

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 97

Automated Natural Language Requirements

Analysis using General Architecture for Text

Engineering (GATE) Framework

Ahmad Mustafa, Wan M. N. Wan Kadir and Noraini Ibrahim
Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

mahmad8@live.utm.my

Abstract—Stakeholders exchange ideas and describe

requirements of the system in natural language at the early stage

of software development. These software requirements tend to

be unclear, incomplete and inconsistent. However, better quality

and low cost of system development are grounded on clear,

complete and consistent requirements statements.

Requirements boilerplate is an effective way to minimise the

ambiguity from the natural language requirements. But manual

conformance of natural language requirements with boilerplate

is time consuming and difficult task. This paper aims to

automate requirements analysis phase using language

processing tool. We propose a natural language requirement

analysis model. We also present an open source General

Architecture for Text Engineering (GATE) framework for

automatically checking of natural language requirements

against boilerplates for conformance. The evaluation of

proposed approach shows that GATE framework is only

capable of detecting ambiguity in natural language

requirements. We also present the rules to minimise ambiguity,

incompleteness, and inconsistency.

Index Terms—General Architecture for Text Engineering;

Natural Language Processing; Requirements Engineering;

Requirements Incompleteness.

I. INTRODUCTION

Requirements engineering phase is an important and effortful

task during software project development. Often the software

requirements specifications are stated in natural language

(NL) and NL requirements may be adorned with ambiguity

and incompleteness [1].

Software Requirements Specification (SRS) is used to

document software requirements. It contains both functional

and non-functional requirements. SRS document provides the

basis for all subsequent project planning, design, coding, and

testing [2].

Requirements specification analysis is considered as a

challenging task because it is responsible for transforming the

real-world problems into verifiable computer models [3].

According to Young et al. [4], 85% of the software errors are

due to requirements defects. If defects are not removed at the

early stage of the development, the cost of fixing these errors

would intensely increase in the subsequent phases of

development.

Standish group [5] highlight the three main reasons for

project failure namely: less user involvement, lack of

executive management support, and unclear or ambiguous

requirements. There are other factors of project failures, but

with these three elements chance of failure increases

dramatically.

Normally requirements are specified in a formal (or semi-

formal) way to remove the ambiguity from the requirements

specifications. The UML, Finite State Machine and other

abstract methods are used to formally specify the

requirements [6]. However, formal specification methods are

not widely accepted for several reasons. For examples, a

formal model is difficult to use for communication with non-

technical personnel. Additionally, extensive training is

required for the implementation of formal models which is a

time-consuming and expensive process.

Likewise, another way to address the ambiguity is the use

of requirements template or boilerplate. The boilerplate is a

blueprint for the syntactic structure of individual

requirements [7]. Figure 1 shows the stages of Rupp’s

requirements template/boilerplate proposed by Pohl [7]. It is

used to minimise the ambiguity effect in natural language. It

consists of six syntactic stages: First, optional condition i.e.

legal obligation for requirements are determined. Second, the

core of each requirement is specified i.e. print, save or

calculate. Third, the functional requirements activities are

classified into three relevant types: (i) requirements that

performs the process autonomously, (ii) requirements that

provides the process as a service for the user, and (iii)

interface requirements. Fourth, the missing processes in the

previous stage are completed. Fifth, the potentially missing

objects and adverbs are identified and added to the

requirements. Finally, during the last stage, logical and

temporal conditions are identified.

Figure 1: Rupp’s Requirements template [7].

In this paper, we propose a natural language requirement

analysis model which may be used to resolve the issues of

natural language requirements. We also presented General

Architecture for Test Engineering (GATE) framework using

Natural language processing techniques. The tool

automatically conforms the correct use of boilerplate in

natural language requirements statements. Thus, annotated

requirements will become unambiguous, complete and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229275064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

98 e-ISSN: 2289-8131 Vol. 9 No. 3-4

consistent.

This paper is divided into the following sections: Section I

explains the role of requirements specification analysis in

requirements engineering, challenges during requirements

specification analysis and use of boilerplate to diagnose

ambiguity. It is followed by section II that discusses related

studies in requirements specification analysis using NLP, and

provides an overview of General Architecture for Text

Engineering (GATE) Framework. Section III shows approach

proposed model for natural language requirements analysis

using GATE framework. Section IV explains the evaluation

results of natural language requirements of the coffee vending

machine. Section V is a summarization of discussion. Finally,

the conclusion of work and future work is in Section VI.

II. RELATED WORKS

Related work is categorized into three sub-sections:

Section A summarizes the studies that use NLP techniques in

natural language requirements. Section B elaborates NLP

analysis that can be used during requirements specification

analysis and Section C is an overview of information

extraction open source GATE framework.

A. NLP in Requirements Engineering

NLP is a promising approach which can be applied to

process natural language requirements. It makes easy to

manage the requirements of a complex system. Numerous

studies are conducted on natural language processing

techniques in software requirements analysis.

Mala and Uma [8], proposed a method of extraction from

natural language (NL) requirements and transforms it into

object-oriented elements of the system. Firstly, part of speech

tags are assigned to each word of NL requirements. Secondly,

to resolve the ambiguity issue natural language text is

normalised. To map the natural language requirements into

object-oriented modelling language following rules are

implemented. Such as noun in natural language are converted

into classes, methods in classes from verbs and attributes

from adjectives. Accordingly, user requirements are mapped

using part of speech tagging into object oriented

programming language elements.

Likewise, another approach [10] which implement

automatic mining of class diagram from NL requirements.

NLP techniques are used for extraction and nouns converted

into classes and verbs into relations. The authors developed a

tool in Visual Basic.Net with the name of “Automatic Builder

of Class Diagram (ABCD)”. The tool integrates OpenNLP

library and machine learning based toolkit. ABCD tool

analyses the text and extracts all required information to

create the corresponding XMI document. The tool generates

XMI document exported to open-source ArgoUML tool to

view the resulting class diagram [10].

Similarly, Almeida Ferreira and da Silva [9], presented a

new socio-technical approach to reducing Requirements

ambiguity and inconsistency. Requirements engineering

process is aligned with Model-driven Engineering paradigm.

The authors proposed a tool for automatic extraction of

natural language requirements and verification of

requirements models. The authors used a Wiki-based tool as

an example for validation of approach.

Furthermore, Masuda et al. [12] presented a method to

discover ambiguous requirements at an early phase of

development. System test cases are generated from natural

language requirements by focusing on UML Testing Profile

(UTP) behaviour. The authors suggested three levels of rules:

i. The class is generated from noun of the sentence. The

action is generated from verb and attributes are

generated from the adjective.

ii. The verb is a message between two classes.

iii. Order of sequence of objects is the order of description

in the requirements

Fatwanto [1], presented an approach for natural language

requirements analysis using Reed-Kellogg English sentence

diagramming system. It transforms natural language

requirements into a scenario table.

Another study presented an automated approach in which

manual and projects reports are used as input of the system.

The approach has further following steps: (i) Input of manual

documents in NLP based system. (ii) NLP techniques are

applied to extract the scientific requirements. (iii) Specific

patterns rules are defined in NLP and matched with extract

requirements. Authors applied the approach study in three

different scientific domains specifically in Seismology,

building performance and Computational Fluid Dynamics.

According to authors, 78-97% of requirements are correctly

extracted using their proposed approach [11].

B. Types of Requirements Analysis Methods using NLP

The following NLP analysis methods are applied during

requirement analysis phase [13]:

i. Lexical and syntactic analysis to identify the vague,

incomplete and inconsistent requirements.

ii. Statistical and semantic techniques to identify the

similar or duplicate requirements, and to detect the

interdependencies among the requirements.

iii. Lexical and semantic analysis methods in order to

identify the non-functional requirements and to

classify them according to functionality (Functional /

Non-functional) and for non-functional ones to sub-

functionality (security, usability, adaptability etc.).

C. GATE Framework

General Architecture for Text Engineering (GATE) is a

Java collection of tools initially developed at the University

of Sheffield beginning in 1995. GATE framework is mostly

used worldwide by companies, a community of scientists,

teachers, and students for natural language processing tasks

and information extraction from natural language in different

languages [14].

GATE framework is software architecture for Language

Engineering (LE). LE is defined as “a discipline or act of

engineering software systems that perform tasks involving

processing human language. Both the construction process

and its outputs are measurable and predictable. The literature

of the field relates to both applications of relevant scientific

results and a body of practice [15]“.

GATE components come in three flavours [15], as depicted

in Figure 2:

i. Language Resources (LRs) consist of lexicons,

corpora or ontologies resources;

ii. Processing Resources (PRs) consist of basic

algorithmic, parsers, generators or ngram modellers;

iii. Visual Resources (VRs) consist of visualisation and

editing of GUIs components.

Automated Natural Language Requirements Analysis using General Architecture for Text Engineering (GATE) Framework

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 99

Figure 2: Main Window of GATE Developer [15]

D. Java Annotation Patterns Engine (JAPE)

JAPE is a patterns engine which recognises regular

expressions in annotations of documents. JAPE grammar has

two set of phases namely left-hand side (LHS) and right-hand

side (RHS). Both phases consist of a set of patterns/actions

rules. The LHS of the rules consists of an annotated pattern

description. The RHS consists of annotated manipulated

statements. The LHS is the prior part of sign ‘-->’ and

subsequent part is RHS [15, 16]. Figure 3 shows the JAPE

rule example.

Figure 3: JAPE rule example

III. PROPOSED MODEL

The proposed model as shown in Figure 4 consists of the

steps to refine the natural language requirements during

software requirement analysis in order to resolve the issues of

ambiguity, incompleteness, and inconsistency. In this

proposed model, there are three main steps that should be

followed i.e. Text extraction, Boilerplates checking and NL

requirements quality checking.

Figure 4: Natural Language Requirement Analysis Model

A. Text Extraction

In the first step, as shown in Figure 5, NL requirements

document is segmented into sentences and each sentence is

further subdivided into words and numbers. This procedure is

called tokenization. Next, each sentence is tagged with parts

of speech like verb, nouns, adjectives, and proposition. This

procedure is named as part of speech (POS) tagging and it

acts as bases for next step. It is known as Name Entity

Recognition (NER). This step categorises the sentences in

names of persons, organisations, locations, expressions of

times, quantities, monetary values, and percentages. The last

step is actual extraction Noun Phrase (NN) and Verb Phase

(VP) are handled by a separate module.

The input requirements after going through NLP process

are marked with tokens, sentences, part of speech tagging,

named objects, NN and VPs. These annotated natural

language requirements used for automatic conformance

against boilerplates and to diagnose ambiguity from natural

language requirements.

Natural language

Requirements

Tokenization

POS Tagging

Noun Phrase

extraction (NP)

Verb Phrase

extraction (VP)

Name Entity

Recognizer

Annotated

Requirements

Figure 5: NLP Pipeline for Text Extraction System

B. Boilerplate checking

In this step, the annotated requirements document produced

by the text extraction in the previous step is used as an input

for Boilerplate checking. Boilerplate checking rules are

defined in BNF grammar. The main purpose of these rules is

to tag each requirement statement areas either it conforms to

the boilerplate rules or not. The Rupp’s requirement

boilerplate rules, as shown in Figure 1, are used during

conformance checking. If necessary, any other boilerplate

also can be used for this purpose.

Figure 6 shows BNF grammar which contains

characteristic of Rupp’s requirement boilerplate. This gets the

input of annotated requirement produced by text mining

process.

Figure 6: BNF grammar for Rupp’s boilerplate

Journal of Telecommunication, Electronic and Computer Engineering

100 e-ISSN: 2289-8131 Vol. 9 No. 3-4

These BNF grammar rules are used to communicate with

JAPE. In Figure 7, JAPE script is communicating with BNF

grammar and automatically validating each sentence against

autonomous, user interaction and interface requirement.

Figure 7: JAPE script for conformance of Rupp’s boilerplate

C. Natural language quality checking

In this step, the natural language requirements are further

verified that requirements statements are complete,

unambiguous and consistent. Therefore, the aim of this step

of this step is to diagnose incomplete, ambiguous and

inconsistent requirements. Next is a detail of the different

type of ambiguity, inconsistency and incompleteness.

1) Ambiguity Issue

A requirement is considered as ambiguous if it has more

than one interpretation [17]. Ambiguity in natural language

requirements may come under following types [18]:

a) Analytical Ambiguity:

Analytical ambiguity occurs when some part of the

sentence can have more than one role within a sentence.

b) Attachment Ambiguity:

Attachment ambiguity occurs when some part of the

sentence can be attached to more than one other part of the

sentence.

c) Coordination Ambiguity:

Coordination ambiguity occurs when more than one

conjunction (e.g. and or) is used in a sentence or when the

conjunction is used with a modifier.

d) Scope Ambiguity:

Scope ambiguity occurs when using quantifier operators

such as all, some, etc. and negation operators such as no, not,

etc.

e) Referential Ambiguity:

Referential ambiguity happens when a word or phrase is

referring to two or more properties or things. It has further

categories:

i. Antecedent: A reference word or phrase.

ii. Anaphora: Refers to a previous expression in the same

or in a previous sentence.

2) Incompleteness Issue

A requirement is incomplete if necessary information is

missing for implementation or no enough information for the

design process to continue further. This incompleteness of

requirement statement will cause of incomplete software

specification [17].

3) Inconsistency Issue

An SRS document is inconsistent if there are conflicts

between requirements or terms are used in different ways in

different places. The dependency analysis is performed to

diagnose the inconsistency in natural language requirements.

We extract subject, verb, and action from natural language

requirements with text extraction process. We used the NLP

parser and conducted dependency analysis on natural

language requirement. We have the focused on fine grains of

dependency of one word with another word within

requirements statements. When the two words are connected

by a dependency relation, one of them is head and other is

dependent. The dependency parse represents the syntactic

structure of a sentence in terms of binary relations between

tokens.

Requirements statements can be presented according to

following structure:

 Requirements Subject | Verb | Action

A requirement statement an activity or action performed by

the user who may affect or changes the state of the object.

Subject signifies the user who executes the behaviour of the

verb and verb defines as any activity which is taken by the

subject or user.

IV. EVALUATION

Natural language requirements of the coffee vending

machine were used as an example for evaluation of approach.

Firstly, the requirements were manually inspected by the

analyst. In next phase, the requirements were analysed using

pipelining. The accuracy of approach is measured using

statistic metrics precision, recall, and f-measure. Using

annotation diff tool in GATE framework precision, recall and

f-measure were checked. Precision and recall were at 88.5%

and 93.8%. Similarly, harmonic means of precision and recall

was 92.5%.

Our evaluation suggestion that GATE framework is

effective for only ambiguity detection. On the other hand, the

framework is not capable of detecting inconsistency and

dependency analysis in natural requirements. In order to

produce the annotated natural language requirements

according to our model mentioned in Section III, we discuss

steps, rules, and execution process. We implement Stanford

NLP parser for parsing natural language requirements. For

dependency analysis, we also implement Stanford NLP

parser.

V. DISCUSSION

In this paper, authors discussed natural language software

requirements analysis and different related studies that

applied NLP techniques on natural language requirements [1,

8-10, 12]. A requirement analysis model is proposed to

address the ambiguity, inconsistency, and incompleteness. It

is our belief that the NLP knowledge domain can be used in

software requirements analysis phase through which software

having better quality are developed. Currently, many

researchers are doing the research on applications of NLP in

the areas like Text summarization, Auto-completion, Part-of-

speech tagging Sentiment analysis, and Optical Character

Recognition (OCR).

In this research, we proposed an NL requirement analysis

model for requirement analysis. Moreover, we also presented

GATE framework for automation is analysis process. This

Automated Natural Language Requirements Analysis using General Architecture for Text Engineering (GATE) Framework

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 101

study does not have detail experimentation on issues of

natural language, it only presented a holistic model for

requirements analysis. Manually analysing complex natural

language is a tedious and time-consuming task. With the help

of open source, GATE framework analyst can easily analyse

the issues in natural language requirements.

Software natural language requirements analysis is the key

factor for the achievement of a requirement engineering

phase in the software development process. Whereas the

success of requirement analysis phase is dependent on the

user involvements and clear statements of requirement.

NL Requirements should be analysed to provide a degree

of quality in a requirement set. For automated analysis of NL

requirement specification, there is suggested a model as

shown in Figure 4. These procedures must be followed in

requirements engineering phase. If we can recognise the

maximum fault and area of concerns in the early phase of

requirements. It will decrease the possible number of errors

in the system, loss of cost and time as well.

VI. CONCLUSION

This paper focuses on natural language requirements

analysis using NLP technique. The study introduced an

approach to automated NL Requirements analysis process

using General Architecture for Text Engineering (GATE)

framework. To diagnose the ambiguity, an automated method

is proposed for conformance of natural language

requirements against Rupp’s boilerplate. The study suggests

that ambiguity rules can be applied using GATE framework.

Similarly, inconsistency checking using dependency analysis

and NLP Stanford parser. Furthermore, the study also

proposed a model for refinement and automation in the

natural requirements analysis. In future, we have the plan to

conduct separate comprehensive research studies on each

topic specifically on ambiguity, inconsistency, and

incompleteness problems of natural language requirements

and automation in suggestion process mentioned in Figure 3.

We will demonstrate the benefits of GATE framework in an

industrial context and use it as research tool in diagnosing the

ambiguity from NL requirements. Another direction of our

future work is to study the effect of automated conformance

of boilerplates on software development methodology in term

time, effort, and precision of output product.

ACKNOWLEDGEMENT

The authors would like to express their deepest gratitude to

Research Management Center (RMC), Universiti Teknologi

Malaysia (UTM) and Ministry of Higher Education Malaysia

(MOHE) for their financial support under Research

University Grant Scheme (Vot number

Q.J130000.2516.11H71).

REFERENCES

[1] A. Fatwanto, “Software requirements specification analysis using

natural language processing technique,” in 2013 International

Conference on QiR (Quality in Research), 2013, pp. 105-110.

[2] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body
of Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society

Press, 2014.

[3] N. H. Ali, Z. Shukur, and S. Idris, “A design of an assessment system
for UML class diagram,” in International Conference on

Computational Science and its Applications (ICCSA 2007), 2007, pp.

539-546.
[4] R. R. Young, “Recommended requirements gathering practices,”

CrossTalk, vol. 15, pp. 9-12, 2002.

[5] S. Hastie and S. Wojewoda, “Standish Group 2015 Chaos Report-Q&A
with Jennifer Lynch,” InfoQueue, 2015. Available at

https://www.infoq.com/articles/standish-chaos-2015

[6] J. Holt, UML for Systems Engineering: Watching the Wheels. The
Institution of Engineering and Technology, 2004.

[7] K. Pohl, Requirements Engineering Fundamentals: A Study Guide for

the Certified Professional for Requirements Engineering Exam-
Foundation Level-Ireb Compliant: Rocky Nook, Inc., 2016.

[8] G. S. A. Mala and G. V. Uma, “Automatic construction of object

oriented design models [UML Diagrams] from natural language
requirements specification,” in PRICAI 2006: Trends in Artificial

Intelligence, Q. Yang, and G. Webb, Eds. Berlin, Heidelberg: Springer,

2006, pp. 1155-1159.
[9] D. de Almeida Ferreira and A. R. da Silva, “A controlled natural

language approach for integrating requirements and model-driven

engineering,” in Fourth International Conference on Software
Engineering Advances, 2009. ICSEA'09, 2009, pp. 518-523.

[10] W. B. A. Karaa, Z. B. Azzouz, A. Singh, N. Dey, A. S. Ashour, and H.

B. Ghazala, “Automatic builder of class diagram (ABCD): An

application of UML generation from functional requirements,” Journal

Software - Practice & Experience, vol. 46, no. 11, pp. 1443-1458,

2016.
[11] Y. Li, E. Guzman, K. Tsiamoura, F. Schneider, and B. Bruegge,

“Automated Requirements Extraction for Scientific Software,”

Procedia Computer Science, vol. 51, pp. 582-591, 2015.
[12] S. Masuda, T. Matsuodani, and K. Tsuda, “Automatic generation of

UTP models from requirements in natural language,” in 2016 IEEE

Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2016, pp. 1-6.

[13] A. E. Yilmaz and I. B. Yilmaz, Knowledge Engineering for Software

Development Life Cycles. IGI Global, 2011, pp. 21-33.
[14] Wikipedia, “General Architecture for Text Engineering,”

https://en.wikipedia.org/wiki/General_Architecture_for_Text_Engine
ering, ed, 2016.

[15] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, C. Ursu, and

M. Dimitrov, Developing Language Processing Components with

GATE (A User Guide). The University of Sheffield, 2003.

[16] D. Thakker, T. Osman, and P. Lakin, GATE JAPE Grammar Tutorial,

Nottingham Trent University 2009.
[17] B. Kiepuszewski, A. H. M. ter Hofstede, and C. J. Bussler, Engineering

Requirements with Desiree:An Empirical Evaluation. Berlin,

Heidelberg: Springer, 2000.
[18] K. Pohl, Requirements Engineering: Fundamentals, Principles, and

Technique. Springer Publishing Company, Incorporated, 2010.

