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ABSTRACT 

This topic discusses and verifies an equation for estimating the shielding 

effectiveness of metallic enclosures through the use of numerical simulations.  Using 

ideas from Bethe’s “Theory of Diffraction by Small Holes” [5], a previous student from 

the Missouri S&T Electromagnetic Compatibility Laboratory developed an equation that 

would yield an envelope prediction for the worst-case EMI from an aperture array backed 

by an over-moded cavity.  In [1-4], Min Li (PhDEE ’99) used results from measurements, 

simulations, and physics-based equations to formulate a simple equation that would 

predict these EMI levels.  The main purpose of this thesis is to revisit this work and 

determine when and why this prediction fails, if at all.  Broadband FDTD simulations are 

used to first evaluate several simple models of aperture arrays in an infinite PEC sheet.  

With a sound understanding of this scenario, the simulations are then extended to the 

more realistic PEC enclosures. In the end, the shielding effectiveness of aperture arrays 

excited by both uniform plane waves at normal incidence and over-moded cavities can be 

predicted to within 3dB, so long as the dimensions of the apertures remain less than λ/6. 
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1 INTRODUCTION 

System level shielding design is not a trivial science. To precisely predict how 

well a metallic enclosure will prevent the emission of electromagnetic waves would 

require a combination of antenna theory, over-moded cavity analysis, and knowledge of 

the noise sources within the enclosure. For most practical system designs, a closed-form 

equation predicting the fields radiated by every opening in the enclosure does not exist. 

As for the internal modes of the enclosure, the field structures can be easily determined 

for the case of an empty cavity, but once one or more additional conductors are 

introduced, such as PCB ground planes, along with lossy dielectric materials, it becomes 

very difficult to predict exactly what the fields will look like inside the enclosure, making 

it even more challenging to precisely determine the excitation of each aperture in the 

enclosure. Noise sources within the system can be potentially identified through tests and 

measurements, but also need to be identified and properly modelled in order to predict 

which modes will become excited within the enclosure. With so much complexity, it 

seems that it would be very beneficial to the EMC engineer to be able to use basic system 

parameters in a simple equation in order to accurately predict the shielding effectiveness 

of an enclosure during preliminary design stages. 

To meet this challenge, Min Li (PhDEE ’99 UMR) developed an estimation of the 

worst-case far electric field intensity that is based upon parameters unique to the system 

at hand. Li’s early work [1-2] was focused on finding simple relationships between the 

data gathered through simulations and measurements in order to determine a correlation 

between field strength and system attributes, such as aperture size, the number of 
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apertures, etc. Li’s later publications [3-4] then took the simple relationships and 

combined them with integral equation formulations and Bethe’s Small Hole Theory [5] in 

order to develop a stand-alone estimation that did not have to be normalized to any 

measured data. In [4], this stand-alone estimation for the worst-case EMI from an 

aperture array backed by an over-moded cavity was found to be 
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                          (1.1) 

where N is the number of apertures, L is the length of the apertures, f is the frequency, α 

is the ratio of the aperture width to height, Q is the Q-factor of the enclosure, V is the 

volume of the enclosure, Po is the power delivered to the enclosure from the source, R is 

the distance from the center of the aperture array to the observation point, ng is a 

coefficient equal to 
2
1 , and xk  and yk  are the wave numbers in the x- and y-directions. 

The full derivation of (1.1) shall be shown in Section 2, which will provide insight to the 

physical meaning of each term. An example of the application of this estimation can be 

seen in Figure 1.1.  

To take the estimation in (1.1) one step further, Min Li also showed that for a 

well-known dipole source within the enclosure, where Po is the radiated power from the 

dipole, (1.1) can be used to predict the shielding effectiveness (SE) of the enclosure. By 

defining SE as the ratio of the field intensity from the source with no shielding enclosure 

to the field intensity from the source/shielding enclosure system at the same observation 

point, a worst-case SE approximation is found to be 
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Within this paper, the derivation of both (1.1) and (1.2) will be revisited and tested with 

numerical simulations.  

 

 

 

Figure 1.1. Comparison of measured data and Min Li’s estimation for a test enclosure [4]. 
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2 BETHE’S THEORY AND MODELING 

The foundation for (1.1) and (1.2) is in Bethe’s “Theory of Diffraction by Small 

Holes” [5]. In [5], Bethe was able to show that the fields that couple through a single 

electrically small aperture and radiate are predominately due to the normal E- and 

tangential H-fields at the aperture. To simplify the problem, the aperture can be replaced 

with PEC, and equivalent electric and magnetic polarization currents are introduced on 

both sides of the former aperture to approximate the perturbed fields. Cohn [6] and 

McDonald [7] expanded Bethe’s theoretical work and conducted experiments and 

mathematical modeling to broaden the practical applicability of Bethe’s work. This 

section borrows concepts from all three of these sources to derive the radiated fields from 

the apertures. 

 

2.1 POLARIZATION AND MAXWELL’S EQUATIONS 

Ampere’s Law states that in free-space, an electric current and/or a time-varying 

electric flux density will induce a curling magnetic field, as shown in (2.1a). Faraday’s 

Law states a similar behavior for a curling electric field induced by a time-varying 

magnetic flux density or magnetic current in (2.1b), both shown below.  

JEjJDjH o                                        (2.1a) 

MHjMBjE o                                     (2.1b) 
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When in the presence of matter, (2.1) must be altered to account for the polarization of 

the material. The net electric and magnetic flux densities become a combination of the 

fields in free-space and the fields from the molecular polarizations of matter, shown in 

(2.2) and (2.3), where eP  and mP  are electric and magnetic polarizations, respectively. 

eo PED                                                      (2.2a) 

 mo PHB                                                   (2.2b) 

EP eoe                                                      (2.3a) 

HP mm                                                       (2.3b) 

The e  and m  terms are the electric and magnetic susceptibility of the material, 

respectively. Substituting (2.2) and (2.3) back into (2.1) yields Ampere’s and Faraday’s 

Laws when in the presence of matter, shown in (2.4). 

JPjEjH eo                                            (2.4a) 

MPjHjE moo                                        (2.4b) 

 In order to keep the terminology and variables as close to common practice as 

possible, a minor alteration to (2.3) will be made in order to substitute the e  and m  

terms for e  and m , the electric and magnetic polarizability of the aperture, 

respectively. Again, this change in terms is merely conventional, as the physics of 



6 

 

 

susceptibility and polarizability are essentially the same; both terms describe how the 

presence of an object perturb the electric and magnetic fields from those in free-space. 

For the sake of completeness, (2.5) shows the substitution of e  and m  into (2.3). The 

inclusion of a negative sign in (2.5b) is done to account for the correct phase when the 

equivalent polarization currents are used to replace the aperture. Shown in Section 2, 

Figure 2.1 supplies visual evidence as to why this correction is needed, and will be 

described more in that section.  

EP eoe                                                     (2.5a) 

HP mm                                                    (2.5b) 

 

2.2 EQUIVALENT APERTURE REPRESENTATION: BETHE’S THEORY 

In [5], Bethe’s work in describing the fields through diffraction of small holes is 

achieved by maintaining continuity of the fields through the aperture. For the special 

cases of circularly and elliptically shaped apertures, exact solutions were found where the 

non-zero tangential E-field is preserved through the aperture. After these rigorous 

derivations, Bethe rationalized that a simpler approach could be made towards 

electrically small holes, while still maintaining an acceptable representation of the fields 

radiated from the aperture. For electrically small apertures, Bethe stated that the fields 

significantly contributing to radiation can be assumed to be uniform over the aperture. 

The consequence of this assumption, along with simplified PEC boundary conditions for 

the enclosure walls, is that the only fields that are present in the aperture are tangential 

magnetic fields and normal electric fields.  
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Under this assumption that only tangential magnetic fields and normal electric 

fields are present at the aperture, consider again what is shown in (2.4). In the presence of 

some polarizable object, such as an aperture, the curling magnetic field in (2.4a) is due to 

the net effect of a time-varying electric field, a time-varying electric polarization current, 

and an electric current. Assuming that these apertures are not filled with any object other 

than vacuum, there is no matter to be polarized and no free electrons to cause conduction 

current. However, as the curling magnetic field is again due to the net effect of these 

three distinctly different physical phenomena, it would be possible to interpret and treat 

the time-varying electric field at the aperture as one of the other two terms, such as an 

equivalent time-varying electric polarization current, ePj . In fact, (2.5a) has already 

shown that the electric polarization current is proportional to the electric field in the 

aperture by a factor of eo , where e  accounts for the physical dimensions of the 

aperture. In doing this, the only difference in the interpretation of the physics of both 

scenarios is that the normal electric field would be considered to be evenly distributed 

over the entire aperture area when solving the radiation integrals, whereas the 

polarization current would be considered to be an infinitesimal current at the center of the 

aperture in the normal direction, n̂ . A similar argument can be made for (2.4b) and 

(2.5b), but would be redundant to describe in detail. Figure 2.1 gives a visual depiction of 

how the normal electric fields and tangential magnetic fields behave near an aperture, 

along with their equivalent electric and magnetic polarization current representations. 

Visually, one can see that when the normal electric field points out from the aperture in 

Figure 2.1a, an equivalent electric polarization current in the same  
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Figure 2.1. Visualization of the distorted electric and magnetic fields and equivalent 

electric and magnetic polarization currents near an aperture: (a) Electric field, (b) 

Magnetic field, (c) Electric polarization current, and (d) Magnetic polarization current. 

Reference: D. Pozar [8] 

 

 

direction will induce an electric field in a similar manner in the radiating half-space of the 

aperture, shown in Figure 2.1c. However, when the tangential magnetic field is pointing 

towards the top of the page, as in Figure 2.1b, the equivalent magnetic polarization 

current in the radiating half-space must point down, 180
o
 out of phase from the incident 
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tangential magnetic field, in order to produce an H-field that corresponds to the original 

problem, shown in Figure 2.1d. Due to the replacement of the aperture with PEC in 

Figures 2.1c and 2.1d, the tangential electric field at the aperture is automatically forced 

to be zero.  

By replacing the normal electric field and tangential magnetic field with 

polarization currents, (2.4) can be rewritten as: 

JEjH neo                                             (2.6a) 

MHjE mo  tan                                        (2.6b) 

As was already discussed, there is no electric conduction current, J , or magnetic 

conduction current, M , inside the aperture when it is filled with vacuum. However, since 

the equivalent time-varying polarization currents are interpreted as infinitesimal currents 

pointing in their respective directions, it would be feasible and convenient to consider 

these currents as electric and magnetic conduction currents, as there are well-known 

solutions to the inhomogeneous Helmholtz equation for line currents to describe the 

radiated fields from such sources. This leads to the final aperture equivalence, where it 

can be stated that the electric and magnetic polarization currents can be thought of as 

electric and magnetic conduction currents for easy substitution into the known radiation 

equations. This is summed up in (2.7). 

neo EjJ                                                    (2.7a) 

tanHjM mo                                               (2.7b) 
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2.3 RADIATION FROM EQUIVALENT POLARIZATION CURRENTS 

With the electric and magnetic polarization currents being related to electric and 

magnetic conduction currents in (2.7), it is possible to use these relations to solve the 

inhomogeneous Helmholtz equation in (2.8) to find the radiated fields from the electric 

and magnetic equivalent aperture currents.  

JAkA  22
                                              (2.8a) 

MFkF  22                                               (2.8b) 

Figure 2.2 shows the standard rectangular and spherical unit vectors that will be 

used throughout this section.  

 

 

Figure 2.2. Rectangular and spherical coordinates used in the derivation of the radiated 

fields.  
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2.3.1 Radiation from the Electric Polarization Current. For aperture  

excitation by a normal electric field, Figure 2.3 depicts an E-field in the z-direction with 

the aperture in the x-y plane of an infinite PEC sheet, centered about the coordinate 

system origin. As Figure 2.1 and (2.7) suggest, normE  can be replaced by an equivalent 

 

 

 

Figure 2.3. Aperture excited by an electric field normal to the plane of the aperture. 

 

 

electric current, and the aperture can be replaced by PEC, shown below in Figure 2.4. In 

Figure 2.4, 0,, zeqzJ  is the equivalent electric current on the radiation side of the aperture, 

0,, zeqzJ  is the equivalent electric current on the excitation side of the aperture, and 

eqzzeqzzeqz JJJ ,0,,0,,   . As the purpose of this section is to find the radiated fields 

from the equivalent electric current, only the current in the radiation half-space is of 

current concern. From image theory, it is possible to remove the PEC sheet, double the 

strength of the electric current, and solve for the radiated fields from the free-space 
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radiation equations, where the solution will only be valid in the region z > 0. This new 

scenario is shown in Figure 2.5.  

 

 

 

Figure 2.4. Equivalent electric currents and PEC for an aperture under electric field 

excitation. 

 

 

 

Figure 2.5. Equivalent electric current problem after applying image theory. 
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With the equivalent current in the radiation half-space only having a ẑ  

component, (2.8a) reduces to  

eqzzz JAkA ,

22 2                                               (2.9) 

where (2.9) can be solved for 
zA  to yield 










2/

2/

,
4

2
l

l

jkr

eqzz dl
r

e
JA




                                           (2.10) 

The limits of integration from 
2

l  to 
2

l  represent a contour of infinitesimal length, ,l  

that is along the ẑ direction, located at the origin. Evaluation of this integral then gives 

(2.11). 

 
jkreqz

e
krjkrr

lJk
jE 











2

, 11
1

4

sin2




                          (2.11) 

Converting (2.11) to rectangular coordinates and assuming that the point of interest is in 

the far-field, where 1kr , then  

jkreqz

x e
r

Jk
jE 






4

coscossin2 ,
                             (2.12a) 

jkreqz

y e
r

Jk
jE 






4

sincossin2 ,
                             (2.12b) 

jkreqz

z e
r

Jk
jE 






4

sin2 2

,
                                   (2.12c) 

As the point of interest also lies on the z-axis, where o0 , (2.12) reduces to 

0 zyx EEE                                               (2.13) 



14 

 

 

The result in (2.13) shows that for an electrically small aperture that is excited by a 

normal electric field, the radiated far-fields at a point normal to the aperture from an 

equivalent electric polarization current are zero. In other words, the equivalent electric 

polarization current does not contribute to the far-fields at an observation point normal to 

the aperture.  

2.3.2 Radiation from the Magnetic Polarization Current. For aperture  

excitation by a tangential magnetic field, Figure 2.6 shows a magnetic field directed in 

the ŷ  direction that is at the aperture in the x-y plane of an infinite PEC sheet, centered 

about the coordinate system origin. Again using Figure 2.1 and (2.7), it can be seen that 

tanH  can be replaced by an equivalent magnetic current, and the aperture with PEC, 

shown in Figure 2.7. The same nomenclature as was used in Figure 2.4 is again used in 

Figure 2.7 to denote the equivalent magnetic currents on both sides of the former 

aperture. For the time being, only the magnetic current in the z > 0 half-space is of 

concern, so image theory can again be utilized to remove the PEC, double the magnetic 

 

 

 

Figure 2.6. Aperture excited by a magnetic field tangential to the plane of the aperture. 
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current intensity, and solve for the radiated fields. This is depicted in Figure 2.8, where 

rr m ˆˆ  , but m̂  and 
m̂  are now with respect to the y-axis. This choice of coordinates 

will make the following math much simpler. 

 

 

 

Figure 2.7. Equivalent magnetic currents and PEC for an aperture under magnetic field 

excitation. 

 

 

 

Figure 2.8. Equivalent magnetic current problem after applying image theory. 
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 Using duality, (2.11) and (2.12) can be modified for use with a magnetic dipole 

without the redundancy of performing the above derivation a second time. For a magnetic 

dipole, the radiated magnetic field is 

jkr

mmm

eqy

x e
r

Mk
jH 





4

sincossin2 ,
                          (2.14a) 

jkr

m

eqy

y e
r

Mk
jH 





4

sin2 2

,
                                   (2.14b) 

jkr

mmm

eqy

z e
r

Mk
jH 





4

coscossin2 ,
                          (2.14c) 

Just as in the previous section, the assumption will be made that the point of interest is at 

a point along the z-axis, meaning that om 90ˆ   and 
om 0ˆ  . This reduces (2.14) to 

jkreqy

y e
r

Mk
jH 

4

2 ,
                                        (2.15a) 

0 zx HH                                                (2.15b) 

Note that the magnetic field is oriented in the ŷ  direction, just as the incident magnetic 

field was, as shown in Figure 2.6. With the assumption that the observation point is in the 

far-field, the E-field can be related to the H-field by 

 rHE ˆ                                                    (2.16) 

where r̂  is the in the direction of the observation point (direction of propagation). Since 

H  only has a ŷ  component, (2.16) becomes  

  xEzyHE xy
ˆˆˆ                                              (2.17a) 

xE  can then be solved as 
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jkreqy

x e
r

Mk
jE 

4

2 ,
                                          (2.17b) 

Substituting (2.7b) into (2.17b), the far-field radiation at a point normal to an electrically 

small aperture becomes 

jkrymo

x e
r

Hk
E 





4

2
                                        (2.18) 

rc

H

r

Hk
E

mmo

2

tan

2

tan

24

2









                                 (2.19) 

where (2.19) is the general form of the far-field radiation intensity in the normal direction 

of a single, electrically small aperture. To solve for the intensity of the radiated fields, the 

only unknowns in (2.19) are the magnetic polarizability, m , which is a function of the 

physical dimensions of the aperture, and the intensity of the magnetic field that excites 

the aperture, tanH .  

 

2.4 DETERMINING THE MAGNETIC POLARIZABILITY OF AN 

ELECTRICALLY SMALL APERTURE 

As Cohn points out in [6], Bethe only solves the small hole problem for the cases 

of circularly and elliptically shaped apertures. Since exact analytical solutions for other 

geometries would be very useful but difficult to calculate, Cohn decided to use an 

experimental approach to determine the magnetic polarizability of different aperture 

shapes. While Cohn argued that making actual microwave measurements would result in 

about 10% experimental error, Cohn settled on creating an analog experiment within an 

electrolytic tank where the polarizabilities for apertures of rectangular, rounded-slot, 

cross rosette, dumbbell, and H-shaped cross sections were found. 
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While the experimental results of Cohn are original and very useful, they were 

presented in a graphical form that was not as convenient as they could be. In [7], 

McDonald started with the general form of magnetic polarizability, given as 

  3Lf L
W

m                                                   (2.20) 

where the polarizability is shown as the product of the largest aperture edge cubed, and a 

function that is dependent on the ratio of aperture width over length. From here, 

McDonald made a few observations about the properties of the magnetic polarizability of 

an aperture, namely that the function  L
Wf  should possess three distinct characteristics: 

  0/ LWf  as   0/ LW                                   (2.21a) 

  LWf /'  as   0/ LW                                  (2.21b) 

 LWf / constant  LW /  as   LW /                     (2.21c) 

Using these characteristics, McDonald then found that  L
Wf  should be of the form 

 















b

a
f

1ln

                                              (2.22) 

where   is the ratio    , and a and b are constants that are unique to every different 

aperture geometry.  

To determine the coefficients a  and b , McDonald used the experimental data 

from Cohn, and was able to determine that for a rectangular aperture,  

 















66.0

1ln

132.0
f                                             (2.23) 
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where the values of   may range from 0 to 1. For this study, the geometry of interest is a 

square aperture, where 1 . This reduces (2.23) to 

 
 

2604.0
66.01ln

132.0



f                                    (2.24) 

This ultimately leads to a magnetic polarizability of 

32604.0 Lm                                                (2.25) 

where L is the length of one side of the square aperture.  

 

2.5 SOLVING FOR THE EXCITATION OF AN ELECTRICALLY SMALL 

APERTURE 

With the magnetic polarizability of the electrically small square aperture having 

been solved for in the previous section, the only term left to determine in (2.19) is the 

intensity of the magnetic field that excites the aperture. Before examining the validity of 

(2.19) in the realistic scenario of apertures that are excited by an over-moded cavity, 

simulations were first done on aperture arrays placed in an infinite sheet of PEC, excited 

by a uniform plane wave (UPW) normal to the aperture array. The purpose of this was to 

study the radiated fields from a simple geometry and excitation in order to gain a sound 

understanding of the physics before attempting more complex simulations.  

2.5.1 Excitation by Uniform Plane Wave. The first round of simulations  

that were conducted consisted of aperture arrays in an infinite sheet of PEC, illuminated 

by a UPW normal to the aperture array. To follow the same convention that was used in 

previous sections for finding the general form of the radiated fields from an aperture, 
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assume that the aperture array is excited by a UPW with x̂  polarization, and direction 

of propagation in the ẑ  direction. This is illustrated in Figure 2.9. 

Referring back to Bethe’s small hole theory, one of the assumptions made for 

determining the fields at an electrically small aperture was that the excitation fields are 

uniform over the aperture. Another way of interpreting this statement is to say that in the 

excitation half-space of the aperture, the perturbed fields due to the aperture, or the fields 

radiated by 0,, zeqzJ  and 0,, zeqyM , are minimal and can be disregarded. With that being 

said, the reflection of the UPW at the PEC sheet, located at z = 0 and extending to infinity 

in the x- and y-directions, can be considered to be a complete reflection. Therefore, in the 

excitation half-space of z < 0, the superposition of the traveling waves are  

jkzr

x

jkzi

xtotalx eEeEE  

,                                        (2.26a) 

jkzr

y

jkzi

ytotaly eHeHH  

,                                       (2.26b) 

where 
i

x

r

x EE  , 
i

y

r

y HH  , and 1  for PEC boundary conditions. This leads to  

 jkzjkzi

xtotalx eeEE  

,                                        (2.27a) 

 jkzjkzi

ytotaly eeHH  

,                                       (2.27b) 

 kzEjE i

xtotalx sin2,                                           (2.27c) 

 kzHH i

ytotaly cos2,                                            (2.27d) 
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Figure 2.9. Graphical depiction of the illumination of a single square aperture by uniform 

plane wave. 

 

 

where (2.27c-d) show that the fields in the excitation half-space for z < 0 are entirely 

composed of standing waves. (2.27c) shows that the tangential electric field at the 

PEC/aperture interface is zero, which is to be expected, while (2.27d) shows that the 

tangential magnetic field that excites the aperture is double the intensity of the incident 

tangential magnetic field, 
i

yH . This can be summarized in (2.28) by stating 
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i

yHH 2tan                                                   (2.28a) 

i

xEH


2
tan                                                  (2.28b) 

The result in (2.28b)  and (2.25) can then be plugged back into (2.19) to complete the 

solution for the radiated fields under UPW excitation as 

rc

EL
E

i

x

2

322604.0




                                            (2.29) 

where (2.29) is a theoretical approximation of the far-field radiation intensity normal to a 

single, electrically small, square aperture that is illuminated by a UPW at normal 

incidence. 

 One of the unique and convenient qualities of a UPW is that when propagating in 

free-space, the magnitude of the wave does not decay by any factor of 
nr

1
, suggesting 

that the UPW extends to infinity in the directions traverse to the direction of propagation 

(DOP). For example, if no PEC sheet were present in Figure 2.9, then the intensity of the 

electric field at a point (x,y,z) = (0,0,1) would be the same at the point (x,y,z) = (0,0,-1), 

with the only discrepancy in the fields at these two points being be a phase difference, or 

a delay in the time-domain.  

As the main concern for shielding effectiveness (SE) is magnitude, this allows for 

an easy definition of SE for UPW excitation. The general definition of SE is given as 

MechanismShieldingwithIntensityFieldElectric

MechanismShieldingNowithIntensityFieldElectric
SElinear

_____

______
    (2.30) 

The result in (2.29) describes the electric field intensity when an aperture in an infinite 

PEC sheet is used as the shielding mechanism, while the previous paragraph described 
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how the electric field intensity at the point of interest is simply the magnitude of the 

incident wave. Combining this information together gives 

32

2

2

32 2604.02604.0 L

rc

rc

EL

E
SE

i

x

i

x

linear







                       (2.31a) 











32

2

10
2604.0

log20
L

rc
SEdB




                                  (2.31b) 

Knowing that the observation point will be at r = 3m, (2.31b) can be further reduced to 

 32

10log203.338 LfSEdB                                     (2.32) 

where (2.32) is a valid prediction of SE at a point 3m normal to a single, electrically 

small, square aperture that is illuminated by a UPW at normal incidence. 

 Thus far, the derivations and equations for this topic have been with respect to a 

single aperture. In reality, the application of the work summarized in this thesis will be 

towards arrays of hundreds, even thousands of apertures. To account for the number of 

apertures in the total radiation, two simple assumptions can be made. The first is that the 

array is excited uniformly, meaning that the fields at each aperture are of the same 

magnitude and phase. The second assumption is that the difference in distance from each 

aperture to the observation point is minimal, meaning that the area of the array is small 

with respect to the distance to the observation point at 3m. The impact of this assumption 

is that the 
r

1
 decay of the field magnitude is the same for each aperture, and that the 

phase of all the radiated fields from the jkre term is the same, so that the fields may sum 

constructively to produce the largest field intensity at the observation point. If both of 

these assumptions are made, then each additional aperture in the array will linearly 
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increase the estimated field strength at the observation point by a factor N, where N is the 

number of elements in the array. This alters (2.32) to ultimately yield a prediction of 

shielding effectiveness for an array of N number of electrically small, square apertures in 

an infinite PEC sheet, illuminated by a UPW at normal incidence, that is given by 

 32

10, log203.338 LNfSE dBUPW                                  (2.33) 

where the linear dependence on the N term is a valid assumption, so long as the area of 

the array is much smaller than the distance to the observation point at 3m normal to the 

center of the array. The N term can also be added to (2.19) to update the general 

expression to be  

rc

HN
E

m

2

tan

2

2


                                            (2.34) 

2.5.2 Excitation by Over-Moded Cavity. The process of solving for the fields 

at the apertures for an array backed by an over-moded cavity is much more involved than 

for illumination by a UPW. The first step is to find the energy stored at one of the cavity 

resonant frequencies, as these will be the frequencies where the largest spikes in EMI are 

expected to occur. Figure 2.10 shows the geometry of the enclosure and source, along 

with the coordinate system that will be used in this derivation. Assuming that the source 

for exciting the enclosure is a small line current with only a ŷ  component, such as a 

short dipole, the magnetic vector potential, A , can be found by applying the electric 

boundary conditions to the enclosure walls. Doing so yields the expression shown in  
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Figure 2.10. Visualization of the enclosure geometry and source used to derive the 

radiated field intensity from an array backed by an over-moded enclosure.  

 

 

(2.35), where the coefficient mnpB  is a dependent on the intensity of yJ , the location of 

the source, and the modal structure inside the enclosure. The terms xk , yk , and zk  are 

the wave numbers in the x-, y-, and z-directions, respectively. 

     zkykxkBzyxA zyxmnpy cossinsin),,(                           (2.35) 

Due to the geometry of the source, it can be shown that only TE modes will be 

excited within the enclosure, as there will be no spatial field variation in the y-direction. 

As only electric sources as present inside the enclosure, the magnetic field can be found 

using  
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AH 


1
                                                (2.36) 

With only a y-component for A , the H-field is found to be 

     zkykxkB
k

y

A
H zyxmnp

zz
x coscossin

1


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
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H zyxmnp
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1







                     (2.37b) 

By integrating the magnetic field over the entire enclosure, the total magnetic field 

energy can be doubled to yield the total energy stored in a TE mode at resonance by 


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


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


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
                                 (2.38e) 

Assuming that the aperture array will be located along the enclosure face on the 

x̂  side of the box, the z-component of the H-field will serve as the  tanH  term in (2.34) 

Referring back to (2.37b), the magnitude of zH  is 
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H


  

Relating the total energy stored in the cavity to the input power by the Q-factor of the 

enclosure, using 


oQP
W  , zH  can be solved for in terms of characteristics of the 

enclosure and the power delivered to the enclosure by the source, as shown in (2.39). 
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Substituting (2.39e) into (2.34) yields 
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where (2.40) is the same expression as (1.1). In (1.1), 
W

L
 , whereas in (2.40), 

L

W
 , 

which leads to the same result. Also, the difference in wave number notation of using 
2

2

z

x

k

k
 

in (2.40) as opposed to 
2

2

y

x

k

k
 in (1.1) is merely a difference in coordinates. Both ratios bear 

the same physical significance.  

Examining (2.40), it should be noted that the ratio 
2

2

z

x

k

k
is not only frequency 

dependent, but is also dependent on the enclosure dimensions. As the entire denominator 

underneath the square root of (2.40) appears as  












1

2

1
2

2

z

x

k

k
V , it can be argued that the 

worst-case EMI intensity from the aperture will occur when the ratio of wave numbers is 

small, such that xz kk  , and the denominator is as small as possible. Making this 

assumption, (2.40) reduces to 
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

                         (2.41) 

Remembering that this study is focused on square apertures, where 1 , (2.41) can be 

reduced again to 

 
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2/3312107.9 
                                  (2.42) 
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 For reasons that will be discussed in Section 4, a dipole was chosen as the source 

for the enclosure simulations. For a small dipole, the radiated power into free-space is  

2

3 




lI
P o

rad                                                 (2.43) 

where Io is the current on the dipole (assumed to be uniform), and l  is the length of the 

dipole. Assuming that the presence of the enclosure does not severely disrupt the current 

on the antenna, the radiated power from the small dipole inside the enclosure can be 

assumed to be the same as the power radiated into free-space, as shown in (2.44). 

rado PP                                                       (2.44) 

Using (2.43) and (2.44), (2.42) can be rewritten as 
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2
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V
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lIfNL
E

o

2/53

19104.6                                     (2.45) 

where (2.45) is an envelope approximation of the worst-case EMI to radiate from an 

aperture array backed by an over-moded cavity.  

To recap, the assumptions made over which (2.45) is valid are that the apertures 

are square and electrically small, that the observation point is located in the far-field at a 

point 3m from the center of the aperture array, the apertures are uniformly illuminated, 

and the difference in distance from each aperture to the observation point is the same, 

such that all 
r

1
 decay terms and all jkre phase terms are the same and constructively 

combine at the observation point.  
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 Referring back to (2.30), where SE was defined as the ratio of the “Electric Field 

Intensity with No Shielding Mechanism” divided by the “Electric Field Intensity with 

Shielding Mechanism”, the reader can see that (2.45) can be used as the denominator in 

(2.30), while the far-field radiated intensity from a small dipole can be used as the 

numerator, given as 

rc

lIf
E

o

dipole 




4

sin2
                                         (2.46) 

By using (2.45) and (2.46) in (2.30), the worst-case SE for an aperture array backed by an 

over-moded cavity is found to be   

 
Q

V

LNf
SE

32/3

11 1
108.9                                      (2.47) 
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Q

V
LNfSE dBEnc 10

32/3

10, log10log20240                    (2.48) 

where the observation point is 3m normal from the center of the enclosure wall with the 

aperture array. The same assumptions that apply to (2.45) also apply to (2.48).  

Certain limitations do apply to (2.48). For example, if the number of apertures, N, 

were to approach infinity, then (2.48) suggests that the SE of the array would reduce to -

∞. However, if the volume, V, were allowed to approach infinity along with N, while Q 

and L remained constant, then the area of the array needed to accommodate an infinite 

number of apertures would need to increase to an infinite size, which would severely 

violate the assumption that the array size is much less than the distance from the 

apertures to the observation point at 3m. In such a scenario, the 
r

1
 decay term and jkre
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phase term of each individual aperture would become important and need to be 

considered, which is a problem that has been solved by Kaden. 

Conversely, if N is allowed to approach infinity, but the enclosure dimensions and 

Q are fixed, such that L must approach zero in order to make room for all the apertures, 

(2.48) would yield an infinite value of SE. With the array face of the enclosure 

completely filled with apertures, the limited size of the enclosure wall relates to the size 

and number of apertures by 2NLArea  , where the spacing between apertures is also 

allowed to decrease to zero, for simplicity. As N increases by some factor A , L would be 

forced to decrease by 2/1A . Putting these trends back into (2.48) and assuming that the 

area of the wall is 1m
2
, such that N = 1 and L = 1m initially for simplicity, for a fixed 

frequency, (2.48) would become 

    210

32/1

110, log10log20240 CAACSE dBEnc  
 

   210

2/1

110, log10log20240 CACSE dBEnc  
 

     21011010, log10log20log10240 CCASE dBEnc          (2.49) 

where 1C  and 2C are constants, and as the number of apertures, in this case A, increases 

to infinity, (2.49) shows that the SE of the array also increases to infinity. This result 

reflects the trend that for a fixed amount of open aperture area, it is better to use many 

apertures with small dimensions, rather than few apertures with large dimensions.  
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2.6 THE EFFECT OF MUTUAL COUPLING ON RADIATED FIELD 

INTENSITY 

The general expression in (2.19) is a good approximation for the far-field 

radiation intensity in the normal direction from a single electrically small aperture in an 

infinite PEC sheet. In Section 2.5.1, a logical and accurate means of accounting for 

radiation by multiple apertures is presented and incorporated into the approximations of 

(2.33), (2.34), and (2.48), but these approximations are still based on the radiation from a 

single aperture in an infinite PEC sheet. When multiple apertures are positioned in 

electrically close proximity to one another, the apertures will interact, changing their 

impedance, and ultimately impacting the radiated electric field intensity.  

In [2], Min Li looked at the effect of mutual coupling between closely spaced 

apertures. To examine this numerically, Li created a 3x3 aperture array in an infinite PEC 

sheet of zero thickness, aperture dimensions of 2cm on each side, a spacing of 1cm 

between each aperture, and used the Method of Moments (MoM) to determine the 

magnetic current density for the center aperture of the array at 1GHz. Though it may 

seem contradictory to examine the magnetic current density in an electrically small 

aperture after arguing that the tangential electric field inside such an aperture is assumed 

to be zero according to Bethe, since nEM ˆ , the truth is that this tangential E-field is 

always present and can be used in this way to characterize the mutual coupling between 

apertures. By finding M  in this equivalent problem, the E-field could then be determined 

by solving the inhomogeneous Helmholtz Equation of (2.8b) to solve for F , and then 

assuming that the observation point is in the far-field to yield  

FjE                                                    (2.50) 
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The mutual coupling between apertures and increased radiated field intensity are related 

by   

  glemmutual ECE sin1                                         (2.51) 

where gleEsin  is the radiated electric field intensity from a single aperture, mutualE  is the 

contribution to the total radiated electric field intensity from a single aperture when 

interacting with nearby apertures, and mC  is the mutual coupling coefficient. Since E  

and F  are related by (2.50), and M  and F  are related by (2.8b), then it can be roughly 

assumed that ME  , so that (2.51) can be rewritten as  

  glemmutual MCM sin1                                         (2.52) 

Lastly, noting again that nEM ˆ , (2.52) can again be simplified to  

  gleaperturemmutualaperture ECE sin,tan,,tan, 1                               (2.53) 

where multualapertureE ,tan,  is the tangential component of the electric field inside of 

centermost aperture in an array, and gleapertureE sin,tan,  is the tangential component of the 

electric field inside of a single aperture.  

To reexamine the impact of mutual coupling on increased radiated field intensity, 

a similar series of experiments were conducted as those done by Min Li. Each of the 

experiments utilized a 9x9 array in an infinite PEC sheet of zero thickness, a constant 

aperture size of 3mm, and varying spacing between apertures from 1mm to 5mm, as 

shown in Figure 2.11. Using the time-domain solver in CST, the aperture array was 

illuminated by a UPW propagating normal to the aperture array, and the electric field was  

sampled by an E-field probe in the middle of the centermost aperture with the same 
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Figure 2.11. Visual aid in the definition of aperture size, L, and aperture spacing.  

 

 

polarization as the incident wave. This is the same experimental setup used in the UPW 

models of Section 3, and the figures provided there will give a better description of the 

geometry used. The results of these simulations, along with Min Li’s original results, are 

shown in Figures 2.12, 2.13, and 2.14. 

Figure 2.10 shows the coupling coefficient, mC , for different aperture spacing 

over the frequency band of 1GHz to 20GHz. The data provided shows that the mutual 

coupling between apertures is not a simple relation, but instead varies drastically over 

frequency. As the concern of this paper is to predict the worst-case radiated intensity 

from these aperture arrays, it would seem logical to approximate mC  over all frequencies 

for each individual aperture spacing as the maximum value from Figure 2.12 for each  
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Figure 2.12. Coupling coefficient for different aperture spacing from 1GHz to 10GHz. 

 

 

size to spacing ratio. For this reason, Figure 2.13 is a plot of the worst-case value of mC  

per ratio of aperture spacing over aperture size. For the sake of comparison, the results 

from Min Li’s MoM simulations are also included on the plot. 

Aside from when the ratio of aperture spacing over aperture size becomes very 

small, the new simulation results yield larger values of mC  compared to those produced 

by Min Li. This trend was expected, as Min Li’s simulations only consisted of a 3x3 

array, while the new simulations consisted of a 9x9 array, so all the apertures  
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Figure 2.13. Worst-case mutual coupling coefficient per ratio of aperture spacing over 

aperture size.  

 

 

immediately adjacent to the centermost aperture also experienced an enhanced excitation 

due to mutual coupling with neighboring apertures. Also, as actual aperture arrays in 

shielding enclosures generally consist of a large number of apertures on the order of 

millimeters in size, the basic model used in the new simulations is more realistic. 

As for the curve-fitted data in Figure 2.13, the double exponential function, of the 

form DxBx CeAe  , was chosen as the general form of the fit because this function tended 

to yield the least amount of error in the least complicated form. In other words, there is 
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no mathematical or physics-based reason for choosing this function, other than it 

produced the smallest least-squared error in the least complicated function. For the new 

simulations, the coefficients for the curve-fitting are given as A = 0.4345, B = -3.773, C = 

0.1502, and D = -1.132.  

Using the new fitted-curve from Figure 2.13 to predict the coupling coefficient, or 

increase in field intensity, over a wide range of relevant aperture spacing to size ratios, 

Figure 2.14 shows the predicted impact that aperture spacing will have on the overall 

shielding effectiveness of aperture arrays. As (2.53) suggests, a positive value for mC  

results in an increased electric field intensity at the observation point, which lowers the 

shielding effectiveness of the array. To arrive at the curve in Figure 2.14, (2.54) is used to 

convert the linear coupling coefficient to decibels.  

 xx

dB eeMC 132.1773.3

10 1502.04345.01log20                      (2.54) 

where 
L

SpacingAperture
x

_
 . Using (2.54) as a corrective term for the predicted SE 

and field intensities derived in this section, the approximations can now be finalized as  
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where (2.55) through (2.59) are worst-case envelope approximations for the radiated field 

intensity and SE of aperture arrays in an infinite PEC sheet and for aperture arrays 

backed by over-moded cavities. One last time, the assumptions made over which these 

equations are based are that the apertures are square and electrically small, that the 

observation point is located in the far-field at a point 3m from the center of the aperture 

array, the apertures are uniformly illuminated, and that the difference in distance from 

each aperture to the observation point is the same, such that all 
r

1
 decay terms and all 

jkre phase terms are the same, so that fields constructively combine at the observation 

point.  

Even though the effect of mutual coupling appears to increase the radiated field 

intensity by only 4dB in the most extreme aperture size to spacing ratio, accounting for 

MC helps in reducing the error between the simulation results of Sections 3 and 4 and the 

approximations given in (2.58) and (2.59). Because of the small reduction in error and the 

simplicity in calculating MC, the MC terms shall be used throughout. 
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Figure 2.14. Estimated impact of mutual coupling of shielding effectiveness.  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Ratio of Aperture Spacing over Aperture Size

E
ff

e
c
t 

o
n

 S
h

ie
ld

in
g

 E
ff

e
c
ti

v
e
n

e
ss

, 
M

C
  

 (
d

B
)

 

 

New Fitted Curve Approximation

Min Li Fitted Curve Approximation



40 

 

 

3 UNIFORM PLANE WAVE SIMULATIONS AND RESULTS 

Before jumping in and performing simulations on aperture arrays backed by over-

moded cavities, where the physics of the problem are not quite straightforward, the first 

set of simulations to verify (2.55) will consist of aperture arrays in an infinite PEC sheet 

of zero thickness using the time-domain solver in CST Microwave Studio. To achieve 

uniform excitation over all apertures, the array will be excited by a uniform plane wave 

(UPW) propagating at normal incidence to the array. By setting up the simulations in this 

manner, many of the complications of the cavity-backed models will be avoided, so as to 

gain a better understanding of the physics with more basic models first.  

 

3.1 PROPOSED SIMULATION PLAN 

Observing (2.56) and (2.58), which are extensions of (2.55), one will notice that 

the approximations are only a function of five variables: excitation amplitude ( iE ), 

aperture size (L), aperture spacing (MC), number of apertures (N), and frequency (f). As 

each simulation will be conducted using the time-domain solver in CST Microwave 

Studio, the nature of this solver will allow for broadband results, which takes care of 

testing the frequency dependence. The excitation amplitude, iE , is only a factor for 

predicting the envelope of the E-field, which is not of primary concern in this study, but 

can easily be set so that iE  = 1. For testing the number of apertures, N, several models 

were run that have the same sized apertures with the same spacing between each one, but 

with varying array sizes. For testing the aperture spacing, several models were run that 
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have the same sized apertures, the same number of apertures, but with varying distances 

between the apertures in each model. The length of the aperture side, L, was tested by 

running multiple models with the same number of apertures, the same spacing to aperture 

size ratio, but with varying aperture lengths. A list of all the models that were run and 

will be discussed in this section is provided in Table 3.1. 

 

 

Table 3.1. Summary of Uniform Plane Wave Simulations.  

  Array Size 

Aperture 

Size 

Aperture 

Spacing 

N 

05x05 3mm 1mm 

09x09 3mm 1mm 

13x13 3mm 1mm 

17x17 3mm 1mm 

21x21 3mm 1mm 

L 

Single 3mm N/A 

Single 6mm N/A 

Single 9mm N/A 

07x07 3mm 1mm 

07x07 6mm 2mm 

07x07 9mm 3mm 

MC 

09x09 3mm 1mm 

09x09 3mm 2mm 

09x09 3mm 3mm 

09x09 3mm 4mm 

09x09 3mm 5mm 
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3.2 GENERIC CST MODEL FOR UNIFORM PLANE WAVE SIMULATIONS 

For all the UPW models discussed in this section, a variant of a single generic 

model was used for each simulation that was conducted. A view of the full three-

dimensional computational domain is shown in Figure 3.1. In each model, a sheet of zero 

thickness PEC was placed at x = 0 and extended to the edges of the domain in the y- and 

z-directions. By doing, this tells the solver that the PEC sheet should extend to infinity 

when computing the far-field during post-processing, creating a decoupling plane. The 

aperture arrays were centered on this sheet, and given enough space from the edge of the 

array to the edge of the domain, so as to not cause any strange behavior from the 

perfectly matched layer (PML) absorbing boundary condition (ABC). This minimum 

space between the edge of the array and the PML boundary was chosen at the author’s 

discretion. The distance of 400mm from the aperture array to the edge of the domain in 

 

 

 

Figure 3.1. Generic CST model used for the uniform plane wave simulations with units of 

millimeters (mm).  
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the +x-direction was chosen through experimentation to yield confident results over more 

than a decade in the gigahertz range. The space of 200mm from the PEC sheet to the edge 

of the domain in the –x-direction was again chosen at the author’s discretion to minimize 

potential problems with the PML ABC that may have occurred when scattered fields 

were incident upon the boundaries after reflecting off the array and PEC sheet.  

 Localized meshing was utilized in the cross-section of the apertures in order to 

ensure that a good representation of the coupled fields was achieved. Figure 3.2 shows 

the meshing cross-section across a selected few apertures from an array. The mesh cells 

shown in Figure 3.2 are 0.25mm x 0.25mm in the x-y plane. For the smallest studied 

aperture size of 3mm x 3mm, this is a total of 144 mesh cells per aperture, which is more 

than enough cells to get an accurate representation of the coupled fields. This meshing 

scheme is done over the entire aperture array and extends at least 5mm beyond the 

 

 

 

Figure 3.2. Cross-section of aperture meshing in uniform plane wave generic model. 
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largest array. Aside from this local meshing, the solver was allowed to choose the cell 

sizes for the rest of the domain. Figure 3.3 shows the meshing of the apertures in the x-y 

plane, which is also the same as is the x-z plane. Near the array, the x-component of the 

mesh cells was 1mm in length, and then automatically selected by the solver for the rest 

of the domain. The total number of mesh cells for each model was approximately 44 

million. 

 

 

 

Figure 3.3. Meshing of the apertures in the x-y plane for the uniform plane wave generic 

model. 

 

 

 As the name of this section suggests, the excitation for each model studied in this 

section was a UPW. These UPWs were polarized in the +y-direction, and were generated 
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at the edge of the domain on the –x face, and propagated in the +x-direction, striking the 

array at normal incidence and causing maximum coupling through the arrays.  

Figure 3.4 shows the first 200ps of the excitation signal in the time-domain, while 

Figure 3.5 shows the normalized magnitude spectrum in the frequency-domain. Each 

model was set up for a maximum frequency of 20GHz, and Figure 3.5 clearly shows that 

by 20GHz, the excitation signal has already rolled-off by 20dB. The frequency content in 

Figure 3.5 begins at 281MHz, which coincides with the total simulation time of 3.55nsec.  

 

 

 

Figure 3.4. Time-domain of the Gaussian pulse used for the excitation of the uniform 

plane wave models.  
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Figure 3.5. Normalized excitation spectrum for uniform plane wave models. 

 

 

Figure 3.5 also shows frequency content up to approximately 900GHz, which is due to a 
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sT
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max   . Despite this large excitation band, the results 

from CST are generally only reliable up to the maximum frequency set forth by the user. 

For this reason, the maximum frequency of to be studied in the section will be 20GHz. 
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certain criteria were met to ensure reliable results. On the scattering side of the arrays, 

where x > 0, field probes were placed for Ex, Ey, Ez, Hx, Hy, and Hz at 

(399mm,101mm,101mm), which is approximately the center of the y-z cross-section of 

the array at the edge of the computational domain, shown in Figure 3.1. The information 

from these probes was used to ensure that the scattered waves reaching the PML ABC 

were approximately plane waves, which generally coincides with the proper behavior 

from the ABC. Far-field probes for Ey and Hz were also placed at 3m from the center of 

the aperture arrays at (3000mm,101mm,101mm). The data from the Ey far-field probe 

was the source of data used for comparison with (2.56) and (2.58). 

 

3.3 COMPLETE RESULTS FOR A SINGLE UPW SIMULATION 

Before going forth and presenting all of the results for the UPW models, this 

subsection will step the reader through the complete set of results for a single UPW 

model. The intent of this action is to aid the reader in understanding how certain results 

were obtained, along with why the soon to be specified frequency band was chosen. To 

show this same set of work for each individual simulation would be very cumbersome 

and tedious. For this subsection, the model to be explored has an array of 07x07 

elements,  L = 3mm, and 1mm spacing between each aperture, where L and aperture 

spacing were displayed back in Figure 2.11.  

The first piece to ensuring that the model functioned correctly is ensuring that the 

total energy in the system decayed to an acceptable level. Figure 3.6 shows the system 

energy for the model as a function of time. The first large dip in energy at 1400ps is due 

to the reflection of the incident wave on the PEC sheet exiting the model from the domain 
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Figure 3.6. System energy for a 7x7 array, L = 3mm, aperture spacing = 1mm. 
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recorded signals seem feasible. In Figure 3.7, it can be seen in all three plots that the 

scattered fields do not reach the monitor point until approximately 2000ps, which is 

consistent with the explanation given for the second energy dip in Figure 3.6, where a 

large dip in system energy comes just after 2000ps when these scattered fields exit the 

domain. Figure 3.7 also shows that Ez is the dominant component of the E-field, which is 

expected, since the incident UPW was polarized in the +z-direction. Similar observations 

can be made about the plots of the magnetic field at (399,101,101), shown in Figure 3.8. 

Here, the signal again reaches the monitor points just after 2000ps, and the dominant 

component of the H-field is Hy, which complies with the definition of the Poynting 

Vector, HES  , where if x
S

S
ˆ , and z

E

E
ˆ , then y

H

H
ˆ . The 180

o
 phase shift 

of the Hy component is seen in Figure 3.8 as the slope of Hy is negative when the slope of 

Ez in Figure 3.7 is positive.  

Another important piece of information to be gathered from the data displayed in 

Figure 3.7 and 3.8 is the ratio of 
y

z

H

E
. Different ABCs for numerical solvers are similar 

in the sense that their purpose is to allow electromagnetic waves to “pass” outside of the 

computational domain uninhibited, as though there were no actual boundaries to the 

model. Where many types of ABCs will differ is in the algorithm that is used to “pass” 

these fields without reflection at the boundaries. Some algorithms only work if the 

incident fields on the boundary are plane waves at normal incidence, while other varieties 

may claim that any form of wave at any angle of incidence is acceptable, but the 

algorithm for such claims may be very complex and resource consuming. To ensure that 
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Figure 3.7. Electric near-field probes at the edge of the domain at (399,101,101). 
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Figure 3.8. Magnetic near-field probes at the edge of the domain at (399,101,101). 
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minimal reflections occur at the boundary on the scattering side of the array, where x > 0, 

and that the data used during post-processing by CST to calculate the far-fields at 3m is 

reliable, the fields at (399,101,101) need to be checked to make sure they are meeting the 

criteria of plane waves.  

One characteristic of plane waves is that the ratio between the E-field and the H-

field is 120π. Figure 3.9 shows the dominant E-field magnitude, |Ez|, divided by the 

dominant H-field magnitude, |Hy|. From visual inspection, the reader can see that from  

 

 

 

Figure 3.9. Ratio of | Ez |/| Hy | from the field probe at (399,101,101). 

10
-1

10
0

10
1

10
2

370

375

380

385

390

395

400

405

410

415

420

Frequency   (GHz)

R
a
ti

o
 o

f 
E

z
/H

y

 

 

Simulated |Ez|/|Hy|

120*



53 

 

 

1GHz to 20GHz, the ratio the fields is between 377 and 385, which is an acceptable 

amount of error in having confidence in the far-fields computed from these results. Figure 

3.10 shows the corresponding phase of Ez and Hy, with an extra 180
o
 being added to Hy to 

aid in the comparison. This shows that Ez and Hy are 180
o
 out of phase, with the 180

o
 

shift being accounted for in the Poynting Vector discussion above.  

 

 

 

Figure 3.10. Phase of Ez and Hy at (399,101,101). 
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 With all important factors inside the computational domain having been discussed 

and verified to be acceptable, the next thing to look at is the far-field data computed by 

CST during post-processing. Figure 3.11 shows the time-domain signals of Ez and Hy, the 

dominant components of the E- and H-fields, from the far-field monitor at  

 

 

 

Figure 3.11. Ez and Hy time-domain signals from the far-field probes at (3000,101,101). 
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(3000,101,101). As these field probes were 3m from the aperture array, and the excitation 

is at x=-0.2m, the anticipated time-delay is ns
e

m

s
m

67.10
83

2.3
 , which corresponds with the 

time-delay from the simulation results in Figure 3.11. Taking the FFT of both Ez and Hy, 

shown in Figure 3.12, the reader can see that there is constant 51.5dB difference between 

both components. This is expected, as these components should represent an approximate 

plane wave, and the ratio between the electric and magnetic field components for a plane  

 

 

 

Figure 3.12. Un-normalized magnitude spectra of Ez and Hy at (3000,101,101). 
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wave is 120π, or 51.5dB. The phase spectra of Ez and Hy at this monitor point are shown 

in Figure 3.13, where an extra 180
o
 has again been added to Hy to aid in the comparison. 

Figure 3.14 again shows the magnitude spectra of Ez and Hy, but this time 

normalized to the excitation spectrum, along with the E-field approximation from (2.56). 

As one of the unique traits of a UPW is that the wave does not suffer from any sort of 
nr

1

decay factor, the magnitude spectrum at the far-field monitor point at (3000,101,101), in 

the absence of the PEC sheet, would be the same as the excitation/incident magnitude  

 

 

 

Figure 3.13. Phase Spectra of Ez and Hy at (3000,101,101). 
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spectrum. For this reason, the excitation magnitude spectrum can be used as the “Electric 

Field Intensity with No Shielding Mechanism” term in the SE definition from (2.30). 

Similarly, the Ez data from the far-field probe that is scattered by the aperture array can 

be used as the “Electric Field Intensity with Shielding Mechanism” term in (2.30). With 

the terms of (2.30) identified, the simulated shielding effectiveness can be found, which 

is shown in Figure 3.15. The error between the simulation result and (2.58) is shown in 

Figure 3.16, where the positive error indicates that (2.58) has under-estimated the SE of  

 

 

  

Figure 3.14. Normalized excitation, Ez, Hy, and visual definition of shielding 

effectiveness. 
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the aperture array. Two definite contributing sources to the error shown in Figure 3.16 are 

the mutual coupling factor and the differing distance between each aperture and the 

observation point at (3000,101,101).  

 

 

 

Figure 3.15. Shielding effectiveness results from both CST simulation and (2.58). 
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made that the radiation intensity from every aperture in the array is affected the same 

way, which is not the case.  

 

 

 

Figure 3.16. Difference between simulation SE result and (2.58). 
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The results above show that the error introduced by differing distances between each 

aperture and the monitor point at (3000,101,101) is minimal, and will be ignored for the 

rest of this section.  

 With the full analysis of a single simulation complete, the reader should now 

understand the process used by the author to arrive at the results in this section, and also 

for the rest of the section. From this point, this only results to be discussed from each 

simulation will be SE, as this tedious procedure of processing numerous signals for a 

single simulation will not be shown again.  

 

3.4 RESULTS FOR ALL UPW SIMULATIONS 

Unless otherwise noted, all solid curves shown in the plots for the following 

section represent results from numerical simulations, while the dotted curves of the same 

color represent the SE prediction from (2.58). 

3.4.1 Results for Testing N. As shown back in Table 3.1, the simulations  

for testing the N term in (2.58) involve several models with identical aperture sizes and 

aperture spacing, but varying numbers of apertures in each array. Figure 3.17 shows the 

SE results for the aforementioned models, along with the SE predictions for each array 
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from (2.58). Note that the slope of both the approximations and simulation results are      

-40dB/dec, indicating that the 2f  term from (2.58) seems to fit.  

 There is a small amount of error of approximately 1dB between each simulation 

result and the corresponding prediction at lower frequencies, with the error increasing 

past 10GHz. Figure 3.18 shows a plot of the difference between each simulation result 

and the prediction for SE by (2.58). Figure 3.18 clearly shows that below 10GHz,  

 

 

 

Figure 3.17. Shielding effectiveness results from simulations for testing the N term in 

(2.58). 
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the error between the simulation and (2.58) is less than 1.5dB, with a peak error of about 

2.1dB at 15GHz, which is just shy of when the aperture dimension, L, is λ/6. An 

interesting observation is that the peak in error around 15GHz for the 5x5 model is 

delayed further up the spectrum as the number of apertures in the array increases. This 

could potentially be caused by the interaction between adjacent apertures, and will be 

investigated and discussed more in the mutual coupling section. As 2dB is an acceptable 

amount of error, these simulation results show that (2.58) is indeed dependent on the 

 

 

 

Figure 3.18. Simulation SE results less the prediction from (2.58) for testing N.  
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number of apertures, N, by  N10log20 . The only potential limitation to this dependence 

on N could be while the aperture dimension, L, remains less than λ/6, but the results seen 

here do not provide enough evidence to support this claim. 

3.4.2 Results for Testing MC. Back in Section 2.6, the mutual coupling (MC) 

between closely spaced apertures was examined, but the results that were taken from 

these simulations were based on the tangential component of the electric field in the 

middle of the centermost aperture, rather than the radiated field intensity. The results for 

MC in this subsection are instead derived from the observed far-field intensity for each 

model, which are based on the radiation from all apertures in the arrays, rather than the 

fields inside a single aperture.  

Figure 3.19 displays the simulation SE results from all models, along with the 

predicted SE from (2.58). As shown in Table 3.1, all five of the MC simulations consist 

of a 09x09 array with 3mm apertures, but with different spacing between apertures for 

each model. Observing (2.58), the reader can see that for a consistent number of apertures 

and aperture dimensions between models, the only difference in the radiated field 

intensity should be due to MC between apertures, where (2.54) predicts the increase in 

radiated field intensity due to the effect of MC. Noting that the ratio of aperture spacing 

to L in these models ranges from 
3

1  to 
3

5 , the largest difference in mutual coupling 

between simulations should be approximately 2dB, which explains why the results in 

Figure 3.19 are grouped so closely together, making it difficult to view the results. 

 Figure 3.20 is a clearer plot than Figure 3.19, as it shows the difference between 

the simulation SE results and the predicted SE from (2.58). Again, the error is less than  
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Figure 3.19. Shielding effectiveness results for testing MC. 
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Figure 3.20. Simulation SE results less the prediction from (2.58) for testing MC. 
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described in the previous paragraph, is still a valid argument. However, as the severity of 

the impact that MC has on aperture radiation lessens with increasing space, so does the 

relative difference between individual aperture contributions to the far-fields, which 

decreases the overall error between the simulations and (2.58).  

 In summary, the MC simulations again show that the error between simulation 

results and (2.58) is less than 2dB, with a noticeable amount of increased error occurring 

as the aperture dimension, L, approaches λ/6.  

3.4.3 Results for Testing L. Before performing simulations with a fixed 

number of apertures and aperture spacing, but with different aperture sizes, three models 

were simulated with a single aperture of L = 3mm, 6mm, and 9mm in each model. By 

running simulations with only a single aperture, the influence of the number of apertures 

and mutual coupling can be removed, and the results should ideally reflect only the 

influence of the aperture size.  

Figure 3.21 shows the results from the single aperture simulations, along with the 

corresponding approximations using (2.58), while Figure 3.22 displays the difference 

between the simulation results and (2.58). From Figure 3.22, it can be seen that the error 

between the 3mm simulation and the corresponding prediction is nearly 0dB at low 

frequencies, while when the aperture dimension, L, becomes greater than λ/6, the error 

begins to rapidly increase. For both the 6mm and 9mm apertures, the low frequency error 

is about -1.5dB, but rapidly changes as the aperture dimensions increase to λ/6 at 8.3GHz 

for the 6mm aperture and 5.6GHz for the 9mm aperture. Noting that the error between 

the simulation results and the corresponding SE predictions from (2.58) is a worst-case of 
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3dB as L approaches λ/6 for all three models, increasing rapidly thereafter, these 

simulations suggest that a limitation of L < λ/6 be placed on (2.58). 

To test the L term in models with multiple apertures, Table 3.1 shows that three 

more simulations were run, each consisting of a 07x07 array, with a spacing of 1mm for 

L = 3mm, a spacing of 2mm for L = 6mm, and a spacing of 3mm for L = 9mm. The 

 

 

 

Figure 3.21. Shielding effectiveness results of single apertures for testing L. 
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aperture spacing for each of these models was done in this way to keep the MC term the 

same between models. The simulation SE results for each model, along with the 

corresponding prediction by (2.58), are shown in Figure 3.23, with the difference 

between each simulation prediction shown in Figure 3.24. 

 Observing Figure 3.24, it can be seen that over the entire frequency band, the 

error between the simulation results and (2.58) is less than 2dB, as opposed to the data 

shown in Figure 3.22, which suggests that the error can be kept to within 3dB, 

 

 

 

Figure 3.22. Simulation SE results less the prediction from (2.58) for the single apertures 

for the testing of L. 
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Figure 3.23. Shielding effectiveness results of arrays for testing L. 
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Figure 3.24. Simulation SE results less the prediction from (2.58) for the array models 

apertures for testing L. 
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and that no upper frequency limit could be deduced within the observed frequency band 

from 1GHz to 20GHz.  

 

3.5 SUMMARY OF RESULTS FOR UPW SIMULATIONS 

The purpose of the UPW simulations was to create a simple scenario to 

investigate before conducting the enclosure simulations, which are of more practical use, 

but more difficult to understand. These models were all excited by a uniform plane wave 

at normal incidence to the aperture arrays, which were placed in an infinite sheet of PEC 

with zero thickness. In doing so, the arrays for all models were excited with uniform 

amplitude and phase, which is considered to be the worst-case EMI scenario for coupled 

fields to constructively add up at the observation point, located at 3m normal to the center 

of the aperture arrays.  

  For the N simulations, the error between the simulation results and (2.58) was 

approximately < 2dB over most of the observed frequency band of 1GHz to 20GHz, with 

the error decreasing between models as the number of apertures, N, increased. The 

maximum observed error, 2.1dB, occurred when L ≈ λ/6. 

 For the MC simulations, the error between the simulation results and (2.58) was ≤ 

2dB over the entire observed frequency range. The maximum observed error of 2dB 

occurred when L ≈ λ/6. 

 For the L simulations, the simulation results for the single aperture models 

resulted in an error of ≤ 3dB, while L < λ/6. However, when the L study was conducted 

with multiple apertures in an array, the observed error was < 2dB over the entire observed 

frequency range. This finding suggests that while the MC between apertures in an array 
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causes an increased radiated field intensity at lower frequencies, the effect of MC actually 

tends to cancel out the increase in radiated field intensity caused by the apertures 

becoming electrically large, to a certain extent.  

 Being conservative, the data presented in this section suggests that the prediction 

for the SE of an aperture array in an infinite PEC sheet of zero thickness, given by (2.58), 

is accurate to within 3dB, while L < λ/6.   
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4 ENCLOSURE SIMULATIONS 

The results from the UPW simulations in Section 3 showed that when an aperture 

array in an infinite sheet of PEC is excited by a UPW at normal incidence, the SE 

predictions from (2.56) and (2.58) work to within 3dB while L < λ/6. While these 

simulations are useful in understanding the physics of the fields scattered by small 

apertures, the UPW simulations are too unique and unrealistic in the way they are 

conducted to be of any direct use to the problems this research aims to solve. With a solid 

understanding of the results from the previous section, this current section shall focus on 

simulations where the excitation of an aperture array is by an over-moded cavity.  

 

4.1 FUNDAMENTAL DIFFERENCE BETWEEN INFINITE SHEET AND 

ENCLOSURE SIMULATIONS 

Once again, the purpose of the UPW simulations was to simplify the enclosure 

models, which are of real interest to this research. While the physics of the UPW 

simulations are well understood, they do not directly translate to the case where the 

aperture arrays are excited by an over-moded cavity. This subsection shall address the 

issue of discussing the fundamental differences between the UPW and enclosure models.  

4.1.1 Dipole Excitation. The excitation for the infinite sheet simulations, a  

uniform plane wave, was chosen instead of a finite source so that the apertures in each 

model from the previous section could be illuminated with uniform amplitude and phase, 

effectively producing the worst-case far-field radiated intensity. In order to create an 

incident wave with uniform amplitude and phase over the apertures without placing a 

discrete source very far away from the array within the computational domain, a total-
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field/scattered-field (TF/SF) scheme, such as that described in [10], is utilized by CST to 

generate a UPW without compromising the available system resources. A UPW excited 

in such a way is also unique in that the amplitude of the wave does not suffer from any 

kind of 
nr

1
 decay, like discrete sources of finite spatial distribution would. In other 

words, such a UPW would theoretically extend to infinity in the directions traverse to the 

direction of propagation. Described in Section 3, it is this unique characteristic that made 

calculating the SE so simple for the UPW simulations.  

When performing the enclosure simulations, where the enclosure itself is an 

object of finite dimensions, it is not possible, nor would it be practical or useful, to excite 

the enclosure with the same UPW as was used in Section 3. For this reason, an 

electrically short dipole driven by a voltage source was used as the excitation for the 

enclosure simulations. With the lumped source element 1mm long, and each PEC post 

being 5mm long (with zero radius), the length of the dipole was 11mm, making the λ/2 

resonant frequency of the dipole approximately 13.6GHz. Figure 4.1 shows a side-view 

of the dipole meshing, where each mesh cell is 0.5mm x 0.5mm x 0.5mm.  

Assuming the dipole is aligned with the z-axis and centered about the origin of the 

coordinate system shown back in Figure 2.2, the far-field radiation from a small dipole is  

jkre e
cr

lfI
jE 






4

sin2
                                            (4.1) 

where θ = 90
o
 in the direction of the observation point, so the intensity of the field is 

proportional to the frequency, f , the excitation current, Ie, the dipole length, l , and the 

distance from the source, r. With r fixed at 3m and l  = 0.011m, only f  and Ie remain as 
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dependent variables for determining the field intensity. The first-degree frequency 

dependence from f  in (4.1) cannot be changed, but since the dipole is being excited by a 

1V source, Ie is then dependent on the impedance of the dipole, given as  

  1
 ant

ant

s
e Z

Z

V
I                                               (4.2) 

where Zant is predominately capacitive at frequencies below the λ/2 resonance, meaning 

that Zant should decrease at a rate proportional to 1f  before this first resonance. 

 

 

 

Figure 4.1. Meshing of the dipole source used for exciting the enclosure models. 
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Rearranging (4.2), it can be shown that when GHzff 6.132/   , Ie is then 

proportional to f  by 

ant

ant

e fC
Cj

I 


2
1

1















                                           (4.3) 

where Cant is an equivalent antenna capacitance at low frequencies. For a numerical 

simulation where the dipole is placed in free-space with PML ABCs at the boundaries of 

the computational domain, Figure 4.2 shows the resulting induced antenna current, 

 

 

 

Figure 4.2. Magnitude of the antenna current and impedance for the dipole source used in 

the enclosure simulations for a source voltage of 1V.  
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which supports the previous claim that the low frequency impedance of a dipole is 

predominately capacitive. Knowing that the impressed voltage is 1V, the magnitude of 

the antenna impedance can be found, as shown in the same plot, with the phase of the 

antenna impedance given in Figure 4.3. The peak in antenna current, or valley in antenna 

impedance, marks the 2/  resonant frequency of the dipole, which is at 12GHz. The 

shift from the theoretical frequency of 13.6GHz is likely due to the finite meshing of the 

antenna. 

 

 

 

Figure 4.3. Phase of the antenna impedance used for the enclosure simulations.  
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With the antenna current well-characterized from theory and simulation, this 

knowledge can then be applied to (4.1) to create an expectation for the far-field radiation 

from the dipole source. With the native f  term in (4.1) and the first-degree f  

dependence of eI , the E-field at a point 3m normal to the dipole is expected to increase 

by +40dB/dec while GHzff sim 12,2/   , peaking at the resonant frequency of 

12GHz, and then behaving somewhat sporadically after that. Figure 4.4 shows the far-

field radiation intensity at 3.05m (3m from the soon to be aperture array) from the  

 

 

 

Figure 4.4. Radiated field intensity at a point 3.05m from the dipole source in free-space. 
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dipole antenna in free-space. As expected, there is a +40dB/dec trend for the observed 

field strength when the frequency is well below 12GHz. Near 6GHz, deviation from the 

+40dB/dec slope becomes noticeable, with the peak in field-strength occurring at 12GHz. 

The data shown in Figure 4.4 will eventually be used in this section to calculate the SE of 

arrays backed by enclosures, as this data will serve as the “Electric Field Intensity with 

No Shielding Mechanism” term in the SE definition from (2.30).   

4.1.2 Enclosure Q. The enclosure Q is another significant difference between 

the infinite sheet and enclosure models due to the influence that it has on the radiated 

fields, as seen in (2.57) and (2.59). In Section 2.5.2, the Q-factor of an enclosure is 

defined as  

dP

W
Q


                                                       (4.4) 

where W is the amount of energy stored in the enclosure, and dP  is the amount of energy 

lost in the enclosure due to either conduction loss, dielectric loss, or radiation loss. The 

total Q of an enclosure can also be related to the Q caused by each of these three loss 

factors by 













rdc QQQ
Q

111
                                              (4.5)

 

where cQ  is the Q caused by conduction loss in the walls of the enclosure, dQ  is the Q 

caused by loss in the dielectric of the enclosure, and rQ  is the Q caused by radiation loss 

from the enclosure. As all metallic objects for the simulations conducted in this study are 

PEC, the conductivity loss is zero, meaning that the cQ  term in (4.5) does not affect the 

overall Q of the enclosure.  
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 With no conductor loss, (4.5) can then be reduced to  

1

11














rd QQ
Q                                                (4.6) 

The result in (4.6) states that the Q of the enclosure is a function of both dielectric and 

radiated losses. If no lossy dielectric were to be used to load the enclosure, meaning that 

the losses from radiation were the only factor influencing the cavity Q, then the Q of the 

enclosure would be dependent all the factors in (2.57) that contribute to radiation from 

the apertures. To be complete, the radiation losses would also include the radiation from 

the equivalent electric polarization current, which has been ignored in this paper, as it 

does contribute to the far-fields normal to the apertures, but still readily radiates power 

from each aperture. For this reason, a lossy dielectric is needed to load the enclosure, so 

as to remove or make the effect of rQ  on the overall Q of the enclosure negligible. In 

doing so, an obvious limitation would be when rQ  becomes significant to the point of 

influencing the overall Q in a non-negligible manner.  

4.1.3 Resonant Nature of Cavity. The last significant difference between the 

infinite sheet and enclosure models is the resonant behavior of the enclosure, which was 

suggested by the influence of the Q-factor in the previous subsection. During the 

derivation of the aperture excitation in Section 2.5.2, (2.35) showed that the magnetic 

vector potential, A , only exists in a significant sense at discrete frequencies, found using  
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zyx kkkk   

222

2




























d

p

b

n

a

mc
f

r

res




                           (4.7) 



81 

 

 

where m, n and p must be integers ≥ 0, and a, b and d are the enclosure dimensions. This 

results shows that rather than having a continuous, well-behaved curve for the simulation 

SE results, such as those for the infinite sheet models, the simulation results for the 

enclosure models will have distinct frequencies where the radiated field intensity is 

significant, corresponding the dips in the SE result. For this reason, the data for the 

enclosure results will be examined for discrete frequencies, rather than over the 

continuous band of 1GHz to 20GHz.  

 

4.2 PROPOSED SIMULATION PLAN 

An initial batch of simulations were conducted using a simple lossy dielectric 

inside the enclosure with a constant conductivity of ζ = 0.01. By loading the cavity with 

such a dielectric, dQ  is found by 

o
ro

dQ 





100

tan

1
                                      (4.8) 

By loading the cavity with a lossy dielectric of ζ = 0.01, dQ  becomes a very simple 

quantity to predict and comprehend. As mentioned in Section 4.1.2, the overall Q of the 

cavity is defined in (4.6) for PEC walls, where the only dependent variables are dQ  and 

rQ . At some point, the power radiated from the apertures will become the dominant loss 

mechanism in the system, causing the actual Q of the enclosure to stray from dQ . 

However, while Pr << Pd, where Pr is the power lost to radiation and Pd is power lost in 

the dielectric, it is an acceptable to assume that dQQ  .  
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Over the frequency band of 1GHz to 20GHz, the Q of the cavity will be as large 

as 110, as shown in Figure 4.5. Therefore, the models utilizing the lossy dielectric of ζ = 

0.01 shall need to consist of few apertures in order to avoid excessive radiated power 

loss. The advantage of the large Q at high frequencies that is attained using this dielectric 

is that resonances higher in the spectrum can be observed individually, whereas a lower 

Q would cause the resonances to blur together.  

Table 4.1 shows a list of all simulations that were conducted using the simple 

lossy dielectric of ζ = 0.01. Also included in this list are three simulations where one 

entire wall of the PEC enclosure is filled with apertures of L = 3mm, 6mm, and 9mm.  

 

 

 

Figure 4.5. Qd for a lossy dielectric with ζ = 0.01. 
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Table 4.1. Proposed Enclosure Simulation Plan Using a Simple Lossy Dielectric of ζ = 

0.01S. 

Array 

Size 

Aperture 

Size 

Aperture 

Spacing 

05x05 3mm 1mm 

09x09 3mm 1mm 

13x13 3mm 1mm 

17x17 3mm 1mm 

21x21 3mm 1mm 

37x27 3mm 1mm 

21x15 6mm 1mm 

15x11 9mm 1mm 

 

 

While the simulations with a lossy dielectric of ζ = 0.01 are very useful in 

understanding the physics of the enclosure simulations, these models are not 

representative of real products that this research is aimed towards, where the loaded Q of 

such enclosures may only be a maximum of 10. For this reason, a second batch of 

simulations were run utilizing a lossy dielectric by means of a first-order Debye model, 

where the value of tanδ is specified to be 0.1 at 20GHz. Figure 4.6 shows ε’ for the first-

order Debye material, while Figure 4.7 shows ε’’ and Figure 4.8 shows dQ  for the same 

material. Table 4.2 shows the proposed simulations for the first-order Debye models.    
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Figure 4.6. Plot of ε’ for the first-order Debye dielectric. 

 

 

 

Figure 4.7. Plot of ε’’ for the first-order Debye dielectric.  
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Figure 4.8. Qd for a first-order Debye dielectric where tanδ = 0.1 at 20GHz. 

 

 

Table 4.2. Proposed Enclosure Simulation Plan Using a First-Order Debye Dielectric.  

Array 

Size 

Aperture 

Size 

Aperture 

Spacing 

05x05 3mm 1mm 

09x09 3mm 1mm 

13x13 3mm 1mm 

17x17 3mm 1mm 

21x21 3mm 1mm 

37x27 3mm 1mm 
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4.3 GENERIC CST MODEL FOR ENCLOSURE SIMULATIONS 

Similar to the UPW simulations, each enclosure model studied in this section is a 

variant of a single generic model. A view of the full three-dimensional computational 

domain is displayed in Figure 4.9. In this generic model, the enclosure walls have 

dimensions of 100mm x 115mm x 155mm, and are formed from PEC sheets of zero 

thickness. The aperture arrays are placed in the wall on the + x̂  side of the enclosure, and 

are centered on this wall, except when noted. PML ABCs are again used in order to 

prevent reflection of the EM waves within the model at the boundaries of the 

computational domain, which extend 10mm in the -x-direction, 400mm in the  

 

 

 

Figure 4.9. Generic CST model used for the enclosure simulations with units of 

millimetres (mm).  
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+x-direction, 23mm in the ±y-direction, and 31mm in the ±z-direction, all chosen at the 

author’s discretion. Near-field probes for Ex, Ey, Ez, Hx, Hy, and Hz are placed at 

(399mm,0,0) to monitor the electric and magnetic fields at the edge of the domain for the 

same purpose as the UPW simulations. Far-field probes for Ey and Hz are placed at 

(3000mm,0,0) to monitor the radiated field at 3m normal to the aperture array, and is the 

source of data from which the simulation SE is found. 

 Figure 4.10 shows the meshing of the apertures in the y- and z-directional cross-

section. While the UPW simulations utilized a mesh of 0.25mm x 0.25mm across the 

apertures, the enclosure models only use 0.5mm x 0.5mm in order to keep the total 

number of mesh cells to a reasonable number, which comes to about 44 million. The  

 

 

 

Figure 4.10. Cross-section of aperture meshing in an enclosure model.  
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same mesh density as the UPW would be desirable, but would also the total number of 

cells to increase beyond 100 million, which would lead to very long simulation times for 

each model. Figure 4.11 shows the meshing of the apertures from the side. Here, it can be 

seen that inside the enclosure, each mesh cell is 0.5mm x 0.5mm x 0.5mm, while the cells 

outside of the enclosure are automatically chose by the solver.  

 

 

 

Figure 4.11. Side-view of the aperture meshing for the enclosure models.  
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4.4 RESULTS FOR ALL ENCLOSURE SIMULATIONS 

Back in Section 3.3, the complete results for a single model were analyzed in 

order to show the reader the steps that were taken to ensure that reasonable data was 

obtained. As the criteria are the same for ensuring valid data with the enclosure models 

and the UPW models, there is no need to repeat the same steps. Over the band of 1GHz to 

20GHz, the ratio of |E|/|H| was again examined and found to be approximately 120π, and 

the time-of-arrival for signals at the monitor points was checked and matched well with 

the theoretical expectations.   

4.4.1 Results for Small Arrays. Figure 4.12 shows the results for an array with 

 

 

 

Figure 4.12. Simulation SE result and (1.2.59) for an enclosure model here N = 25, L = 

3mm, aperture spacing = 1mm, and a dielectric of ζ = 0.01S.  
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Array:05x05, L:3mm, Spacing:1mm

(1.2.59)
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25 apertures (arranged 5x5), L = 3mm, aperture spacing of 1mm, and backed by an over-

moded cavity loaded with a lossy dielectric of ζ = 0.01S. As noted earlier in (4.7), the SE 

result has dips at specific frequencies that correspond to the resonant frequencies of the 

cavity where the intensity of the radiated fields are strongest. Due to the alignment and 

location of the excitation dipole with the y-axis in the middle of the enclosure, as shown 

in Figure 4.13, the only modes excited within the enclosure are TEm0p, and m and p must  

 

 

 

Figure 4.13. Location of the excitation dipole within the enclosure.   
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be odd integers, as the source lies at a null for all even integers of m and p. Table 4.3 

provides a list of resonant frequencies, up to 10GHz and m,n,p ≤ 9, that meet the criteria 

mentioned. By examining Figure 4.12, one can see that the four most significant dips in 

SE occur at 1.78GHz (TE101), 3.27GHz (TE103), 5.36GHz (TE303), and 8.04GHz (TE503), 

all coinciding with the predictions shown in Table 4.3. Other modes listed in Table 4.3 

can also be found in Figure 4.12, but with a less severe SE dip.  

 The results for the 5x5, 9x9, 13x13, 17x17, and 21x21 arrays with L = 3mm, 

aperture spacing of 1mm, and dielectric of ζ = 0.01 are all shown together in Figure 4.14, 

where the results are plotted as the difference between the simulation result and (2.59).  

 

 

Table 4.3. Possible Resonant Frequencies Supported by the Enclosure and Source 

Geometries. 

Freq (GHz) m n p 

1.7851 1 0 1 

2.4487 1 0 2 

3.2678 1 0 3 

4.6029 3 0 1 

5.0659 1 0 5 

5.3553 3 0 3 

6.6078 3 0 5 

6.9383 1 0 7 

7.5622 5 0 1 

8.0423 5 0 3 

8.1326 3 0 7 

8.8379 1 0 9 

8.9254 5 0 5 

9.8035 3 0 9 
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The ripples in the result below 3GHz are likely caused by a less than desirable energy 

decay in the system (about 40dB), and would be remedied by allowing the simulations to 

run longer. Though the resonant frequency for the TE101 mode is accurate, the author 

does not place a high degree of confidence in the SE level at this frequency shown in 

Figure 4.12, and SE difference in Figure 4.14 and Table 4.4. 

 

 

 

Figure 4.14. Simulation SE results and (2.59) for enclosure models where N = 25, 81, 

169, 289, 441, L = 3mm, aperture spacing  = 1mm, and a dielectric of ζ = 0.01S. 
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Array:05x05, L:3mm, Spacing:1mm

Array:09x09, L:3mm, Spacing:1mm

Array:13x13, L:3mm, Spacing:1mm

Array:17x17, L:3mm, Spacing:1mm

Array:21x21, L:3mm, Spacing:1mm
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Table 4.4. Results from Significant Frequencies in Figure 4.14. 

    Frequency (GHz) 

    1.78 3.2 4.56 5.3 7.56 7.98 10.5 10.8 

    TE101 TE103 TE301 TE303 TE501 TE503 TE701 TE703 

Array 
Size 

05x05 -3.1dB 0.3dB 5.1dB 0.5dB 4.6dB 0.1dB 6.4dB 4.1dB 

09x09 -3.8dB 1.6dB 4.7dB 1.0dB 6.1dB 2.0dB 6.8dB 3.7dB 

13x13 -2.1dB 3.6dB 4.6dB 2.5dB 7.5dB 4.3dB 8.7dB 5.5dB 

17x17 -1.2dB 6.5dB 4.7dB 5.2dB 8.8dB 7.4dB 11.3dB 9.4dB 

21x21 -1.7dB 10.78dB 5.1dB 10.0dB 9.7dB 11.3dB 13.3dB 15.3dB 

 

 

 In general, the results in Figure 4.14 and Table 4.4 show that for smaller arrays, 

the simulation results match well with the approximation from (2.59), predicting the 

worst-case SE within less than 1dB. As the arrays become larger and occupy more space 

on the enclosure wall, the apertures begin to undergo a higher degree of non-uniform 

illumination, and when p ≥ 3, some apertures are excited 180
o
 out of phase, causing the 

error between simulation results and (2.59) to increase. Mathematically, this can be 

explained by looking back at (2.37b), which defines the tangential H-field to be  

     zkykxkB
k

x

A
H zyxmnp

xz
z sincoscos

1







  

Knowing that yk = 0 from the source geometry, and that the apertures are located on the 

enclosure wall at x = 0, the tangential H-field reduces to 

  



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sinsin                              (4.9) 

The result in (4.9) shows that the distribution of the tangential H-field over the aperture 

array varies spatially by a sinusoidal function. This means that unless the apertures are 
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tightly grouped, the apertures will not be illuminated with uniform amplitude or phase, 

leading to increased error between simulation results and (2.59). However, as (2.59) is a 

worst-case prediction, the assumption of uniform illumination over each aperture only 

leads to an under-estimation of SE. 

 Figure 4.15 shows the difference between simulation results and (2.59) for the 

same aperture arrays of N = 25, 81, 169, 289, and 441, L = 3mm, aperture spacing of  

 

 

 

Figure 4.15. Simulation SE results and (2.59) for enclosure models where N = 25, 81, 

169, 289, 441, L = 3mm, aperture spacing = 1mm, and a first-order Debye dielectric. 
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Array:05x05, L:3mm, Spacing:1mm

Array:09x09, L:3mm, Spacing:1mm

Array:13x13, L:3mm, Spacing:1mm
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1mm, but this time the enclosure is loaded with the first-order Debye material. Quick 

examination of Figure 4.6 shows the reader that the Debye material has a relative 

permittivity of approximately 1.1 at low frequencies, then gradually reducing to 1 at 

20GHz, which suggests that the resonant frequencies should all shift lower in the 

spectrum than the simulations with the simple dielectric of constant conductivity. Close 

comparison of Figures 4.14 and 4.15 will show that the resonant frequencies do indeed 

shift lower in frequency for the Debye models. 

Table 4.5 shows the error between the simulation results and (2.59) for the Debye 

models, and good agreement is again achieved between the simulations and theory, where 

the approximation has predicted the SE to within 2dB for the 5x5 case. For the same 

reasons as the constant conductivity models, the error between the simulations and (2.59) 

increases as the array size increases. 

As the Q of these enclosures with the Debye material approaches 10 at 20GHz, 

individual resonant frequencies higher in the spectrum become more difficult to identify. 

Alternatively, Q can be defined as  

dB

res

BW

f
Q

3

                                                      (4.10) 

where dBBW3  is the 3dB bandwidth (BW) of the enclosure about a particular resonant 

frequency, resf . When the BW of a particular mode is large enough that the BW of 

neighboring modes overlap, then when, for example, a 20GHz signal excites the cavity 

and should ideally create a TE13,0,5 mode, the neighboring modes of TE5,0,19 and TE13,0,7 

are spawned and cause interference with the TE13,0,5 mode, depicted in Figure 4.16. This 

interference and blurring of modes is what causes the dips in SE from Figure 4.15 to 
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Table 4.5. Results from Significant Frequencies in Figure 4.15. 

    Frequency (GHz) 

    1.78 3.2 4.56 5.3 7.56 7.98 10.5 

    TE101 TE103 TE301 TE303 TE501 TE503 TE701 

Array 
Size 

05x05 6.3dB 2.0dB 5.1dB 2.5dB 2.5dB 2.4dB 6.6dB 

09x09 6.0dB 3.2dB 5.0dB 2.7dB 5.0dB 4.2dB 6.0dB 

13x13 6.3dB 5.4dB 5.3dB 3.9dB 7.5dB 6.3dB 7.7dB 

17x17 6.3dB 8.3dB 5.9dB 6.2dB 9.7dB 8.6dB 11.0dB 

21x21 4.9dB 11.9 6.7dB 10.2dB 11.4dB 11.7dB 15.6dB 

 

   

 

Figure 4.16. Graphical depiction of “mode blurring” at high frequencies for a low-Q 

cavity. 
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vanish at higher frequencies when compared to the results in Figure 4.14 for a Q of 

approximately 110 at 20GHz. Consequently, the “mode blurring” appears to aid in 

improving the SE of these simulations.  

4.4.2 Results for Offset Array. To examine the impact of array location in the 

enclosure wall, an additional model was created to compare with the 5x5 Array of 3mm 

apertures. This additional model consisted of the same arrangement of 25 3mm apertures 

in a 5x5 array with 1mm spacing between apertures, but instead of placing the array in 

the center of the enclosure wall, the array was placed in a corner of the wall. Both models 

used the first-order Debye dielectric. The results of the two simulations are shown in 

Figure 4.17 as the difference between the simulation SE and (2.59).  

Figure 4.17 is interesting in that it shows that when the aperture array is not 

placed near the center of the enclosure wall, the radiated field intensity decreases, owning 

to the increase in error between the worst-case approximation by (2.59) and the 

simulation results. Looking again at (4.9), which states that the spatial distribution of the 

tangential H-field over the wall of the aperture array is sinusoidal, one can see that when 

2
dz   , coinciding with the array being positioned in the center of the wall, the sine 

function is maximum. On the contrary, when the array is close to one of the walls in the 

z-direction, where dz ,0 , the sine function is minimal. 
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Figure 4.17. Simulation SE results and (2.59) for enclosure models where N = 25, L = 

3mm, aperture spacing = 1mm, and a first-order Debye dielectric for the array centered 

and offset in the enclosure wall. 

 

 

The closest that the result from the offset array simulation comes to (2.59) occurs 

at 5.1GHz, which is the TE105 mode. Looking at the z-coordinate for the centroid of the 

array, which is -58mm, or approximately d/10 from the corner of the enclosure at             

z = -77.5mm, one can see that at when the TE105 mode is excited, the offset array falls 

almost in line with a maximum point from (4.9). This result shows that no matter where 

the array is positioned, maximum radiated field intensity can potentially occur if the array 

falls on a maximum point of the sinusoidal field distribution by (4.9). While this scenario 

10
0

10
1

-5

0

5

10

15

20

25

30

35

40

45

Frequency   (GHz)

D
if

fe
re

n
c
e
  

 (
d

B
)

 

 

Array:05x05, L:3mm, Spacing:1mm, Center

Array:05x05, L:3mm, Spacing:1mm, Offset



99 

 

 

tends to happen more often for an array placed in the center of the enclosure wall, an 

array can still be maximally excited anywhere on the enclosure wall, just less likely when 

the array is offset from the exact center.  

4.4.3 Results for Large Arrays. The small array simulations were useful in  

understanding the physics of the enclosure simulations, but may provide misleading or 

incomplete results for when an enclosure has many hundreds of apertures, perhaps even 

consuming an entire wall. For this reason, three models were designed and simulated for 

the scenario when an entire wall of the enclosure is filled with as many apertures as 

possible for L = 3mm, 6mm, and 9mm. Loaded with the simple dielectric of ζ = 0.01S 

and an aperture spacing of 1mm, the result for the 37x27, 3mm array is shown in Figure 

4.18, with the results for all three models shown in Figure 4.19, and numbers for the 

significant frequencies given in Table 4.6. 

Figure 4.18 clearly shows that when an entire wall of an enclosure is filled with 

apertures, the only modes that cause significant amounts of radiation are TEm01 modes, 

which is expected, as these are the only modes where every aperture is illuminated with 

the same phase. Where the simulation results in 4.18 differ from the expectation by (2.59) 

is in the slope of SE. In all previous simulations where the dielectric conductivity was     

ζ = 0.01S, the SE decreased at a rate of -40dB/dec, which agrees with (2.59). However, 

Figure 4.18 clearly shows that the simulation results decrease by -20dB/dec, which is also 

seen in Figure 4.19 for the other two simulations. The exact reason for this difference in 

slope is not yet understood, but a possible cause may be that the power radiated by that  
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many apertures simply violates the assumption that Pr << Pd. This would mean that the 

cavity Q would have to be determined by 
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Figure 4.18. Simulation SE results, (2.59), and an experimentally found approximation 

for an enclosure model where N = 25, L = 3mm, aperture spacing = 1mm, and a dielectric 

of ζ = 0.01S. 
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The new assumption, plotted along with the simulation results and (2.59), was 

found experimentally. By noticing that the simulation results sloped by -20dB/dec, the 

frequency dependence of (2.59) was changed from 2/3f  to 2/1f , and the offset was 

adjusted to fit the data. Ultimately, this manual fitting of the new approximation led to  

  dBNewEncdB MC
Q

V
LNfSE 








 10

32/1

10,, log10log2055                (4.11) 

 

 

 

Figure 4.19. Simulation SE results and (1.2.59) for enclosure models where N = 999, 

231, 165, L = 3mm, 6mm, 9mm, aperture spacing  = 1mm, and a dielectric of constant 

conductivity ζ = 0.01S. The new approximation is shown as the perforated curves. 

 

10
0

10
1

-20

-10

0

10

20

30

40

Frequency   (GHz)

S
h

ie
ld

in
g

 E
ff

e
c
ti

v
e
n

e
ss

  
 (

d
B

)

 

 

Array:37x27, L:3mm, Spacing:1mm

Array:21x15, L:6mm, Spacing:1mm

Array:15x11, L:9mm, Spacing:1mm



102 

 

 

where by the accurate predictions of SE seen in Figure 4.19 and shown in Table 4.6, the 

reader can see that (4.11) still varies accordingly by N and L
3
. The data in Table 4.6 also 

supports the claim from Section 3 that the approximations are only reliable to the point 

where the aperture dimension, L, reaches λ/6. Beyond 5.6GHz, the error for the 9mm 

apertures quickly increases beyond 3dB, and similarly for the 6mm apertures beyond 

8.3GHz. Beyond 16.7GHz, the error for the 3mm apertures is seen to start increasing, but 

sufficient data points that high in frequency are not available.  

 

 

Table 4.6. Results from Significant Frequencies in Figure 4.16. 

    Frequency (GHz) 

    1.78 4.56 7.56 10.5 13.4 16.4 19.5 

    TE101 TE301 TE501 TE701 TE901 TE11,0,1 TE13,0,1 

Array 
Size 

37x27, 
L:3mm 1.0dB -0.1dB 0.5dB 0.4dB 0.1dB -1dB -1.6dB 

21x15, 
L:6mm -0.3dB -0.9dB 0.9dB 2.4dB 1.8dB 3.4dB 4.5dB 

15x11, 
L:9mm -0.6dB 0.5dB 3.6dB 6.1dB 9.6dB 9.1dB 11.7dB 

 

 

 One model with the first-order Debye dielectric was also run for an array with 999 

apertures (37x27), L = 3mm, and aperture spacing of 1mm. The result for this simulation 

is shown in Figure 4.20, along with the approximation from (2.59) and the new 

approximation from (4.11). Again, the new approximation from (4.11) is shown to work 

much better with the model where apertures fill an entire wall, with the smallest error 
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being 2.4dB at 4.4GHz for the TE301 mode. These results agree well with the constant ζ 

dielectric models. 

 

 

 

Figure 4.20. Simulation SE result and (1.2.59) for enclosure model where N = 999, L = 

3mm, aperture spacing = 1mm, and a first-order Debye dielectric. The new 

approximation is shown as the perforated curve. 

 

 

4.4.4 Summary of Enclosure Results. In this section, the results from the  

enclosure simulations have shown that when small aperture arrays are excited by an over-

moded cavity, the worst-case SE can be predicted to within less than 1dB using the 
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derived prediction of (2.59). Varying the dielectric material loading the enclosure from ζ 

= 0.01S to a first-order Debye material, where tanδ = 0.1 at 20GHz, had little impact on 

the results, adding confidence to (2.59). As the number of apertures increased from 25 to 

441, the error between the SE results and (2.59) increased due to a higher degree of non-

uniform illumination, but SE could still be pessimistically predicted to within about 5dB.  

 Simulations with the small arrays also showed that the location of the aperture 

array in the enclosure wall affects the radiation intensity. For the particular source 

geometry used in these simulations, arrays placed in the center of an enclosure wall led to 

significantly higher levels of radiation intensity over the studied frequency range when 

compared to an array placed in the corner of a wall. While this was true, (2.59) still 

serves as a worst-case SE prediction, and pessimistically predicts the SE for an array 

located at any point on the enclosure wall.  

 When the array sizes increased to the point of filling an entire wall of the 

enclosure, (2.59) no longer accurately predicted SE over the band of 1GHz to 20GHz, as 

the slope of these curves changed by a factor of 20dB. However, through manual 

manipulation, the new approximation in (4.11) was found, and was able to predict the SE 

of these large arrays to within 1dB while the aperture dimension, L, was less than λ/6. 

While the exact cause of the shift in frequency dependence is not yet known, (4.11) still 

agreed with the results from Section 3, which stated that SE is a function of N and L
3 

as 

long as L is less than λ/6.  

 Despite having data that works well for the two distinct cases of small aperture 

arrays and arrays that consume an entire enclosure wall, it would be very valuable to find 

the cause of this difference in frequency dependence. Along with discovering the cause, it 
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would be even more beneficial to practicing engineers if (2.59) and (4.11) could be 

combined to predict the point where the frequency dependence changes, ultimately 

leading to a generic SE prediction. 
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5 CONCLUSIONS AND FUTURE WORK 

The purpose of this thesis was to revisit the work performed by a previous EMC 

lab student, Min Li (PhD ’99), on predicting the worst-case shielding effectiveness (SE) 

of metallic enclosures with aperture arrays. Section 2 began by discussing Bethe’s theory 

on diffraction by small holes [5], which presented a means of representing each 

electrically small aperture with equivalent electric and magnetic polarization currents. 

From here, a generic equation was found for the radiated far electric field intensity at 3m 

normal to an aperture, which was extended to include the increased field intensity by 

multiple apertures and the mutual coupling between these apertures. The excitation of 

these apertures was then solved for an aperture array backed by an over-moded cavity, 

along with the simpler scenario of an array in an infinite PEC sheet excited by a uniform 

plane wave (UPW) at normal incidence.  

 Section 3 focused on the UPW simulations, which were first conducted so that the 

author could gain a sound understanding of the physics for these simple simulations 

before moving on to the more complex enclosure simulations. The goal of these 

simulations was to study the UPW approximation of (2.58), given as 

  dBUPWdB MCLNfSE  32

10, log20338                              (2.58) 

 In this approximation, the dependent variables include the number of apertures, N, the 

size of each aperture, L, the frequency dependence, f, and the mutual coupling between 

apertures, MC. After many simulations, it was found that this worst-case SE prediction 

for UPW illumination of an aperture array in an infinite PEC sheet at normal incidence 

was valid to within 3dB while L is less than λ/6.  
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 Section 4 progressed to simulations where the aperture arrays were excited by an 

over-moded cavity. From Section 2, the derived SE approximation of (2.59) for over-

moded cavity excitation was found to be  

  dBEncdB MC
Q

V
LNfSE 








 10

32/3

10, log10log20240                  (2.59) 

where the additional dependent variables are the enclosure volume, V, and the quality 

factor of the enclosure, Q. For small aperture arrays, (2.59) was found to be accurate to 

within 1dB, with the error between the simulation results and (2.59) increasing as the 

array size increased, and when the arrays were moved closer to the walls. However, this 

increased error between simulations and (2.59) is due to the worst-case nature of the 

approximation, as (2.59) is intended to under-estimate SE, or at least predict SE very 

closely when the apertures are uniformly excited.  

 When the simulations in Section 4 were extended to test aperture arrays that fill 

an entire wall of the enclosure, it was found that (2.59) no longer provided a sufficient 

estimate of SE. Instead, through manual curve-fitting, a new approximation was found 

for the models with very large arrays, and was found to be  

  dBNewEncdB MC
Q

V
LNfSE 








 10

32/1

10,, log10log2055                (4.11) 

where the only differences between (4.11) and (2.59) are the offset and frequency 

dependence. Simulations for these large aperture arrays yielded results that were within 

1dB of (4.11), provided that L is less than λ/6.  

 Ultimately, it was found that the approximations of (2.58), (2.59), and (4.11) can 

all predict the worst-case SE from aperture arrays of square elements to within 3dB, 
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while L remains less than λ/6. Further restrictions apply, including the observation point 

being restricted to a location 3m normal to the center of the aperture array (UPW 

models), or 3m normal to the center of the enclosure wall containing the aperture array 

(enclosure simulations).  

 While the results presented in this thesis are acceptable and useful, there is indeed 

room for additional exploration of the topic. Though the UPW simulations are not 

particularly useful for practical problems, the effect of exciting the apertures with a UPW 

at non-normal incidence, and examining the scattered fields at different angles could lead 

to a better understanding of the scattered fields at locations that are not normal to the 

over-moded enclosures. Also, as mentioned at the end of Section 4, it would be very 

useful to derive the result in (4.11), followed by combining (4.11) with (2.59) in order to 

create a more generic SE prediction that is useful for enclosures with aperture arrays of a 

variety of sizes.  
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