSi-addition [32] 

 

 

1.5 OUTLINE OF THE PROJECT 

The literature review indicates that centrifugal casting process is suitable for 

production of steel components for critical applications, in particular, for pressure 

service. At the same time, non-metallic inclusions tend to be formed during the 

steelmaking and centrifugal casting processes. These defects reduce the mechanical 

properties of the low alloy steel. In order to improve the mechanical properties, the 

“cleanliness” of the molten steel after aluminum de-oxidation needs to be improved. 

Calcium wire ladle treatment has the potential of modifying the chemical composition of 

non-metallic inclusions, forming well dispersed spherical inclusions, reducing type II 
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sulfide inclusions, and increasing the fracture toughness of the centrifugally cast 

products. 

In this research, calcium wire injection was performed using a 12,000 lb ladle in 

order to minimize casting defects. Non-metallic inclusions and porosity in centrifugally 

cast tubes were evaluated through an automated particle identification and 

characterization analyzer, ASPEX PICA 1020, scanning electron microscopy (SEM) and 

optical microscopy. The ASPEX PICA 1020 utilizes a backscattered detector (BSED) 

and energy dispersive spectroscopy (EDS) system for a rapid analysis of the distribution, 

type and morphology of non-metallic inclusions and porosity present in the steel. SEM 

examination was used to determine the fracture mode after impact testing of the 

centrifugally cast tubes. Finally, the optical microscopy was used to analyze the effects of 

calcium treatment on porosity of castings. 
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2. EXPERIMENTAL PROCEDURE 

A total of five heats, denoted as heats A (Base Case- no Ca treatment), B, C, D 

and E were conducted in a participating industrial foundry to analyze the combined 

effects of centrifugal casting and calcium wire ladle treatment on the cleanliness and 

mechanical properties of the centrifugally cast steel products. Medium carbon, low alloy 

cast steel was melted in an electric arc furnace (EAF) followed by argon oxygen 

decarburization (AOD) treatment. Calcium-bearing wire was fed into the ladle either 

early in the process (just after AOD) or just prior to centrifugal casting. Heats B and C 

were calcium wire fed just prior to casting due to better accessibility of the calcium wire 

feeder to the 12,000 lb capacity slidegate ladle. Heats D and E were calcium wire fed just 

after AOD treatment to avoid temperature losses in the ladle during experiments.  

 

2.1. MELTING PROCEDURE  

The melting procedure involved EAF followed by AOD treatment. Both EAF and 

AOD were basic refractory and basic slag practices. Table 2.1 provides the chemical 

analysis of all heats after AOD final additions, as provided by the participating industrial 

foundry. 

Between 10,000 and 14,000 lbs of metal charge were melted in the EAF. After the 

charge was melted, oxygen blowing was performed for de-carburization and preliminary 

refining. After tap, the molten metal was transferred to the AOD for further refining using 

gas injection from wall-mounted tuyeres. Typically, a more efficient carbon removal is 

attained by bottom blowing of a diluting gas (argon and nitrogen) to reduce the partial 

pressure of carbon monoxide, favoring its formation at a lower temperature in the AOD 

(Eq. 20).  

C(s) +1/2O2 (g) CO (g)     (20) 

De-oxidation was achieved with aluminum additions in the AOD vessel, 

increasing the temperature due to the release of energy during the exothermic chemical 

reactions in the melt. Alloy additions in the AOD were made to fulfill the chemical 

requirements of the centrifugally cast steel products.   
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Table 2.1 Chemical composition after final additions in AOD for each heat in wt% 

Heat %C %S %Si %Mn %Cr %Mo %Ni %Cu %V %Ti %Al %P %W

A 0.207 0.001 0.247 0.647 2.524 0.892 0.106 0.094 0.052 0.004 0.067 0.014 0.015

B 0.220 0.000 0.237 0.632 2.600 0.711 0.164 0.134 0.049 0.004 0.070 0.010 0.015

C 0.203 0.001 0.157 0.628 2.702 0.759 0.103 0.128 0.053 0.004 0.062 0.013 0.015

D 0.215 0.001 0.261 0.672 2.926 0.936 0.081 0.117 0.052 0.005 0.051 0.013 0.014

E 0.220 0.001 0.230 0.618 2.561 0.914 0.075 0.102 0.054 0.004 0.042 -- --

CHEMICAL COMPOSITION AFTER AOD REFINING

 
 

 

2.1.1. Regular Practice. The regular practice with no calcium wire addition in 

the ladle was denoted as heat A (Base Case-No Ca Treatment). After final additions in 

the AOD vessel, the molten steel was tapped into a slidegate ladle equipped with one 

bottom porous plug for ladle stirring. The argon flow rates were not measured during the 

calcium experiments, but argon was purged until it broke through the slag on top of the 

ladle. The ladle was argon stirred for approximately 15 minutes before casting. A 

centrifugally cast tube (14” to 20” outside diameter (OD) and 22’ long) was poured in the 

casting machine.  The rotation speed at the beginning of the casting process, which was 

the maximum rotation speed, was high enough to spread the molten steel over the entire 

mold (95-160 G’s) and was reduced at a constant rate until solidification was completed 

(30 G’s). The casting machine was stopped 134 minutes after pouring. 

2.1.2. Calcium Wire Ladle Treatment. In all of the heats, aluminum was used as 

a reducing agent and as a fuel. If excessive amounts of aluminum are present in the 

molten steel, a large amount of alumina inclusions will be formed in the ladle. The larger 

inclusions are prone to float to the slag, but smaller inclusions could end up as non-

metallic inclusions containing aluminum in the steel casting. In order to reduce the 

amount of these types of inclusions in steel, calcium wire ladle treatment was performed 

to analyze its effect on the number, size, composition and morphology of non-metallic 

inclusions in centrifugally cast steel products.   

 Calcium wire ladle treatment was carried out in a 12,000 lb (5,443 kg) capacity 

slidegate ladle in which heats B, C, D and E were Ar-stirred throughout the 10 minute 

post-tap treatment and ladle transfer to the casting platform. The calcium wire was fed 

using 10 ft. long feeding tubes attached to a P.C. Campana micro wire-feeder, providing a 

safe distance between the wire-feeder and molten steel (Figure 2.1). A constant injection 
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rate of 17 ft/ min (0.09 m/s) was used for the steel clad pure calcium wire (98.5 %Ca, 0.5 

%Al and 0.5 %Mg), commonly referred to as FeCa, for all heats. The FeCa wire 

diameter was 9 mm. FeCa-wire was the only type of wire addition in all heats due to its 

higher calcium content (0.034 lb/ft- 0.050 kg/m), 38 percent greater than the commonly 

used calcium silicon wire (0.021 lb/ft- 0.031 kg/m), reducing significantly the injection 

time in the post-tap treatment.  

Tables 2.2 and 2.3 describe the post-tap treatment and casting parameters for each 

heat.  

 

 

 

25” 

16” 
20” 

18” 

 

 Feeding 

tube 

 
Figure 2.1. P.C. Campana micro-wire feeder used in heats B, C, D and E during the 

calcium wire ladle treatment 

 

 

Table 2.2 Calcium injection parameters for each experimental heat  

A N/A

B 0.014 FeCa 0.034 1 17 34 1 2.1

C 0.077 FeCa 0.034 1 17 154 5 9.3

D 0.096 FeCa 0.034 2 17 239 8 10

E 0.139 FeCa 0.034 2 17 333 11 10

Base Case (No Ca Treatment)

No. of 

Feeding 

Tubes

Calcium 

Weight 

Content (lb/ft)

Injection 

Time (min)

CALCIUM INJECTION PARAMETERS

Wire 

Length 

(ft)

Calcium 

Injection 

Speed 

(ft/ min)

Ca 

(lb)
Heat

Aim %Ca 

added

Wire 

Type
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Table 2.3 Centrifugal casting parameters for each experimental heat, as provided by the 

participating industry foundry 

A N/A 14,264 2847 1725 10,935 858 20 15 2.60 22 158

B 0.014 11,582 2840 1866 8,130 836 16 11 2.53 22 110

C 0.077 8,835 2860 1798 6,785 860 14 9 2.46 22 95

D 0.096 11,868 2870 1700 8,472 792 16 11 2.53 22 98

E 0.139 11,279 2808 1701 8,150 792 16 11 2.53 22 98

CALCIUM WIRE LADLE TREATMENT AND CASTING PARAMETERS

Heat
Aim %Ca 

added

Pouring 

Temperature 

(F)

Final Tube 

Temperature 

(°F)

Tube 

Weight 

(lb)

*Rotation 

Speed 

(rpm)

Ladle 

Weight (lb)

Tube Dimensions

GOD 

(in)

ID 

(in)

Wall 

Thickness 

(in)

Length 

(ft)

 
*Maximum rotation speed during centrifugal casting  

 

 

2.1.2.1. Calcium wire ladle treatment prior to casting. Heats B and C were 

calcium treated at the casting platform due to better accessibility of the wire feeder to the 

ladle. The calcium treatment was performed using one feeding tube in the P.C. Campana 

micro wire feeder because of the low levels of calcium added in the ladle (B- 0.014 %Ca 

and C- 0.077 %Ca). The total injection time was around two minutes in heat B and nine 

minutes in heat C. The injection time in heat B was planned to be longer but was 

shortened due to the rapid thermal losses in the ladle during the calcium treatment. 

2.1.2.2. Calcium wire ladle treatment after AOD. Heats D and E were calcium 

treated at the AOD deck due to higher tapping temperatures that allowed feeding of the 

needed calcium without temperature concerns in the ladle. The calcium treatment in both 

experiments was performed using two feeding tubes in the micro wire feeder due to the 

large amount of calcium added in the ladle (D- 0.096 %Ca and E- 0.139 %Ca). The 

average calcium injection time in both heats was around ten minutes. The transfer ladle 

was then moved to the casting platform after six minutes. 

  

2.2. SAMPLING AND OXYGEN MEASUREMENT 

Lollipop samples were collected throughout the process starting at the AOD, 

transfer ladle, casting ladle and during the time when the calcium wire ladle treatments 

were done. Lollipops samples were collected using a submerged chemistry sampler (SaF 

400-QS 3012 from Heraeus Electro-Nite). However, lollipop samples were not collected 

at exactly the same time and place due to severe metal splashing in the ladle. Similarly, 
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the Lab Datacast-2000 was not used for dissolved oxygen measurements in heats B, D 

and E due to the violent reaction of the Celox oxygen probes with the melt. The dissolved 

oxygen in heats A (just prior to casting) and C (middle of the Ca treatment) was 2 and 3 

ppm, respectively, agreeing with the equilibrium levels expected for aluminum killed and 

calcium treated steels. The total oxygen content ([O]Dissolved + [O]Inclusions) was measured 

from all samples, using the Leco TC 500 nitrogen-oxygen analyzer. 

Centrifugally cast samples were taken from the tube end opposite to the pouring 

end of the finished tube for inclusion analysis and impact testing. The samples were taken 

from the end opposite of pouring because this area reflects the worst case quality likely to 

be encountered in industrial conditions. It was previously shown in the literature that the 

amount of non-metallic inclusions increased towards the non-pouring end of the casting 

due to lower molten steel temperatures, reducing the inclusion motion and cleanliness of 

the casting [18].  A schematic representation of the cast tube samples showing the 

location from the inside to the outside of the cast product is given in Figure 2.2. The 

inclusion analysis of each cast tube was divided into five regions (OD, 0.25, 0.50, 0.75 

and ID). The final product region was designated as the average of three samples at 

x=0.25, x=0.50 and x=0.75 because the inside diameter (ID) at x=0 and the outside 

diameter (OD) at x=1 are typically removed through secondary machining and not 

incorporated in the final product. However, no stock removal was performed in the 

centrifugally cast samples collected. 
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Figure 2.2. Schematic representation of the cast tube sample taken from the end of the 

finished tube showing the location from the inside to the outside of the cast product  
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2.3. INCLUSION ANALYSIS 

 Microscopic specimens from each lollipop and centrifugally cast sample were 

prepared to analyze inclusions using the automated inclusion analyzer, Aspex PICA 

1020. The instrument settings entailed acceleration voltage of 20 KV, initial emission 

current of 38.5A and magnification of 500X. Duplication of results was performed by 

taking the average value of three tests performed in the same location of the specimen. 

2.3.1. Background of Aspex Analysis. The automated inclusion analyzer, Aspex 

PICA 1020, is designed to identify precisely the composition, size, number and 

distribution of inclusions in a short period of time. The Aspex/ SEM system consists of 

an electron gun and a backscattered electron detector (BSED) that is sensitive to the 

atomic number (Z). The BSED detector provides different contrast between areas with 

different chemical compositions. This means, the light elements with low atomic number 

appear dark and heavy elements with high atomic number appear bright in the SEM 

image. 

The area of analysis in the specimen is sub-divided into small fields to produce a 

coarse image at low magnifications (<250X). A coarse image increases the spot size of 

the sample, which means many electrons hit successfully in the area of analysis. The 

electron beam moves across each individual field using the automated feature analysis 

(AFA). In the AFA, an inclusion is determined by the thresholds of the Aspex software, 

resulting in a bright particle in the SEM image. Once the bright inclusion is identified, the 

software initiates a particle-sizing sequence. The particle-sizing sequence utilizes a 

rotating chord algorithm, in which the center of the inclusion is identified followed by the 

drawing of chords with the beam. The chords are used to determine the size and shape of 

the inclusion (Figure 2.3). The energy dispersive spectroscopy (EDS) spectrum is then 

acquired to identify the elemental composition of each inclusion.  Finally, the data is 

stored and is evaluated offline in the AFA system (Figure 2.4) [38].  

2.3.2 User-Defined Rules for Inclusion Statistical Analysis. The classification 

rule for the lollipops and centrifugally low alloy cast steel specimens included a vector 

file based on the reference standards for each element to quantify the EDS spectra. The  
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a) b) 

Figure 2.3. Identification of an inclusion by the BSED detector followed by the centering 

and drawing of chords to determine the size and shape of an inclusion [38] 

 

 

 

Detected 

Inclusion by 

Electron Beam 

at 20kV 

 
Figure 2.4. Automated feature analysis (AFA) showing the sub-division of the left SEM 

image into fields, as well as the identification of a bright particle and its elemental 

composition by x-ray spectroscopy  

 

 

vector file was generated using the chemical composition in Table 2.1. This vector file 

was used to classify an inclusion into broad categories defined by the user-defined rules.  

The user-defined rules were divided into classification and zero elements. In the 

classification category, an inclusion was categorized using the first rule that was 

evaluated as true, starting with the first rule in the list during the AFA. For example, if 

Ca>10% and Al>10% and S<10% (in weight percent) were true for an inclusion, it could 

be then classified as a low melting point calcium aluminate (Ca-Al-O). Images along with 

the EDS analysis were also acquired during the AFA [39]. 
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 The zero element rules were used to distinguish actual inclusions from 

contamination particles formed during the sample preparation process. Otherwise, the 

software might misclassify a contamination particle as an inclusion. This contamination 

usually contained a high percentage of carbon, which were mostly obtained from the 

polishing media. A more computationally efficient mechanism to quantify the EDS 

spectra was achieved by producing a zero rule for chromium and iron. Chromium usually 

overlaps with manganese and vanadium, avoiding an accurate EDS analysis (CrK= 5.414 

keV, MnK= 5.898 keV, CrL= 0.571 keV and VL= 0.510 keV) [40]. Iron x-rays were 

also emitted from inclusions, but did not contribute as part of the elemental composition 

of these particles. 

The inclusion analysis for the lollipops and centrifugally low alloy cast steel 

specimens was as follows: 

a) Oxides and sulfides. The area of inclusion analysis for oxides and sulfides was 

around 9.8 mm
2
. The vector file included C, O, Cr, Al, Si, P, S, Ca, Ti and Mn. The AFA 

data was used to evaluate the elemental composition of each non-metallic inclusion to 

create the classification and zero rules (Tables 2.4 and 2.5). 

b) Oxynitrides. Oxynitrides analysis was required after the Leco TC 500 

nitrogen-oxygen results due to the large nitrogen pickup in the centrifugally cast samples. 

The area of inclusion analysis for oxynitrides was around 0.819 mm
2
. The vector file 

included nitrogen and the elements that were used previously in the oxide and sulfide 

analysis. The AFA data was used to evaluate the elemental composition of each non-

metallic inclusion to create the classification and zero rules (Tables 2.6 and 2.7). Unlike 

the previous oxide and sulfide analysis, a zero rule for oxygen was not created because of 

the complexity of inclusions containing both oxygen and nitrogen. 

2.3.3. User-Defined Rules for Micro-defect Identification. The micro-defects or 

porosity rule was true when the weight percent iron was equal to or greater than 92 %. 

This means, the electron beam moves across the micro-defect or porosity, indicating that 

the total weight percent sum of the main elemental composition of the low alloy steel was 

less than eight percent ((Al+ Si+ Mn+ P+ Ca+ S+ Ti+ C)<8). 
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Table 2.4. Classification rule for oxide, sulfide and micro-defect (porosity) analysis on 

the lollipops and centrifugally cast steel specimens 

Carbon

FeO Stains

Microdefects

MnS

CaS

Ca-Mn-S

Other Sulfides

Al2O3

CaO

SiO2

Ca-Al-O

MnO

Mn-Si-O

Mn-Al-O

C>5

Classification Rule

Class

Ca>30 and S>20

Mn>30 and S>20

Fe>=92 and O<5

Fe>=30 and O>=5

Rule Definition

Mn>20 and Al>10 and S<20

Mn>20 and Si>10 and Al<10 and S<20

Mn>20 and S<20 and Al<20 and Si<20

Ca>10 and Al>10 and S<20

Si>30 and Mn<20 and S<20 and Al<10 and Ca<10

Ca>20 and S<20 and Al<10 and Si<20 and Mn<20

Al>20 and Mn<20 and Ca<10 and Si<20 and S<20

S>20

Ca>10 and Mn>10 and S>20

 
 

 

Table 2.5. Zero rules for oxide, sulfide and micro-defect (porosity) analysis on the 

lollipops and centrifugally cast steel specimens 

Class

O=0 if..

Cr=0 if..

Fe=0 if..

C=0 if.. Al>=2.5 or Mn>=2.5 or Ca>=2.5 or Si>=2.5

Zero Rule

Rule Definition

Al>=2.5 or Mn>=2.5 or Ca>=2.5 or Si>=2.5

Cr>=0.1

Al>=2.5 or Mn>=2.5 or Ca>=2.5 or C>=2.5 or Si>=2.5

 
 
 

Table 2.6. Classification rule for oxide, sulfide, porosity and oxynitride analysis on the 

centrifugally cast steel specimens 

Class

Carbon

FeO Stains

Microdefects

MnS

CaS

Ca-Mn-S

MnS-AlO

Other Sulfides

Al-O-N

Al-N-Mn-O

Ca-O-Al-N

Al2O3

CaO

SiO2

Ca-Al-O

MnO

Mn-Si-O

Mn-Al-O

Ca>5 and S<20 and Al<10 and Si<20 and Mn<20 and N<22

C>5

Fe>=92 and O<5

Fe>=30 and O>=5

Mn>=20 and S>20 and Al>15 and Ca<10

Al>20 and Mn<20 and Ca<10 and Si<20 and S<20 and N<22

S>20

Ca>30 and S>20

Ca>10 and Mn>10 and S>20

Al>=20 and N>22 and Mn<10 Ca<5 and S<20

Mn>10 and Al>20 and N>22 and S<20

Ca>5 and Al>20 and N>22 and S<20

Rule Definition

Classification Rule

Mn>30 and S>20

Mn>20 and Al>10 and S<20 and N<22

Mn>20 and Si>10 and Al<10 and S<20 and N<22

Mn>20 and S<20 and Al<20 and Si<20 and N<22

Ca>5 and Al>10 and S<20 and N<22

Si>30 and Mn<20 and S<20 and Al<10 and Ca<10 and N<22
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Table 2.7. Zero rules for oxide, sulfide, porosity and oxynitride analysis on the 

centrifugally cast steel specimens 

Class

Cr=0 if..

Fe=0 if..

C=0 if.. Al>=2.5 or Mn>=2.5 or Ca>=2.5 or Si>=2.5

Rule Definition

Cr>=0.1

Al>=2.5 or Mn>=2.5 or Ca>=2.5 or C>=2.5 or Si>=2.5

Zero Rule

 
 

 

2.4 CHARPY IMPACT TESTING AND FRACTOGRAPHY ANALYSIS  

 Centrifugally cast tube samples from heats A (base case), B (0.014 %Ca), C 

(0.077 %Ca), D (0.096 %Ca) and E (0.139 %Ca) were heat treated prior to mechanical 

testing. The heat treatment was based on the standard specification for steel castings 

suitable for pressure service (ASTM A-487). The centrifugally cast samples were 

austenitized at 954°C (1750 °F), water quenched followed by tempering at 613°C (1135 

°F) and furnace cooling to below 316°C (600 °F). The impact test was performed using a 

Tinius Olsen testing machine with a standard potential energy (PE) of 301.54 ft* lb at 

room temperature. Charpy impact tests at room temperature were performed using three 

specimens for each test. The Charpy specimen dimensions for each test were 2 
1
/6” (55 

mm) X 
2
/5” (10 mm) X 

2
/5” (10 mm).  

Fractography analysis was performed after impact testing using the JEOL 6060 

LV and Hitachi S-570. The composition of each Charpy specimen was analyzed using the 

energy dispersive spectroscopy (EDS) with an acceleration voltage of 15 kV. 

Furthermore, Charpy impact specimens were sectioned in the transverse direction near 

the fracture surface for inclusion analysis using the Helios Nano Lab 600 (SEM 

FIB/EDS). The specimen preparation entailed the Delta abrasive cutter followed by the 

SimpliMet 1000 mounting press. Specimens were then polished using the Abramin auto-

polishing machine. The acceleration voltage and initial electron beam current for the 

SEM FIB were 15kV and 1.4 nA, respectively. 
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3. EXPERIMENTAL RESULTS 

The effects of the centrifugal forces and calcium wire ladle treatment on the 

amount, type, size, aspect ratio and  particle spacing in non-metallic inclusions and 

porosity for the samples, corresponding to heats A (Base Case- no Ca treatment), B, C, D 

and E, were performed using an automated inclusion analyzer, Apex PICA 1020. 

Microstructural characterization by light optical microscopy and scanning electron 

microscopy illustrated microstructures (including porosity), as well as the morphology 

and composition of non-metallic inclusions prior to mechanical testing. The fracture 

surface after impact testing was also analyzed.  

 

3.1. NON-METALLIC INCLUSION ANALYSIS FROM AOD TO 

CENTRIFUGAL CASTING 

 Figure 3.1 compares the a) percentage area covered by inclusions and b) the total 

oxygen from the AOD to the final product (average of the three samples at x=0.25, 

x=0.50 and x=0.75) of the centrifugally cast steel products for the base heat A with no 

calcium addition, and calcium treated heats B, C, D and E. Note that there are only 

limited samples for some of the locations, but missing samples indicate neither an 

absence of inclusions nor an absence of oxygen in the steel during the casting process. 

The inclusion analysis at all stages of the calcium wire ladle treatment was only possible 

for heats B, D and E.    

The area covered by oxides in the final product followed a similar trend to the 

total oxygen values. The total oxygen and inclusions were the highest in the AOD, 

dropped slightly after tap in the ladle and dropped further after calcium treatment. After 

the calcium wire ladle treatment, the total oxygen and inclusions were the lowest and 

remained lower in the final centrifugally cast product. However, the inclusion analysis in 

the lollipop samples reveals some deviation between the area covered by oxides and the 

oxygen levels collected at various stages of the melting procedure. The deviation is most 

likely a result of inconsistencies in inclusion distribution within the sampler mold 

influenced by turbulent filling and the solidification shrinkage, modifying the inclusion 

distribution in the lollipops [41].   
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b) 

Figure 3.1. Comparison of the a) percentage area covered by inclusions and b) the total 

oxygen measured in samples collected from the AOD to the final product for each 

experimental heat 

 

 

The amount of oxides, especially the aluminum containing oxides, and the total 

oxygen regardless of calcium addition decreased from the AOD to the final product due 
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to the natural inclusion flotation to the slag layer during the transfer ladle to the casting 

platform. The amount of oxides and the total oxygen in the final product for the base heat 

A is slightly less than the calcium treated heats B, C, D and E. This could be a 

combination of a larger ladle size for heat A (14,264 lb), the largest during the 

experiments, improving inclusion flotation, and the highest G forces in the experiments 

[9]. However, the calcium treated heats B, C, D and E show few Mn-rich inclusions in 

comparison to the base heat A, indicating that the calcium treatment improved the 

desulfurization process in the molten steel. The reaction of calcium sulfide formation is 

given by Eq. 21. 

3S+ 3CaO +2Al  3CaS+ Al2O3    (21) 

Heats B (0.014 %Ca) and C (0.077 %Ca) were calcium fed just prior to casting. 

Heat B reveals that the low amount of calcium added in the ladle had a minor effect on 

the inclusion composition in the final casting. Heat C exhibits a different inclusion trend 

in comparison to the no Ca treated heat A. The inclusion modification in heat C shows 

that even though there was a significant amount of non-metallic inclusions after the final 

additions in AOD, Al2O3 and Mn-Al-O inclusions in the final product were reduced by a 

factor of five in comparison to heat A. However, heat C demonstrates that there was a 

large amount of calcium aluminates in the final product due to insufficient time for 

inclusion flotation after calcium treatment (total time after calcium treatment and prior to 

pouring into a flask mold= 2 min 38 s).  

Heats D (0.096 %Ca) and E (0.139 %Ca) were calcium fed just after AOD 

tapping. Low melting point calcium aluminates were the main type of inclusions after the 

calcium wire ladle treatment in heats D and E. Heat D shows that the oxide inclusion 

distribution in the final product was similar to heat B and slightly higher than heat A. The 

amount of oxide inclusions in heat E in the final product was similar to heat C and higher 

than the base heat A and calcium treated heats B and E. This implies that the Al2O3 and 

Mn-Al-O inclusions in the centrifugally cast tube samples were not significantly modified 

by the calcium wire ladle treatment, suggesting that its effectiveness was reduced due to 

re-oxidation during the pouring and melt transport through the pouring basin.  

The area of MnS inclusions in the earlier stages of the casting process regardless 

of calcium addition is significantly less than the final centrifugally cast products. The 
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probability of MnS formation during the melting process was reduced for all heats due to 

the low sulfur content after final additions in the AOD (0.001%S). Furthermore, the 

inclusion analysis may underestimate the MnS inclusions in the melting procedure due to 

their small size, suggesting that the molten steel solidifies immediately after it comes in 

contact with the walls of the lollipop-shaped samples and reduces the growth of MnS at 

high cooling rates. MnS inclusions in the centrifugally cast products were formed during 

solidification because Mn and S are typically rejected from the solidifying dendrites, 

increasing their concentration in the remaining liquid. The concentration of Mn and S 

leads to the precipitation of MnS towards the end of the solidification process. 

 

3.2 NON-METALLIC INCLUSION DISTRIBUTION IN CENTRIFUGALLY 

CAST STEEL PRODUCTS 

Theoretically, non-metallic inclusions, which are lower density than molten steel, 

should be pushed to the inside diameter by centrifugal force. However, Figure 3.2 

indicates that the inclusion volume at the inside diameter of the test heats was not greater 

than the other areas of the tube. These samples were taken from the opposite end of the 

tube from pouring, an area that Mirzoyan and Pavperova had found in their research 

resulted in less flotation of inclusions because the temperature was 104- 140 F lower 

than the pouring end, producing solidification entrapment of inclusions (Figure 1.10 in 

Section 1.2.1.3) [18]. 

The large amount of non-metallic inclusions at the OD may be due to the presence 

of exogenous inclusions from both re-oxidation and refractory erosion. The initial metal 

filling of the mold is highly turbulent and violently exposed to air as it travels the length 

of the mold, forming massive re-oxidation inclusions. Inclusions are also formed when an 

uneven refractory lining is eroded and infiltrated by the molten steel, re-oxidizing pre-

existing particles that form new inclusions [1], [14]. Both of these types of inclusions are 

pushed to the end of the mold opposite pouring and may be trapped due to lower 

temperatures and rapid freezing of the mold. Once new metal enters, it does not have 

those two sources of inclusions in the first metal filling the mold. 

Figure 3.2 also reveals that the area of Al2O3 and Mn-Al-O inclusions in the final 

product remained almost constant for all heats, indicating that these types of inclusions 
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were not significantly modified by the calcium wire ladle treatment. The effectiveness of 

the calcium treatment may be reduced by re-oxidation during the pouring and melt 

transport through the pouring basin.  
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b) 

Figure 3.2. Percentage area covered by inclusions at different locations in the cast tube 

samples taken from the opposite pouring end of the finished tubes for each experimental 

heat 
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c) 

Figure 3.2. Percentage area covered by inclusions at different locations in the cast tube 

samples taken from the opposite pouring end of the finished tubes for each experimental 

heat (cont.) 

 

 

Figure 3.3a compares the amount of non-metallic inclusions in the centrifugally 

cast products for all heats. Generally, the amount of non-metallic inclusions in the final 

product was significantly less than the OD and slightly less than the ID. It was also 

observed that the inclusion distribution was practically uniform in the final product of the 

casting. Figure 3.3b verifies the inclusion results in Figure 3.3a. The total oxygen in the 

centrifugally cast steel products agreed with the volume of inclusions, implying that both 

inclusions and total oxygen content were mainly concentrated at the OD for all heats, 

except for heat C. In heat C, the calcium wire ladle treatment produced low melting point 

calcium aluminate inclusions, but since the wire was fed just prior to casting, there was 

insufficient time for inclusion flotation at the casting platform, resulting in a large amount 

of inclusions at different locations of the casting. Furthermore, the ladle size for heat C 

(8,835 lb, 4,007 kg) was the smallest in comparison to the rest of the heats (12,248 lb, 

5,556 kg), reducing the effectiveness of inclusion flotation in the ladle [9]. 
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b) 

Figure 3.3. Average a) percentage area covered by inclusions and b) total oxygen from 

the OD to the ID of the centrifugally cast products for each experimental heat 

 

 

3.2.1. Oxide and Sulfide Distribution in Centrifugally Cast Steel Products. 

Figure 3.4 compares a) the average percentage area covered by oxides and sulfides and b) 

the average total oxygen for all centrifugally cast steel samples. The amount of oxide 

inclusions and total oxygen were the highest at the OD and almost as high at the ID. The 

OD results are higher than the ID because of the initial re-oxidation and rapid 

solidification entrapping inclusions before flotation from centrifugal forces. The oxides 
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are concentrated at the ID due to centrifugal forces and direct contact with air. The 

amount of sulfide inclusions was relatively constant across the wall thickness of the 

centrifugally cast steel product, indicating that sulfides were formed near the liquidus 

temperature and inside the mushy zone, and therefore, eliminating the influence of the 

centrifugal forces during the dendrite solidification of the casting process.  
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b) 

Figure 3.4. Average a) percentage area covered by oxides and sulfides and b) total 

oxygen from the OD to the ID of the centrifugally cast products for the five heats 

 

 

Figure 3.5 shows that the inclusion size was less than 15m regardless of the 

region in the centrifugally cast steel product. Figure 3.6a reveals that coarse inclusions 

were prone to be concentrated at the ID. This could be explained by the fact that intensive 

cooling occurred at the OD, producing a well defined solidification front, which captured 

smaller inclusions between dendrite arms and pushed larger inclusions into liquid. Large 
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inclusions were forced through solidification and centrifugal forces towards the ID of the 

casting. Note that Figure 3.6b shows much larger inclusions in the base heat A with no 

calcium addition. Sulfides were smaller than oxides for the calcium treated heats. This 

shows some effectiveness of the calcium treatment in modifying and reducing the 

inclusion size in the centrifugally cast products.  
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Figure 3.5. Average inclusion size distribution including the ID, OD and the final product 

for each experimental heat 
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Figure 3.6. Average inclusion diameter of a) oxides and b) sulfides in the centrifugally 

cast products for each experimental heat 
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Figure 3.6. Average inclusion diameter of a) oxides and b) sulfides in the centrifugally 

cast products for each experimental heat (cont.) 

 

 

Figures 3.7 and 3.8 display the aspect ratio for each centrifugally cast steel 

product. The automated inclusion analyzer uses a rotating chord algorithm to find the 

center of an inclusion, drawing 16 chords through its center to determine the maximum 

and perpendicular diameter of each inclusion [9]. The aspect ratio is then calculated using 

the maximum diameter divided by the perpendicular diameter of each inclusion.  

 Figure 3.7 reveals that the inclusion shape of the Al2O3, Mn-Al-O, and MnS 

inclusions were fairly round throughout the wall thickness of the centrifugally cast 

product, but became more irregular towards the ID. The manganese silicate inclusions 

(Mn-Si-O) were far more irregular in shape at all locations, indicating more complexity. 

The inclusion shape for the Ca-Al-O became more round at the ID. The calcium addition 

in heats B, C, D and E would have helped in the inclusion modification of the 

centrifugally cast steel samples, but it was limited by the re-oxidation during pouring and 

transportation through the pouring basin. Furthermore, Figure 3.8 shows that the 

inclusion shape for heat C was less amorphous than the base heat A and calcium treated 

heats B, D and E, but the inclusion shape for the calcium treated D became more irregular 

than heat C towards the ID.  
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Figure 3.7. Average inclusion aspect ratio using different inclusion compositions from 

the OD towards the ID of the centrifugally cast products for each experimental heat 
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Figure 3.8. Average inclusion aspect ratio from the OD towards the ID of the 

centrifugally cast products for each experimental heat 
 
 

3.2.2. Distribution of Inclusions Containing Nitrogen in Centrifugally Cast 

Steel Products. Figure 3.9 shows that the total nitrogen levels was significantly larger in 

the centrifugally cast products ([N]Average= 141 ppm) than the total nitrogen content in the 

ladle (([N]Average = 80 ppm), indicating a 60 ppm nitrogen pickup from significant air 

contact during casting. The large amount of nitrogen pickup is due to the highly turbulent 

nature of the molten steel during casting and the constant air contact during solidification. 
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A high nitrogen level in steel raises the potential to precipitate nitrides, which are also 

important to the final mechanical properties. 
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Figure 3.9. Total nitrogen measured in samples collected from the AOD to the final 

product for each experimental heat 

 

 

Figure 3.10 exhibits a new series of inclusion analysis, which was completed for 

nitrides using an analyzed area of 0.819 mm
2
 per specimen. A combination of complex 

oxides (MnO, Al2O3 OR Ca-Al-O) and aluminum nitrides, known as oxynitride 

inclusions, were found in the final product of the centrifugally cast steel products. The 

amount of oxinitrides for heats D and E (calcium fed just after AOD) was significantly 

larger than the base heat A and calcium treated heats B and C (calcium fed just prior to 

casting), which was not observed in the previous oxide and sulfide analysis. This means 

that the previous inclusion analysis might misclassify some oxynitrides as either oxide or 

sulfide inclusions, as well as it might neglect some oxynitrides in the final product. 

Figure 3.11 shows that the oxynitride size regardless of calcium addition became 

larger towards the ID. Furthermore, the calcium wire ladle treatment did not modify the 

size of the oxynitride inclusions as compared to the oxides and sulfides in the 

centrifugally cast products. 
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Figure 3.10. Percentage area covered by inclusions containing nitrogen and others in the 

final product of the centrifugally cast products for each experimental heat 
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Figure 3.11. Average inclusion diameter of complex inclusions containing nitrogen 

(oxynitrides) in the centrifugally cast products for each experimental heat 
 

 

3.3. NON-METALLIC INCLUSION SPACING IN CENTRIFUGALLY CAST 

STEEL PRODUCTS 

Non-metallic inclusion spacing has a significant effect on the fracture toughness 

as shown in Eq. 2 in Section 1.2.1.The fracture toughness can be enhanced by increasing 

the inclusion spacing, minimizing the nucleation and growth of pre-existing cracks or 

void-like imperfections [8]. The inclusion spacing in the centrifugally cast steel products 

for each experimental heat was determined using the inclusion coordinates provided by 

the Aspex and a Visual Basic Code. 
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In previous research, the Visual Basic Editor in Microsoft Excel was used to 

create a program/ code to run a set of instructions in a specific order to calculate the 

inclusion spacing in castings.  The Visual Basic code is given in Appendix A. A macro 

was then enabled in Excel to automatically calculate the inclusion distance to the closest 

neighbor and inclusion spacing using the inclusion coordinates exported from Aspex. The 

inclusion distance was averaged over all inclusions to calculate the average inclusion 

spacing for the centrifugally cast steel products.  

Figure 3.12 shows that the inclusion spacing in the centrifugally cast steel 

products was fairly stable with a slight trend to increase from the OD to ID, except for 

heat C. Heat C exhibited more variation in the inclusion spacing, especially at the ID and 

x=0.75. Figure 3.13 compares a) the average percentage area covered by the inclusions 

and b) the average inclusion spacing for all heats. Generally, the area covered by 

inclusions was indirectly proportional to the spacing between inclusions, implying that 

the inclusions were closer to each other if the volume of inclusions increased in steel. For 

example, the OD had significantly closer spacing inclusion and was the dirtiest area, 

showing the highest percentage area covered by inclusions. Ideally, clean steel entails the 

least number of inclusions and the largest inclusion spacing in castings. However, the 

size of inclusions is generally larger at the ID, resulting in a larger spacing with relatively 

large amount of inclusions. 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

x=1 (OD) x=0.75 x=0.50 x=0.25 x=0 (ID)

A
v
e

. 
In

c
lu

s
io

n
 S

p
a

c
in

g
 (

m
m

)

Heat A- Base 

Case

Heat B-

0.014%Ca

Heat C-

0.077%Ca

Heat D-

0.096%Ca

Heat E-

0.139%Ca

 
Figure 3.12. Average inclusion spacing in the centrifugally cast steel products for each 

experimental heat 
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b) 

Figure 3.13. Comparison of a) the average percentage area covered by inclusions and b) 

the average inclusion spacing in the centrifugally cast steel products for each 

experimental heat 

 

 

3.4. POROSITY IN CENTRIFUGALLY CAST STEEL SAMPLES 

3.4.1 Interdendritic Porosity in Centrifugally Cast Steel Products. Figure 3.14 

shows the typical morphology of porosity at x=0.25 in the final product of the casting, 

suggesting that this defect formed in the interdendritic residual liquid of the casting. 

Interdendritic porosity is produced when molten steel channels are formed between the 

dendrite arms during freezing, restricting its flow in the casting. The molten steel 
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channels are small and extensive at the end of the network freezing, resulting in 

shrinkage in which the feeding of the molten steel through the interconnected network 

becomes difficult, and therefore, small pores appear near the roots of the dendrites arms 

[42]. 

 

 

 
Figure 3.14. Aspex/ SEM image showing the typical morphology of porosity at x=0.25 in 

the final product of the centrifugally cast samples  

 

 

Figure 3.15 shows that the average area covered by porosity regardless of calcium 

addition in the final product was significantly less than both the OD and ID. The large 

amount of porosity at the OD might be influenced by the combined effects of shrinkage 

and gas evolution in the casting. Theoretically, gas porosity involving hydrogen, oxygen, 

nitrogen or carbon monoxide in the centrifugally cast products may be influenced by the 

moisture retained in the mold coating, resulting in gas formation when the mold coating 

comes in contact with the hot metal [1]. The molten steel at the OD was then subjected to 

rapid solidification, resulting in a chill zone where equiaxed grains did not allow pushing 

of gasses in the interdendritic residual liquid of the casting. 

Figure 3.16 shows the porosity diameter in the centrifugally cast steel products 

with a slight trend to increase from the OD to ID. The porosity size at the OD was the 

smallest, impeding the growth of the gas pores due to the small dendrite arm spacing 

(DAS) at high cooling rates in the chill zone [20]. The growth of the dendrites occurred 

towards the ID due to a slow solidification rate, resulting into wider dendrite arm spacing 

(DAS) during solidification. 
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Figure 3.15. Average percentage area covered by porosity in the centrifugally cast 

products for each experimental heat 
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Figure 3.16. Average porosity diameter in the centrifugally cast products for each 

experimental heat 

 

 

3.4.2. Shrinkage Porosity in Centrifugally Cast Steel Products. Figure 3.17 

shows that porosity in the centrifugally cast products became more irregular towards the 

ID of the casting, indicating interdendritic porosity. In addition, visible porosity was 

detected only at the ID of the centrifugally cast steel products, which was examined using 

a stereoscope for low magnification purposes (Figure 3.18). In Figure 3.18, macro-

porosity was observed, especially for heats B, D and E. Figures 3.19 and 3.20 reveal that 

this type of macro-porosity at the ID was related to shrinkage cavities, indicating that the 

ID solidified last and the molten steel was insufficient at this location. This means, the 

combined effects of high levels of gases and lower centrifugal forces to fill molten steel 
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between dendrites produced shrinkage porosity at the ID. The high levels of gases at the 

ID is due to the reduced solubility of gasses as the molten steel freezes, producing regions 

of segregation of gaseous solutes in the casting. Dendritic segregation, or coring, was also 

identified surrounding the shrinkage porosity, demonstrating that alloying elements were 

rejected to the dendrite arms during solidification [43]. Theoretically, the depth of 

shrinkage porosity can be minimized by increasing the rotation speed during centrifugal 

casting [1], [21]. 
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Figure 3.17. Average aspect ratio of porosity in the centrifugally cast products for each 

experimental heat 

 

 

  
a) b) 

Figure 3.18. Stereographs of the ID (X=0) of the centrifugally cast products showing 

visible porosity for a) the base heat A and calcium treated heats b) B, c) C, d) D and E in 

the un-etched condition 
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c) d) 

 

 
e) 

Figure 3.18. Stereographs of the ID (X=0) of the centrifugally cast products showing 

visible porosity for a) the base heat A and calcium treated heats b) B, c) C, d) D and E in 

the un-etched condition (cont.) 

 

 

  
a) b) 

Figure 3.19. Micrographs of the ID (X=0) in the centrifugally cast products showing 

visible porosity for the calcium treated heats a) D and b) E 
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a)                                                   b)                                                      

  
c)                                                   d) 

 

 
e) 

Figure 3.20. Aspex SEM image of the ID (X=0) in the centrifugally cast products 

revealing shrinkage porosity for a) the base heat A (2500X) and calcium treated heats b) 

B (100X), c) C (75X), d) D (100X) and e) E (220X)   
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3.5 MICROSTRUCTURES IN CENTRIFUGALLY CAST STEEL PRODUCTS 

Figure 3.21 shows the typical microstructure of the centrifugally cast steel 

products, which consisted of lath martensite. Figure 3.22 displays the microstructure after 

the heat treatment based on ASTM A-487, showing tempered martensite in the final 

product. 

 
 

  
a) b) 

Figure 3.21. Micrographs of the OD (X=1) in the centrifugally cast steel for heats a) B 

and b) C showing lath martensite 

 
 

  
a)  b) 

Figure 3.22. Micrographs of the OD (X=1) in the centrifugally cast products for heats a) 

A and  b) D showing tempered martensite after heat treatment 
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3.6. CHARPY IMPACT TESTING 

Three Charpy V-notch specimens were sectioned from the final product of each 

experimental heat. Each Charpy specimen was tested at room temperature after heat 

treatment. Figure 3.23 shows that the Charpy values are all approximately the same at the 

upper shelf, indicating that the calcium wire ladle treatment did not significantly modify 

the inclusions containing aluminum, and therefore, the mechanical properties of the 

centrifugally cast steel samples were not improved either.  

Oxynitrides inclusions may reduce the mechanical properties in the final product, 

but the toughness for the base heat A ([N] = 153 ppm) with the highest nitrogen level in 

the final product is similar to heats B and C ([N]Average = 130 ppm) and better than heats 

D and E ([N]Average = 139 ppm), implying that small differences in the volume of 

oxynitrides did not significantly influence on the mechanical properties of the 

centrifugally cast products. However, castings with a much lower nitrogen level with less 

oxynitrides could perform differently. 
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Figure 3.23. Charpy impact energy absorbed at room temperature for the base heat A and 

calcium treated heats B, C, D and E 
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3.7. FRACTOGRAPHY 

Fractography was used to analyze the fracture mode and non-metallic inclusions, 

including their morphology and type, after impact testing. The fracture behavior for all 

heats was ductile with an accompanying degree of large plastic deformation. However, 

fracture surfaces of the final product at X=0.5 from heats B and E were examined 

because the impact values in the final product were the highest for heat B (86.1 ft*lb) and 

the lowest for heat E (59.9 ft*lb).  

Fracture surfaces of the final product from heat B are shown in Figures 3.24 

through 3.28. It was observed that most of the fracture mode in this alloy was ductile with 

few areas of intergranular fracture. The intergranular fracture in Figure 3.24 was due to 

the precipitation of complex -aluminum oxynitrides along the grain boundaries, causing 

high levels of stress concentration within the matrix under loading conditions. The 

volume of -aluminum oxynitrides may be reduced by lower nitrogen levels, resulting in 

better mechanical properties in castings. Figure 3.25 exhibits a cluster of alumina 

inclusions, which were most likely produced during re-oxidation of steel in pouring and 

transportation through the pouring basin [44]. Figures 3.26, 3.27 and 3.28 display non-

metallic inclusions (MnO, Al2O3 and MnS) and porosity in a ductile dimple fracture. The 

inclusions and porosity in the steel dimples are prone to decohere within the matrix, 

promoting crack nucleation and propagation [8]. 

The inclusion type and morphology near the fracture surface of the final product 

from heat E are shown in Figures 3.29 through 3.33. Figures 3.29, 3.30 and 3.31 reveal 

inclusion clusters, in which the majority of the inclusions were alumina. The alumina 

inclusions contained traces of MgO and CaO, suggesting the alumina inclusions 

combined with the lining refractory and/ or ladle slag during the melting and/ or casting 

process. Figure 3.32 shows almost spherical holes or porosity that might be created due to 

the escape of gas bubbles, especially N2 and CO, during the solidification process [44]. 

Figure 3.33 exhibits MgO-Al2O3 and Al2O3 inclusions along the boundaries of the former 

air bubbles, indicating that the Al2O3 may form with bubbles from oxidation of dissolved 

aluminum by oxygen with CO bubble.  
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a) b) 

 
 

Wt% Al2O3 AlN MnO MgO CaO 

A 55.4 44.6 -.- -.- -.- 

B 77.2 -.- 22.8 -.- -.- 

C 100 -.- -.- -.- -.- 

D 73.3 22.8 -.- 1.3 2.7 

E 55.4 44.6 -.- -.- -.- 

F 26.3 21.2 -.- 19.9 58.6 

c) 

 

Figure 3.24. Fracture surface of the final product (X=0.5) of the centrifugally cast steel 

tube from Heat B (0.014 %Ca) revealing that the fracture in this alloy occurs almost 

completely by microvoid coalescence, but close examination shows a few areas of 

intergranular fracture and complex inclusions (Al2O3-AlN, MnO-Al2O3, CaO-Al2O3-AlN) 

a) 45X b) 9500X  
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Wt% Al2O3 MnS 

A 27.9 72.1 

B 71.4 7.3 

C 100 -.- 

D 100 -.- 

E 93.2 6.8 

a) b) 

Figure 3.25. Fracture surface of the final product (X=0.5) of the centrifugally cast steel 

tube from Heat B (0.014 %Ca) showing Al2O3 and Al2O3-MnS clusters at 4000X 
 
 

  
a) b) 

Figure 3.26. Fracture surface of the final product (X=0.5) of the centrifugally cast steel 

tube from Heat B (0.014 %Ca) showing inclusions in a ductile dimple fracture a) 1500X 

b) 3000X 
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Wt% MnO MnS Al2O3 

A 100 -.- -.- 

B -.- 100 -.- 

C -.- -.- 100 

a) b) 

Figure 3.27. Fracture surface of the final product (X=0.5) of the centrifugally cast steel 

tube from Heat B (0.014 %Ca) revealing the chemical composition of inclusions (MnO, 

MnS and Al2O3) in a ductile dimple fracture at 3000X 
 
 

 

 

Figure 3.28. Fracture surface of the final product (X=0.5) of the centrifugally cast steel 

tube from Heat B (0.014 %Ca) exhibiting porosity and equiaxed dimples at 300X 
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Wt% Al2O3 CaO MnS MnO MgO 

A 68.7 9.0 19.9 -.- 2.4 

B 94.6 3.0 - . - -.- 2.4 

a) b) 

Figure 3.29. Centrifugally cast steel sample from the final product (X=0.5) of Heat E 

(0.139 %Ca) revealing the chemical composition of non-metallic inclusions (Al2O3-MnS, 

Al2O3) in a steel matrix 
 
 

 

 

Wt% Al2O3 MnS MgO MnO TiO2 SiO2 

A 78.0 -.- 20.6 1.4 -.- -.- 

B 98.1 -.- 1.2 0.7 -.- -.- 

C 97.4 -.- -.- 1.4 1.2 -.- 

D 22.3 72.7 -.- -.- -.- 2.8 

a) b) 

Figure 3.30. Centrifugally cast steel sample from the final product (X=0.5) of Heat E 

(0.139 %Ca) showing inclusion clusters in a steel matrix 
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Wt% Al2O3 MgO MnS CaO SiO2 

A 85.0 11.9 1.2 1.8 -.- 

B 35.3 2.7 51.5 5.7 4.7 

a) b) 

Figure 3.31. Centrifugally cast steel sample from the final product (X=0.5) of Heat E 

(0.139 %Ca) revealing MgO-Al2O3 and Al2O3-MnS inclusions in a steel matrix 
 
 

 

 

Wt% Al2O3 MgO MnS CaO SiO2 

A 74.1 16.5 0.3 9.1 -.- 

B 82.3 9.5 3.8 1.9 2.4 

C 64.9 23.2 7.6 4.1 -.- 

D 87.5 8.3 2.2 2.0 -.- 

a) b) 

Figure 3.32. Centrifugally cast steel sample from the final product (X=0.5) of Heat E 

(0.139 %Ca) exhibiting a ring of MgO-Al2O3 inclusions in the former boundary of a 

bubble-shaped cavity 
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a) b) 

 

 

 

 

Wt% Al2O3 MgO SiO2 CaO 

A 85.3 14.0 0.7 -.- 

B 99.0 -.- -.- 1.0 

c) 

Figure 3.33. Centrifugally cast steel sample from the final product (X=0.5) of Heat E 

(0.139 %Ca) revealing MgO-Al2O3 and Al2O3 inclusions around the boundaries of a 

cavity in a steel matrix 

A 
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4. DISCUSSION 

The effectiveness of the calcium wire fed just prior to casting (heats A and B) and 

after AOD (heats D and E) was analyzed to determine its influence on inclusion removal 

in the centrifugally cast steel products. Non-metallic inclusions, like -aluminum 

oxynitrides (Al-O-N), were observed in the final product, in which their formation and 

stability were calculated using thermodynamics based on Dörner, Kaufman and Willems 

parameters. The inclusion flotation and entrapment in the centrifugally cast steel products 

were also evaluated using the Computational Fluid Dynamics (CFD) simulations, which 

were previously developed by several researchers at Missouri S&T.  

 

4.1 EFFECTIVENESS OF CALCIUM RETENTION IN LIQUID STEEL 

The effectiveness of calcium retention was calculated using the external pressure 

and vapor pressure of calcium in the liquid state. The external pressure of the molten steel 

surrounding the calcium wire is given by Eq. 22, 

 ghP  + 101,325          (22) 

where,  is the density of the molten steel in kg/m
3
 (7230 kg/m

3
), g is gravity in m/s

2
 and 

h is the calcium injection depth in m [9]. 

The external pressure is equal to the vapor pressure of the calcium wire at its boiling 

temperature [9]. The vapor pressure of calcium in the liquid state is described in Eq. 23,  

T
P

8190
67.9log            (23) 

where, pressure (P) is in Pascal (Pa) and temperature (T) is in Kelvin (K) [45].  

The boiling point of calcium is 2701 ºF (1483 ºC) at atmospheric pressure [45].  

The metal depth in the ladle was around 66 in (1.7 m) for each experimental heat, as 

provided by the participating industry foundry. The calcium injection depth was around 

20 in (0.5 m) based on the maximum calcium injection rate (17 ft/ min, 0.09 m/s) from 

the P.C. Campana micro wire-feeder and the total time to melt the calcium wire in the 

molten steel (5 s). 
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Figure 4.1 shows that the boiling point of the calcium wire is increased by a 

higher external pressure, allowing it to be injected deep in the ladle before the Ca begins 

to vaporize. In the industrial practice, the boiling point of calcium at an injection depth of 

20 in was around 2791 F (1533 C) for each experimental heat. This implies that partial 

Ca-powder vaporization occurred at higher molten steel temperatures, especially for 

heats D and E. The molten steel temperatures in which the calcium was fed in the ladle 

after the final additions in AOD for heats D and E (2940 F, 1616 C) were higher than 

just prior to casting for heats B and C (2850 F, 1566 C). The calcium wire in Heats D 

and E should have been injected deeper in the ladle (63 in, 1.6 m), using a new cored 

wire feeder with a more efficient power supply to prevent Ca powder vaporization. The 

assumption of total Ca-powder vaporization was null because calcium aluminates were 

formed from the calcium remained in the molten steel (Figure 3.1 in Section 3.1).  

The efficiency factor of calcium retention (Er) in liquid steel is given by Eq. 24 

(Table 4.1) [26], 

W

ww
E solOS

r


      (24) 

where, wOS entails the %Ca combined in non-metallic inclusions obtained from Aspex 

and the density of inclusions containing calcium (), wsol is the %Ca in the ladle after 

calcium treatment, and W is the %Ca injected in the ladle [26]. The ladle size for each 

experimental heat was also used to calculate wOS, wsol and W. 

The efficiency factor of calcium retention in heats D and E (Er, average= 0.01855) 

was lower than heat B (Er= 0.0337) due to the difference of molten steel temperatures 

between the calcium treated heats, inducing partial Ca-powder vaporization in the ladle. 

The partial Ca-powder vaporization would have decreased the effectiveness of inclusion 

modification and removal in the molten steel. However, all the heats had very low 

recoveries of calcium, indicating high levels of re-oxidation during casting, minimizing 

the probability of calcium enhancement of steel quality.  
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Figure 4.1. The variation of the boiling point of calcium with a) the external pressure and 

b) the depth of the wire in the molten steel 

 

 

Table 4.1. Temperature prior to Ca-wire ladle treatment and efficiency factor (Er) of 

calcium retention for each experimental heat 

B 0.014 2840 0.0002 0.04 1.1 0.034

C 0.077 2860 N/A N/A N/A N/A

D 0.096 2914 0.0025 0.26 8.1 0.032

E 0.139 2965 0.0004 0.06 11.3 0.005

Er = (w os  + 

w sol )/ W

Aim %Ca 

added 
Heat

Temperature 

Before Ca Wire 

(°F)

 wos (%Ca inclusions 

*Ladle Size/ inclusions)

wsol (*%Ca * Ladle 

Size)

W (Aim 

%Ca added 

* Ladle Size)

 
* The %Ca after calcium treatment was obtained in an industrial laboratory using an arc 

spectrometer 
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4.2 THERMODYNAMICS OF CALCIUM WIRE LADLE TREATMENT 

The purpose of the calcium added to the ladle was to form low melting point 

calcium aluminates without the formation of high melting point CaO and CaS that could 

minimize the effectiveness of the calcium wire ladle treatment on the cleanliness of the 

molten steel. Figure 4.2 shows the transition from the low melting point calcium 

aluminates to the high melting point CaO and CaS inclusions at 2912 F (1600 C), using 

the commercial software FactSage. The thermodynamic simulations were based on the 

chemical composition for low alloy steels after the final additions in AOD; the dissolved 

%Al and Al2O3 were around 0.049% and 0.011%, respectively (Table 2.1 in Section 2.1). 

The dissolved %Ca was calculated using a variable amount of calcium, known as alpha 

<A>, which was between 0 and 0.06%. Two types of boundary conditions were 

considered: open top, allowing the reaction between the free radicals in the molten steel 

and the environment during ladle transfer operations; and partially isolated, assuming a 

uniform thick slag layer in the ladle.  

The thermodynamic parameters entailed the Gibbs free energy of formation of 

calcium aluminate, [%Al] and [%S] given by Eqs. 25, 26 and 27 [46].  

12CaS + 7(CaO 6Al2O3)   19(CaO2Al2O3) + 8Al +12S          (25) 

3CaS + 4(CaO 2Al2O3)   7(CaOAl2O3) + 2Al +3S            (26) 

15CaS + 33(CaO 6Al2O3) 4(12CaO7Al2O3) + 10Al +15S        (27) 

The thermodynamic calculations reveal that the dissolved calcium in the ladle for 

low alloy steels must be between 0.006 and 0.03% to form low melting point calcium 

aluminates. If the dissolved calcium in the ladle would have been above 0.03%, CaO and 

CaS inclusions would have formed in steel. The low sulfur content after final additions in 

AOD (0.001 %S) significantly decreased the probability of CaS formation.  
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Figure 4.2. Thermodynamic analysis showing the relationship between  the dissolved 

%Ca and the calcium-modified inclusions (Liquid Ca-Al-O-S, CaO and CaS) under 

different boundary conditions (open and isolated top)  at 2912 F (1600 C)  

 

 

4.3 THERMODYNAMICS OF -ALUMINUM OXYNITRIDE (Al7O9N AND 

Al23O27N5) 

 The main types of inclusions containing nitrogen in the final product for all heats 

are Al-O-N or -aluminum oxynitride. The formation and stability of -aluminum 

oxynitride (Alon) are based on the thermodynamic parameters of aluminum oxide and 

aluminum nitride by Dörner et al. and Kauffman. Dörner et al. and Kauffman suggested 

that Alon was unstable below 1873 ºK (1600 ºC) and decomposed into -Al2O3 and AlN. 

The Alon system is described in Eq. 28 [47]. 

(3/17)Al2O3 + (1/17)AlN =(1/17)Al7O9N        (28) 

The Gibbs free energy of Alon formation calculated by Dörner et al. and 

Kauffman are based on Eq. 29 [47]. 

 Gfº (Al7O9N) = Grº + 3Gfº (Al2O3) + Gfº (AlN)       (29) 
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The Gfº of formation of aluminum oxide and aluminum nitride used by Dörner 

et al. are given in Eqs. 30 and 31 [47]. 

 Gfº (Al2O3) = -1,673,913.8 + 318.94 T        (30) 

 Gfº (AlN) = -325,854.1 + 114.99 T                    (31) 

Kauffman calculated the Grº using the lattice stability, solution and compound 

phase parameters in Eq. 32 [47].  

 Grº = -515 - 0.259T            (32) 

The results of Gfº (Al7O9N) and Grº based on Dörner et al. and Kauffman 

calculations are given by Eq. 33 [47]. 

Gfº (Al7O9N) = -5,356,902.8 + 1,070.58T         (33) 

Willems et al. estimated the defect structure of Alon. The crystal structure of Alon 

is spinel (Fd3m) with vacancies on the octahedral sites of the lattice. McCauley proposed 

that Al23O27N5 has eight aluminum ions on the tetrahedral sites and fifteen on the 

octahedral site of the lattice. The Gibbs free energy of the Al23O27N5 formation based on 

the dissolved elements in the molten steel is described in Eqs. 34 and 35 [47].   

23Al + 13.5O2 +2.5N2 = Al23O27N5         (34) 

Gfº (Al23O27N5) = -16,467,302 + 3,324.111T       (35)  

Figure 4.3 compares the predictions of equilibrium solubility product and 

experimental results of [%Al] and [%N] for AlN and Alon formation at 1873 ºK (1600 ºC) 

based on Eqs. 33, 35 and 36. Eq. 36 entails the pure solid AlN formation in liquid iron 

based on the interaction parameters and log KAlN measured by different authors in Table 

4.2 [48], [49]. 

AlN(s) =Al + N       (36) 

The Alon formation in Figure 4.3 also displays the unsaturated conditions ([O] < [O]eq.) 

within the system. This means, the calcium fed in the ladle prior to casting (Heats B and 

C) and after AOD (Heats D and E) minimized the dissolved oxygen content due to 
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reaction of calcium with Al2O3 to form low melting point calcium aluminates (Eq. 18 in 

Section 1.3.2).  

 

 

Table 4.2. Thermodynamic parameters of aluminum and nitrogen in liquid iron at 1873 

ºK [48], [49] 

Authors eAl
Al eAl

N log KAlN Temp. Range (K)

W. Y. Kim et al . 111/T-0.016 -332.2/T+0.194 -16,560/T+7.4 1873-1973

Evans et al . 0.0435) 828/T-0.471 -13,000/T+5.58 1873-2023

Wada et al . 0.0435) 744/T-0.421 -12,900/T+5.62 1823-1973
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Figure 4.3. Equilibrium ([O]=[O]eq.) and unsaturated ([O] < [O]eq.) relations between 

[%Al] and [%N] at which AlN and Alon (Al7O9N and Al23O27N5) are formed at 1873 ºK   

 

 

The experimental results in Figure 4.3 are based on the average dissolved [%N] 

and [%Al] in the final product of the centrifugally cast steel samples. The dissolved [%N] 

and [%Al] were calculated using the total [%N] obtained from the Leco TC 500 oxygen-

nitrogen analyzer and the total [%Al] measured by the arc spectrometer. The area covered 

by inclusions containing aluminum and nitrogen from the Aspex PICA 1020, as well as 

their elemental composition from the AFA data, were also used to determine the 
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dissolved [%N] and [%Al] in the casting. The average dissolved [%Al] and [%N] in the 

final product of the centrifugally cast steel products are 0.049 and 0.012, respectively. 

Figure 4.3 shows that the experimental results of the centrifugally cast steel 

products were in good agreement with the calculated Al7O9N under unsaturated 

conditions ([O] < [O]eq.). Al23O27N5 under both equilibrium ([O] = [O]eq.) and unsaturated 

([O] < [O]eq.) conditions, as well as Al7O9N  ([O] < [O]eq.) under equilibrium conditions 

did not form due to the fact that a critical nitrogen content (0.015>[%N]) was required 

within the system (Figure 4.4). Similarly, a critical aluminum content in the liquid iron 

(0.5>[%Al]) must be exceeded to form aluminum nitrides in the centrifugally cast steel 

products [48].  
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Figure 4.4. Equilibrium ([O]=[O]eq.) and unsaturated ([O] < [O]eq.) relations between 

[%Al] and [%N] at which Alon (Al7O9N and Al23O27N5) is formed at 1873 ºK  

 

  

4.4. NON-METALLIC INCLUSION FLOTATION AND ENTRAPMENT USING 

DIFFERENT MODELS FOR CENTRIFUGAL CASTING 

Researchers from Missouri S&T developed different models to simulate the 

flotation and entrapment of non-metallic inclusions in centrifugal casting using two- and 

three-dimensional geometries in Computational Fluid Dynamics (CFD).  
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a) Model 1: S. Lekakh developed a two-dimensional CFD model to simulate the 

inclusion flotation throughout solidification kinetics and theoretical viscosity analysis on 

the centrifugally cast products. The CFD parameters included a steel wall thickness of 4 

in (0.1 mm) and 1 in (0.03m) thick for both the steel mold and sand layer.  

Figure 4.5 displays the relationship between solidification kinetics and the cooling 

time of the molten steel poured at 50 C superheat. The solidification kinetics included 

the solidus (solid line) and liquidus (dashed line) regions, indicating unidirectional 

solidification from the OD with the development of a wide mushy zone in the casting. It 

was observed that the ID solidified last, which was in good agreement with the 

microstructural analysis due to the fact that shrinkage solidification was only found at 

this location for each experimental heat (Figure 3.20 in Section 3.4.1). 

Figure 4.6 shows that the majority of inclusions could be removed from the main 

body of the casting if the steel temperature were above the liquidus. The inclusion 

removal was only possible for a short period of time. However, inclusion deceleration 

occurred due to a high viscosity in the mushy zone. The apparent viscosity of a 

heterogeneous system (ap) relied on both the solid and liquid fraction in the mushy zone. 

If eff>0.05 kg/m*s, a significant amount of non-metallic inclusions would not float to the 

ID. Instead, inclusion entrapment would occur in the main body of the casting and at the 

OD, which explained the large inclusion volume at the OD for the samples taken from the 

end of the finished tube for each experimental heat (Figure 3.4 in Section 3.2).  
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Figure 4.5. Solidification kinetics in a centrifugally cast tube using a wall thickness of 4 

in (0.1 m) 
 



 

 75 
 

 

Kg/ m*s 

Kg/ m*s 

Solid Liquid 

 
Figure 4.6. Effect of the apparent viscosity (=0.005 kg/m*s without solid fraction; 

ap=0.05 kg/m*s with 25-30% solid fraction) on flotation dynamics using an inclusion 

diameter of 5m at 100G 

 

 

b) Model 2: L. Zhang simulated the inclusion entrapment under turbulent fluid 

flow using both the two- and three- dimensional CFD.  The turbulent fluid is based on the 

continuity equation (Eq. 37) and the Navier-Stokes equations (Eqs. 38 and 39), which 

were previously validated in the submerged entry nozzle (SEN) and continuous casting 

simulations. 
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toeff          (39) 

where,  is density in Kg/m
3
, uj is the velocity of a component in the xj direction in m/s, 

and xj is the direction of a component along different axis in m. In the Navier-Stokes 

equations, p is pressure in Pascal, F


is a momentum in N, and eff is the turbulence-

adjusted effective viscosity in Kg/m. The effective viscosity (eff) entails the laminar fluid 

viscosity (O) and the turbulent fluid viscosity (t). 

The three-dimensional volume of fluid (VOF) multiphase model was utilized to 

analyze the interaction between the molten steel and the air by simultaneously solving the 

heat transfer in the casting mold. The solidification front growth model simulated the 

liquid faction, , in the mushy zone during the solidification process, which was assumed 
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to be a porous zone in the model. In the porous zone, a momentum loss, S, was supposed 

to take place when the liquid phase became solid, and was given by Eq. 40,  

 
 










 mushAS

001.0

1
3

2

      (40) 

where, Amush is the constant mushy zone and  is a variable related to the fluid properties, 

like velocity and turbulence. 

The user defined function (UDF) was employed for the liquid fraction, , in the 

mushy zone. If =1, steel was then fully in the liquid state. If <1, x-velocity and y- 

velocity were then fixed using Eqs. 41 and 42, 

 sinrvx         (41) 

 cosrvy         (42) 

where, r is the distance to any point within centrifugal casting,  is the angular velocity, 

and  (alpha) is the coordinate direction angle.  

The parameters and dimensions that were used in Zhang’s model are shown in 

Table 4.3. The CFD parameters included the experimental data, consisting of a rotation 

speed of 850 rpm and a pouring/ initial temperature of 1853 K (1580C, 2876 F). The 

computation quality was enhanced using a mesh with an entire domain of 663, 680 cells 

during the centrifugal casting simulations.  

 

 

Table 4.3. Dimensions and parameters for CFD modeling 

Parameter Value Parameter Value

Mold length 16 m Viscosity of liquid 

steel

0.0067 

kg/m·sMold radius 0.212m Density of liquid steel 7020 kg/m
3

Mold inlet radius 6 cm Thermal expansion 

coefficient
1×10

 – 4
 1/K

Rotation speed 1000 rpm Density of inclusion 5000 kg/m
3

Inlet velocity 1.915 m/min Latent heat 270000 J/kg

Turbulent energy 0.00001 Initial temperature 1853 K

Dissipation rate 0.00001 Liquidus temperature 1803.15 K

Pouring time 10 s Solidus temperature 1763.15 K

Latent heat 270000 J/kg Thermal conductive 34 w/m·k

Rotation speed of the mold 850 rpm
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Figure 4.7 shows a) the air-steel interface during pouring and b) the temperature 

distribution at 19 s after pouring, using the three-dimensional VOF computation. It was 

observed that the lowest temperature distribution in the centrifugally cast product was 

located at the non-pouring end of the finished tube, showing a good agreement with both 

the experimental data and Mirzoyan and Pavperova results (Figure 1.10 in Section 

1.2.1.3).  

Figure 4.8 compares the inclusion entrapment using two separate CFD runs with 

different inclusion sizes: a) the first run included 5 m inclusions; and b) the second run 

entailed 50 m inclusions. These simulations were performed using a two-dimensional 

computation due to the fact that the three-dimensional simulation typically takes very 

long time (around two to three months) to achieve the final results. In the two 

dimensional computation, a total of 50,000 inclusions with a density of 5,000 kg/m
3
 

were randomly distributed in the liquid phase. As boundary conditions, inclusion 

entrapment was assumed to take place when the liquid fraction, , was around 0.3. 

Larger inclusions (>50 m) are prone to be closer to the ID due to the fact that the 

centrifugal forces acting on the larger inclusions are greater than those on the smaller 

inclusions (<5 m). The smaller inclusions are more dispersed along the radial direction 

of the centrifugally cast product. Figure 4.8 also exhibits that the highest concentration 

of inclusions regardless of the inclusion size is at the ID. However, the CFD simulations 

differed from the experimental results due to the fact that the snapshots in Figure 4.8 

were taken from the middle of the finished tube, while the experimental centrifugally 

cast products were taken from the opposite pouring end of the finished tube. This 

implies that the inclusion flotation could be enhanced at the middle of the casting 

because the steel temperature at the pouring end was significantly higher than the 

opposite pouring end of the finished tube, allowing inclusions to overcome the viscosity 

of the steel to float to the ID. In contrast, the lower steel temperatures at the non-pouring 

end produce rapid solidification of the casting, minimizing considerably the liquid 

fraction in the mushy zone in a short period of time. Inclusion entrapment is then 

observed, especially at the OD, reducing the effect of centrifugal forces on inclusion 

flotation in a fully developed solid fraction (<0.3). 
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a) 

 

 

 
b) 

Figure 4.7. Comparison of a) the air-steel interface during pouring and b) the temperature 

distribution at 19 s after pouring, using the three-dimensional CFD computation 

 

 

   
a) b) 

Figure 4.8. Comparison of inclusion final entrapment using particle size diameters 

between a) 5 µm and b) 50 µm in the solidified centrifugal tube at a rotation speed of 850 

rpm, using the two-dimensional CFD computation 

 

 

4.5. COMPARISON OF NON-METALLIC INCLUSION DISTRIBUTION IN 

STATIC AND CENTRIFUGAL CASTING 

The amount and spacing between inclusions, as well as porosity, in the regular 

melting practice and calcium treated heats in static casting were compared to the final 

product (average of the three samples at x=0.25, x=0.50 and x=0.75) of the centrifugally 

cast steel tubes. In previous research, static casting was used to analyze the effects of 

K 
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calcium treatment and Ar-stirring on inclusions in medium carbon steel (0.3 %C, 0.8 

%Mn, 0.01 %P, 0.02 %S, 0.5 %Si, 0.05 %Cr, 0.2 %Mo and 0.09 %Al). Figure 4.9 reveals 

that the amount of non-metallic inclusions regardless of calcium addition in centrifugal 

casting was considerably less than that in static casting. Figure 4.10 shows that the 

inclusion spacing in the final product was significantly larger than static casting, 

implying that cleaner steel is produced in centrifugal casting rather than static casting. 

Note that the amount of inclusions in static casting decreased by higher calcium 

additions, but it was insufficient to overcome the benefits of large centrifugal forces in 

centrifugal casting.  
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Figure 4.9. Comparison of the area covered by inclusions in samples taken from the cast 

keel blocks in sand casting and the final product of the centrifugally cast steel products 

with different amounts and speeds of calcium wire injection in the ladle  
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Figure 4.10. Comparison of the inclusion spacing in samples taken from the cast keel 

blocks in sand casting and the final product of the centrifugally cast steel products with 

different amounts and speeds of calcium wire injection in the ladle 

 

 

Figure 4.11 compares the porosity in static casting using the cast and HIPed (Hot 

Isostatic Pressure) conditions of Eglin steel (ES-1: 0.3 %C, 0.7 %Mn, 1 %Si, 2.6 %Cr, 

1.1 %Ni, 0.4 %Mo, 0.1 %V and 1 % W) to the final product of the centrifugally cast 

tubes. The porosity in static casting, which was not treated by HIP, was significantly 

larger than centrifugal casting. This means, that the large pressure in centrifugal casting 

minimizes the probability of gas pore formation in comparison to static casting. The 

porosity in static casting can be improved to be more similar to centrifugal casting by 

increasing the temperature and isostatic gas pressure in a high pressure vessel during the 

HIP process. 
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Figure 4.11. Comparison of porosity in samples taken from both the cast and HIPed Eglin 

steel (ES-1) in static casting, as well as the final product of the centrifugally cast steel 

products with different amounts and speeds of calcium wire injection in the ladle
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5. CONCLUSIONS 

Calcium wire fed just prior to casting and at earlier stages of the ladle treatment 

(just after AOD) did not significantly modify or reduce the number, size or shape of 

inclusions containing aluminum due to the amount of re-oxidation during pouring and the 

melt transport through the pouring basin. The amount and shape of inclusions containing 

sulfur were slightly reduced in the final product, but it was insufficient to improve the 

toughness of the centrifugally cast products. However, the centrifugal forces decrease the 

amount of non-metallic inclusions in the final product, enhancing its cleanliness by 

concentrating the majority of inclusions either at the ID (inclusion flotation) or OD 

(inclusion entrapment), which are typically removed through machining and not 

incorporated in the final product. This research reveals that cleaner steel, which consists 

of the least number of inclusions and the largest inclusion spacing, is produced in 

centrifugal casting versus static casting. In centrifugal casting, porosity is also minimized 

when compared to static casting without HIP (Hot Isostatic Pressing). 

The porosity and cleanliness of the centrifugal cast steel can be further improved 

by modifying some casting techniques, such as the pouring temperature. Excessive 

pouring temperatures produce slow solidification from the OD to the ID, providing the 

worst conditions for the formation of deep shrinkage cavities. The turbulence in the 

pouring basin can be reduced by pouring the molten steel slowly, minimizing the 

interaction of the molten steel with the environment. Hot Isostatic Pressing (HIP) can be 

used to reduce porosity and improve the mechanical properties of the centrifugally cast 

steel products.
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APPENDIX 

 

VISUAL BASIC CODE FOR CALCULATING PARTICLE SPACING 

Sub MinDist() 

Sheets(1).Activate 'activate sheet 1

Cells(1, 1).Activate 'activate cell A1

counter = 0

Totalmin = 0

Do 'change between particles

If ActiveCell.Offset(1 + counter, 2) = "" Then 

Exit Do

 Else

x = ActiveCell.Offset(1 + counter, 3).Value

y = ActiveCell.Offset(1 + counter, 4).Value

End If

comparecounter = 0 'reset the compare counter

mindistance = 0 'reset the minimum distance

Do 

If ActiveCell.Offset(1 + comparecounter, 2) = "" Then 

Exit Do 

Else

xC = ActiveCell.Offset(1 + comparecounter, 3).Value

yC = ActiveCell.Offset(1 + comparecounter, 4).Value

End If

compareddistance = (((x - xC) ^ 2 + (y - yC) ^ 2)) ^ 0.5   

If mindistance = 0 Then 

mindistance = compareddistance

minparticle = comparecounter + 1

ElseIf compareddistance = 0 Then

ElseIf compareddistance < mindistance Then 

mindistance = compareddistance

minparticle = comparecounter + 1

End If

ActiveCell.Offset(1 + counter, 5).Value = minparticle  

ActiveCell.Offset(1 + counter, 6).Value = mindistance

comparecounter = comparecounter + 1 

Loop

Totalmin = (Totalmin + mindistance)     

ActiveCell.Offset(0, 1).Value = Totalmin / (comparecounter)

counter = counter + 1 

Loop

End Sub

      'compare the next particle

   'add all of the total of all min distances

 'print the average min distance

                         'move to next particle

 'the distance between a particle and itself should not be counted

'if the new distance is smaller it   becomes the min distance

'print the closest particle

 'print the distance of the closest particle

             'change between compared particles

 'read compared particle location

                       'if the next cell is empty stop the loop

 'calculate distance between particles

           'the first distance must be the smallest

         'Find the average minimum distance between particles

'read particle location

           'if the next cell is empty stop the loop
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