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PUBLICATION THESIS OPTION 
 
The purpose of Sections 1-3 is to provide detail beyond that presented in the journal 

manuscript which is included on pages 14-39.  The paper in this thesis was submitted on 

March 6th, 2009 as a journal article in the Practice Periodical of Hazardous, Toxic, and 

Radioactive Waste Management.  Section 4 contains supplementary additions to this 

submittal and has been added for purposes normal to thesis writing. 
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ABSTRACT 
 

Contaminant source release history is a necessary element of contaminant mass 

transport simulation in the saturated zone.  The source release history is unknown at 

many sites, and many inverse models have been developed to define finite release 

histories.  To define a likely domain of three source history parameters, a mass balance-

based one dimensional approach is developed and tested by discretizing the spatial 

domain into bands.  By incorporating the approach in a spreadsheet model, observed data 

is represented by both variable length and constant length bands of analysis.  Each 

representation of observed data was tested to determine the most appropriate band 

geometry for improved model calibration and constant length bands results were more 

accurate than results of variable length bands.  The source history parameter domains 

predicted by the model are then evaluated with Monte Carlo analysis.  After datasets of 

artificial transport systems are developed and evaluated with the model, actual site data 

from a Superfund site is input to the model that provides reasonable results of the source 

history parameters.  Limitations of the model require site characteristics that include 

negligible diffusion, a uniform regional flow field, and isotropic and homogeneous 

aquifer media. 
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1. INTRODUCTION 
 
1.1 GROUND WATER FLOW AND MASS TRANSPORT CONCEPTS 
 

Ground water is a valuable resource that acts as a primary drinking water source 

for many Americans.  Ground water flow calculation is often necessary to characterize a 

drinking water source, measure the extent of a polluted aquifer, or perhaps evaluate other 

ground water parameters of interest.  Fetter (2001) evaluates average linear ground water 

velocity 푣  with Darcy’s law as 

푣 =  −
퐾
푛  

푑ℎ
푑푙   (1) 

where 

퐾 =  hydraulic conductivity 

푛 =  effective porosity 

=  hydraulic gradient 

Diffusion of subsurface contaminants involves the molecular interaction between 

ground water and contaminants where higher concentrations of contaminants migrate to 

areas of lower concentrations (Fetter 2001).  This form of contaminant transport is often 

subordinate to advective transport.  Spitz and Moreno (1996) describe advective 

contaminant transport as the mass transport caused by the movement of groundwater 

flow.  When isotropic homogeneous aquifer properties are present, Fetter (2001) and 

other texts present the governing equations of advective contaminant transport with 

Darcy’s law in Equation 1.  
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Contaminant retardation impedes the actual contaminant velocity from 

transporting at the same rate of ground water velocity. Spitz and Moreno (1996) define 

retardation 푅 as 

푅 =  1 +
(1− 푛)휌

푛  퐾  푓   (2) 

where  

푛 =  porosity 

휌 =  density of dry matrix material in units of mass per volume 

퐾 =  organic carbon partition coefficient for an organic solute under consideration in 

units of volume per mass 

푓 =  weight fraction of organic carbon in soil material 

1.2 SUBSURFACE CONTAMINANT MODELING CONCEPTS 
 

Numerical analysis of subsurface contaminant transport is often required to solve 

problems encountered by Remediation Engineers, and spreadsheet software applications 

are commonly used among practitioners for transport system evaluation.  Typical point 

source subsurface contaminant modeling involves a release from a given location at a 

known concentration and known aquifer parameters.  In practice however, these 

parameters are often approximated with a range of values or they are unknown.  At many 

sites, monitoring wells are used to collect observed data to characterize contaminant 

plumes and estimate the extent of the contaminant system.  When the source parameters 

are unknown, inverse modeling with observed data is a method to approximate the 

transport system history parameters.  Instead of rigorously defining the source history, the 

method presented in this paper involves mass balance-based inverse modeling that 

provides a likely domain of source history parameters, which is developed and tested 
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with both synthetic and real data.  The source history parameters of interest include the 

initial concentration 퐶 , the time since the contaminant release began 푡 , and the elapsed 

time of the contaminant release 푡 .  The method is applicable at sites where the Dupuit 

theory of equipotential lines may be assumed to describe hydraulic gradient of the 

phreatic surface and the assumption of isotropic and heterogeneous aquifer media is 

appropriate. 

The Van Genuchten and Alves (1982) solution to the advection dispersion 

equation for contaminant transport given a rectangular source release of magnitude 퐶  for 

푡  is 

퐶(푥, 푡 ) = 퐶
푣

푣 + 푤
푒푥푝

(푣 − 푤) ∙ 푥
2 ∙ 퐷

 푒푟푓푐
푅 ∙ 푥 − 푤 ∙ 푡
2 ∙ 퐷 푅 ∙ 푡

  (3) 

for 0 < 푡 ≤ 푡  

where 

푤 = 푣 ∙ 1 +
4푘퐷 푅
푣  

푡 = time of the contaminant release 

and 

퐶(푥, 푡 ) = 퐶
푣

푣 + 푤 푒푥푝
(푣 − 푤) ∙ 푥

2 ∙ 퐷  푒푟푓푐
푅 ∙ 푥 − 푤 ∙ 푡
2 ∙ 퐷 푅 ∙ 푡

 

−푒푟푓푐
푅 ∙ 푥 − 푤 ∙ (푡 − 푡 )
2 ∙ 퐷 푅 ∙ (푡 − 푡 )

 

    (4) 

 

for 푡 ≥ 푡  
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where 푡  is the time since the start of the release.  The solution is based on the 

assumptions that advection and dispersion occur in a uniform regional flow field with 

constant ground water velocity and homogeneous, isotropic aquifer properties. 

Model calibration of inverse model applications is often necessary to provide a 

reasonable match of observed and predicted data.  One method described by Spitz and 

Moreno (1996) involves a trial and error approach that requires input parameter variation 

to reduce differences between observed and predicted data.  Model error is recorded over 

a large input parameter domain to locate regions of model accuracy improvement.  In 

practice, modelers often employ automated iteration software to perform otherwise 

tedious calculation to conduct this procedure.   

Calibration accuracy may be assessed with several calibration parameters.  Spitz 

and Moreno (1996) recognize several calibration parameters to assess the goodness of fit 

between predicted and observed data that include the root mean square error 푅푀푆퐸, the 

coefficient of determination 퐶퐷, the modeling efficiency 퐸퐹, and the coefficient of 

residual mass 퐶푅푀 where 

푅푀푆퐸 =
(푃 − 푂 )

푛

/
100
ō       (5) 

 

퐶퐷 =
∑ (푂 − ō)
∑ (푃 − ō)       (6) 

 

퐸퐹 =
∑ (푂 − ō) −∑ (푃 − 푂 )

∑ (푂 − ō)      (7) 
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퐶푅푀 =
∑ 푂 − ∑ 푃

∑ 푂      (8) 

where 

푂 = observed value 

표̅ =  mean observed value 

푃 =  predicted value 

푛 =  number of values 

After the model calibration is complete, model verification with observed 

physical data is used to improve the confidence of the calibration results.  For 

contaminant transport systems, one verification method described by Spitz and Moreno 

(1996) requires actual field data to be incorporated into the model and contaminant 

concentrations are predicted at a future time.  These predicted values are then compared 

with actual data collected on the future date used to predict concentration data. 

1.3 STATISTICAL CONCEPTS 
 

Summary statistics of sampled datasets that include the median 푋, the mean 푋, the 

standard deviation 푠, and the geometric mean 푥  are useful to assess subsurface 

contaminant transport parameters.  These variables are defined by Hensel and Hirsch 

(2002) as 

푋 =  푋( )/    when 푛 is odd     (9) 

푋 =  푋( / ) + 푋  when 푛 is even     (10) 

푋 =  
푋
푛

     (11) 
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푠 =
(푋 − 푋)
푛 − 1      (12) 

푥 = (푋 )     (13) 

where 

푛 =  total number of observations in the sample dataset 

푋 = the 푖  observed data value in the sample dataset 

The coefficient of variation 퐶푂푉 is another useful transport modeling statistic that 

estimates the relative standard deviation of a dataset as defined by Gilbert (1987) where 

퐶푂푉 =
푋
      (14) 

Ground water datasets with small sample sizes pose challenges for engineers to 

evaluate and compare data.  Hensel and Hirsch (2002) recommend testing a dataset for 

normality prior to statistical comparison of the dataset to other datasets with parametric 

statistical tests that assume normal distributions for each dataset.  If normality of a dataset 

is rejected, non-parametric statistical comparison is recommended.  A common 

parametric statistical test used to compare two datasets is the student’s t-test.  According 

to Navidi (2006), the two tailed student t-test statistic 푡 of two groups with unequal 

variances is calculated as 

푡 =
(푋 − 푌)

푠
푛 + 푠

푛

 

 

    (15) 

where 

푋 =  the mean value of dataset 푋 
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푌 =  the mean value of dataset 푌 

푠  = the sample standard deviation of sample data within dataset 푋 

푠  = the sample standard deviation of sample data within dataset 푌 

푛  = the number of sample data within dataset 푋 

푛  = the number of sample data within dataset 푌 

The degrees of freedom 푑푓  for the student’s t-test is approximated as 

푑푓 =

푠
푛 + 푠

푛
(푠 /푛 )
푛 − 1 −

(푠 /푛 )
푛 − 1

     (16) 

and rounded down to the nearest integer.  The null hypothesis 퐻  is defined as not having 

significant difference between the two datasets 푋 and 푌.  To reject 퐻  at an arbitrary level 

of confidence 훼, the following criteria must be met where 

푡 > 푡 ,( )     (17) 

where 

푡 ,( ) = the critical student’s t-value obtained from a t distribution table at 

specified values of 훼/2 and 푑푓 

When comparing two non-normally distributed datasets, Hensel and Hirsch 

(2002) note that the Mann-Whitney nonparametric test has more power than the student’s 

t-test to recognize significant difference between two independent datasets.  According to 

Navidi (2006), the values of both groups of data are combined and ordered from smallest 

to largest and assigned a rank from one to 푛 + 푛 . The larger dataset is denoted as 

푌 ,푌 , … ,푌  and the dataset with the smaller sample size is denoted as 푋 ,푋 , … ,푋 .  

Next, the Mann-Whitney test statistic 푊 is calculated by summing the ranks 
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corresponding to the each value within the 푋 dataset.  The Mann-Whitney 퐻  is defined 

as not having significant difference between the two datasets and the p-value is 

determined from a table of Wilcoxon rank-sum critical points.  Navidi (2006) defines the 

p-value as a measurement of H0 plausibility where smaller p-values suggest more 

evidence to reject 퐻 .  Therefore, if the p-value is less than the chosen level of 훼, 퐻  can 

be rejected.  
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2. EXPERIMENTAL DESIGN AND WORK NARRATIVE 
 

The initial phase of experimental design involved the Dawson (1995) model, 

which predicted 퐶  at coordinates of 푡  and 푡 .  Bands of analysis were incorporated over 

a contaminant system modeled with Dawson’s model to determine the most appropriate 

band geometry that led to best model calibration improvement.  Microsoft Excel with 

Visual Basic Application was used as the spreadsheet model software. 

Synthetic contaminant system development required generation of artificial 

datasets that accurately represented a rectangular pulse release transport system.  Known 

values of 퐶 , 푡 , and 푡  were input to the model and 1,000 concentrations were produced 

in spatial increments of five meters over a 5,000 meter contaminant plume.  Subsets of 59  

(퐶,푥) data points were chosen with a uniform random number generator to develop 

uniformly random spatial distributions of observed concentrations along the artificial 

transport system.  This process was repeated three times at different known values of  퐶 , 

푡 , and 푡  to synthesize three datasets illustrated in Figures 1-3 that each represent a 

synthesized rectangular pulse release contaminant transport system. 

 
Figure 2.1: Simulated Data where tr =24 and ts =22 
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Figure 2.2: Simulated Data where tr=20 and ts=16.5 

 
 
 

 
Figure 2.3: Simulated Data where tr=16 and ts=11  

 
 
 

Each synthetic contaminant transport system was overlaid by rectangular bands of 

analysis to summarize observed data along the plume length.  Initially, variable length 

bands were expected to reduce observed data variability by manually adjusting their 

lengths parallel to the direction of contaminant transport.  However, when constant length 

bands were used, the model calibration results improved. 

 Spreadsheet automation with Visual Basic for Applications was incorporated into 

the Microsoft Excel spreadsheet model to develop contours of calibration parameters 
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described in Equations 6-9 that would otherwise not be feasibly manually calculated.  A 

broad region of 푡  and 푡  was defined where 푡  varied between eighteen and twenty-three 

years and 푡  varied between eleven and sixteen years.  Increments of 0.2 years along the 

ranges of 푡  and  푡  were defined and values of each calibration parameter was recorded 

at each time value set of 푡  and 푡 .  The calibration parameter most sensitive to the actual 

values of 푡  and 푡  was 푅푀푆퐸.  Time value pair locations at which 푅푀푆퐸 was most 

reduced were within 10% of the actual values of 푡  and  푡   in each simulation of the 

three synthetic transport systems. 

Monte Carlo (MC) simulation was used for stochastic evaluation of a reasonable 

domain of the source history time parameters 푡  and 푡 .  Elmore (1996) describes this 

technique as a useful tool to evaluate the uncertainty of solutions developed with 

deterministic methods in water resources.  Different sets, or realizations, of random 

independent input variables with assumed log normal distributions are input parameters 

to a set of governing equations.  The ensemble of output parameters are randomly 

distributed and statistically summarized to predict likely values of 푡  and 푡  within the 

domain of 푡  and 푡 . 

Input into the MC model included two coordinates of 푡  and  푡  that characterize a 

rectangle used to approximate a contour of 푅푀푆퐸.  Additional input included the 

rectangle’s length and width, which identify range boundaries for the realization 

parameters described below and illustrated in Figure 4.  Because the contours are best 

approximated with a rotated rectangle illustrated in Figure 4, rotation/translation 

equations were developed to input the corresponding values of 푡  and  푡  into the 

spreadsheet model as 
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푡 = y′ + (푋 + 푌 ) sin tan
X
Y

+ tan (m′)     (18) 

푡 = x′ + (푋 + 푌 ) cos tan
X
Y

+ tan (m′)     (19) 

where 

y′  = the value of  푡  along the y-axis corresponding to the rectangle’s lowest corner 

x′  = the value of  푡  along the x-axis corresponding to the rectangle’s lowest corner 

푋 = the rotated x-axis variable 

푌 =  the rotated y-axis variable 

and 

푚 =
푦′ − 푦′
푥 ′ − 푥 ′

    (20) 

where 
 
푚’ = the offset slope of the rectangle 

 
Figure 2.4: Illustration of translation/rotation equation variables 

ts

t r

Y

m'

1.0

y'1

x'2x'1

y'2

X
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3. OBJECTIVES AND GOALS 
 

The objective of this research was to develop a one dimensional model with 

Microsoft Excel that provides reasonable estimates of source history parameters in a 

contaminant transport systems when certain site criteria are met.  This approach provides 

a point of departure for more sophisticated modeling application and reduces the time 

requirement for modelers to characterize contaminant systems with more complex 

methods of software evaluation.   The model was developed in Microsoft Excel because 

of its low cost and practitioner familiarity. 

The method of analysis band application to summarize observed data was 

hypothesized to affect model calibration.  Both variable length bands and constant length 

bands were rigorously evaluated to determine which approach would provide more 

accurate source history parameter estimates.  Upon achieving acceptable source history 

parameter accuracy with synthetic transport systems, the model was applied at a 

Nebraska Superfund Site to assess an actual contaminant transport system. 
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Abstract 

The definition of contaminant source release is a necessary element of contaminant mass 

transport simulation in the saturated zone.  At many sites the release history is unknown, 

and there has been a significant body of research to develop inverse models to define 

finite release histories.  Instead of rigorously defining the source history, a mass balance-

based approach is tested to explicitly account for uncertainty in rectangular pulse release 

variables.  The approach has been incorporated into a spreadsheet model which uses a 

one-dimensional solution to the advection dispersion equation, which readily lends itself 
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to Monte Carlo applications.  After the model was tested with synthetic datasets, the 

model was calibrated and verified using a concentration dataset collected at a Superfund 

site.  Model calibration with synthetic and actual data resulted in a reasonable domain of 

source history parameters and the model provided reasonable results when the mass of 

contaminant in the aquifer was assumed to be random.  

Introduction 

The classic approach for modeling mass transport in a groundwater system requires 

initiating the simulation with the release of the contaminant to the system.  Thus the 

conceptual model and subsequent analytical and numerical transport models require 

characterization of the source location and the source release function.  There is a 

significant body of literature that addresses the identification of groundwater 

contamination sources as summarized by Michalak and Kitanidis (2004), Sonnenborg, et 

al. (1996), and Hill and Tiedeman (2007).  Some representative works include Domenico 

and Robbins (1985) which developed the extended pulse model to identify unknowns 

including the source concentration, source dimensions, the time of when the contaminant 

first entered the groundwater, the position of the center of mass, and the groundwater 

dispersivities.  The authors acknowledged that unique solutions were not likely using 

field data although the model was useful for placing reasonable bounds on the unknowns.   

Ala and Domenico (1992) developed a two-dimensional analytical method called the 

two-well solution to find the unknowns associated with a finite plane source.  Skaggs and 

Kabala (1994) evaluated complex contaminant release histories (that is, releases other 

than continuous or rectangular pulses) using Tikhonov regularization.  One of the 

conclusions of their work was that plume history could be adequately recovered if 
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dispersion was relatively minor compared to advection even if the concentration 

measurements contained moderate random errors.  A similar conclusion was developed 

by Alapati and Kabala (2000) who used a non-linear least-squares method without 

regularization to recover the release history of a source with a known location.   Skaggs 

and Kabala (1998) also provide limitations when developing the release history of a 

source with observed data.  These include the time since the release, which can be better 

estimated as the actual time since the release decreases.  They show that deconvoluting 

solute transport systems is an ill-posed problem with solutions that improve as the quality 

of observed data improves.  This sensitivity poses a significant issue to pragmatic 

application of contaminant release history characterization with field datasets.  Newman 

and de Marsily (1976) show that applying least squares to an ill-posed problem will likely 

contain severe oscillations because of the problem’s sensitivity to observed measurement 

error.   

Elmore (2007) used concentration data collected using a direct push drill rig to estimate a 

subset of the source parameters including the time since the source release 푡 , the 

duration of the release 푡 , and the concentration of the source 퐶 , for a rectangular pulse.  

That work introduced a one dimensional (1D) spreadsheet model that could be used to 

estimate 푡 , and 푡 , by manual iteration with C0 as a dependent variable assuming that the 

source location was known.  Much of the previous work focused on developing finite 

definitions of source history.  The focus of this paper is to explicitly account for source 

history uncertainty through the development and application of stochastic mass transport 

model without necessarily identifying a single finite source history.  The approach 

initially developed in Elmore (2007) will be expanded to develop a mass-balance basis to 
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determine a reasonable domain of 푡 , 푡 , and 퐶  with a solution developed with iterative 

model calibration automation using synthesized observed data. The approach is then 

applied using site concentration data from a Nebraska Superfund site. 

Methodology 

Model Development 

The governing equation for mass advection, dispersion, degradation, and sorption in a 

one-dimensional flow field is 

푅
휕
휕푡
퐶 = −푣 ∙

휕
휕푥

퐶 + 퐷 ∙
휕
휕푥

퐶 − 푘 ∙ 푅 ∙ 퐶    (1) 

 
where 퐶 is the solute concentration, t is time, 푣  is the average pore water velocity in 

longitudinal direction of flow, x is longitudinal distance from source, 퐷  is the 

longitudinal dispersion coefficient, and 푘 is the net degradation rate constant.  The 

retardation factor for linear, equilibrium sorption 푅 is defined by Spitz and Moreno 

(1996). 

The Van Genuchten and Alves (1982) solution to Equation 1 was incorporated into a 

spreadsheet application developed by Dawson (1995) given a rectangular source release 

of magnitude 퐶  for 푡  and 푡 .  The solution is based on the assumptions that advection 

and dispersion occur in a uniform regional flow field with constant ground water velocity 

and homogeneous, isotropic aquifer properties. 

A dependent relationship between the mass release variables 퐶  and 푡  may be developed 

using a mass balance approach by assuming that the groundwater plume has constant 

rectangular dimensions with width 푊, thickness 푏, and length 푥 , as defined by 

Elmore (2007). The plume is then divided into analysis bands oriented normal to the 
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direction of flow.  Given a constant concentration 퐶  for each band, which is the 

arithmetic average of predicted concentrations in band 푗, the total mass in solution in the 

aquifer is  

푀 = 푛 ∙ 푊 ∙ 푏 퐶 ∙ 퐿     (2) 

 
where 푛 is the aquifer porosity, 푚 is the total number of analysis bands, and 퐿 is the 

length of each band parallel to the direction of flow. The normalized total mass in the 

aquifer is defined as 

푀′ = 퐶 ∙ 퐿     (3) 

 
where  
 

푀 =
푀

푛 ∙ 푊 ∙ 푏  
 
Spitz and Moreno (1996) give the following equation for the total contaminant mass per 

unit aquifer volume 

∆푀 = 퐶 ∙ 푛 + 퐶 ∙ (1 − 푛) ∙ 휌        (4) 
 
where 퐶  is the adsorbed concentration measured as mass of contaminant per mass of dry 

aquifer matrix material and 휌  is the density of solids in the aquifer.  The adsorbed 

fraction is also related to the dissolved concentration according to the linear adsorption 

isotherm equation which may be expressed as 

퐶 = 퐶 ∙ 푓표푐 ∙ 퐾          (5) 
 
where 푓표푐 is the fraction organic content and 퐾  is the organic carbon coefficient.  

Substituting Equation 5 into Equation 4 and using the Spitz and Moreno (1996) definition 

of 푅 gives 
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∆푀 = 퐶 ∙ 푛 ∙ 푅         (6) 
 
The total mass 푀  in the aquifer is the product of the rectangular aquifer volume and ∆푀 

which results in 

푀 = 푛 ∙ 푅 ∙ 푊 ∙ 푏 ∙ 퐶 ∙ 퐿     (7) 

 
Thus the normalized total mass in the aquifer at the time that the dissolved concentrations 

are measured is defined as 

푀′ = 푅 ∙ 퐶 ∙ 퐿     (8) 

 
where 

푀 =
푀

푛 ∙ 푊 ∙ 푏
   

 
The total mass released to the aquifer by a rectangular pulse through a finite plane with a 

height b and a width 푊 is given by 

푀 = 푣 ∙ 푛 ∙ 푊 ∙ 푏 ∙ 푡 ∙ 퐶         (9) 
 
which can be normalized as 

푀′ = 푣 ∙ 푡 ∙ 퐶          (10) 
 
If there is no mass decay, the total mass in the aquifer estimated at the time that the band 

concentrations are measured is equal to the total mass released to the aquifer, and 

Equation 8 can be substituted into Equation 10 and solved for the initial concentration 

퐶 =
푅

푣 ∙ 푡
∙ 퐶 ∙ 퐿     (11) 

 
Solutions to the 1D form of the governing equations are readily available in spreadsheet 

form, and several spreadsheet models are available for free download at the U.S. 
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Environmental Protection Agency (USEPA) website.  The use of a spreadsheet makes the 

manipulation of site concentration data to calculate the 퐶  values relatively trivial, and the 

model developed by Dawson (1995) solution was modified to incorporate Equation 11.  

Following the mass balance approach used to derive Equation 11, two calibration 

variables are defined as 푂 the normalized mass observed and 푃 the normalized predicted 

mass by  

푂 = 퐶 ∙ 퐿           (12) 
 

푃 = ∆푥 ∙ 퐶 (푥 , 푡 )    (13) 

 
where 퐶  is the model predicted concentration at the points 푥 ,푥 , … , 푥  that land within 

band 푗, and the points are separated by the distance 

∆푥 =
퐿
푛

    (14) 

 

where 푛 denotes the total number of predicted concentration points along the entire 

plume length. The use of 푂 and 푃 allow the calculation of paired-data calibration 

parameters including the root mean square error given by Spitz and Moreno (1996) as 

RMSE= 
100
Ō

∙ Pj-Oj
2

m

j=1

    (15) 

 

where Ō is the mean of the observed values. 

Model calibration consists of the iterative evaluation of model parameters, 푡  and 푡  in 

this case, to identify the combination of parameters that result in the best calibration 

parameter value.  One objective of this work is to identify the appropriate band definition 
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for the 1D model. The parameter 푅푅푀푆퐸 was defined below to allow the comparison of 

calibrated 푡  and 푡  domains for different model band definitions. 

푅푅푀푆퐸(푡 , 푡 ) =
푅푀푆퐸(푡 , 푡 )

min [푅푀푆퐸(푡 , 푡 )]    (16) 

 

where 

푅푀푆퐸(푡 , 푡 ) is the set of 푅푀푆퐸 values calculated for each pair of 푡  and 푡  values 

iteratively evaluated for a specific set of simulations. The minimum value of 푅푀푆퐸 

varies in each simulation in a given domain of 푡  and 푡 .   

Five analysis bands meet the minimum requirements to accommodate the distance 

concentration curve geometry.  The curve has an upwards slope, a plateau, and a 

downward slope, which is illustrated by the predicted concentration curve in Figure 1.  

Each slope requires at least two analysis bands and the plateau requires a minimum of 

one analysis band to best represent the curve’s geometry.  Three points were chosen as a 

minimum permissible number of observed points within each band because less than 

three observed points would degrade the quality of the band’s observed data summary 

statistics. Application of this criterion led to the identification of a maximum number of 

analysis bands for each simulation. 

Model input allowed either constant length bands or variable length bands to represent 

observed data. An objective of the paper was to determine which of these two band 

combination better represented the observed values. Model calibration with variable 

length bands introduces additional complexity depicted by Equation 12. If a single band’s 

length 퐿  is significantly different from the other variable length bands in a simulation, 
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the representative quality of 푂  is likely decreased. To mitigate this potential, the criteria 

in Equation 17 were incorporated when selecting variable length band combinations. 

퐿 ≤ 2퐿  and 퐿 ≤ 1 2⁄ 퐿     (17) 
 

 By simulating concentration values at five meter increments over 5,000 meters using the 

Dawson spreadsheet model.  One dataset represented a roughly rectangular pulse release 

(푡 = 24 푦푒푎푟푠, 푡 = 22  푦푒푎푟푠, and 퐶 = 4,000 휇푔/푙), the second dataset represented a 

roughly triangular pulse release (푡 = 16 푦푒푎푟푠, 푡 = 11  푦푒푎푟푠, and 퐶 = 4,000 휇푔/푙), 

and the third dataset represented an intermediate pulse release (푡 = 20 푦푒푎푟푠, 푡 =

16.5  푦푒푎푟푠, and 퐶 = 4,000 휇푔/푙).  Field results were synthesized by selecting 59 

(퐶, 푥) pairs from each dataset using a uniform random number generator.  Two additional 

sets of 59 synthetic field data representing the intermediate (푡 = 20 푦푒푎푟푠, 푡 =

16.5  푦푒푎푟푠, and 퐶 = 4,000 휇푔/푙) release were similarly developed for further study. 

This method produced the highest quality observed data without measurement error. 

Figure 1 illustrates the random spatial distribution of one observed dataset sampled from 

an intermediate pulse release synthetically developed with the model. 

Results 

Twenty variable length band combinations with different geometry were evaluated to 

identify an effective model calibration mechanism.  Band lengths were adjusted in each 

simulation to reduce the observed data coefficient of variation (퐶푂푉) as defined by Ang 

& Tang (1975) within each band.  By reducing this statistic for each band, variable length 

bands were expected to improve the bands’ representative quality of observed data.  

When the twenty band combinations were applied to three synthetic datasets with 
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different values of 푡 , 푡 , and 퐶 , the 퐶푂푉 of every band’s observed data was within 0.66-

2.9.  The model calibration resulted in model accuracy of ±25 percent of the actual 푡 , 푡  

values when the 푅푅푀푆퐸 = 1.1 contour was used to determine a reasonable domain of 푡 , 

푡 , and 퐶 .  Other parameters including the coefficient of determination, the modeling 

efficiency, the relative percent difference, and the coefficient of residual mass defined by 

Spitz and Moreno (1996) were insensitive to variable band geometry.  The requirement of 

three observed data points to fall within each band prohibited band length adjustment that 

would further reduce this range of 퐶푂푉.  Another restriction for band length adjustment 

is provided in Equation 17, which suggests that band length variability must be governed 

to mitigate the negative effect of variable length bands on the normalized observed mass 

푂 .  Variable length bands did not improve calibration.  When variable length bands are 

used in the model, the direct relationship between 푂  and the band length 퐿  shown in 

Equation 12 may contribute to poor calibration because each calculated 푂  value will 

vary in response to both 퐶  and 퐿 . 

This issue does not occur when equal length bands are used because each 퐿  value has the 

same effect on the calculation of 푂 .  Equal length band combinations were applied over 

each dataset; each simulation was defined by its number of analysis bands.  The number 

of bands overlaid on each dataset ranged from five to nine to determine the optimum 

number of analysis bands for model calibration.  Calibration parameters were tested in 

each simulation and the normalized mass observed and predicted values were best 

calibrated with 푅푅푀푆퐸.  Several calibration parameters were insensitive to calibration 

improvement. These included the coefficient of determination, the modeling efficiency, 

the relative percent difference, and the coefficient of residual mass defined by Spitz and 
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Moreno (1996).  Model calibration provided results within ±10 percent of the actual 

solutions when 푅푅푀푆퐸 = 1.1 contours were developed with iterative computations in a 

specified domain of 푡  and 푡 .  Further analysis with the two additional datasets 

representing intermediate pulse releases verified this level of accuracy.  One dataset’s 

contours of 푅푅푀푆퐸 = 1.1 are graphically represented in Figure 2. 

The accuracy of the model was tested for each simulation by comparing the predicted 퐶  

value to the 퐶  value used to generate the synthetic datasets. For all simulations the 

predicted 퐶  was within ±10 percent of the actual value.  The predicted regions of 푡 , 푡 , 

and 퐶  illustrated in Figures 2 and 3 may be considered reasonable because they compare 

favorably with Skaggs and Kabala (1998) who used 33 percent as a threshold of accuracy 

when considering calibration results of synthesized transport systems. 

Application at a Former Nebraska Ordnance Site 

The spreadsheet model was applied to a trichloroethylene (TCE) dataset collected at a 

Nebraska Superfund site which has been the subject of prior groundwater modeling 

studies including Elmore (2007), Miller and Elmore (2005), and Elmore and DeAngelis 

(2004).  The unconfined aquifer at the site consists of glacio-fluvial sands and gravels 

where flow occurs through primary porosity and it is reasonable to assume that the 

Dupuit theory of vertical equipotential lines is valid for the aquifer.  The plume area of 

the aquifer has not historically been subject to large stresses such as irrigation pumping, 

and the plume is relatively far from flow and head boundaries.  Thus the assumption of 

steady uniform flow necessary to apply the Van Genuchten and Alves solution is 

reasonable for the subject plume.  A direct push groundwater investigation was 

conducted in 2002 and 2003 to characterize the extent of the TCE contamination whose 
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two dimensional representation can be seen in Figure 4.  TCE concentrations above the 

site action level of 5 휇푔 푙⁄   were detected in fifty-nine locations which defined an 

approximately rectangular plume shape with dimensions of 5,000 m (푥 ) by 550 m 

(푊).  One to six samples were collected at different depth intervals at each location, and 

no data other than TCE concentrations were collected during the investigation.  When 

multiple depth intervals were sampled at a single location, the arithmetic average of the 

results was assigned to the location to compress the three dimensional transport system 

into two dimensions.  The plume was then divided into constant length bands for 

analysis.  A remedial action well (RAW) was installed in the approximate center of the 

plume 2,928 m from the source.  The well was sampled several times contemporaneously 

with the direct push investigation to provide treatment design data, but the remedial 

action well data were not used included in observed data for model calibration of any 

simulation. 

Site aquifer testing data were used to characterize the aquifer K as 39 푚/푑, Elmore and 

Vandeberg (1997) gave the hydraulic gradient in the area of the subject plume as 0.0023, 

the site 푓표푐 average as 0.00028, and the saturated thickness 푏 as 24.7 푚.  Mehran et al. 

(1987) estimated the 퐾  value for TCE as 120 푚푙 푔⁄ , and Piskin (1971) estimated the 

site 푛  as 0.145 and 푛 was assumed to be equal to that value.  The density of the solids 

was assumed to be 2.65 푔 푐푚⁄  based on the typical value given by Freeze and Cherry 

(1979).  Elmore (2007) found that dispersion was relatively minor compared to 

advection.  The model was calibrated using 푅푅푀푆퐸 by varying 푡  and 푡  to generate 

Figure 5. The calibration contours represented in the figure provide relative calibration 

comparison at values of 푅푅푀푆퐸 = 1.1 between different simulations defined by the 
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number of analysis bands overlaid the transport system. There is general agreement 

between the five contours’ centroid locations, although the contour boundaries vary as 

illustrated in Figure 5.  When applying the model to field data, any simulations with a 

number of analysis bands that meet the band number criteria discussed above can be used 

to produce a reasonable domain of the source history parameters when a 푅푅푀푆퐸 =

1.1 calibration contour is used. 

The calibration contours illustrated in Figure 5 provided a domain of 푡  and 푡  that 

required further investigation before the results could be considered reasonable.  Model 

verification was necessary to confirm the calibration mechanism used in this study.  The 

RAW installed 2928 m down gradient of the source release was operated briefly five 

times so that it could be sampled prior to putting it in service, and that concentration 

dataset provides a means for model verification.  The observed data used for model 

calibration was sampled one year prior to the five samples obtained from the RAW.  The 

RAW was designed to hydraulically capture the entire width and saturated thickness of 

the plume, so the data collected at the well should be appropriate for comparison to a 1D 

transport model.  The mean TCE concentration measured at the well was 4,060 µg/L with 

a standard deviation of 577 µg/L. A log normal distribution was assumed for the data 

after the data was tested with the Shapiro-Wilk test for log normality and the resulting p-

value was more than 0.10. 

When one year was added to the time since the source release 푡 , a Monte Carlo (MC) 

model was developed where 푡 , and 푡 , and the observed values within each band were 

random independent variables.  The Shapiro-Wilk test indicated the concentration data in 

six bands fit a log normal probability density function (pdf) with the exception of bands 
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two and three.  However, as discussed below, a nonparametric Mann-Whitney test 

resulted in little difference in the results of the parametric student’s t-test.  The arithmetic 

mean and standard deviation of each band’s observed values characterized the band’s 

log-normal distribution.  The development of calibration contours of 푅푅푀푆퐸 = 1.1 for 

each constant length band simulation allowed a rectangular approximation of each 

contour, all of which are illustrated in Figure 5.  The rectangular calibration area of each 

simulation was used to define two new variables called 푡’  and 푡’  as illustrated in Figure 

7.  For the calibration results of the six band simulation, a uniform pdf with limits of 0 

and 1.20 yr was assigned to 푡’  and 푡’  was assigned an independent uniform pdf with 

limits of 0 and 0.40 yr.  A rotation and translation equation converted 푡’  and 푡’  

realizations to 푡  and 푡 , which were input to the model.  This process was repeated with 

ranges of 푡’  and 푡’  corresponding to rectangular approximations for 푅푅푀푆퐸 = 1.1 

calibration contours for simulations with five through nine constant length bands.  Each 

MC simulation produced 1,000 realizations of the predicted concentration at the location 

and time of the RAW observed data.  The MC realization data was tested for log 

normality with an α-level of 0.01.  Since the minimum p-value of the MC realization 

datasets was 0.012, log normality of both datasets was assumed and the two tailed 

student’s t-test with a 90 percent confidence level was used to test the assumption of no 

statistical difference between the two datasets. The nonparametric Mann-Whitney test 

with a 90 percent confidence level was used to support the assumption, which resulted in 

similar p-values to those of the student’s t-test. The minimum p-value of the student’s t-

test was 0.06 and the minimum p-value of the Mann-Whitney test was 0.05.  Table 1 

provides model verification p-values of both hypothesis tests for the tested simulations.  
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These results support model verification because they do not permit rejection of the null 

hypothesis, that the two datasets are not significantly different. 

The realizations produced by the MC application provide estimations of the source 

history parameters.  The sample mean and sample standard deviation values of 퐶 , 푡 , and 

푡  of each simulation’s realization ensemble are presented in Table 1.  The simulations 

used for analysis had constant length band combinations between five and nine bands 

because these simulations met the above discussed criteria.  The results in Table 1 

suggest that the band number in each eligible simulation was insensitive to model 

accuracy.  Although these point values are results of a stochastic approach to estimate the 

source history parameters, the primary objective of the model is to provide a likely 

domain of the source history that defines a point of departure for more sophisticated 

software applications. 

Discussion  

The literature review indicated that it is uncommon for a source history investigation to 

be applied to field data.  For example, a table in Michalak and Kitanidis (2004) lists 14 of 

19 inverse modeling applications as having been applied at hypothetical sites.  The use of 

field data creates additional challenges due to the variability of the data compared to 

hypothetical cases.  The sources of the variability may include an unsteady release 

function, the spatial variability of the aquifer hydrogeology, and concentration 

measurement error.  It is assumed that both the direct push dataset and the well dataset 

include measurement error and release variability.  Furthermore, it would seem 

reasonable to state that the direct push dataset addresses spatial variability while the well 

dataset addresses temporal variability.  Yet there are inaccuracies associated with these 
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assumptions.  While it is convenient to assume that the direct push data represent the 

TCE concentrations at a single point in time, the data were collected over an 

approximately 2 year period.  Likewise, it is convenient to assume that each time that the 

RAW was sampled over the 1 year period; it was pumped so that the resulting capture 

zone was equally developed so as to remove an element of spatial variability from the 

data.  However, there were no data collected characterizing the actual extent of capture 

zone developed during any of the 5 well sampling events.  Therefore, both concentration 

datasets include elements of all of the sources of variability but there is insufficient 

information available to systematically evaluate the comparability of the concentration 

datasets.  The two concentration datasets are not atypical of those available to 

practitioners so model verifications have been performed with the explicit 

acknowledgement that the data may not be perfect in terms of theoretical comparability. 

Conclusions 

The mass-balance approach for estimating 푡 , 푡 , and 퐶  provided reasonable results with 

the synthetic datasets and the observed site dataset when the bandwise predictions were 

used for deterministic and stochastic simulations.  The stochastic results were reasonable 

given the variability of the well dataset used for verification.  Although the bandwise 

calibration made point predictions less useful, the method provides a reasonable predicted 

domain of 푡 , 푡 , and 퐶  that acts as a point of departure for more sophisticated multi-

dimensional numerical modeling.  The model may also reduce effort for additional 

numerical modeling because the best domain of  푡 , 푡 , and 퐶  is identified. 

Although variable length bands did not produce better results relative to constant length 

bands, the results of both approaches were reasonably accurate.  Constant length bands 
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reduce analysis band incorporation complexity.  As long as the consistent method is used 

to identify the range of minimum and maximum number of bands, the goodness of fit is 

insensitive to number of bands. 

The model may appeal to modelers and designers who can rapidly modify the 

spreadsheets to evaluate concentration time series at various points as well as calculating 

the potential mass to be treated and the associated treatment costs.  The generation of 

output ensembles for such additional variables is relatively straightforward given the 

simplicity of commercial Monte Carlo software. 

The apparent utility of the spreadsheet model should not overshadow the limitations of 

the underlying 1D model.  The 1D model will have limited application based on site-

specific hydrogeologic conditions where there is a low potential for multiple or complex 

contaminant sources.  The model may be useful for application where the data indicate 

that the flow field is relatively uniform, has low dispersion, and the assumption of a 

rectangular release is reasonable.  These conditions are encountered as evidenced by the 

Nebraska Superfund Site data. 
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Figure 1: Observed Concentrations with Synthetic Data 

 
 
 

 
Figure 2: Calibration Results Using Synthetic Data  

 



35 
 

  
Figure 3: Predictions of C0 Using Synthetic Data 

 
 
 

 
Figure 4: Observed Concentrations with Actual Data 
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Figure 5: Calibration results with observed data 
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Figure 5 (Continued): Calibration results with observed data  

 
 
 
 

 
Figure 6: Spatial Definitions of t’s and t’r 
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Table 1: Model Verification Results 

Student's t Mann-Whitney
5 18.6 0.154 12.8 0.163 6860 1080 0.79 0.72

6 19.7 0.226 14.7 0.283 5970 1020 0.20 0.16

7 19.7 0.393 14.6 0.830 6220 1170 0.13 0.15
8 18.8 0.274 12.6 0.341 6940 1080 0.40 0.48
9 19.7 0.801 13.6 0.834 6540 1120 0.06 0.05

p-valuesSimulation 
Bands

Tr Ts C0

sXsXsX
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4. RECOMMENDATIONS FOR FUTURE WORK 
 

The following ideas and topics are recommended to continue this research and to 

address assumptions made in this paper. 

 

 Instead of using bands of analysis, a grid system can be overlaid on a contaminant 

plume to develop two-dimensional control volumes to advance the discussed method 

of contaminant mass evaluation. 

 Improve model calibration by studying the mechanism responsible for variation of the 

푅푅푀푆퐸 = 1.1 contour within the achieved range of ten percent accuracy predictions 

of the time source history parameters. 

 Synthesize artificial transport systems with different known source release history 

parameters than those used in this study.  Upon achieving acceptable model 

calibration at larger ranges of the time source history parameters, the site applicability 

of the model would improve.   
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APPENDIX A. 
 

VARIABLE LENGTH BAND MODELS USING SYNTHESIZED DATA 
ON DVD-ROM 
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Included with this Thesis is a CD‐ROM, which contains models using variable 

length bands.  Each module of the VISUAL BASIC CODE has been developed using 

VISUAL BASIC for Microsoft Excel 2007. All documents have been prepared as 

Microsoft Office 2007 document files (Windows Vista).  

  



42 
 

 

 

 

 

 

 

 

 

 

APPENDIX B. 
 

CONSTANT LENGTH BAND MODELS USING SYNTHESIZED AND 
ACTUAL DATA ON DVD-ROM 
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Included with this Thesis is a CD‐ROM, which contains models using constant 

length bands.  Each module of the VISUAL BASIC CODE has been developed using 

VISUAL BASIC for Microsoft Excel 2007. All documents have been prepared as 

Microsoft Office 2007 document files (Windows Vista).   
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APPENDIX C. 
 
A CD WITH THE STORED THESIS DEFENCE PRESENTATION AND .PDF 

COPY OF THE THESIS ON CD-ROM 
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Included with this Thesis is a CD‐ROM, which contains a cd with the stored 

thesis defense presentation and .pdf copy of the thesis.  All documents have been 

prepared as Microsoft Word 2007 document files (Windows Vista). 
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