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Abstract

In this study the Bayes likelihood detector is combined.with an
adaptive decision threshold classifier to solve the multicategory
pattern recognition problem. It is assumed that the pattern classes
can be represented by an n-dimensional vector sample taken from a
multivariate gaussian probability distribution.

This study presents (1) the derivation of the Adaptive Hyper-
sphere Decision Threshold classifier (AHDT classifier) and shows (2)
how the AHDT classifier minimizes the probability of error using the
learning patterns. Finally the AHDT classifier is applied to the

solution of a physical problem through computer simulation,
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CHAPTER I
INTRODUCTION..

1.1 Problem Statement

The problem to be investigated is the categorization of a vector
taken from an unclassified set of vector samples into one of the
available pattern classes. The categorization must be preformed by
the pattern classifier using the information derived from the set of
learning vector samples for each pattern class, The solution to this
problem is based on the the vector sample features which are common
to all pattern classes and through which the classes can be distin-
guished. For example, the power spectral densities of m groups of
voltage signals (n classes) could be such that a vector sample could
be created by a discrete equally spaced sampling of the power spectral
density. The pattern classifiexr could operate upon this vector sample
to classify an unknown voltage signal into one of the 1 categories.
Therefore, the pattern classifier must have the capabilities of
detecting the vector sample features and categorizing the vector
sample belonging to an unknown class with some predictable error of
misclassification.
1.2 Statistical Model

The basic statistical model for patiern recognition with learming
observations is as follows:

1) There exist 7 pattern categories (classes) denoted by

“e ={“’n‘"2’“’3”””“’n} .
2) For each category w, the observer is given a set of X,

learning patterns and is told to which class each



observation belongs.

3) Each sample pattern consists of a n-dimensional vector
sample, X = {x',x'z,xs,....,x‘} .

4) Upon receiving the a sample of an unknown vector sample a
decision is made as to the pattern class membership of the
vector sample.

This model is similar to the models various authors have used to

approach the pattern recognition problem.



CHAPTER II
REVIEW OF LIT&RATURE PERTAINING TO PATTERN RECOGNITION

2,1 General Review

The pattern recognition problem has been divided into specialized
but related areas. Keehn |4|, Abramson, Braverman and Sebestyen [6],
Koford and Groner [1] » Scudder [7], Cooper and Cooper [6], Patrick and
Hancock [3,20 » and Spragins [16] have considered pattern recognition
in terms of supervised and nonsupervised learning, For each learning
method, learning patterns existed for all pattern classes; however,
the difference was the information given the pattern classifier. The
statistical model in Chapter I is similar to the model used by Koford
and Groner [1] and Keehn [4] in their study of supervised pattern
recognition with learning observations. This model has been identified
as "Learning with a Teacher" [114] « If the observer is not told to
which class each learning observation belongs, the statistical model
would represent a “Learning without a Teacher®™ pattern recognition
problem [14]. This is the nonsupervised pattern recognition model
that Scudder [?] and Spragins [16] have investigated.
- . Problems which are common to superviséd and nonsupervised learning
are the subsidiary problems:

1) The selection of a set of measurements or features to classify

the patterns (feature detection).
2) The determination of a method to partition the measurements
or features,

These subsidiary problems are pointed out by Abramson, Braverman and

Sebestyen [14] s Keehn [4:] and Patrick and Hancock [3].



An example of feature selection is the time domain pattern
recognition problem. Petersen and Middleton [21] submitted that
discrete periodic.sampling has become a standard technique for
. monitoring of continuous data sources in the time domain. The pattern
features would consist of the n-dimensional vector sample mean and
covariance matrix obtained by operating on several data sets of length
n using either supervised or nonsupervised learning. The basic
problem of feature detection is to maximize the difference between the
pattern classes.,

The partition of the measurement space can be accomplished with
either a linear or nonlinear separation function or both, Probahbly
the most investigated function is the hyperplane [1,2,11,12]. The
hyperplane has been used to obtain linear and piecewise linear
separation, Akers [2] applied the the piecewise linear concept to a
2-dimensional pattern recognition problem containing several pattern
classes, The procedure is described by Akers as a chain of linear
threshold gates with each gate driving the gates ahead of it. Akers
[ZJ and Yau and Chuang [11] defined that the pattern classes are
linearly separable if a weight vector ¢ exisis such that the linear

decision rule does not result in any misclassification, Eq. (2.1).

n
E (b‘ X, 2 W , decide class v, (2.1a)

L=l

otherwise dscide not class w N (2.1b)

A piecewise linear separation for a Bayes likelihood classifier

is shown in Figure (2.2), page 10. This piecewise linear,separation

mmarraan 3P AnmA Al S +ha Aarramianca matrinas am armal far all



classes,

Nonlinear partition methods which have investigated in some
detail are hyperspheres and hyperquadi-atics [1 :l. Cooper's investiga-
tions [18,19] of the hypersphere presented the spherical decision rule

as

t
( _Ma> (X—Mq>5 R, , decide class w, (2,2a)

otherwise decide not class w, (2.2b)

Cooper has also investigated the hyperquadratic rule [1] .

An important measure of a pattern classifier is its probability
of error (misclassification). Albrecht and Werner [5] and Scudder [?]
have investigated this characteristic of a supervised pattern
classifier, In order to minimize the probability of error the pattern
classifier must optimally partition the measurement space given the a
priori knowledge derived from the learning samples for each class,
This optimum partition assumes that the mean and covariance estimates
obtained from the learning samples give a good approximation of the
actual staiistica.l parameters, which according to the weak law of
large numbers [17:] becomes a better approximation as the number of
learning samples increase.

2.2 Bayes Approach to Supervised Pattern Recognition

The Bayes classifier is referrsd to as the optimum classifier,
which computes the conditional probability of one event given that
another gvent has occurred. The Bayes' law is given by Eq. (2.3).
Where in this instance, A is the unclassified vector sample and B

Se tha mattam alass. conditioned uvon the learning samples given



for each pattern class.

P<B /A) P(A)
P(A / B):
AR
A A
The Bayes classifier makes its decision based upom the likelihood

(2.3)

ratio of the joint probabilities.,

P(a,B)
(A .C)
P( ) decids class B or C. (2,4b
P( ) =1 - (2440)
P(A B)
plac)

>1 , decide class B (244a)

<1 , decide class C (244¢)

One can write this as
P(A,B) P(A/B) P(B)
_ (2.5)
P(sc)  #(+/%) ¥(o)
By assuming that all classes are equally likely Eq. (2.5) reduces to
P(A'Bj = P(A/B> (2.6)
P(A,C) P( A/c)

Keehn [4] also shows that the term the Bayes classifier needs to

consider in the classification of. A is the conditional probabilities
le'Eq. (2.6).
If. it is assumed that each pattern may be represented by an

n-dimensional column vector taken from a multivariate gaussian



distribution, one can write [1,4,13]

Where ML is the vector sample mean, M‘ ={M¢1'Mzz2""’Mm}’ and VL is

the vector sample covariance matrix of the A pattern class.
The sample mean vector is obtained from the estimate
X,

= :;_L<_ X,y (2.8)
L £

N

L

and the unbiased covariance matrix estimate from

d (x‘ Y”'— M“f) (XLYJ - Mu) (2.9)

Yz1 7=31 J=1

The parameters 7 and . denote vector samples of the A pattern class

th <4
and ¥ represents the )Y pattern sample from the ¢ = class,
The Bayes classifier operates upon the likelihood that the
unclassified vector sample X originated in class w, versus class w,.

The likelihood ratio is the ratio of the conditional probabilities,

()

The substitution of Eq. (2.7) into Eg.(2.10) and elimination of the

£ 4X}= (2.10)

el

exponential terms by taking the logarithm yields

In{&,{ } 21 |l - ( M )ti’{ 1( —-M‘)-—(X—IT/IJQI(X-N% (2.11)

[V

NlN




This will shift the decision threshold of Eq. (2.4) such that

In {£k3x}} >0 _ y decide class @, (2.12a)
1n{£KL{X}}= , decide class w, Or W, (2.12b)
In {5:“{ x}} <0 , decide class (2.12¢)

In a multicategory pattern recognition problem the Bayes classifier
will place the vector sample in the w, class for which the logarithm
of the likelihood ratio is a maximum. The category x is a fixed class
in calcwlating Eq. (2.11) for all t¢=1,2 3,..,m. If it is assumed

that V= V=V, Eq. (2.11) reduces to
-1 £ 1
o~ o~ 1hs =~V S~ ~
In {£m{x}}=x v (M:Mx)" ;é\’l‘a-Mx) \Y (M‘-MK) (2.13)

In order to demonstrate the probability-of-error optimality of
the Bayes classifier the problem will be restricted to two categories,
since diagrams in other than a 2-dimensional space are difficult to
draw, Figure (2.1) illustrates.the two category probability
distribution, where Vlz V2 , for which the following conditions hold

ln{£ {X}} <0 , if X<-1\2:I-‘-z (2,14a)

In {£12{‘x} } >0 ) Af X228 (2.14b)



nE

joe e e s e s v 2 —

0 M

~
N

Figure (2.1). 2-Dimensional Decision Space

Let B be the probability of misclassification in class w, given

the vector originated in:class wy and P, the probability of misclass-

ification in class Wy given the vector originated in class w, for

some threshold W. Then one can write

=]
P =—-—.-_1___. cxp[_}'. ..).(_2— J 1
2 \/Z_;TTI 2 Yz X (2- 5)
v

P -_-:.-—i_— cxp[—.l{x_-_.__.w dx (2 16)
2 ‘/277\/}_ 2 ‘5 A

Hence, from Eq. (2.15) and (2.16), the total probability of error,
P, plus PB,, is a monotonically decreasing function.with a minimum at
ln{.:.E‘,‘z{X}} =0. Thus the optimum value for W is Mz/Z .

For a pattern recognition.problem in which three or more pattern

classes exist the separation of the classes would be linear if V;:VK
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for a 3-dimensional pattern recognition: problem. When V ;éV; for all

Ly K the optimum separation between classes is nonlinear as shown in
Figure.(2.3). The likelihood ratio decision thresholds in Figure (2,2)
and (2.3) would be somewhat distorted if the actual values of V,, Va5
and V, were replaced with their estimates '\‘z;,v; and ’\Z . It is this
area. that is treated in succeeding sections. The idea 61‘ operating

om the likelihood ratios.by additional decision levels, such that the

distortion induced by the covariance estimates is smoothed,,will be

investigated.
sz

P(X/wz)jP(X/w:l)

]

/

/’A\

/ \

,/ \\
s \
7/ Y
/7
/, \\\
/s \
/, \\
// \\
// \
y A\
/ \
’ |
P(X /e, )=P(Xfuwy) P(X/fw,)=P(X/w, )
X
&
P(X/w,)

Figure (2.2). Piecewise Linear Separation



1 X 1Y
2 \—P(X/w,)=P(X/w,)
\ 1
‘l
\
\
\
\
1
i
]
]
1
P
7/ Sso
/! ) =P (X o)
; “reel P/ w)=P(X /@
; g [Pl
/7 ‘s\
,/‘—-P(x/wz)=1>(x/w,) .
/ .
/ -
// \\
s A
”
A’
Xs
P(X w‘)

Figure (2.3), Nonlinear Separation

2,3 Adaptive Decision Thresholds

The adaptive pattern classification.system concept requires that

the classifier have a variable internal structure., The system is

adaptive in the sense that the internal structure (decision.procedure)
is automatically adjusted based upon the learning patterns., The
adjustment is made according to some criterion of the system preform-
ance (minimum mean-square~error, no misclassification, etc,). Several
authors r1.2.6.10.11.19-] have investigated the adaptive decision

11
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threshold using various schemes.

Akers [ZJ presented linear and piecewise linear adaptive thresh-
olds., Where the linear scheme consisted of finding a set of weights
tolfom a hyperplane decision threshold, Eg. (2.1). The piecewise
linear decision threshold consisted of a cascading approach in which
each threshold gate was driving all gates ahead of it., Figure (2.4)
shows a two level piecewise linear decision threshold for which the

threshold function is

‘Jz= E ¢2TXT+;.LT€Z 0 » decide class w, (2417a)
=1

otherwise decide not class w, (2.17b),

where

— 2.18
‘Jl '2 :¢"X¢ ( )
T=21

d.
X; 11
x2 q)tl Vj'. E -
. xigﬁ_—
D2,
L X, = "\é >
X, -2
)(n--‘----<l> =

Fioure (2.4 A Piacewise Tinaar Nerisinan Frinatian
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The adaptive decision threshold formulated by Koford and Groner
[1] was intended to minimize the mean-square-error between the desired
and the actual outputs. The classification was obtained using the

linear decision rule,. Eq. (2.1), in the form
¢ .
XOo+W 20 » decide class (2.19a)
otherwise decide not class w, (2.19b)

The study defines a mean-square-error function h(‘l)), according to

Figure (2.5), for a 2-class pattern recognition problem

2 Xy
R T

Y=1 7=1

and proceeds. to formulate an equation for the weight vector in terms

of the mean-square-error function.

q>(x+1) = @(A)—l vx,(q) [)\]) . (2.21)

The constant [ determines the rate of convergence and stability of the
iterative process in obtaining the desired mean-square-error minimiza-
tion, If { is small enough Vh (cp[)\D approaches zero and Eq. (2.21)
approaches a minimum. The authors point out that this algorithm
always converges to a unique set of weights (determined by the
learning patterns and their desired output). The disadvantage is that

this unique set of weights may allow some misclassification even
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-+

-t
€ =X S,

Figure (2.5). Mean-Square-Error Function

Cooper [18,19:‘ considered the pattern recognition problem in terms.
of a hypersphere decision rule, Eq. (2.2). The decision threshold was
adaptive in the sense that the origin, M, and/or the magnitude, Ry,
of the hypersphere was modified to correctly classify the learning
patterns. Cooper's investigations only considered the 2-class pattern
recognition problem. This study is an attempt to extend the

hypersphere decision rule to a multiple pattern class problem.
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CHAPTER IIT
THE ADAPTIVE HYPERSPHERE DECISION. THRESHOLD CLASSIFIER

3.1 Approach

As stated in the previous chapter the purpose of this study is to
extend the previous work with the adaptive hypersphere decision
threshold to a multiple class pattern recognition problem. A schematic
of the proposed Adaptive Hypersphere Decision Threshold classifier,
AHDT classifier, is shown in Figure (3.1). The objective of this
classifier is to determine, with the help of a teacher, the mean and
covariance matrix of the pattern classes. The internal structure of
the AHDT classifier is adapted using the logarithm of the likelihood
ratio vector of the training patterns. The classifier is expected to
classify an unknown vector sample using the 7-dimensional logarithm of
the likelihood ratio vector. ~Toward that end, the classifier threshold
levels consist of (1) a first level hypersphere, which includes all
learning patterns for the w, class, and (2) a second level hypersphers,
which minimizes the error of misclassification between classes, due to
the union of two first level hyperspheres,

With the assumption that each pattern can be represented by an
n-dimensional column vector taken from a multivariate gaussian

distribution one can write that

b R "')ryZZI\’ll)% ool den) 7 fa] oo

The logarithm of the likelihood ratio based upon the @,  class would
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£, 4%}

- 1uI9L ) ) ]

The question:remains as to how class g, should be specified. To
minimize the affect of large numbers, it is proposed that class w, be
the pattern class centroid., The criterion for the pattern class
centroid selection can be obtained by letting the received vector
sample be equivalent to the mean vector for class ¢, The substitution

of this equivalancy into Eq. (3.2) will yield

{M 1 [Vl 1/ N
In %‘Ma}$=}.1n - ""(M&'M¢>V M -M (3.3)
Y]
This can be rewritten as
' ]“éf 1 {
AR LI 10 R B (I WA (A L
Inje i} = 31n o L8, T (icw,) O
[

Sunming up Eq. (3.%4) for all ¢ to obtain

Zl“ £l f“**z lv -—-Z(M M):(M Ma) (3.5)

t=l
one sees that under the conditions .V, =V,=V, where V is an identity

matrix, Eq. (3.5) will reduce to

n “ 7 +
S5 ) 0
i=1 =2

v =~ & -
Since the magnitude of (M -M,) (M,-H,) is a positive number for all ¢,




18

then one can write

£m{i'4}€ (3.7)

n
< E In
t=1

This shows that to minimize the affect of large numbers Eq. (3.6)

m%szmm ]

should be minimized. Thus the pattern class centroid would be
selected utilizing the criterion that

~ ~
(¥ )

(¥, -1,) = minimum (348)
The Bayes classifier would place an unclassified vector sample
in that class having the maximum likelihood ratio with an optimum
misclassification, Generally there is some error associated with the -
calculated covariance matrix and mean vector sample for each class
resulting in a nonoptimum misclassification, 4n attempt to reduce
the misclassification through additional signal processing (smoothing)
by letting the logarithm of the likelihood ratios be a M-dimensional
vector input for an adaptive threshold classifier is proposed here.
The adaptive decision threshold can be formulated using the
expected value of the input function described by Eq. (3.2). The
expected value of the function given that the sample pattern came

from the wK class can be written as

‘;[ln

" . |
- mfB i) -] o0

(3

This is the concept that Marill and Green [ 9-] used to formulate
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the expected value of the logarithm of the likelihood ratio., Let the
class w, mean vector in the logarithm of the likelihood ratio space

be represented by

— T N~—
\L;,={ :m, .[ln{%z{X}} /a,(], SR .[1n{£d,}x}}/%]} (3.10)

and a vector sample by

lnfedxyinfeadcly - nleadi] G

The first level hypersphere threshold in the logarithm of the

likelihood ratio space is, Figure (3.2),

+

(Y_\I{) (Y—\I{)S(RH)Z y decide class o (3.12a)

otherwise decide not class (3.12h)

t
The vector sample to be classified will generate the m-dimensional
vector Y in the logarithm of the likelihood ratio space. The learning
patterns for each class will provide the estimate of W, and the
magnitude of R, which is increased to include all learning patterns
of class w. It should be noted that the value of R, has not been
restricted to a constant value for all classes,

The wnion of two or more first level hyperspheres in a 7-class
pattern recognition problem can result in a number of unclassifiable

vector samples; however, this number can be reduced by using multiple
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‘ a.dé.ptive hypersphere decision threshold to minimize the error of
nisclassification. Figure. (3.3) illustrates this problem and shows
the resultant second level adaptive hypersphere required to separate
two classes., The threshold for the second level hypersphere in Figure
(343) is

t 2 .
(Y— \Pé) (y - \1% ) < (Rn) y decide class w, (3.13a)

(3413b)

otherwise decide class w,

The problem that remains is how the value of '\Ifa should be
assigned. Since the objective is to separate the union of the
hyperspheres, let the adaptive hypersphere intersect the intersection
of the two hyperspheres, as shown in Figure (3.3). Under this

condition one can write the relations

+ 2

(Z + F) (z+ r)=(R,,,) (3.14)
+ 2z
E+y-y-r) z+y-v-1)=() (3.15)
and
+ 2
(F+A+z)(r4-A+z)=(K’,, ) (3.16)

where



r= K1<‘¥;—‘Ig> (3.17)
A= <\I;-—\If1> (3.18)

Now, it is possible to rewrite Eq. (3.15) and expand it into
2 ¢ t |
<RH,_> = (Z + r) (Z + F)+ (z + r) (\Ié—\li—z r)
2z

¢
+ (\1;—\1;—21") (z + r‘) +(\I;—~1;— 2 r) (\1;—\1;— zr) (3.19)

The substitution of Eq. (3.14) and (3.17) into Eq. (3.19) will yield

2 2 < ¢
(Ru ): (F\’Hx)-i- [1 -2 KJ Z <\12——\I§_) +(\1£_.q;) yA
t
+(q;—\g_) (\y—\x;) (3.20)
Now by expanding Eq. (3.16)
2. + + < t
(Rg> = AA‘FA(Z +I‘>+ (z+r)A +(Z+r) <Z+F> (3.21)

and substituting Eq. (3.14), (3.17) and (3.18) into Eq. (3.21) to
obtain

2 ¢

(5, J=B-asds) by o

£ -y 1Z
Zq;—qi+\13 1
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This equation can be rearranged as
2 -

oot fof (o nd ey

and substituted into Eq. (3.20) to eliminate the variable Z.

(3.23)

2

(-2l s o)

(3.24)

2
Solving for R,;) in Eq.(3.24) yields

(o3 )
N ﬁ[ﬁ+ zx,,—-l] (q,z _\pj(\yz _qi> (3.25)

The constant K, may be found from the initial condition for g.

NN

Under the condition 8=0, the second level hypersphere would initially

coincide with the H, hypersphere such that

2 Z |
(f(sf o

Thus, Eq. (3.24) in the initial condition becomes

(1 2] s o) sar
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and by rearranging Bg. (3.27) and solving for K,

2
ild f (7d) ~ (7s) (3.28)

M 2 2 (‘F—‘I’r( )

Eq. (3.28) imples that a restriction is placed on the adaptive

hypersphere threshold. This restriction is

2 2
(Ruz> 2 (gui) (3.29)

since K, is defined to be a real number, This restriction would limit
the maximum positive value for K, to 1/2.

Consideration must also be given to the problem of a hypersphere
within a hypersphere as shown in Figure (3.4). In this case the
magnitude of the wvector Z to the H1 and H‘1 hypersphere intersection is

zero, since an intersection does not exist. Thus, one obtains the

relations
2 +
<Ruz> 2 (\I;—\pl._r) (\{2_\1!1._ r) (3.30)
2
(Ru1) = F{I‘ (3.31)
and

(-(reefea) o

Substitution of Eq. (3.17) and (3.31) into Eq. (3.30) will yield



25

2 + 2
<RH2> > @-zx;l(xy‘_ “9) (q,z_ q&) + <R;, , ) (3.33)

From the substitution of Eqe. (3.17) into Eq. (3.31) it follows that

K=t ‘/( {&Ql (3434)

) (1)

From Eq. (3.17) and Figure (3.4) it is observed that Kiwou'l.d have a

negative magnitude. From Eq. (3.17), (3.18) and (3.32) one obtains
2 -+
(J?A ) =l-!3 +KI(\I;—‘I§) (\l;— ‘Vz_) (3:35)

neasurement .

§

measurement

Figure (3.4). Hypersphere Within a Hypersphere
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In the computer simulation problem Eq. (3.34) must be calculated
and the inequality of Eq. (3.30) proved or disproved. From this either
Eqs (3425) or Eq. (3.35) would be used to calculate the adaptive
hypersphere threshold, Based upon the restriction of Eqe. (3.29) and

Figure (3.4), the range of K, is found to be

(3.36)

YIRS

2
{Rud
- < <
J
() ()
After solving for the magnitude of K;, some perturbation magnitude for

B must be assigned. Thus, substitution of the relation
v =¥-4 (3.37)

and Eq. (3.18) into Ege (3.13) gives the second level adaptive

hypersphere threshold.

J z
(Y+Bq£_3\;fi_\]:> (Y+ B\;;_ﬁ\;;_\g)g (&) ,: decide class wl (3.38a)
otherwise decide class w, (3.38b)

A problem that still exist is the union of three or more adaptive
hyperspheres. This could be overcome by additional levels of adaptive
thresholds with increased complexity. Figure (3.5) illustrates how
such a region could exist., For purposes of this study all vector
samples falling within this region are considered as unclassifiable.

The evaluation of this problem will be suggested for further research.,
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411 vector samples falling in the convex hull region D would form
the following logic from the second level hypersphere threshold gates:
&71=§’ %:C’ and RZ;:’A..

Figure (3.5). Union of Three Adaptive Hyperspheres



342 Probability of Error

Two sources of error resulting from the limited number of
learning patterns are (1) unknown vectors samples falling outside the
first lével hypersphere and (2) unknown vector samples misclassified
by the second level hypersphere,

The first error can be determined by the probability that an
unknown vector is greater than the learning patterns. Since there are
an infinite number of possible patterns per class, consider that a
learning pattern is selected at random and is independent of any
previous learning pattern selection, Letting the event A be a

2
pattern selection with some { R;} , one can write

Péi’AZ’AJ""-’AX) =P(A1> P<A2)' ¢ 2w P(Ax ) (3-39)

where

(s >z= ("""5("‘“;) . (Gito)

Chebyshev's inequality [}?] can be used to evaluate the
2 2
probability that { R } of pattern A, exceeds some value. Let {El}

be a random variable with E{(KL)Z} =4 and V{(Kj‘} = o0#. Then for any

positive number C one can consider

P<| (R =u| 2 cq) < é‘z (3.41)

or
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P(I{Rt}z—p,l<C0'>2 1—é-2 (3.42)

If X learning patterns are generated at random then from Eq. (3439)

P(J{K‘}z—#lm L zca>=P<‘{&}z—#]2ca) e e

o .}P(l{&,}z—-ulz C(,) (3.43)

and

which simplifies to

X
2 1
{R‘}_,L[m 2 Co') < ( c’) (345)

and

p(l{ R.%z—#lm S C")Z (1 “éz)x (3.46)

Now consider the problem in terms of the probability that X—1

learning patterns are less than any learning pattern selected at
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random, Ao By setting

I{RK}‘_ “ l= Co (3.47)
Eqe (3.46) can be rewritten in the form
2 X-1
?(fiefn]  <co)s(i-g) exn
AL LFK

2
The probability that the (K) of an unclassified pattern

{r}'= (Y—\g)t<y— ‘> (349)

2
is bounded by the value of [R)for all ¢ is
: 2
PURI<{RtS )=4¢ (3.50)

If the expected value is subtracted from both sides of the inequality

then
P({K }t<{Rx}z)=P<{R f‘“*@f““) (3.51)

However, since

P ({«}‘—u<m’—-u)= (

it follows that

2

{R}—n

A

<

>+P€k }l— u<{x‘}‘—zﬂ) (3452)
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P<{R}z—#<ifxiz—#>2 P(l{n}’—u <|{&f—ul> (3.53),

Then from Eq. (3.47) and (3.53) one obtains

P(({R 12k <{&}Z*#)§P(lfﬁ}iul< ca) (3.53)

The substitution of Zqe. (3.42) into Eq. (3.53) will yield

p<{z }Z_H‘ < {RK}Z—"IL> 21 _éz (3-54)
and finally
P <{k }z< {g‘}z) >1— (%,_ (3455)

With the development of Eq. (3.46),.(3.48) and (3.55) some idea
as to the probability an unclassified vector sample will lie within
the first level hypersphere can be obtained, From Eq. (3.46) it is

possible to calculate the value for which

<C a) =p (3456)

i

Al ¢

The substitution of Eqe (3.46) into (3.56) will yield

X
( “é‘z) =p (3.57)



32
We can solve for (jzand obtain

C =—————3x (3.58)

x=1
< CG)Z pX (3.59)
ALL gx
which is the probability that X—1 learning patterns are bounded by the
first level hypersphere threshold. The substitution of Eq. (3.58)
into (3.55) will yield the probability that any pattern selected at

random will fall within the first level hypersphere threshold.

Ik

P ({x Mﬂ,j) >pX (3.60)

Eqs (3459) and (3.60) are plo,tte'a.d in Figure (3.6) for selected
values of p. This can be used to obtain the probability that an
unknown vector sample is within the first level hypersphere threshold.
As an example, selection of some Co such that p=,5 (50 percent) in
Eq. (3.56) with Xx=20 then from Figure (3.6) the probability an
unknown vector sample is bounded by the first level hypersphere is
9646 %. |

The purpose of the second level hypersphere, as previously
stated, is to separate the union of two first level hyperspheres,

Using Eq. (3.38), the misclassification function may be defined as

£ oagl) o f ("%.) (3.61)
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The second level hypersphere magnitude as a function of B, Eq. (3.25)
or. (3.35), would be calculated to determine the magnitude of B which
minimizes Eq. (3.61) for the learning patterns, Thus one would obtain

the best estimate in minimizing the second error source.
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CHAPTER IV
IMPLEMaNTATION AND COMPUTZR SINULATION
OF THE AHDT CLASSIFI®R
4.1 Quantizing and Coding the Parameter Space
An infinite number of pattern classes could be generated for the
computer simuwlation of the AHDT classifier; however, for practical
purposes the number of pattern classes will be limited to some finite
number, Let the following characteristics be common to all pattern

classes,

1) All patterns are real and symmetrical about T f2.

f[f]—fj{[T; ¢] (1)

2) All patterns are of equal period,
T =T=100 (a2)

3) All patterns are periodic and have equal power content.

T

Pﬂ:‘%/{fm }zdé %)

]

Based upon these characteristics several pattern classes will be

constructeda
The amplitude of pattern class No., 1 is defined by Eq. (4.4).

A plot of this pattern is shown in Figure (4.1),
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-{[é] =& 5 0S4 T/; (4.4a)
]_fH:T‘f ,Tlp<ts T (4 4b)

The power content F; 1is determined by

T

z

-z
=2 1) # .5)

[~]

and becomes in this case
- ! z 1 2
21""&?/‘& 4+ + Tr'/('l-—-f) J{' (4.6)
o Tr2

The evaluation of the integrals yield

P,= &.7)

N =

Pattern class No. 2, Figure (4.2), is described by the equation

]£H= G Sin[%ﬁ] yos4< T (8)

The constant C , can be evaluated using the equal power content

requirement, Where

T 2
p,=% f {clsm[%,‘—]} /4 | (#.9)
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Figure (4.1). Pattern Class No. 1

Figure (4.2). Pattarn Class No, 2



The evaluation of Ii_z will yield

2
_ 2 (4.10)
= (%)
Thus
[T
CZ— TJ—Z" %.11)

A plot of pattern class No. 3, which is described by

£E£J=C34z , 0 S4sTh (bi2a)
2
JgM= (%(T—i) s T4 <4<T  (4.120)

is shown by Figure (4.3). Again the constant is evaluated from the

power content requirement.

7% -
_afi~ 28 2
p,=% ﬁc’i} Jt+$f{c3(r— {) fdt (#413)
L4 T/z

Solving for

‘ 2
- A(1
123—— (C,) T (Z’_Z) CHTI)

The value of C3 is then
C.= .:_L. 20
3 TY 3 (4,15)
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The amplitude of pattern class No, 4

Z{M=C‘i (1 -—Cos{’%“. }) s 0 <EST/z (B.16a)

.f[é}zc <1+C°S{E'f€ }) y V2<t< T (b16D)

is shown by Figure (4.4). The power content is

/3 T

134:% f { G ‘(1 — cos{’fr-i})}l +2 [ {L:'(1+Cos<111—5})_ %.ZAL %.17)

o Tz

The solution of this equation will yield

2
B = (,c,,) (3;’; 8) (4.18)

The constant C 4 is evaluated using the requirement that 1;4 = [2 1

Thus
C = L
4 Tv 18 m— 48 (4.19)
Pattern Class No. 5 is shown by Figure (4.5). The amplitude is
defined by

+

ﬁé} C;(l ~¢XP{— .,—_/7}) 9 0 <4 <T/2 (4.202)

]ﬂ*] - Cs‘(I“ex’{' T?'Z; }) 9 T2 <4 =T (4,20b)




Figure (4.3). Pattern Class No. 3
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Figure (4.4), Pattern Class No. &



=2 j@té_w{_%}»; +—f— //j C 5(1 —-w{- %})}i y

will yield

2 -4 -8
— 5.¢e _ e
}1’55—(C5>(3+2 3)

From the equality p

25 = };1, the value of C51$

T\/ Z
Z$+Cd4~LSEe

Figure (4,6) is a plot of pattern Class No., 6, where

#14 - c‘<1—c:os{2—’—'1-?—}) , 0S4 <T

The power content is

Cs

%oﬂc‘é Cos{ZZ% })}244

This will yield a power content of
2

= =4
solving for G, where P, =Py ,

C. =T.lL
¢ 18
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(be21)

(4,22)

(4e23)

(4ho24)

(4.25)

(4,26)

(#.27)



Figurs (4.5). Patiern Class No. 5

Figure (4.6), Pattern Class No. 6
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Pattern class No, 7, Figure ('4(.7), is a square wave pulse whose

amplitude is

i[é]= 0 ’ 0< £ <T/4 (4.28a)

){H= c;, T4 < ¢ <3T/4 (4.28b)

Jf[*]z ° s 3TH< £ST  (b.28c)
The power content
374
_1 ? (4429)
74
is
‘ Z

From the equality ?H = By

c,#T‘/.’:. | (.31)
. ¢

Figure (4.8) shows pattern class No., 8, where the a.mpliﬁude is

I
o

i[.é] = 0 0 <t <2T/5 (4.32a)

£

G S 25 <t <3S (b2
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Figure (4.7). Pattern Class No. 7

Figure (%4,8). Pattern Class No. 8



b5

Jg[é‘]z o‘ 5 ,37'/5 <tX T (4432¢)

The pattern class péwer content

31/5 ,
B,=2 / (cg> 44 (#.33)
27/s '
is
2

B~4 (@) (4, 3)

“ z .
where C gls solved using the equality P,=P,

g 1z

These patterns were chosen with the thought of minimizing the
difference between the pattern classes. This would supply information
on the ability to separate similar patterns. In a real world sense
the pattern shape .may be known or obtained by data sampling. The
computer simulation uses the fact that the actual patterns are known,
as shown in Figures (4.1) through (4.8), to generate the pattern mean
vector sample at twenty-five (25) discrete points., This would
eliminate the error associated with a mean vector sample estimate
obtained from data sampling.

The additive gaussion noise is approximated, using the central

limit theorem, as
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(4436)

where u, is a uniformally distributed random number between 0 and 1,
inclusive, The expect value and variance of U are E{|J}=22 and

V{u}‘—'l/éz e« If we sum up twenty random values ot » K= 20, then Eq.

20

ZU - /0
p—a -—-————-——ng

‘/;E?

Eq. (4.37) will yield an approximate normally distributed random

(4,38) can be rewritten as

N (4437)

number truncated at 110, with a zero mean value and an approximate
variance of one,

A covariance matrix estimate is generated for each pattern class,
The covariance matrix is constructed by generating a sequence of
twenty-five (25) random numbers, Eq. (¥.37). A total of five-hundred
(500) sequences are used to calculate the points in each pattern class

covariance matrix using the equation

4

% s =491 N, Ny,
Y=1
where
O G1- 9y
g, O, .
Oy 'G;J
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The inverse covariance matrix and determinant are computed and these
inverse covariance matrices are used for all signal to noise power
ratios by using the relationship.
-1 v
\i =

Sk,
s KGR,

(4.40)

The learning patterns are arbitrarily set at twenty (20) per
pattern class for each signal to noise power ratio, These learning
patterns are used to generate the adaptive hypersphere thresholds
derived in Chapter 3., The amount of computation time for the second
level hypersphere threshold is held to a minimum by continuously
predicting the solution giving a minimum Jlearning pattern
misclassification., For example, given the misclassification function
)‘2 y BEq. (3.61), é[ﬁ] at B = a can be calculated and some perturba-
tion introduced such that B = b, The value of B in Figure (4,9) can

be predicted using the linear equation

with the slope of the line connecting 51 and Sz being

_ 4Ib]-4le] (4b2)
b—a

The constant Kgis evaluated at the point y= {(5) and B= b.

3

Ky= £(6) — m b (#:43)



Substitution of Eq. (4.42) and (4.43) into (4.41) and solving for B
at y:O will give the predicted value of B, yielding the minimum

misclassification.

af(6) — b (@)
g =delb) — b3 @
ThO-10 e

This linear prediction method is continued until a sign change in fé
occurs, The program logic then switches out of the linear prediction
and converges to the point )i =0 » which is bounded by the values of 8

in the last linear prediction,

Figure (4.9). Error Function
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4,2 Results

The derivations in Chapter III generated several questions about
the AHDT classifier, These include:

1) What magnitudes are associated with the first level hyper-

sphere threshold?

2) Vhat is the frequency of the wunion of the first level hyper-

sphere threshold?

3) Will a hypersphere within a hypersphere exist in an actual

case?

4) How does the AHDT classifier compare with the maximum

likelihood ratio classifier?

5) Can the second level hypersphere threshold separate two

classes in an actual case?

6) How well does an actual case compare with the probability

bounds in Figure (3.6)?7
7) Will the adaptive hypersphere threshold optimumally separate
the pattern classes?
The answers to these questions are supplied by the computer simulation,
A listing of the AHDT classifier simuwlation program is presented in
Appendix A, Approximately thirty-one (31) minutes of IBM 360~75
system time is needed for the computations in the main program.

The resultant first level adaptive hypersphere threshold
magnitudes are tabulated in Table I, These results are based on a
training set of twenty (20) patterns per class, The maximum, average
and minimum values are plotted in Figure (4.10). A review of Table I

indicates that for a fixed S/N.ratio the pattern class order giving a
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which could be explained as resulting from the random training pattern
selection. It will be pointed out later that additic.mal research is
needed in this area.

Figure (3.5), page 27, illustrates a type of event which occurs
with the hypersphere decision threshold. This union of the hyper-
spheres did occur in the AHDT simulation. In addition, the hypersphere
within a hypersphere occurred. The results of the one-hundred (100)
unknown patterns per class are presented in Table II, page 66. This
data has been converted to a percent of patterns falling within the
union and plotted in Figures (4.11), (4.12), (4.13), (4.14), (4.15)
and (4;16) for the six (6) S/N ratios. It can be observed in these
figures that the data is shifting to a larger number of first level
hypersphere thresholds in union, As the S/N is decreased this is to
be expected, since the clustsr of hyperspheres becomes more compact as
the S/N ratio decreases,

The AHDT simulation supplies four (4) error rates. These includei
the maximum likelihood ratio classifier misclassification, the AHDT
classifier misclassification, the unclassifiable patterns exceeding
the first level hypersphere threshold and the unclassifiable patterns
not separated by the second level hypersphere. The error rate data,
presented in Table XV and plotted in Figure (4.17) as an average
misclassification, indicates the usefullness of the AHDT classifier
averaged over all classes is suboptimum to the maximum likelihood
ratio classifier when the average correct classification of a fixed
total is considered, If one ignores unclassifiable patterns, then for

S/N ratios less than 2, the AHDT correct classification as a percent
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Figure (4.11). Percent of Unknown Patterns Falling
Within the Union of First Level Hypersphere
Thresholds, S/N=10.
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Figure (4.12), Percent of Unknown Patterns Falling
Within the Union of First Level Hypersphere

Thresholds, S/N=2.
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Figure (4.14). Percent of. Unknown Patterns Falling
Within the Union of First Level Hypersphere
Thresholds, S/N=.5
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likelihood correct classification, Figure (4,18). A review of. the
training set data contained in Table III through XIV shows the
objective to minimize the misclassification between two classes was
accomplished for each S/N ratio. A comparison between the number of
training pé.tterns, Tables III, V, VII, IX, XI and XIII, and the
unknown patterns, Tables XVI, XVIII, XX, XXII, XXIV and XXVI, falling
within the first level hypersphere threshold indicates a maximum
difference of sixty-nine (69) percent. The variation in the first
level hypersphere threshold magnitude indicates it as the primary
problem source,

If one compares Table XXVIII with Figure (3.6), page 33, there
are several cases in which the percent of unknown patterns exceeding
the adaptive first level hypersphere threshold falls below the p= 50%
curve. In Chapter III, page 32, a sample case was presented for which
it was found with p= 50% the probability that an unknown vector
sample is bounded by the first level hypersphere is 96,6%. This does
not compare with the values listed in Table XXVIII. Thus, additional
research is required and recommended to find a method which would
optimize the first level hypersphere threshold magnitude selection,
Having obtained this optimization, it could be substituted into the
AHDT simulation. The results should be compared with Tables XVII,
IIX, XXI, XXIII, XXV and XXVII to see if the classification bias has
been reduced or eliminated. 4 review of these tables would show that
the computer simulation is biased toward Class 5 with a S/N =10, S/N =2
and S/N =1, toward Class 1 with a S/N =.5 and toward Class 4 with a

S/N =.2.and S/N =.1,
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A review of Figures (4.1) through (4.8) indicates the similarity
of Class 1 through 6 is such that these classes could be considered as
subset classes of a class NU, With this idea Figure @.19) is
presented. It is observed that class NU has a larger percentage of
correct classifications than the average correct classification of
classes 1 through 6. This increase is due to the difficulty in
Separating these similar subset classes, It was hoped that the pattern
separation using the AHDT would offer an improvement. This is not
obvious in the Figures (4.19), (4.20), (4.21), and (4.22),

A comparison between the maximum likelihood ratio classifier and
the AHDT classifier is obtained from Figure (4.23) and (4,24), The
vcomparison is based on the separation of signai and noise. It is
obvious that the AHDT adds a bias to the maximum likelihood ratio
classifier threshold. This bias reduced the false alarm rate by 14%
and the correct signal classification by 15% at S/N = ,1, based on the
total patterns, If unclassifiable patterns are neglected then from
Figure (4,25) the bias reduced the false alarm rate and the correct
signal classification by 10% and 6.5%, respectively. This indicates
an improvement in performance can be obtained with the additional

signal processing supplied by the AHDT classifier,
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Table I,

First Level Hypersphere Threshold Magnitude

Class Signal to Noise Power Ratio
10, 24 1. o5 2 o1
1 2192, 45043 255.,8 78.42 65.69 38.33.
2 2136. 328.6 303.8 120.2 50.82 53.63
3 2327. 406.9 235.4 171.0 152.2 48,21
L 1859, L38.9 134.3 119.8 50.96 32.34
5 3322, 475.1 138.9 170.0 62,52 47.38
6 1692, Lol 4 215.6 179.0 75.38 65.27
7 2202, 382.1 208.9 75.57 68.70 51.17
8 1580. 50646 329.1 83.63 117.4 105.4
9 1827, 557.1 249,1 87.40 75.35 7337
Average | 2126, . 4s1,1 230.1 120.6 79.89 57.23
Table II, Number of Unknown Patterns Falling
Within the Union of the First Level
Hypersphere Thresholds .
Number of Signal to Noise Power Ratio
iaresholds 4o, 2, 1. .5 .2 .
0 23 7 14 15 3 8
1 266 196 133 52 17 L
2 147 7 42 20 17 15
3 115 24 26 26 25 17
4 182 55 34 47 8 3
5 100 87 ) .52 20 7
6 50 97 77 78 2k 11
7 17 422 331 281 30 30
8 0 5 197 295 122 38
9 0 0 0 34 634 757




Table III,

Number of Training Patterns Falling

Within the First Level Hypersphere
Threshold, S/N=10,

Training Pattern

Class Origin

OO N O F WD e

Training Pattern

Class Origin

O O o FwWwdD e

Class

1 2 3 4 5 6 7 8 9

20 17 5 12 5 20 5 0 0
18 20 1 2 15 13 0 0 0

3 20 20 o 17 9 0 0

6 18 20 0 18 8 0 0

12 18 0 0 20 4 0 0 0
18 12 7 12 0 20 7 0 0

1 6 11 0 8 20 0 0

0 0 0 o 0 0 20 0

0 0 0 0 0 0 0 20

Table IV, Training Patterns Second Level
Hypersphere. Threshold Class to Class
Separation Matrix, S/N=10,
Class

1 3 L 5 6 7 8 9

20 7 1 1 2 3 1 0 0

7 20 0 1 4 1 0 0 0

1 0 20 7 0 2 1 0 0

1 1 7 20 0 3. 2 0 0

2 4 0 0 20 0 0 0 0

3 1 2 3 0 20 -1 0 0

1t o 1t 2 o0 20 0 0

0 0 0 0 "0 0 0 20 0

0 0 0 0 0 0 0 0 20

. 67



Table V,

Number of Training Patterns Falling

Within the First level Hypersphere

Threshold, S/N=2,

Training Pattern Class
Class Origin 1 2 3 4 5 é 2 8 9
1 20 20 18 18 18 20 19 0 0
2 19 20 9 13 18 18 14 0 0
3 18 15 20 19 8 17 19 6 0
L 19 18 20 20 14 19 19 6 0
5 20 20 10 10 20 17 13 0 0
6 19 20 18 19 17 20 19 0 0
7 - 15 15 15 18 14 16 20 0 0
8 0 0 6 4 0 0 0 20 0
9 o 0o o 0 0 0 0 0 20
Table VI. Training Patterns Second Level
Hypersphere Threshold.Class to Class
Separation Matrix, S/N=2,
Training Pattern Class
Class Origin 1 2 3 4 5 6 v 8 9
1 2 7 5 5 & 5 4 o0 o
2 7 20 4 L 6 6 2 o o
3 5 L 20 10 1 5 3 2 0
L 5 4L 10 20 2 6 3 1 0
5 L4 6 1 2 20 2 1 0 0
6 5 6 5 6 2 20 L 0 0
7 4 2 3 3 1 5 20 0] 0
8 0 0 2 1 0 0 0 20 0
9 0 0 0 0 0 0 0 0 20




Table VII, Number of Training Patterns Falling
Within the First Level Hypersphere
Threshold, S/N=1,

69

‘Training Pattern Class
Class Origin 1 2 3 4 5 6 o 8 9
1 20 19 19 20 19 20 19 6 0
2 20 20 19 20 20 20 19 6 0
3 18 16 20 20 16 19 19 14 0
L 14 13 16 20 10 18 17 6 0
5 15 13 9 17 20 14 7 0 0
6 19 18 19 20 17 20 19 6 0
7 i6 15 18 20 15 19 20 7 0
8 4 6 16 17 4 13 18 20 3
9 0 0 0 0 0 0 1 0 20
Table VIII. Training Patterns Second Level
Hypersphere Threshold Class to Class
Separation Matrix,S/N=1.
Training Pattern Class
Class Origin 1 2 3 4 5 6 2 8 9
1 20 10 3 L 7 5 2 1 0
2 10 20 4 6 8 7 3 2 0
3 3 4 2 6 3 7 7 2 0
4 4 6 6. 20 L 8 6 2 0
5 7 8 3 4 20 L 1 0 0
6 5 7 7 8 L 20 4 1 0
7 2 3 7 6 1 L 20 i 0
8 1 2 2 2 0 1 i 20 0
9 0 o 0 0 0 0 0 0 20




Table IX,

Training Pattern Class

Class Origin 1 2 3 4 5 6 7 8 9
1 20 16 19 14 18 19 17 9 0
2 20 20 19 20 19 19 19 10 1
3 20 20 20 20 19 19 20 20 4
4 20 18 19 20 18 19 20 15 1
5 20 20 19 20 20 19 20 13 5
6 20 20 20 20 19 20 20 18 5
7 17 14 18 17 17 16 20 9 0
8 7 5 11 11 8 6 12 20 0
9 4 1 1 4 4 i 5 3 20

Table X, Training Patterns Second Level
Hypersphere Threshold Class to Class
Separation Matrix, S/N=.5
" Training Pattern Class

Class Origin 1 2 3 4 5 6 ? 8 9
1 20 9 8 9 11 9 7 3 0
2 9 20 6 7 11 9 5 2 0
3 8 6 20 10 7 7 7 3 O
b 9 7 10 20 9 6 10 4 1
5 11 11 7 9 20 10 7 2 0
6 9 9 7 6 10 20 7 2 0
7 7 5 7 1o 7 7 20 L 0
8 3 2 3 4 2 2 4 2 o0
9 0 0 0 1 0 0 0 0 20

Within the First Level Hypersphere
Threshold, S/N=.5

Number of Training Patterns Falling

'70



Table XI,

Number of Training Patterns Falling
Within the First Level Hypersphere
Threshold, S/N=,2

Training Pattern Class
Class Origin 1 2 3 4 5 6 2 8 9
1 20 20 17 20 18 19 20 16 16
2 18 20 17 19 17 18 18 14 12
3 20 20 20 20 20 20 20 20 20
L 18 17 17 20 15 19 17 16 13
5 20 20 17 20 20 18 19 15 15
6 20 20 17 20 20 20 20 19 17
7 20 20 17 20 18 19 20 17 17
8 20 20 18 20 18 20 20 20 19
9 17 18 14 16 12 16 16 16 20
Table XII, Training Patterns Second Level
Hypersphere Threshold Class to Class
Separation Matrix,.S/N=.2
Training Pattern Class
Class Origin 1 2 3 L 5 6 v 8 9
1 20 10 6 11 7 111 11 5 L
2 10 20 5 8 7 10 7 4 L
3 6 5 20 7 8 6 8 8 1
L 11 8 7 20 6 9 10 6 L
5 7 7 8 6 20 8 5 4 3
6 11 10 6 9 8 20 8 5 5
7 11 7 8 10 5 8 20 6 L
8 5 4 8 6 4 5 6 20 3
9 b 1 4 3 5 4 3 20

n



Table XIII. Number of:Training Patterns Falling
Within the First Level Hypersphere
Threshold, S/N=.1

Training Pattern Class
Class Origin . 1 2 3 4 5 6 7 8 9
1 20 19 19 20 19 17 19 18 16
2 20 20 20 20 20 18 20 19 18
3 20 19 20 20 20 17 19 19 18
L 19 19 - 18 20 18 15 18 15 16
5 20 19 20 20 20 18 20 18 18
6 20 20 20 20 20 20 20 19 18
7 20 19 20 20 20 18 20 19 18
8 20 20 20 20 20 20 20 20 20
9 20 19 19 20 20 20 20 19 20
Table XIV, Training Patterns Second Level
Hypersphere Threshold Class to Class
Separation Matrix, S/N=.1
Training Pattemn Class
Cla;s Origin 1 2 3 Y. 5 6 7 8 9
i 20 10 8 10 11 7 8 5 6
2 10 2 9 9 10 6 9 5 5
3 8 9 20 10 10 10 8 7 L
L 10 9 10 20 12 10 10 8 7
5 11 10 10 12 20 6. 7 5 5
6 7 6 10 10 6 20 9 9 6
7 8 9 8 10 7 9 20 6 L
8 5 5 7 8 5 9 6 20 5
9 6 5 4 7 5 6 L 5 20




Signal to Noise
Power Ratio

10,

]

02

1

Table XV, AHDT Simulation Error Rates

Class

1 2 3 4 5 6 7 8 9
EMLR |35 37 45 56 17 34 0 0 0
ERR. |51 31 51 41 18 42 2 0 0
UNC 4y 1 1 0 0 1 2 11 3
UNR 2 0 3 1 1 3 0 0
EMLIR |76 72 55 81 42 71 18 8 0
ERR |68 5 51 82 24 72 33 12 0
UNC 1 0 0 1 1 1 1 2 0
UNR 9 10 by 6 1 3 3 0 0
EMR (85 74 71 81 60 9 38 8 2
ERR |80 61 64 73 38 74 48 9 2
UNC 0 o 2 1 4 1 0 3 3
UNR |15 18 12 11 11 17 11 1 1
EMIR |86 77 76 79 6+ 90 68 33 11
ERR |49 8% 77 83 554 77 58 24 13
UNG. | 0 O 2 0 1 0o 2 5 5
UNR {13 12 8 9 6 10 5 6 5
EMIR [B0 8L 89 87 8 90 72 47 4o
ERR. |93 67 76 58 71 87 87 47 26
UNC [0 1 0 1 0 0 1 0 0
UNR 8 6 10 10 11 9 9 3 8
EMIR [88 80 88 856 83 94 87 61 53
ERR |94 82 85 64 83 78 83 50 Lo
UNC | 0 2 1 0 2 1 1 1 0
UNR 6 7 12 9 3 11 12 9 9

EMLR= Maximum likelihood ratio misclassification-

ERR= AHDT misclassification not including the
unclassifiable patterns

UNC= Unclassifiable patterns falling outside the
first level hypersphere thresholds

UNR= Unclassifiable patterns not separated by the
second level hypersphere thresholds
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Table XVI,

Unknown Pattern
Class Origin

O 00 O\ F W

Unknown Pattemn
Class Origin .

OV 00~ 0w F W

Within the First Level Hypersphere
Threshold, S/N=10.

Number of Unknown Patterns Falling

Class
1t 2 3 &4 5 6 7 8 9
93 85 3% 40 62 9 23 0 O
92 98 4 L. 97 63 4 0 O
35 3 98 99 L6 37 0 0
5 3 99 9% o0 63 4 o0 o0
28 76 o0 o0 9 7?7 o0 O O
9% 73 63 67 33 93 . 0 0O
13 0 4 30 0 2 98 o0 0
0 0 o 0 O ©0o o0 8 0
0 O o0 o o0 o0 97
Table XVII. AHDT Classification
Matrix, S/N=10,
Class
1 2 3 4 5 6 7 8 9
43 26 1 5 2 17 0o 0 0
13 68 o o0 18 o0 0 0 O
0 45 48 o 1 1 0 0
0 0 3 58 0 2 0 0
16 0 o0 8 o0 0 0 0
19 6 3 12 o0 55 2 0 O
0O 0o ©0O 2 o0 0 93 o0 o
o o o o o0 o 89 o
o o o o0 o0 © 0 97

ity



Table XVIII. Number of Unknown Patterns Falling
Within the First Level Hypersphere
ThrGShOld. S/N-‘-Z.

. Unknown Pattern
Class Origin

O O~ o FWh -

Unknown Pattern
- Class Origin

O 0O~ vt F Wb

Class.
1 2 3 4 5 6 7 8 9
9 92 83 % 95 97 88 1 0
9% 9% 66 87 99 95 72 0 0
91 61 99 100 56 97 93 29 O
95 63 96 99 57 97 86 24 0
86 87 38 57 99 79 39 0 0
8 89 92 9 89 98 91 3 0
93 68 83 92 74 97 96 5 0
7 0 20 22 0 9 10 9 o0
0 o0 0 0 0. 6 0 0 100
Table XIX. AHDT Classification
Matrix, S/N=2,
Class
1 2 3 by 5 6 7 8 9
22 17 7 5 17 10 12 0 0
8 36 1 o0 36 5 4 0 o0
3 2 45 13 1 10 21 1 0
8 8 51 11 0 5 10 0 O
3 20 o0 1 7 o0 0 0 O
6 26 9 8 3 24 20 0 O©
o 8 7 3 5 1 6t 1 0
0o o 11 Tt o0 o0 o0 86 o0
o 0 o0 o0 0 o0 o0 o0 100
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Table XX,

Unknown Patternm
Class Origin

O O NN WD e

Unknown Pattern
Class Origin

O 00O N O FWLWN e

Within the First Level Hypersphere
Threshold, S/N=1.

Number of Unknown Patterns Falling

Class
1 2 3 b 5 6 7 8 9
97 100 86 73 70 97 85 45 1
98 100 87 65 79 95 87 41 1
9 96 97 79 49 93 8 71 3
99 99 98 90 51 98 % 78 3
90 96 68 45 78 78 67 18 1
99 99 95 78 73 96 93 53 1
96 99 95 79 47 95 @97 60 5
36 31 65 25 0 30 31 97 1
2 3 1 0 0 1 2 4 96
Table XXI, AHDT Classification
Matrix, S/N=i,
Class
1 2 3 L 5 6 7 8 9
5 15 11 13 23 7 9 2 0
1 21 9 9 29 8 5 0 0
L 3 22 15 5 10 19 8 0
3 2 28 15 7 11 18 4 0
5 24 1 by 2 2 0 0
6 13 18 11 16 7 9 2 0
1 16 12 5 3 10 %0 2 0
0 0 0 0 0 0 0 87 1
0 1 0 0 0 0 1 0 -9
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Table XXII, Number of Unknown Patterns Falling

Unknown Pattern
Class Origin

O 00~ Oy WD e

Unknown Patternm:
Class Origin

VW 0~ o\ F W b+

Within the First Level Hypersphere
Threshold, S/N=.5

Class
1 2 3 4 5 6 7 8 9
8+ 97 96 93 99 98 77 35 15
90 98 98 95 100 100 78 27 16
8 90 98 9% 95 98 79 58 10
85 96 100 96 98 100 85 52 9
82 95 95 89 99 99 68 19 11
80 91 97 91 97 99 73 47 6
88 9% 99 95 98 98 89 4B 12
3B 55 9% 8+ 66 93 43 8 7
10 19 35 20 39 39 1o 6 88
Table XXIII, AHDT Classification
Matrix, S/N=.5
Class
1 2 3 4 5 &€ 7 8 9
33 o 8 2 22 9 6 2 0
#» 4 9 1 25 4 7 2 2
21 o 13 7 9 5 17 17
27 2 18 8 3 6 i 10 3
31 5 2 1 40 4 Lk 2 &4
26 1 8 5 14 13 15 7 1
26 2 7 1 15 3 3 8 i
3 o 10 4 1 0o 3 67 1
0 o 2 o 5 1+ 2 3 7




Table XXIV.
Within the First Level Hypersphere
Threshold, S/N=,2

Unknown Pattern
Class Origin

W 00N oV F WD O

Unknown Pattern.
Class Origin

O O NN N\ F WD

Number of Unknown Patteirms Falling

Class
1 2 3 4 5 6 7 8.9
93 86 100 8 91 96 93 99 71
9% 90 99 90 ¥ 99 96 99 80
96 92 100 93 95 97 96 99 86
-9 8 99 85 89 93 92 95 75
9% 88 100 86 9% 9 92 93 77
95 89 100 89 95 96 96 97 78
95 8 99 87 91 97 95 97 78
89 73 100 87 85 92 91 100 75
71 58 100 55 70 82 80 97 96
Table XXV, AHDT Classification
Matrix,. S/N=.2
Class
1 2 3 4 5 6 7 8 9
o 17 16 25 7 7 2 11 7
0 25 12 16 W 9 5 5 7
0 8 14 33 7 3 & 12 9
1 14 4 31 3 2 4 18 2
2 17 12 17 18 .3 4 3 13
1 17 16 26 5 3 2 8 13
0 9 12 22 6 8 4 15 1k
1 3 11 25 1 0 1 5 5
o 1 2 10 4 o 2 7 66
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Table XXVI, Number of Unknown Patterns Falling
Within the First Level Hype

Unknown Pattern
Class Origin

O 00 N v FWoN e

Unknown Pattern
Class Origin

O 00NN F W

Threshold, S/N=.1

rsphere

Class
1 2 3 4 5 6 7 8 9
92 96 95 85 95 98 95 100 97
91 96 93 89 96 97 9% 9B 96
89 95 9% 85 9% 98 95 99 95
-89 96 95 87 9% 97 95 100 95
8 91 87 77 8 S 8 98 90
9 96 92 90 93 97 95 99 96
92 96 95 89 96 99 96 99 96
87 95 9% 8L 91 97 % 99 93
8t 90 88 74 89 96 90 100 99
Table XXVII, AHDT Classification
Matrix, S/N=.1
Class
1 2 3 L 5 6 7 8 9
0 5 4 28 17 8 4 20 15
1 8 L 21 18 7 3 15 i
0 4 2 19 14 12 3 19 14
0 2 7 27 12 10 1 2 12
0 10 4 26 12 6 1 19 17
1 3 5 20 12 10 1 17 19
1 1 3 29 413 11 4 15 10
1 2 8 16 3 6 3 ko 11
o 1 2 10 6 6 4 11 51
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Table XXVIITI.

Signal to Noise
Power Ratio
10,
2e
1.
o5
2
o1

a Class Exceeding the First Level
Hypersphere Threshold

Percent of Unknown Patterns in

Class
1 2 3 & 5 6 7 8 9
7 2 2 6 1 7 2 11 3
4 6 1 1 1 2 b 2 0
3 0 3 10 2 4 3 3 &4
16 2 2 L 1 1 11 11 12
7 10 o 15 6 4 5 0 4
8 4 6 13 13 3 L i 1
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CHAPTER V

SUMMARY
The computer simulation pointed out various areas of the adaptive
' hypersphere decision threshold concept which requires additional
research, The AHDT, as implemented, was found to have a bias
classification for each S/N ratio level. This bias in the pattern
class separation appears to be a function of the first level hyper-.
sphere threshold magnitude. In the case where unclassifiable patterns
can be neglected the AHDT classifier offers an improvement over the
maximum likelihood ratio classifier in the separation of signal and
noilse, This improvement emphasizes the need for additional research

into the adaptive hypersphere decision threshold,
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CHAPTER VI
SUGGESTION FOR FURTHER RESEARCH
This investigation has indicated the need for additional research, .
Areas which are evident include:

1) A method for optimal selection of the first level hypersphere

threshold magnitude.
2) Generation of third and higher order levels of adaptive

hypersphere decision thresholds to minimize uncla.ssifia.ble‘

patterns.
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APPENDIX A

0S/360 FORTRAN H

IMPLEMENTATION. AND COMPUTER SIMULATION OF THE ADAPTIVE.
HYPERSPHERE DECISION. THRESHOLD. CLASSIFIER. THE PATTERN.
RECOGNITION PROELEM CONTAINS NINE PATTERN CLASSES,
CONSISTING OF EIGHT DESIGNED. PATTERNS. AND A.NOISE.
PATTERN. THE SIMULATION REQUIRES. THE SUBROUTINES MINV.
AND RANDU FROM THE IBM SYSTEM/360 SCIENTIFIC
SUBROUTINE. PACKAGE,

cppeoennNano

DIMENSION Y(Z5v9) 1FBA(25: 25) pFA(25) vBD(25125) :TZ(9) ]
1BF(9),XE(9) ,XD(25) ,X(25),WB(25),VD(9,9) ,CB(9),VG&(9),.
2WA(9,20,9),EE(9,9) ,4HR(9,9),UB(9),PSID(9),PSI(9,9,9),
3ERR(9),EMLC(9),UNC(9) ,UNR(9),NOTJ (9),DB(25,25,9) , PATC(9)

1000 FORMAT(T20, 'PATTERN CLASS MEAN VECTCR'/)

1001 FORMAT(TLO,'CLASS*,T24,%1*,735,%2, 46, 3%, T57, 4",
1T68,'5',179,'6',T90,'7',T101,'8',T112,'9* /)

1002 FORMAT(T20,9E11.4)

1003 FORMAT(T20, 'COVARIANCE MATRIX'/)

1004 FORMAT(T20,'SINGULAR MATRIX'/)

1005 FORMAT(T20, * INVERSE. MATRIX' /)

1006 FORMAT(T20, 'DETERMINANT? /)

1007 FORMAT(T20,'PATTERN CLASS CENTROID'/)

1008 FORMAT(T20,*MEAN LIKELIHOOD VECTOR!/)

1009 FORMAT(T20,'TRAINING PATTERNS®/)

1010 FORMAT(T20,'FIRST LEVEL HYPERSPHERE THRESHOLD'/)

1011 FORMAT(T20,'NUMBER.OF TRAINING PATTERNS FALLING WITHIN',
1T63,'THE FIRST LEVEL HYPERSPHERE THRESHOLD'/)

1012 FORMAT(T20,*SECOND LEVEL HYPERSPHERE THRESHOLD'/)

1013 FORMAT(T20,9I11)

1014 FORMAT(T20,'PATTERN CLASS.CENTROID!'/)

1015 FORMAT(T20, ' PATTERN. CLASS!,I2/)

1016 FORMAT(T20, 'MAXTMUM LIKELIHOOD RATIO CLASSIFIER ERROR!/)

1017 FORMAT(T20,'AHDT CLASSIFIER ERROR!'/)

1018 FORMAT(T20, 'AHDT UNCLASSIFIARLE PATTERNS'/)

1019 FORMAT(T20,*TRAINING PATTERNS SECOND LEVEL HYPERSPHERE',
1763, *THRESHOLD CLASS TO CLASS SEPARATION.MATRIX!/)

1020 FORMAT(1H1,T90,'PAGE',F5.1)

1021 FORMAT(T10,'CB(J)',T20,9E11.4)

1022 FORMAT(T10,'XE(J)*,T20,9811.4)

1023 FORMAT(T10,I3,T20,9E11.4)

1024 FORMAT(T10,'dJ*,T25,'EJJ",T40, *JT?,T55, 'EJT?,T70, ' FXK2*,
1195, *XK2") '

1025 FORMAT(T10,I3,T25,F6.1,T40,I3,T55,F6.1,T70,810.3,T95,E10.3)

1026 FORMAT(T20,'S0C=*,E10,3,T60,'POI=',E10.3)

1027 FORMAT(T10,'GB=',E10.3,T30, 'XK1=",E10.3,T50, 'XLIM="*,E10.3)

1028 FORMAT(T10,'RA2=',E10.3)

1029 FORMAT(T9,10I11)

1030 FORMAT(T20,'THE LAST.VALUE OF IX WAS',I70/)
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1031 FORMAT(T10,'VAR=*,E20,10)
1032 FORMAT(T20, *UNKNOWN PATTERNS*/)
XPAGE=1,
WRITE(6,1020)XPAGE.
XPAGE=XPAGE+1,
PI=3,14159
T=100.
Al=h,
A2=8,
A3=SQRT(5./3.)
C2=T*((6.)**(-.5))
C3=((204/3,)**.5) /T
Cl=T*((PI/(18,*PI-48,))**,5)
C5=T*((7.5+6,*EXP(-A1)-1, S*EXP(-A2) )**(-.5))
Co=T*((18.)**(-.5))
Cy=C2
CB8=T*((5./12.)%*,5)
Ti=,111
T2=,222
13=.333
Th=,Ldly
T5=.555
T6=,666
I7=.777
T8=.888
T9=.999

opaao

oo

THE SIGNAL TO NOISE POWER RATIO IS OBTAINED BY
DIVIDING 2500,/3., BY THE NOISE VARIANCE VAR,
VAR=250./3.

IX=1

CALCULATE THE PATTERN CLASS MEAN VECTOR.

Do 20 I=1,25

J=1

IF(I.GT.12) GO TO 2
Y(I,J)=T*1/25,
GO TO 3

2 Y(I,d)=T*(1.-1/25,)

3 J=2
Y(I,J)=C2*xSIN(4.*PI*1/T)
IF(I.EQ.25) Y(I,d)=0.
J=3
IF(I.GT.12) GO TO &4
Y(I,d)=C3*((L.*I)**2)
GO T0 5

L Y(I,d)=C3*((T-U,*I)**2)
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IF(I.EQ.25) Y(I,J)=0.

5 J=4
IF(I.GT.12) GO TO 6
Y(I,J)=Cl*(1,-COS(4.*PT*I/T))
GO TO 7

6 Y(I,J)=Cl*(1,4COS(4.*PI*I/T))
IF(1.EQ.25) ¥(I,J)=0.

7 J=5 '
IF(I.GT.12) GO TO 8
Y(I,J)=C5*(1.-EXP(-A1*I/12.5))
GO TO 9

8 Y(%,J)=C5*(1.-EXP(-(T-AI*I)/IZ.5))

9 J=
Y(I,J)=C6x(1.,~COS(8,*PI*I/T))
IF(I.2Q.25) Y(I,J)=0.

J=7 .
IF(I.GT.6) GO TO 10
Y(I,J)=0.
GO T0 12

10 IF(I.GT.18) GO TO 11
¥(I,J)=C7
GO TO 12

11 ¥(I1,J)=0.

12 J=8 =
IF(I.GT.9) GO TO 13
Y(I,d)=0,
GO TO 15

13 IF(I.GT.15) GO TO 14
Y(I,J)=C8
GO TO 15

14 ¥(1,J)=0.

15 J=9

20 ¥(I,J)=0.
WRITE(6,1000)
WRITE(6,1001)
WRITE(6,1002) ((¥(I,d),J=1,9),I=1,25)
WRITE(6,1020) XPAGE
XPAGE=XPAGE+1.

CALCULATE THE PATTERN CLASS COVARIANCE MATRIX.

IMN=0

DO 40 J=1,9
21 DO 22 I=1,25

DO 22 K=1,25
22 FBA(I,K)=0.
24 DO 28 L=1,500

D0 26 I=1,25

RN=—10.
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USE THE CENTRAL LIMIT THEOREM TO APPROXIMATE THE
GAUSSIAN DISTRIBUTION.

DO 25 IK=1,20
CALL RANDU(IX, IY,RNN)
X=TY

25 RN=RN-+RNN

26 FA(I)=RN/A3
DO 28 I=1,25
DO 28 K=1,25
IF(I.GT.K) GO TO 28
FBA(I,K)=FBA(I,K)+FA(I)*FA(K)

28 CONTINUE
DO 30 I=1,25
DO 30 K=1,25
IF(I.GT.K) GO TO 30
BD(I,K)=FBA(TI,X) /499,
BD(X, I)=BD(I,K)

30 CONTINUE
WRITE(6,1015)J
WRITE(6,1003)

DO 31 I=1,25

IF(I.NE.18) GO TO 31

WRITE(6,1020) XPAGE
 XPAGE=XPAGE+1.

31 WRITE(6,1002) (BD(I,K),K=1,25)

THE PATTERN CLASS COVARIANCE MATRIX HAS EEEN CONSTRUCTED
FROM. THE ADDITIVE GAUSSIAN NOISE. NOW CALCULATE THE
DETERMINANT AND THE INVERSE COVARIANCE MATRIX.

CALL MINV(BD,25,DET,FA,WB)
IF(DET.NE,0.) GO TO 32
WRITE(6,1004)
IMN=TMN+1
IF(D{KN.LT.L#) GO TO 21
CALL EXIT

32 7Z(J)=DET
DO 34 I=1,25
DO 34 K=t1,25 v

34 DB(I,X,J)=BD(I,X)
WRITE(6,1005)
DO 36 I=1,25
IF(I.NE.?) GO TO 36
WRITE(6,1020) XPAGE
XPAGE=XPAGE+1,

36 WRITE(GJOOZ) (BD(I'K)-K=1t25)
WRITE(6,1020) XPAGE
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XPAGE=XPAGE+1,
CONTINUE
WRITE(6,1006)

- WRITE(6,1002) (TZ(J),d=1,9)

42
50

58

CALCULATE THE PATTERN CLASS CENTROID.

DO 50 J5=1,9

BF(JS)=0.

DO 50 J=1,9

BE=O.

IF(J.EQ.JS) GO TO 50

DO 42 I=1,25
BE=EE+(Y(I,JS)-Y(I,J))**2
BF(JS)=BF(JS)+EE

Js=1

DO b J=2,9
IF(BF(J).GT.BF(JS)) GO TO 4
JS=J

CONTINUE

WRITE(6,1007)

WRITE(6,1002) (BF(J),J=1,9)
JC=JS

THE PATTERN CLASS. CENTROID IS CLASS JC,

WRITE(6,1014)
WRITE(6,1013) JC

CALCULATE THE MEAN LOGARITHM OF THE LIKELIHOOD RATIO
VECTOR CONTRIBUTION OF THE COVARIANCE MATRIX DETERMINANT,

DO 56 JS=1,9

_ 56 CB(JS)=45*LOG(TZ(JC)/TZ(IS))

CALCULATE THE MEAN LOGARITHM OF THE LIKELIHOOD RATIO
VECTOR FOR EACH CLASS.,

ICON=1

500 DEV=SQRT(VAR)

WRITE(6,1031) VAR

DO &4 J=1,9

DO 62 Js=1,9
XE(JS)=0.

DO 58 I=1,25 ,
WB(I)=Y(I,J)-Y(I,Js)
DO 62 XK=1,25
XD(K)=0.

DO 60 I=1,25

92
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60 XD(K)=XD(K)+WB(I)*DB(I,K,JS)

62 XE(JS)=XE(JS)+XD(K)*WB(K)
WRITE(6,1022) (XE(JS),dS=1,9)
DO &4 Js=1,9

64 VD(JS,J)=CB(JS)-(XE(JS)-XE(JC)) /2. /VAR

WRITE(6,1001)

WRITE(6,1021) (CB(J),J=1,9)
WRITE(6,1008)

WRITE(6,1002) ((VD(JS,Jd),d=1,9),J5=1,9)
WRITE(6,1020) XPAGE

XPAGE=XPAGE+1,

NOW GENERATE THE LEARNING PATTERNS,

DO 74 J=1,9
DO 74 L=1,20
DO 66 I=1,25
RN=-100

USE THE CENTRAL LIMIT THEOREM TO APPROXIMATE THE
GAUSSIAN DISTRIBUTION.

DO 65 IK=1,20
CALL RANDU(IX,IY,RNN)
X=TY
65 RN=RN+RNN
66 X(I)=RN*DEV/A3+Y(I,J)
DO 72 JS=1,9
XE(JS)=0.
DO 68 I=1,25
68 WB(I)=X(I)-Y(1,JS)
DO 72 K=1,25
XD(X)=0.
DO 70 I=1,25
70 XD(K)=XD(K)+WB(I)*DB(I,X,JS)
72 XE(JS)=XE(JS)+XD(K)*WB(K)

CALCULATE THE TRAINING PATTERN LOGARITHM OF THE
LIXELTHOOD RATIO VECTOR.

DO 74 Js=1,9

7% WA(JS,L,J )=CB(JS)-(XE(JS)-XE(JC)) /2. /VAR
WRITE(6,1009)
LJKL=3
D0 75 J=1,9
IF(J.EQ.IJKL) WRITE(6,1020) XPAGE
IF(J.EQ.IJKL) XPAGE=XPAGE+1.
IF(J.EQ.IJKL) IJKL=LJKL+2
WRITE(6,1015) J
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75 WRITE(6,1002) ((WA(JS,L,J),ds=1,9),1=1,20)
TETERMINE THE FIRST LEVEL HYPERSPHERE THRESHOLD.

Do 80 J=1,9
DO 76 1=1,20
VG(L)=0.
DO 76 JS=1,9

76 VG(L)=VG(L)+(WA(JS,L,J)~VD(JS,J))**2
WRITE(6,1015) J
WRITE(6,1002) (VG(L),L=1,20)
LL=1
DO 78 1=2,20
IF(VG(L).LE,VG(LL)) GO TO 78
1L=L

78 CONTINUE

80 UB(J)=VG(LL)
WRITE(6,1010)
WRITE(6,1002) (UB(J),J=1,9)

CALCULATE THE NUMEER OF TRAINING PATTERNS FALLING
WITHIN. THE FIRST LEVEL HYPERSPHERE THRESHOLD.

DO 82 JD=1,9
DO 82 J=1,9
82 EE(JD,J)=0.
DO 86 J=1,9
DO 86 L=1,20
DO 86 JD=1,9
=04
DO 84 J5=1,9
8l VP=VF+(WA(JS,L,J)-VD(JS,JD))**2
IF(VF.GT.UB(JD)) GO TO 86
EE(JD,J )=EE(JD, J)+1.
86 CONTINUE

THE MATRIX EE IS READ AS THE MISCLASSIFICATION IN CLASS
JD.GIVEN THE TRAINING PATTERN ORIGINATED IN CLASS J.

WRITE(6,1011)

WRITE(6,1001)

WRI’IE(é,iOOZ) ((EE(JD,J),J=1,9),JD=1,9)
Do 87 J=1,9

DO 87 JD=1,9

AHR(JD,J)=0.

Do 87 Js=1,9

87 PSI(JS,JdD,Jd)=0,

NOW GENERATE THE SECOND LEVEL HYPERSPHERE THRESHOLDS.
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DO 120 J=1,9

DO 120 JD=1,9
IF(JD,LE.J) GO TO 120
GB=0.

DECIDE WHICH CLASS HAS THE SMALLER FIRST LEVEL
HYPERSPHERE THRESHOLD.

IF(UB(JD).LT.UB(J)) GO TO 88
JJ=J

JT=JD

GO TO 89

JJ=JD

JI=J

IS A SECOND LEVEL HYPERSPHERE THRESHOLD REQUIRED TO
SEPARATE CLASS JD AND J

IF((EE(JT,JJ)+EE(JJI,IT) )«EQ.0s) GO TO 120
DO 90 Js=1,9
GB=GB+(VD(JS,JT)-VD(JS,JJ) ) **2

CALCULATE THE LIMITING CASE VALUE FOR A HYPERSPHERE
WITHIN. A HYPERSPHERE.

XK1=-SQRT(UB(JJ) /GB)

L IM=(1 -2 *XK1 }*GB+UB(JJ)
WRITE(6,1027) GB,XKi,XLIM
XK2=O'

PXK2=0,

NI=0

EE(JT,Jd)=0.

II=0

ISIN=0

BETA=.5

WRITE(6,1024)

WRITE(6,1025) JJ,EE(JT,Jd),JT,EE(JJ,JT),FXK2,XK2
IF(UB(JT).LT.XLIM) GO TO 105
IF(EE(JJI,JIT).EQ.0.) RA2=UB(JJ)
IF(EE(JJ,JIT)EQ.0.) GO TO 93

CLASS JJ HYPERSPHERE IS WITHIN CLASS.JT HYPERSPHERE.

XK2=.05

XK2=XK2%2,

RA2=( (XK1+XK2)**2)*GB
DO 94 Js=1,9

94 PSID(JS)=(1,+XK2)*VD(JS,JJ)~XK2#VD(JS,JT)

EEJJ=0,
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"EEJT=0,

DO 101 L=1,20
HR=0,

DETERMINE THE NUMBER OF CLASS JJ AND JI TRAINING PATTERNS
MISCLASSIFIED BY THE SECOND LEVEL HYPERSPHERE THRESHOLD.

DO 96 JS=1,9

HR=HR+(WA(JS,L,JJ )-PSID(JS) )#*2
IF(HR.LE.RA2) GO TO 98
EEJJ=EEJJ#+1

HR=0,

DO 100 JS=1,9
HR=HR+(WA(JS,L,JT)-PSID(JS) )**2
IF (HR,GT.RA2) GO TO 101
EEJT=EEJT+1,

CONTINUE

WRITE(6,1025) JJ,EEJJ,JT,EEIT,PXK2,XK2
NI=NI+1

IF(NI.GI.100) GO TO 103

PREDICT THE VALUE OF XK2 GIVING. A MINIMUM. ERROR..

IF(EEJJ.EQ.EEJT) GO TO 103
IF(EEJJ, 6T EEJT) ISIN=1

IF(ISIN.EQ.1) GO TO 102
SOC=(EEJJ-EEJT)~(EE(JT,JJ)-EE(JJ,JT))
IF(S0C.EQ.0.) GO TO 91

POI=(PXK2* (EEJJ~EEJT)~XK2* (EE(JT,JJ )-EE(JJ ,JT) ) ) /SOC
IF(POL.LT.XK2) GO TO 102

PXK2=X

WRITE(6,1026) SOC,POI

EE(JT,JJ )=EEJJ

EE(JJ,JT)=EEJT

XK2=POI

IF(EEJJ NE.EEJT) GO TO 92

GO TO 103

STORE THE LIMITS OF. THE CROSSOVER AREA.

IF(IT.EQ.0) XA=XK2
IF(II.EQ.0) XB=PXK2

ADJUST THE CROSSOVER AREA AFTER EACH ITERATION.

II=1
ISIN=1 .
IF(EEJJ.LT.EEJT) XB=XK2



XK2=, 5% (XA+XB)
PXK2=XB
IF(EEJJNE,EEJT) GO TO 92

103 DO 104 JS=1,9

AHR(JT,JdJ )=RA2

104 PSI(JS,JT,JJ)=PSID(JS)

EE(JT,JJ)=EEJJ
EE(JJ ,JT)=EEJT
GO TO 120

105 XK1=, 5%(1,~SQRT ((UB(JT)=UB(JJ))/GB))

naQoo

IF(XK1.GT.(.5)) XK1=.5
WRITE(6,1027) GB,XK1,XLIM
IF(EE(JJ,JT)EQ.0.) RA2=UB(JJ)
IF(EE(JJ,JT).EQ.0,) GO TO 108

THE UNION OF THE JJ AND JT HYPERSPHERE THRESHOLDS DOES
NOT INCLUDE ALL OF THE JJ HYPERSPHERE,

XK2=,05

106 XK2=XK2*10,
107 XKM=1,-2,*XK1

RA2=(1,~XK2 /XKM)*UB(JJ ) +UB(JT) *XK2 /XKM+XK2* (XK2-XKM) *GB.

108 DO 109 JS=1,9
109 PSID(JS)=(1.+XK2)*VD(JS,JJ)~-XK2*VD(JS,JT)

poan

110

EEJT=0.

DETERMINE THE NUMBER OF CLASS JJ AND JT TRAINING PATTERNS
MISCLASSIFIED BY THE SECOND LEVEL HYPERSPHERE THRESHOLD,

DO 115 L=1,20

HR=O .

DO 110 JS=1,9
HR=HR+(WA(JS,L,JJ)~-PSID(JS) )**2
IF(HR,LE.RA2).GO TO 112
EEJJ=EEJJ+1,

112 HR=0.

DO 114 JS=1,9

114 HR=HR+(WA(JS,L,JT)-PSID(JS) )**2

115

cog@

IF(HR, GT.RA2) GO TO 115

EEJT=EEJT+1,

CONTINUE

WRITE(6,1025) JJ,EEdd,dT,EEJT,PXK2,XK2
WRITE(6,1028) RA2

NI=NT+1

IF(NI,GT.100) GO T0 117

PREDICT THE VALUE OF XK2 GIVING A MINIMUM ERROR.
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IF(EEJJ . EQ.EEJT) GO TO 117
IF(EEJJ.GT.EEJT) ISIN=1
IF(ISIN.EQ.1) GO TO 116
SOC=(EEJJ-EBJT)-(EE(JT,JJ)=EE(JJ ,JT))
IF(S0C.EQ.0.) GO TO 106

POI=(PXK2* (EEJI-BEJ T ) -XK2* (EE(JT,JJ)-EE(JJ,dT) ) ) /SOC
IF(POI.LT.XK2) GO TO 116

PXK2=XK2

WRITE(6,1026) SOC,POL

EE(JT,JJ)=EEJJ

EE(JJ ,JT)=EEJT

XK2=POI

IF(EEJT.NE.EEJT) GO TO 107

GO TO 117

STORE THE LIMITS OF THE CROSSOVER AREA.

IF(IT.EQ.0) XA=XK2
IF(II.EQ.0) XB=PXK2

ADJUST THE CROSSQVER AREA AFTER EACH ITERATION.

II=1
ISIN=1

IF(EEJJ .GT.EEJT) XA=XK2
IF(EEJJ LT,EEJT) XB=XK2
XK2=BETA* (XA+XB)

PXK2=XB

IF(XB.GT, (4 999*XA)) ISIN=0
IF(ISIN.EQ.0) XK2=5.*XA
IF(ISIN.EQ.0) PXK2=0.
IF(ISIN.EQ.0) EE(JT,Jd)=0,
IF(ISIN.EQ.0) EE(JJ,JT)=0,
IF(ISIN.EQ.0) GO TO 107
IF(EEJJ .NELEEJT) GO TO 107

DO 118 Js=1,9

AHR(JT,JJ)=RA2
PSI(JS,dT,dJ)=PSID(JS)
EE(JJ,JT)=EEJT

EE(JT,JJ)=EEJJd

CONTINUE

WRITE(6,1012)

WRITE(6,1002) ((AHR(JT,JJ),dJd=1,9),JT=1,9)
WRITE(6,1020) XPAGE
XPAGE=XPAGE+1, '

DO 121 JJ=1,9

IF(JJ.EQ.6) WRITE(6,1020) XPAGE
WRITE(6,1013) JJ

- WRITE(6,1001)
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WRITE(6,1002) ((PSI(JS,JT,dd),dT=1,9),J5=1,9)
XPAGE=XPAGE+1,
WRITE(6,1019)
WRITE(6,1001)

THE MATRIX EE IS READ AS THE MISCLASSIFICATION. IN.CLASS
JD GIVEN THE TRAINING PATTERN ORIGINATED IN CLASS J. AT

THIS POINT. IN THE SIMULATION.THE MATRIX CONTAINS THE
TRAINING PATTERNS SECOND LEVEL HYPERSPHERE THRESHOLD
CLASS TO CLASS SEPARATION. DATA..

WRITE(6,1002) ((EE(JD,J),d=1,9),JD=1,9)
WRITE(6,1020) XPAGE
XPAGE=XPAGE+1,

DO 122 J=1,9

ERR ( J ) =0,

EMLC(J )=0.

UNC(J)=0.

UNR(J)=0,

IPA=

IPB=0

IPC=0

IPD=0

IPE=0

IPF=

IPG=0

IPH=0

IPI=0

NOW GENERATE SOME PATTERNS (UNKNOWN) AND LET THE
MACHINE CLASSIFY THEM. THE THRESHOLD LEVELS T1,12,13,
™%,175,T76,77,78, AND T9 ARE SET TO MAKE ALL. PATTERN.
CLASSES EQUALLY LIKELY.

IJKL=0

IJK=55

DO 200 NP=1,5000

CALL RANDU(IX,IY,SS)
X=IY

IF(SS.GE.T1) GO TO 124
J=1

IPA=TIPA+1

IF (IPA.GT,100) GO TO 200
GO TO 140

124 IF(SS.GE.T2) GO TO 126

J=2 134487
IPB=IPB+1

IF(IPB,GT.100) GO TO 200

GO TO 140
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IF(SS.GE.T3) GO TO 128
J=3

IPC=IPC+1
IF(IPC,GT.100) GO TO 200
GO TO 140

IF(SS.GE.T4) GO TO 130
J=l

IPD=IPD+1

IF (IPD.GT.100) GO TO 200
GO TO 140

IF(SS.GE.T5) GO TO 132
J=5

IPE=IPE+1

IF(IPE.GT.100) GO TO 200
GO TO 140

IF(SS.GE,T6) GO TO 134
J=6

IPF=IPF+1

IF(IPF.GT.100) GO TO 200
GO TO 140

IF(SS.GE,T?) GO TO 136
J=7

IPG=TPG+1

IF(IPG.GT.100) GO TO 200
GO TO 140

IF(SS.GE.T8) GO TO 138
J=8 .
IPH=IPH+1

IF(IPH.GT.100) GO TO 200
GO TO 140 :
IF(SS.GE.T9) GO TO 200
J=9

TPI=IPI+1

IF(IPI.GT.100) GO TO 200
DO 142 I=1,25

RN=-10.

USE THE CENTRAL LIMIT THEOREM TO APPROXIMATIE THE

GAUSSIAN DISTRIBUTION.

DO 141 IK=1,20

CALL RANDU(IX,IY,RNN)
X=IY

RN=RN+RNN
X(I)=RN*DEV/A3+Y(I,J)
DO 148 Js=1,9
XF(JS)=OO

DO 144 I=1,25
WB(I)=X(I)-Y(I,JS)

100
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DO 148 K=1,25

XD(X)=0,

DO 146 I=1,25
XD(K)=XD(K)+WB(I)*DB(I,K,JS)
XE(JS)=XE(JS)+XD(K)*WB(K)

CALCULATE THE LOGARITHM OF THE LIKELIHOOD RATIO VECTOR.

IJKL=IJKL+1

IF(IJKL.NE. IJK) GO TO 149
WRITE(6,1020) XPAGE

XPAGE=XPAGE+1.

IJK=IJK+54

WRITE(6,1032)

DO 150 JS=1,9
WB(JS)=CB(JS)~-(XE(JS)-XE(JC))/2./VAR
WRITE(6,1023) J,(WB(JS),JdS=1,9)

CALCULATE THE MAXIMUM LIKELIHOOD RATIO CLASSIFIER ERROR.

JD=1

IMLR=0

DO 151 JS=2,9
IF(WB(JS).LT.WB(JD)) GO TO 151
JD=JS

CONTINUE

DO 152 JS=1,9

IF(JS.EQ.JD) GO TO 152
IF(WB(JS).EQ.WB(JD)) IMLR=IMLR+:-
CONTINUE

IF (IMLR.GT.1) GO TO 153
TF(J.EQ.JD) GO TO 154

EMLC.(J )=EMLC(J )+1.

CAN THE PATTERN BE CLASSIFIED BY THE FIRST LEVEL
HYPERSPHERE THRESHOLD.

DO 156 JD=1,9

NOTJ (JD)=0

PATC (JD)=0,

VG(JD)=0.

DO 156 Js=1,9

VG(JD)=VG(JD)+( (WB(JIS)-VD(JS,JD))**2)

. JNOT=0

DO 158 JD=1,9

NOT=0 .

IF(VG(JD).GT,UB(JD)) GO TO 158
NOT=1

NOTJ (JD)=1
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PATC(JD)=1,

JTS=JD

JNOT=JNOT+NOT

WRITE(6,1023) J, (PATC(JD),JD=1,9)
IF(JNOT.NE.0) GO TO 160

THE PATTERN WAS OUTSILE THE FIRST LEVEL HYPERSPHERE
THRESHOLD DECISION SPACE.

UNC(J )=UNC(J)+1,
GO TO 200
IF(JNOT.GT.1) GO TO 162

THE PATTERN WAS WITHIN THE DECISION SPACE BOUNLED
BY A HYPERSPHERE THRESHOLD.

IF(J.NE,JTS) ERR(J)=ERR(J)+1.
GO TO 200

CAN THE PATTERN BE SEPARATED BY THE SECOND LEVEL
HYPERSPHERE THRESHOLD.

DO 170 JA=1,9
DID THE PATTERN FALL WITHIN CLASS.JA

- IF(PATC(JA).EQ.0) GO TO 170

164

166
170

DO 170 JD=1,9
DID THE PATTERN FALL WITHIN CLASS.JD

IF(PATC(JD) .EQ.0.) GO TO 170
IF(JD.EQ.JA) GO TO 170

DID THE TRAINING PATTERNS. PROVIIE A SECOND LEVEL
SEPARATION. OF. CLASS JA AND JD.

IF(AHR(JD,JA)EQ.0) GO TO 170
SB=AHR(JD,JA)

SD=0.

DO 164 JS=1,9

SD=SD+( (WB(JS)~PSI(JS,JID,JA))**2)
IF(SD.GT.SB) GO TO 166

NOTJ (JD)=0

GO TO 170

NOTJ (JA)=0

CONT LWUE

WRITE(6,1029) J,(NOTJ(JD),JD=1,9)
INUM=0
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DO 172 JD=1,9
IF(NOTJ(JD).EQ.0) GO TO 172
IPAT=JD

INUM=INUM+1

CONTINUE

CAN THE PATTERN BE CLASSIFIED IN MORE THAN ONE CLASS
IF(INUM.NE.1) GO TO 174
IS THE PATTERN CORRECTILY CLASSIFIED

IF(IPAT.NE.J) ERR(J)=ERR(J)+1.
GO TO 200

UNR(J)=UNR(J )+1.

CONTINUE

WRITE(6,1016)

WRITE(6,1002) (EMLC(J),Jd=1,9)
WRITE(6,1017)

WRITE(6,1002) (ERR(J),J=1,9)
WRITE(6,1018)

WRITE(6,1002) (UNC(J),Jd=1,9)
WRITE(6,1002) (UNR(J),J=1,9)

WRITE THE LAST VALUE OF IX
WRITE(6,1030) IX

Ir THE SIGHNAL TO NCISE POWER RATIOS ARE SET AT THE VALUES
S/N=10. ,2. ,1. ’ 05, 02, AND .1

AND ALLOWED TO RUN IN SERIES, THEN APPROXIMATELY

THIRTY-ONE MINUTES OF IBM 360-75 TIME IS REQUIRED FOR THE

COMPUTATIONS., THE AVERAGE TIME FOR ONE S/N LEVEL IS

APPROXTMATELY NINE MINUTES,

ICON=ICON+1

IF(ICON.EQ.2) VAR=1250,/3.
IF(ICON.EQ.3) VAR=2500./3.
IF(ICON.EQ.4) VAR=12500./3.
IF(ICON.EQ.5) . VAR=50004 /3.
IF(ICON.EQ.6) VAR=25000./3.
IF(ICON.EQ.?7) GO TO 202

GO TO 500

202 STOP

END
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