
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4 101

A Design and Implementation of Cluster Heartbeat

Network for Efficient Fault Detection

Ahmad Shukri Mohd Noor, Emma Ahmad Sirajudin
School of Informatics and Applied Mathematics,

Universiti Malaysia Terengganu, Terengganu, Malaysia

ashukri@umt.edu.my

Abstract—To achieve fault tolerance in a server cluster, fault

detection capability is a primary prerequisite. Efficient fault

detection is prompt, correct and complete. This paper revisited

the technique called Reactive Failure Detection (RFD) that

dynamically predicts a heartbeat delay from a cluster node. We

also identified the requirements to deploy RFD in actual servers.

A new cluster heartbeat network with concurrency is proposed to

use push and pull interaction during live monitoring and

determining node’s status. The prototype of the new model is

tested on a platform running multiple independent web

applications and analyzed for its implementation and design

correctness.

Index Terms—Heartbeat Network; Fault Detection; High

Availability; Concurrency.

I. INTRODUCTION

Failure detection is an important design consideration for

providing high availability in a generally distributed system.

This process involves isolation and declaration of a fault to

enable proper recovery actions to start. It is a prerequisite to

failure recovery in distributed system [1][4][5].

Many different techniques are used to detect failures,

ranging by different efficiency and complexity [1]. Correct,

prompt and efficient failure detection is the requirement to a

recovery mechanism that is able to do self-recovery discreetly

and without external party intervention. As a result, a fault

tolerant service is realized.

Often, there is tradeoff from weaknesses of either fast

detection with low accuracy or completeness in detecting

failures but with a lengthy timeout [3][4]. For instance, the

failures can be detected quickly but the probabilities of false

faults are high. On the other hand, the failures can be detected

completely but after a long time resulting in delay of recovery.

The approach to failure detection in a distributed system

called Reactive Failure Detection (RFD) was introduced [4].

In RFD, heartbeat interaction is used to monitor the health of

servers and an expectation of heartbeat arrival is maintained to

detect a failure within an adaptive timeframe and subsequently

confirming it using ping. RFD finds an optimal value, H_max

to dynamically predict the heartbeat delay by considering the

changing environments to ensure the fault is promptly detected

and at the same time to avoid over-detection.

In a cluster, each node’s live heartbeats are used to draw the

behavior of the current network and CPU usage. When a new

heartbeat is inconsistent with the node’s expected behavior

found with RFD, a fault may have occurred and will be

checked before the suspicion is confirmed. The requirements

to implement RFD are concurrency programming and a

heartbeat network within a cluster of nodes. The nodes in the

cluster are closely monitored from the periodic heartbeat

messages that they send to a monitoring service node, namely

Heartbeat Monitor (HBM). When a particular node fails to

send a heartbeat message within the estimated time, HBM will

suspect a failure. It then reconfirms the failure by pinging the

node.

Section 2 revisits the RFD algorithm and discusses its

requirements. Section 3 describes the proposed design of the

cluster heartbeat network. Section 4 describes its

implementation and lastly section 5 present results for

discussion.

II. REACTIVE FAILURE DETECTION (RFD)

In [4] an adaptive technique for failure detection was

introduced. This technique incorporates pinging to ensure the

liveliness of a node once it is suspected for failure thus is

affirmative. This technique performs a central sampling on the

heartbeat inter-arrival time to obtain the estimation for the

next heartbeat arrival. If the next heartbeat did not arrive

within this timeframe, the monitor raises a state of suspicion

and sends a ping echo request to the monitored node. The

threshold for the heartbeat to arrive reflects the current state of

the node CPU load and network condition. The RFD technique

is given by the formula:

Hmax = ∑ Si + Sn+1

n

i=1

where: Hmax is the maximum heartbeat arrival time

∑ Si
n
i=1 is the total time elapsed (total heartbeat time

before the last heartbeat)

and

Sn+1 =

∑ Si
n−1
i=1

|Sn−1|
+ Sn

2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229274679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

102 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4

where: ∑ Si
n−1
i=1 is the total heartbeat time in Sn−1

|Sn−1| is the size of the sampling in Sn−1

Sn is the inter-arrival of the most recent heartbeat

arrived

Considering again, p is monitoring q and is waiting for the

next heartbeat (n + 1) from q. The probability of the q(n +
1)th heartbeat is influenced by the last heartbeats. From the

analysis of heartbeat inter-arrival time, the last heartbeat Sn

has a significant likelihood to resemble the next heartbeat

Sn+1therefore is factored by 50% for the next heartbeat while

the rest of in sample S is factored by 50%. This can ensure a

close reflection of the current condition of the monitored node

and network. A deviation can be detected based on this

reflection and will be confirmed by pinging to make sure it is a

permanent failure instead of a temporary glitch that

occasionally happens due to network or CPU load.

The Reactive Fault Detection (RFD) component gives

timely detection of node failure with completeness and high

accuracy. The RFD is designed to be dynamic by deploying an

estimated time of arrival (ETA) threshold that adapts to the

network and server condition. It can deliver higher availability

by having an intuitive fault measure that can avoid false

detection and enables a timely recovery. A false detection can

trigger unnecessary recovery and put dispensable load on

network and server which will result in waste of resources.

Heart beats sent over the network sometimes are affected by

network bandwidth and load. Therefore, it is necessary to

consider network delay. In the beginning the server

initialization will take some delay that will gradually reduce

with some minor irregularities. Over time the prediction value

will closely assimilate the server and network current states.

Any changes of the states can be detected promptly based on

the prediction.

The fundamental requirement for the RFD implementation

is high concurrency and separated tasks that can communicate

with each other as well as a heartbeat network within the

cluster for live monitoring of nodes. In this paper, the design

and implementation taken is by using structured programming

and interrupt signal libraries.

III. PROPOSED DESIGN

Cluster Heartbeat Network

The purpose of a heartbeat network is to enable real time

communication between a monitor and the nodes. Heartbeats

are sent via dedicated sockets for each node. A node indicates

its aliveness by sending periodic heartbeats to the monitor.

With the RFD technique, the monitor is proactive where it

performs a central sampling to estimate the incoming

heartbeat. When the estimation has elapsed, the monitor raises

a suspicion of the node failure if no heartbeat is received.

Therefore, one of the concurrent processes needed is to find

the optimal Hmax to predict the next heartbeat. Another

concurrent process is the timer that would count down the

delay provided by Hmax so that a fault can be detected

immediately within the timeframe.

 The flowchart in Figure 1 describes the proposed flow of

fault detection program. The flowchart describes the process

in the while loop. First of all, in the loop the flag TIMEUP is

polled to see if it is set indicating a timeup has happened in

previous loop. If it is, the ping request is sent to the monitored

node to confirm its status. If ping request returns node

unreachable the failure is confirmed. At this point the program

will enter recovery mode. If otherwise, ping reply is received

the node is confirmed to be still alive and the Heartbeat

Monitor (HBM) program will clear the TIMEUP flag

indicating it is no longer a suspicion. The threshold value is

reset to initial value to begin resampling. If the loop is entered

and TIMEUP flag is clear it means that previously the node

was acting like expected i.e. no time up did happen.

Figure 1: Flowchart of Fault Detection Process

In this case the program goes straight to assigning the timer

with the threshold value. The threshold value was calculated

in previous receive signal handler if it is not the initial value.

Subsequently, a new child process is created. Inside the child

process, socket connection is reestablished. After that it will

listen indefinitely to the socket for heartbeat message. After a

message is received it then checks if it is the right heartbeat

message. If it is indeed the right message, the child process

sends a signal to parent process to make interrupt to program.

The signal handler is entered and in here the time is stamped

to obtain the heartbeat inter-arrival time. Also the threshold

value is recalculated. If the heartbeat did not arrive in time, the

timer will elapse and this will cause interrupt to program. The

program will enter the handler and in here the TIMEUP flag is

set. The process continues for each loop.

A Design and Implementation of Cluster Heartbeat Network for Efficient Fault Detection

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4 103

A. Process Duplication

High concurrency is needed for both processes because

RFD is time sensitive and precision is important. Concurrent

computation brings complexity in implementation and

different techniques give different level of concurrency.

Perceived concurrency is when tasks seem to be running

simultaneously but in fact they are not as they take turn to run,

saving one process’s state to only continue after another

process completes. This is the case when multithreading is

done on single-core processor. In this paper however, the

approach is process duplication instead of multithreading.

Therefore, it achieves true concurrency on single core

machine. In process duplication, concurrency is achieved by

deploying new processes from the original process. Interaction

among the processes is enabled using interrupt signals. The

important considerations are identified as following:

i. In RFD implementation, interaction between processes

is required because a process will need to stop the other

when certain events have occurred while both are run

concurrently. That is, when a heartbeat is received, the

timer should be unset whereas if the timer elapses

before any heartbeat is received, the monitoring activity

should be stopped.

ii. Also in RFD, the processes need to use the same

resource clock for their complementary computations.

In the one process, time taken for the heartbeat to come

is calculated, while the second process will signal if the

time taken in the first process is exceeding Hmax. If the

processes are run on different cores as in parallel

programming, the clock rates might be slightly

different. For this reason, the time computation must be

done at one process or core only to achieve precision.

iii. Race condition is a common problem in concurrency

programming. Processes or threads that use same

memory may change it while others are still using it.

Precautions must be taken to avoid this as it can give

wrong results in RFD calculation. Using process

duplication, this is avoided naturally because after a

process is duplicated, it has its own copies of variables

inherited from original process.

B. Process Termination

Process termination is necessary in the proposed design in

two situations. Firstly, when a heartbeat has arrived, the timer

process should be canceled and secondly when the timer has

elapsed, the process should stop waiting for heartbeat as a

suspicion for fault needs to be serviced. Practically, two

parallel processes will cancel the other when one of two events

occurs first.

C. Concurrent Tasks

The algorithm in Figure 2 describes the fault detection

process. There are two tasks that must be run concurrently. By

sending a signal, the task that gets to finish first will terminate

the other task and determines the mode in the next loop;

whether to continue monitoring or begin suspecting the node.

In this implementation, the tasks are developed in C language

using a number of POSIX libraries.

The program loops for the continuous monitoring of

heartbeats. In each loop two concurrent processes are started;

the waiting of heartbeat messages, and the timing of the

waiting process.

//Start while loop:

initialize H
create socket

if (TIME UP flag is set) ; ping node
if (node echo reply) ; status = OK

else status = FAIL; initiate recovery

else if (TIME UP flag is clear)
set H to alarm timer

create child process; accept socket connection with node

just wait for heartbeat
if (correct heartbeat message arrived)

send receive signal to parent process

else notify that wrong message is received

//End while loop

//Signal Handler 1: For heartbeat receive:
unset timer to stop alarm

update sampling and the next expected value for H

terminate child process

//Signal Handler 2: For timer elapsed for heartbeat expectation:

unset timer to stop alarm
set TIME UP flag

terminate child process

Figure 2: Algorithm for Heartbeat Monitor

Parent process will call fork() to create a new child process

in each loop. In the new child process socket connection is

reestablished and timer restarted for the heartbeat expectation

lapsing in the parent process. Subsequently, the child process

is terminated by the parent either because heartbeat has been

received or not been received within time. If the heartbeat

arrives in time, a signal called SIGUSR1 is sent to the parent

process which will be serviced by Signal Handler 1.

Otherwise, if the timer elapsed before any heartbeat is

received, a signal called SIGALARM is generated by the timer

class to the parent process which will be handled by Signal

Handler 2. In Signal Handler 1 and Signal Handler 2, parent

process generate terminating signal called SIGTERM to the

waiting process (child process).

D. Confirming Failure

Under some circumstances the node fails to send a heartbeat

or a heartbeat simply cannot reach the monitor in time even

when the node is running like usual. This could be due to CPU

loads or network latency. In order to be precise and not draw a

false presumption about the node, the monitor program will

utilize ping command to determine the status of the missing

heartbeat node. If a reply is received, the node is no longer in

suspicion and the monitor program will reset the threshold to

its initial value. It is necessary to reset the threshold and restart

the monitoring process to draw a new assimilation of the

network and server state as previous assimilation has been

interrupted and is no longer relevant for the new state. On the

other hand, if there is no reply and the ping utility concludes

that the host is unreachable, the monitor program will declare

the state of failure for the node and will enter a recovery

mode.

Journal of Telecommunication, Electronic and Computer Engineering

104 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4

IV. EXPERIMENT

In this experiment, the proposed cluster heartbeat network is

tested in a distributed environment created with virtual
machines on the hypervisor VMWare on a single-core, 8GB
RAM machine. Using the hypervisor, a cluster of servers
hosting web applications are connected on a private network
to a monitoring server (for fault detection) and an indexing
server (for fault recovery). Users are able to access the web
applications through a proxy server that is also connected on
the private network. For this purpose, several network types
are specified on the hypervisor; which are NAT for the proxy
and Host-only for the private network. The web servers also
contain replication of each other in a setup called neighbor
replication for the purpose of recovery. Ideally, when a node
fails, its replica is activated somewhere else inside the cluster.
On user side, these changes are masked as it happens behind
the proxy.

Once live monitoring is started, the nodes begin sending
heartbeats to the monitor. Initially, the values of maximum
heartbeat delay, Hmax are preset. It gradually changes to
become closer to the actual heartbeat inter-arrival time. This is
depicted in figure 4. It can be said, over time Hmax gives
representation of the network and CPU condition of the node.
In effect, the increase in CPU load will cause more delay in
heartbeat delivery. Ping latency is also affected by network
condition and CPU load, however the prototype does not
consider the latency in the fault detection calculation.

In this work, the failure detection is designed to respond to
three failure causes. They are server total fault in which case
the server is completely failed, network cut or instability
which could be temporary or permanent or heartbeat generator
malfunction. The monitor detects failure if socket accept
returns fail for three consecutive times without having to
confirm on ping echo reply. This is because server is still alive
but not able to send heartbeat that could be due to port
malfunction or heartbeat generator program hang/terminated.
This is also a state of malfunction since no heartbeat
essentially means monitoring cannot be performed. But it may
not be necessary to invoke a fail-over recovery because server
may still be alive. The failure causes were simulated to
observe the results. In the first fault test, the node was stopped
by pausing the VMWare player. In the second test, the
network card on monitored node was shut down using
terminal command line. In the last test, the heartbeat generator
program was terminated during execution. All these fault
simulations are detected promptly by the HBM program.

The recovery action is initiated after the failure has been
detected. As a result, the service is restored from a different
server and users do not experience significant downtime as the
detection and recovery happen very quickly. It is observed that
fault tolerance has been achieved

Figure 3: Expectation of next heartbeat adapting to inter-arrival time

V. CONCLUSION

Fault detection is the primary prerequisite to achieve a fault

tolerant system. The efficiency of recovery also relies on the

accuracy and timeliness of the fault detection. Efficient fault

detection is prompt, correct and complete. The technique

called Reactive Failure Detection (RFD) dynamically predicts

a heartbeat delay from a cluster node. As a result, it is

effective in changing environments. To deploy RFD, a cluster

heartbeat network with concurrency is required. In this work,

push and pull interaction is used during live monitoring and

determining node’s status. The prototype of the new model has

been tested in a platform running multiple independent web

applications and observed for its implementation and design

correctness. Furthermore, with a recovery plan, a node failure

is promptly recovered, giving uninterrupted service to users.

The system that employed RFD technique with a recovery

plan has been observed to become tolerant to node failures.

The design and implementation of cluster heartbeat network to

detect failures using efficient technique have been presented in

this paper.

ACKNOWLEDGMENT

The research was supported by the Ministry of Science,

Technology and Innovation (MOSTI) of Malaysia. (Grant No.

52074)

REFERENCES

[1] Falai, L. and Bondavalli, A. (2005), “Experimental Evaluation of the

QoS of Failure Detectors on Wide Area Network,” International
Conference on Dependable Systems and Networks (DSN’05), pp. 624–
633.

[2] Fu, S. (2010), “Failure-Aware Resource Management for High-
Availability Computing Clusters with Distributed Virtual
Machines,” Journal of Parallel and Distributed Computing, vol. 70, pp.
384–393.

[3] Kaur, A. and Verma, S. (2015), “Performance Measurement and
Analysis of High-Availability Clusters,” SIGSOFT Softw. Eng. Notes,
vol. 40, pp. 1–7.

[4] M. Noor, A. S. and M. Deris, M. (2012), “Fail-stop Failure Recovery in
Neighbor Replica Environment,” Procedia Computer Science,
vol. 19, pp. 1040–1045.

[5] Noor, A.S.M., Deris, M.M. (2010), “Failure recovery mechanism in
neighbor replica distribution architecture” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and

A Design and Implementation of Cluster Heartbeat Network for Efficient Fault Detection

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 4 105

Lecture Notes in Bioinformatics), 6377 LNCS (M4D), pp. 41-48.
Springer Verlag

[6] Mamat, R., M. Deris, M., and Jalil, M. (2004), “Neighbor Replica
Distribution Technique for Cluster Server Systems,” Malaysian Journal
of Computer Science, vol. 17, pp. 11–20.

[7] Mitchell, M., Oldham, J., Samuel, A. (2001), Advanced Linux
Programming, pp. 45-60, 95-129, Indiana USA, New Riders Publisher.

[8] Schmidt, K. (2006), “High Availability and Disaster Recovery Concepts,
Design, Implementation”. Berlin London: Springer

[9] Shi, L., Yang, S. and Zhang, Q. (2010), “Research and Analysis of
Adaptive Failure Detection Algorithm,” 3rd International Symposium on
Computer Science and Computational Technology, pp. 21–24, Academy
Publisher.

[10] Zakaria, A., Awang, W., Mohamad, Z., Rose, A., and M. Deris, M.
(2010), “Improving Response Time, Availability and Reliability
Through Asynchronous Replication Technique in Cluster Architecture
of Web Server Cluster,” in Database Theory and Application,

Communications in Computer and Information Science, vol. 118, pp 29-
36, Springer

[11] Noor, A.S.M., Deris, M.M. (2009), “Extended heartbeat mechanism for
fault detection service methodology” Communications in Computer and
Information Science, 63, pp. 88-95. Springer Verlag

[12] Matsudaira, K. “Scalable Web Architecture and Distributed Systems”
Architecture of Open Source Applications.
http://www.aosabook.org/en/distsys.html.
Accessed on 22 January 2015.

[13] Khan, F. G., Qureshi, K., and Nazir, B. (2010), “Performance Evaluation
of Fault Tolerance Techniques in Grid Computing System,”
Computers & Electrical Engineering, vol. 36, pp. 1110–1122

[14] Butenhof, David R.(1997) “Programming with POSIX threads.”
Addison Wesley Professional.

[15] Lea, Douglas (2000) “Concurrent programming in Java: design
principles and patterns”. Addison-Wesley Professional

