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ABSTRACT

This thesis presents a new class of evolutionary algorithms called mobile cellular

evolutionary algorithms (mcEAs). These algorithms are characterized by individuals

moving around on a spatial population structure. As a primary objective, this thesis

aims to show that by controlling the population density and mobility in mcEAs, it

is possible to achieve much better control over the rate of convergence than what is

already possible in existing cellular EAs. Using the observations and results from this

investigation into selection pressure in mcEAs, a general architecture for developing

agent-based evolutionary algorithms called Artificial Ecosystems (AES) is presented.

A simple agent-based EA is developed within the scope of AES is presented with two

individual-based bottom-up schemes to achieve dynamic population sizing. Exper-

iments with a test suite of optimization problems show that both mcEAs and the

agent-based EA produced results comparable to the best solutions found by cellular

EAs.
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1. INTRODUCTION

Evolutionary computation is a subfield of computational intelligence and in-

volves the use of metaheuristic optimization techniques such as evolutionary algo-

rithms, swarm intelligence, and artificial immune systems, among others. Of these,

evolutionary algorithms is the most widely accepted as representative of the field.

Evolutionary algorithms (EAs) are loosely based on the metaphor of biological evo-

lution, typically encoding biological phenomena such as selection, reproduction, and

mutation (called genetic operators) into black-box procedures to solve some search

and/or optimization problem. These algorithms typically start with a set of initial

solutions encoded into the genotypes of a population of individuals and iteratively

evolve better solutions by the application of the genetic operations on the population

or on the individuals. One important aspect of biological evolution that is typically

ignored by evolutionary algorithms is the spatial structure of populations. While spa-

tially structured populations in evolutionary algorithms have been investigated in the

forms of island models (Sprave, 1999) and cellular evolutionary algorithms (Alba and

Dorronsoro, 2008a), they have generally received much less attention than evolution-

ary algorithms with no population structure (called panmictic models) (Tomassini,

2005).

It is interesting to note that panmixia (globally mixing populations with no pop-

ulation structure), while easy to model and achievable in laboratory settings, does

not exist and is in fact impossible to achieve in the natural world. Evolutionary biolo-

gists have long known the significance of spatial structure in evolution. Even in one of

the earliest works on biological evolution, Charles Darwin (Darwin, 1900) noted that

geographic separation and in particular isolation together with occasional migration

played a significant role in the differences between evolved traits of the same species.

While geographic isolation with occasional migration1 is the underlying philosophy

of island model EAs, it is not representative of evolution in the natural world. Popu-

lations of different or same species are not isolated in the natural world2. Migration

1Migration in island models is generally accomplished according to some predetermined topology.
2While islands in the natural world do exhibit the isolation with occasional migration phenomena,

it can safely be claimed that this is not the general case.
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among populations does not happen in sporadic bursts, but rather in a continuous

fashion due to locally mixing populations. Cellular evolutionary algorithms (cEAs)

attempt to capture this continuous dissemination of genetic information by enforcing

a rigid spatial structure on the population. Genetic operators such as selection, repro-

duction and mutation are executed on small neighborhoods or demes3. While cEAs do

achieve continuous flow of genetic information throughout the population (through-

out the world of the cEA), due to the rigid structuring of the population, migration

between two unconnected demes is not possible. Hybrid island-cellular EAs (Cantu-

Paz, 2000) have been proposed to incorporate both migration and continuous genetic

information flow into EAs, with isolated populations structured in the rigid manner

typical of cEAs and a communication topology between these populations to facilitate

migration.

The primary motivation for research into spatially structured EAs is that they

seem to alleviate the major problem often attributed to panmictic EAs (Tomassini,

2005; Skolicki, 2007; Alba and Dorronsoro, 2008a), namely, premature convergence

due to lack of genetic diversity. In panmictic EAs, due to global mixing of the pop-

ulation, the best individual in the current generation (which may not be the global

optimum solution) has equal probability to influence any member of the population.

This global influence results in the decline of diversity in the population. Decline in

diversity of the population means that sufficient genetic information is not available

to generate new solutions4, resulting in convergence to points in the fitness landscape

which may not be optimal. In structured populations, however, the current best

individual can only influence evolution in its own deme or island and therefore infor-

mation from the best individual would take several generations before influencing the

entire population, enabling the population to maintain more diversity.

In this thesis, a new class of evolutionary algorithms, termed mobile cellular EAs

(mcEAs) are proposed to facilitate the migration of individuals between demes while

maintaining a population structure to preserve genetic diversity. This is accomplished

by allowing individuals to move around their environment (the world of the mcEA)

with genetic operators being applied in the deme local to an individual. The deme of

3A Deme is a subpopulation, typically much smaller than the total population, which is subjected
to the selection operator as a unit rather than as individuals.

4New solutions in either/both, genotypic and phenotypic space
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an individual changes as it moves around in the environment, however, the structure

of the deme remains the same. As one of its objectives, this thesis aims to show

that by controlling the mobility it is possible to achieve much better control over

the rate of convergence in mcEAs than what is already possible by manipulating the

ratio5 (Alba and Troya, 2000) in cEAs.

Another motivation for the study of mcEAs is to provide common ground for

comparing and investigating existing evolutionary techniques with the newly emerging

field of agent-based evolutionary computation (Sarker and Ray, 2010). While agent-

based models are routinely used in the study of social (Axelrod, 1997; Epstein and

Axtell, 1996), economic (Tesfatsion, 2002), ecological (Grimm and Railsback, 2005)

and biological (Coakley et al., 2006) phenomena, very few attempts have been made

to use these for evolutionary search and optimization. Although agent-based mod-

els are difficult to validate and model analytically, in many of the problem domains

they are particularly useful in explaining real-world observations when mathematical

modeling of the phenomena is difficult to develop at best. As an extension to mcEAs,

this thesis presents a conceptual description and architecture for developing agent-

based EAs. This architecture, called artificial ecosystems (AES), draws inspiration

from artificial life (ALife) experiments such as Tierra (Ray, 1991), Avida (Adami and

Brown, 1994) and Framesticks (Komosinski and Rotaru-Varga, 2001), which aimed at

providing a decentralized platform for studying artificial evolution. The architecture

consists of multiple evolving and non-evolving species interacting (based on spatially

local interaction rules) in an spatial environment. While existing agent-based EAs

do justice in capturing this decentralized bottom-up approach of capturing emergent

phenomena6, almost all of them are developed in an ad-hoc fashion for a specific ap-

plication. Most of these algorithms involve a large number of simulation/algorithmic

parameters with no justifiable theoretical and/or philosophical reasons. This thesis

aims to use the results from the study of mcEAs to develop an architecture, or at

5It has been demonstrated by Alba and Troya (2000) that ratio of neighborhood size to the
population size, simply called the ratio, is what influences the rate of convergence in cEAs.

6In agent-based EAs, the emergent phenomena is to evolve optimal solutions to the given opti-
mization problem using locally interacting agents, with no explicit notion of fitness function and/or
fitness evaluation.
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the least, guidelines for developing coherent agent-based EAs which are true to the

philosophy of artificial life research from which they claim to have been derived.

1.1. MAJOR CONTRIBUTIONS

While agent-based EAs are not new, very little if any work has been done in a

systematic description of the building blocks of these algorithms. To the best of the

author’s knowledge an attempt to identify mobility of these agents as a contributing

factor for the performance of the algorithms has never been done. This thesis therefore

presents an original work and the following are considered as its major contributions:

1. The theoretical description and analysis of selection pressure in mo-

bile cellular evolutionary algorithms: As stated before, the first objective

of this thesis is to show that by introducing the notion of individual mobility

into cEAs (to create mcEAs), we can control the rate of convergence at a finer

level than what is already possible in cEAs, resulting in improved performance.

This is accomplished by investigating selection pressure in mcEAs.

2. The development of artificial ecosystems (AES) as an architectural

description for developing agent-based EAs: Staying true to the decen-

tralized, bottom-up modeling approach of agent-based models (and in general

ALife), instantiations of AES are developed using individual level genetic oper-

ators. The interactions between individuals of an AES then result in observable

emergent system-level (global-level) phenomena. While very little effort is put

into developing new or special variational operators, this thesis does present

decentralized bottom-up ways to achieve selection and replacement in AES in

the form of two population dynamics schemes.

3. The development of single species & landscape (SSL) model as a basic

agent-based EA: Using the knowledge gained in developing mcEAs and the

population dynamics schemes for AES, a special case of AES, consisting of a

single species in a landscape is developed as a basic agent-based EA.

1.2. ORGANIZATION OF THE THESIS

A brief overview of the organization of this thesis is as follows. In Section 2, the

current state-of-the-art in theoretical modeling of cellular EAs is presented. Section 3
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introduces mobile cellular EAs and presents an empirical study of selection pressure

in the same. The section concludes with experimental results using a test suite of

combinatorial optimization problems.

Section 4 presents a survey and discussion on existing agent-based evolutionary

algorithms. In Section 5 two population dynamics models inspired by ALife for agent-

based EAs are presented. Section 6 presents Artificial Ecosystems (AES), the general

architecture for developing agent-based EAs. A simple single species algorithm for

function optimization is discussed within the scope of AES. Two variations of this

algorithm are developed using the two population dynamics models developed in

Section 5. Experiments are conducted on a test suite of problems and the results

are presented. A conceptual description for developing AES instances with multiple

species is also presented in Section 6.

Section 7 concludes this thesis with a discussion on open problems and future

directions of research.
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2. CELLULAR EVOLUTIONARY ALGORITHMS

Evolutionary algorithms iteratively evolve new (and hopefully better) solutions

by applying selection, recombination and mutation operators on a population of indi-

viduals. In evolutionary algorithms with no spatial population structure, during the

selection of parents, the probability of an individual being paired up with any other

individual of the population for reproduction is equal. It is argued that this global

mixing or panmixia is responsible for the loss of genetic diversity over the course

of the evolutionary algorithm resulting in premature convergence of the population

to a sub-optimal solution. It should be noted that in unstructured populations, the

selection operator can be considered to be a centralized mechanism, i.e., the selection

of an individual at any stage of the selection process is independent of the selection

of another individual in the population.

In cellular evolutionary algorithms (cEAs), however, the population is struc-

tured into local neighborhoods, called demes. Genetic operators, such as selection and

recombination, are applied on these demes instead of the entire population. Here, the

selection of an individual at any stage of the selection process, depends on whether

or not the individual is a member of the current demes under consideration. This

decentralized application of genetic operators results in reducing the rate at which

genetic information is propagated through the population and helps in preserving the

diversity of the population by removing the possibility of a local optimal solution

exerting equal influence over all the individuals in the population. For a population

P , the neighborhood is defined by the neighborhood function N as follows

N : P → P(P ) (1)

where P(P ) is a set of subsets of P .

This neighborhood function associates each individual i with a set of individuals

N(i) called its neighborhood. Typically, this is a symmetric function with

j ∈ N(i) =⇒ i ∈ N(j) ∀i, j ∈ P
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For cEAs, the neighborhood is typically much smaller than the size of the pop-

ulation, i.e., |N(i)| << |P | ∀i ∈ P , whereas for panmictic EAs, the neighborhood of

each individual is the population itself, i.e., N(i) = P ∀i ∈ P . This neighborhood

structuring is the primary difference between panmictic and structured population

evolutionary algorithms. Even with other genetic operators and replacement schemes

being the same, the structure of neighborhood is shown to have significant effect on

the performance of the evolutionary algorithm (Alba and Dorronsoro, 2008b). While

population topologies such as array (Giacobini et al., 2004b), ring (Rudolph, 2000)

and grid (Whitley, 1993, 1995) have also been explored, the torus structure (Giacobini

et al., 2004a) is most commonly used. This is especially true for the agent-based evo-

lutionary algorithm discussed in later sections of this thesis. To this end, only the

torus population structure is discussed in greater detail in this thesis. Figure 2.1

shows a toroidal population structure with several neighborhood models.

Figure 2.1: A population structured on a 2-D torus with several neighborhood topolo-
gies.

2.1. SELECTION PRESSURE AND TAKEOVER TIME

While criteria such as time-to-solution and solution quality can be used to

characterize the performance of an evolutionary algorithm, additional criteria are
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required to understand and characterize the behavior of the same. Goldberg and

Deb (1991), introduced the concept of takeover time to study the effects of selec-

tion schemes on the behavior of genetic algorithms. Takeover time is defined as

the expected number of applications (generations) of some selection method un-

til the population of the EA consists entirely of copies of the best individual, in

the absence of variational operators and assuming that the initial population con-

sists of a single copy of the best individual (Rudolph, 2000). The takeover time

is directly related to the selection pressure of a selection scheme. Shorter takeover

times indicate higher selection pressure while longer takeover times indicate lower

selection pressure. This selection pressure indicates the trade off between explo-

ration and exploitation of the search landscape that all evolutionary algorithm try

to balance. Lower selection pressure indicates higher exploration at the expense

of increased execution time where as higher selection pressure indicate higher ex-

ploitation with an increase in possibility of premature convergence to a sub-optimal

solution. Plotting the number of copies of the best individual in each generation,

depicts the general behavior of a selection method. Referred to as growth curves,

these plots are generally used to compare the selection pressure of different selection

schemes.

2.2. STRUCTURAL RATIO

Sarma and De Jong (1996, 1997) studied the effects of the size and structure

of the neighborhood on the selection pressure of different selection schemes in cEAs.

They observed that the selection pressure is not independently influenced by the

sizes and structures of the population and neighborhood, but by the ratio of the

neighborhood radius to the radius of the population topology. Although the authors

and subsequent investigators simply termed this as the ratio, in this thesis this is

re-termed and referred to from here on as structural ratio for clarity. Equations 2-

4 show the calculation of the neighborhood & topology radii and structural ratio,

respectively.
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rn =

n∗

∑

i=1

√

(xi − x∗)2 + (yi − y∗)2

n∗

(2)

rt =
n

∑

i=1

√

(xi − x)2 + (yi − y)2

n
(3)

r =
rn

rt

(4)

where rn and rt are the radius of neighborhood and topology, n∗ and n are the number

of individuals in a neighborhood and population, x∗ and y∗ are the mean location of a

neighborhood and x and y are the mean location of the topology given by Equation 5.

x∗ =
Pn∗

i=1 xi

n∗
x =

∑n

i=1
xi

n
(5)

y∗ =
Pn∗

i=1 yi

n∗
y =

∑n

i=1
yi

n

Subsequently, Alba and Troya (2000) demonstrated that selection pressure would

be the same for different population and neighborhood sizes and topologies as long

as the structural ratio remained the same. This is an important result for char-

acterizing cEAs, since the selection pressure of seemingly different topologies and

neighborhood shapes can now be compared both empirically and theoretically. The

structural ratio and selection pressure are directly proportional to each other. A

small structural ratio indicates lower selection pressure, thus promoting exploration

of the search space, while a large structural ratio indicates a high selection pres-

sure.

2.3. MODELING SELECTION PRESSURE: A BRIEF SURVEY

Theoretical modeling of selection pressure in cEAs has received lot of attention

over the years and a wealth of literature in this area is available. In this section,

several seminal efforts in characterizing the selection pressure in cEAs are revisited.

Sarma and De Jong (1996) were one of the first to analyze the effect of the size

and shape of the neighborhood on the selection pressure of a cEA. They investigated
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the effect of several neighborhood topologies including L5 (Von-neumann neighbor-

hood), C9 (Moore neighborhood), L9 (2-pixels on each of NEWS directions), and

C13 (13 closest cells) on two selection schemes, namely, fitness proportional selection

and linear ranking selection. They observed that the selection intensity for a given

selection scheme was similar for all neighborhoods of a similar neighborhood radius

(given by Equation 2). Throughout the work the size of the grid was kept constant

at 32×32 toroidal grid. They also proposed a simple quantitative model for selection

intensity based on the well-known logistic equation as:

Pb.t =
1

1 +
(

1

Pb,0
− 1

)

e−at
(6)

where Pb,t is the proportion of the best individuals in the population at time t, and

a is the coefficient of growth.

While the simple logistic model is able to characterize the trend of selection

pressure, Gorges-Schleuter (1999) noted that the logistic equation does not hold for

spatially structured populations with local selection schemes. She investigated the se-

lection pressure in ring and torus population structures and found linear and quadratic

growth equations, respectively. Giacobini et al. (2003a) later extended these quadratic

growth equations to bounded populations with synchronous updates. Sprave (1999)

proposed a hypergraph-based unified model for studying selection pressure in all non-

panmictic populations, i.e., any spatial structures such as cEAs or island models.

Alba and Troya (2000) demonstrated that the structural ratio is in fact the

governing parameter for the selection pressure in cEAs and not the radius of the

neighborhood itself. Numerical experiments were conducted to demonstrate the util-

ity of dynamically changing the ratio in improving the performance of cEAs on several

well-known test problems. The ratio was changed by altering the shape of the pop-

ulation topology and also the size and shape of the selection neighborhood. They

concluded that a thin-grid with low-ratio was more suitable for solving multi-modal

and/or epistatic problems and that dynamically changing the structural ratio is useful

in altering the algorithm’s behavior from exploitative to explorative and vice-versa.

Rudolph (2000) investigated the selection intensity in array and ring population

structures in the case of synchronous update and developed a quantitative model for
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selection intensity in the same using a graph-based approach. Giacobini et al. (2003b)

extended this investigation to include several asynchronous update schemes, namely,

fixed line sweep (LS) in which the cells in the grid are updated sequentially, fixed

random sweep (FRS) in which a fixed random order of cells is selected at the first

iteration and cells are updated according to this order throughout the course of the

simulation, new random sweep (NRS) in which a random order of cells is generated

each iteration, and finally, uniform choice (UC) in which the next cell is selected

uniformly at random and with replacement. Two selection schemes, namely, binary

tournament selection and linear ranking selection were used for the experiments. In

both the selection schemes, it was noted that fixed line sweep induced the most

selection pressure, where as synchronous update induced the least selection pressure,

followed by uniform choice, new random sweep and fixed random sweep. A numerical

investigation on the solution quality of synchronous and asynchronous update schemes

can be found in Alba et al. (2002). Giacobini et al. (2004a, 2005a,b) later investigated

the selection pressure due to several asynchronous update schemes in regular lattice,

toroidal, random and small-world structured populations.

Alba and Dorronsoro (2008c) proposed a non-parameterized probabilistic ap-

proach to modeling selection pressure in synchronous cEAs. This new method was

compared against the three existing methods, namely, the logistic model, the hy-

pergraph model and the modified logistic model (with quadratic growth equation).

They noted that the probabilistic model produced the best fit with empirical obser-

vations followed by the modified logistic, hypergraph and logistic model, respectively.

Also this model was independent of the structural ratio and only incorporated the

probabilities that a given individual would have one or two best individuals in its

neighborhood. Three selection schemes, namely, roulette wheel, binary tournament,

and linear ranking selection were considered with Von-neumann neighborhood as the

only neighborhood topology investigated.

2.4. EMPIRICAL ANALYSIS OF SELECTION PRESSURE

In this section, empirical analysis of selection pressure in cEAs is conducted. The

selection pressure in cEAs due to synchronous and two asynchronous update schemes
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are studied using several neighborhood topologies and structural ratios. Figure 2.2

shows the different neighborhood topologies (and their radius) used in the study.

L5 (rad=0.8944) L9 (rad=1.4907) L13 (rad=2.0755)

C9 (rad=1.1547) C13 (rad=1.4676) C25 (rad=2.0000)

Figure 2.2: Neighborhood topologies used.

2.4.1. Experimental Setup. Experiments were conducted for synchronous

and two asynchronous update schemes, namely, new random sweep and uniform

choice. A toroidal population structure is used due to its popularity and to facil-

itate comparison in later sections. In new random sweep a random order of cells

(individuals) is generated each time step and the cells are updated in the generated

order. In uniform choice update scheme, a cell is selected uniform randomly from

the population and updated. This process is repeated n times, where n is the pop-

ulation size. For parent selection, the individual in the cell being updated is always

considered as one of the parents. The other parent is selected uniform randomly from

the neighborhood of the current cell. The best of the two parents is simply copied

into the offspring. For replacement, replace-worst-if-better policy is used by which

the offspring replaces the worst individual in the neighborhood, if the offspring is

better. If multiple worst individuals are present in the neighborhood, one of them is

replaced uniformly at random. When considering selection pressure, only two fitness
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values can exist, either an individual is best (fitness = 1) or the individual is not the

best (fitness = 0). Therefore, an offspring replaces an individual from the neighbor-

hood if the offspring is a copy of the best and the individual is not the best. The

particular choices in the population structures, update schemes, selection policy and

tournament size were made in order to facilitate comparison with mobile cellular EAs

in later chapters.

Additionally, comparison with selection pressure in a steady-state panmictic

EA is also presented for completion. Binary tournament selection with a tournament

size of 32 is used for selecting parents in each time step. This mimics the same

selection probability for the best individual in the early time steps of a simulation

run. Averages of 100 independent runs are reported as results.

Table 2.1 shows the list of parameters used for the selection pressure study.

Table 2.2 shows the radius and the resulting structural ratio for each neighborhood

topology used. For random number generation, Mersenne twister7 was used through-

out the thesis.

Table 2.1: Parameters used for selection pressure study.

Population size 1024
Grid size (for cEAs) 32× 32 (rad = 13.058)
Neighborhoods see Table 2.2
Parent selection (for panmictic EA) Binary tournament + binary tournament
Parent selection (for cEA) Central selection + uniform random
Tournament size (for panmictic EA) 32
Replacement replace-worst-if-better
Time step size 1024 offsprings generated

2.4.2. Results. Figure 2.3 shows the general trend of selection pressure due

to the update scheme and neighborhood topology.

7Implementation used can be downloaded from
http://www-personal.umich.edu/∼wagnerr/MersenneTwister.html.

http://www-personal.umich.edu/~wagnerr/MersenneTwister.html
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Table 2.2: Neighborhoods used for the selection pressure study (for 32x32 torus pop-
ulation structure).

Label Radius Structural ratio

L5 0.8944 0.0685
L9 1.4907 0.1142
L13 2.0755 0.1589
C9 1.1547 0.0884
C13 1.4676 0.1124
C25 2.0000 0.1532
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Figure 2.3: Growth curves for various update schemes and neighborhood topologies.

The highest selection pressure is induced by the panmictic EA, while the lowest

selection pressure is induced by the synchronous cEA with the smallest structural

ratio. It should be noted that for the same structural ratio, both new random sweep

and uniform choice update scheme perform similar with the similarity being high for

smaller structural ratios.
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Figures 2.4, 2.5 and 2.6 show the effect of structural ratio on the selection

pressure for the three update schemes.
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Figure 2.4: Effect of structural ratio in synchronous update.

In all three cases, neighborhood topologies resulting in similar structural ratio

induce similar selection pressure. The neighborhood topology pairs (L9, C13) and

(L13, C25) demonstrate this phenomena.
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3. MOBILE CELLULAR EVOLUTIONARY ALGORITHMS

Cellular EAs have fine grained population structure, with each individual placed

on a vertex of a topology (say a 2-D torus). Selection and variation happens only in

local neighborhoods defined by some topology (e.g., L5, C9, etc.). It should be noted

that the number of vertices in the population topology is equal to the population

size, i.e., no vertex is vacant. In order to introduce the notion of mobility into cEAs,

this thesis introduces a new population structure where the number of vertices is

greater than the population size, leaving some vertices vacant. This introduces a

notion of population density into the algorithm. Individuals are free to move from

their current location to another vacant vertex according to some mobility function.

Such an algorithm with population density less than one and a mobility function

which allows individuals to move around the population topology is termed as Mobile

Cellular Evolutionary Algorithm (mcEA).

Algorithms 3.1 and 3.2 list the pseudocode for a typical synchronous cEA and

synchronous mcEA, respectively.

Algorithm 3.1 Pseudocode for a synchronous cEA.

1: GenerateInitialPopulation(pop)
2: Copy(pop, auxpop)
3: Evaluation(pop)
4: while !StopCondition() do
5: for individual ← 1 to popSize do
6: neighbors ← CalculateNeighborhood(topology, Position(individual))
7: parents ← Selection(neighbors)
8: offspring ← Recombination(parents)
9: offspring ← Mutation(offspring);

10: Evaluation(offspring);
11: Replacement(Position(individual), auxpop, offspring)
12: end for
13: Copy(auxpop, pop);
14: end while
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Algorithm 3.2 Pseudocode for a synchronous mcEA.

1: GenerateInitialPopulation(pop)
2: Copy(pop, auxpop)
3: Evaluation(pop)
4: while !StopCondition() do
5: for individual ← 1 to popSize do
6: neighbors ← CalculateNeighborhood(topology, Position(individual))
7: parents ← Selection(neighbors)
8: offspring ← Recombination(parents)
9: offspring ← Mutation(offspring);

10: Evaluation(offspring);
11: Replacement(Position(individual), auxpop, offspring)
12: Movement(Position(individual), auxpop)
13: end for
14: Copy(auxpop, pop);
15: end while

Notice that the only difference between the two listings is the Movement oper-

ator which moves the individual from its current location in the population topology

to another based on some predetermined/dynamic mobility function.

Asynchronous versions of these algorithms can be generated by removing the

auxiliary population (auxpop) and allowing the Replacement and Movement oper-

ators to update the population (pop) for each individual before moving on to the

next.

3.1. POPULATION DENSITY

As described previously, population density is defined as the ratio of the popu-

lation size to the number of cells/vertices in the population topology.

For a population size of n and number of cells in the population topology equal

to V , population density is given by

d =
n

V
(7)
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For the current investigation, each cell is constrained to be occupied by only

one individual at a given time. This results in a population density which is strictly

less than one (i.e., n < V ) for any mcEA considered.

3.2. MOTION FUNCTION

For the mobility of individuals, a wide variety of motion functions can be de-

fined. To keep the thesis to a reasonable length, some constraints are placed on the

movement of the individuals and only a single motion function is investigated.

The following characteristics are considered for the current study:

• An individual can move into and occupy only a vacant cell. (Consequence of

the constraint to keep the population density strictly less than one.)

• Only a single motion function, namely, random-hop is considered. According

to this function, given a mobility radius, rm, an individual may randomly move

from the current location to any cell whose euclidean distance is within rm to

the current location, in a single hop.

• In each time step, an individual selects only one cells in the mobility radius

to move to. If the cell is occupied, then the individual simply remains in its

current location.

Note that the mobility radius, rm, and the neighborhood radius, rn are not

necessarily the same.

Constraining the mobility to a single location selection each time step induces

a bias towards the individual not moving. However, if multiple selections are allowed

for the individuals to select a vacant location to move into, an additional parameter

is introduced into the algorithm. Therefore, this constraint was placed, to avoid the

influence of another parameter and interdependency with other parameters.

Algorithm 3.3 lists the pseudocode for the random-hop motion function.

3.3. SELECTION PRESSURE: EMPIRICAL STUDY

In this section, an empirical study is conducted to investigate the effect of pop-

ulation density and the selected motion function on the selection pressure in mcEAs.
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Algorithm 3.3 Pseudocode for the random-hop motion function.

1: procedure Movement(individual, grid, rm)
2:

3: currXLoc ← individual->xLoc
4: currYLoc ← individual->yLoc
5: locsInRadius ← GetLocationsInRadius(grid, currXLoc, currYLoc, rm)
6: nextloc ← RandomInt(0, length(locsInRadius))
7: if !IsOccupied(grid, locsInRadius[nextLoc]) then
8: individual->xLoc ← locsInRadius[nextLoc]->xLoc
9: individual->yLoc ← locsInRadius[nextLoc]->yLoc

10: end if

3.3.1. Experimental Setup: Population Density. Table 3.1 lists the

parameters used to study the effects of population density on the selection pressure

of mcEAs, where n is the population size.

Table 3.1: Parameters used to investigate the effects of population density.

Grid size 32× 32, 64× 64
Neighborhood L5, C9, L9, C13
Mobility function random-hop
Mobility radius 1 (L5)
Parent selection Central selection + uniform random
Replacement replace-worst-if-better
Time step n offsprings generated

3.3.2. Results: Population Density. Figures 3.1 and 3.2 show the effect

of population density on the selection pressure of an mcEA for synchronous and new

random sweep update schemes, respectively. Each curve in the plots is labeled as

<algorithm> <selection neighborhood> <grid size> <(d=density)>.
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Figure 3.1: Effect of population density on synchronous mcEA.
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In both cases, the selection pressure induced due to population density was

always lower than that of a panmictic EA or cellular EA. It is interesting to note that

the selection pressure for very high population density (d=0.999), was higher than

that in cellular EAs. This is due to the fact that even with such a high population

density few vacant cells are available (in case of d=0.999 only one vacant cell) for

the individuals to move around. This small number of vacant cells together with a

mobility of 1 facilitates migration from one neighborhood to another increasing the

flow of good solutions to other neighborhoods. This is an indication of the effect of

mobility on selection pressure.

With the decrease in population density, the selection pressure is lowered, due

to the fact that a low mobility radius was used which requires the individuals to move

for multiple generations in order to reach another neighborhood. However, it can be

generally concluded from these results that for a given neighborhood, grid size and

mobility radius, selection pressure is directly proportional to the population density,

starting from slightly higher selection pressure than cEAs for high population density

to low selection pressure for lower population densities.

Figures 3.3 and 3.4 show the effect of population density with respect to selection

neighborhood for synchronous and new random sweep update schemes, respectively.

The results follow the general trend described above. Additionally, as can be expected,

a larger structural ratio increases the selection pressure in mcEA following the trend

from cellular EA described in Section 2.4.2.
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Figure 3.3: Effect of population density with selection neighborhood on synchronous
mcEA.
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3.3.3. Experimental Setup: Mobility Function. Table 3.2 lists the

parameters used to study the effects of mobility function on the selection pressure of

mcEAs, where n is the population size. Figures 3.5 and 3.6 show the effect of mobility

Table 3.2: Parameters used to investigate the effects of mobility function.

Grid size 32× 32, 64× 64
Neighborhood C9, C13
Mobility function random-hop
Mobility radius 1, 2, 3, 4, 8, 6, 13
Parent selection Central selection + uniform random
Replacement replace-worst-if-better
Time step n offsprings generated

radius on selection pressure of an mcEA for synchronous update scheme with C9 and

C13 selection neighborhoods.

In both the cases a clear general trend is visible. Lower mobility induces lower

selection pressure due to slower “mixing” of individuals from different neighborhoods

and higher mobility induces higher selection pressure due to faster “mixing” of indi-

viduals from different neighborhoods. However, it is interesting to note that when

the mobility radius is equal to the grid side (in case of 32 × 32 grid), the selection

pressure induced is significantly lower than that in panmictic EA of the same popula-

tion size. This is due to the two characteristics of the mcEA used. Firstly, although

individuals can move to almost anywhere in the grid, selection and reproduction still

happen within individuals of a small deme size, namely, C9. Secondly, random-hop

mobility function does not guarantee that the individual will move the distance equal

to the mobility radius. An individual selects a vacant cell within the mobility radius

to move. These two characteristics restrict the global mixing of individuals to much

less than that in panmictic EA. Also it should be noticed that for all mobility radii,

the selection pressure induced is greater than that induced by a synchronous cEA

with the same grid size and selection neighborhood.



25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

B
es

t I
nd

iv
id

ua
l P

ro
po

rt
io

n

Time Step

panmictic EA
cEA sync C9

rm = 1
rm = 2
rm = 3
rm = 4
rm = 8

rm = 16
rm = 32

Figure 3.5: Effect of mobility radius on selection pressure in a synchronous mcEA
with grid size of 32× 32, population density 0.9 and selection neighborhood of C9.
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Figure 3.6: Effect of mobility radius on selection pressure in a synchronous mcEA
with grid size of 64× 64, population density 0.5 and selection neighborhood of C13.
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Figures 3.7 and 3.8 show the effect of mobility radius on selection pressure of

an mcEA for new random sweep update scheme with C9 and C13 selection neighbor-

hoods.
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Figure 3.7: Effect of mobility radius on selection pressure in an asynchronous NRS
mcEA with grid size of 32 × 32, population density 0.9 and selection neighborhood
of C9.

Even in the case of NRS update scheme, the general trend is similar to that of

synchronous case. Again in the case with 32× 32 grid, the selection pressure induced

by mcEA for all mobility values is lower than that of panmictic EA and greater than

that of cEA.

3.4. EXPERIMENTS WITH TEST PROBLEMS

To analyze the performance of mcEA in optimization tasks, experiments were

conducted on a test suite of different classes of problems. In this section the test

problems used and the results from the experiments are presented.

3.4.1. Test Suite. For the current study, three problems, namely, massively

multimodal deceptive problem (MMDP), frequency modulation sounds (FMS) and
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Figure 3.8: Effect of mobility radius on selection pressure in an asynchronous NRS
mcEA with grid size of 64 × 64, population density 0.5 and selection neighborhood
of C13.

problem generator, P-PEAKS, are used to investigate the performance of mcEAs.

These problems represent the three classes of problems which are generally considered

difficult for evolutionary computation. These classes are deception, multimodality and

epistasis. All the problems are combinatorial in nature. While FMS is a minimization

task, MMDP and P-PEAKS are maximization problems. The problems are explained

in detail in Appendix A.

3.4.2. Experimental Setup. Table 3.3 shows the parameter values used

for the experiments. The parameters are selected as follows to facilitate comparison

with agent-based EAs developed in the later sections.

A selection neighborhood of C9 was used as it is one of the most popular neigh-

borhoods used in both cEAs and agent-based EA. Two update schemes, namely,

synchronous and NRS were used. While synchronous update scheme is popular in

cEAs, NRS is very common in agent-based EAs. Although it is not explicitly noted
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Table 3.3: Parameters used for the test suite.

Grid size 32× 32
Update scheme synchronous, NRS
Neighborhood C9
Population density 0.9, 0.75, 0.5
Mobility function random-hop
Mobility radius 1, 2, 3, 4, 8, 16
Parent selection Central selection + uniform random
Recombination DPX (double point crossover)
Mutation Bit-flip mutation
Replacement replace-worst-if-better
Time step n offsprings generated

Chromosome length (L)
240 (MMDP)
192 (FMS)
100 (P-PEAKS)

Probability of crossover (Pc) 0.9

Probability of mutation (Pm)
1/L = 0.0042 (MMDP)
10/L = 0.052 (FMS)
1/L = 0.01 (P-PEAKS)

in most agent-based EAs existing in literature, the common update scheme is fol-

lows that in each time step, individuals in random order with respect to one another

execute their behavior set. This is exactly what NRS achieves. Parent selection

was restricted to central selection (the individual representing the current grid cell

being updated) and a random individual in the selection neighborhood. Although

this is quite uncommon in cEAs, where tournament selection is generally used, it

is similar to decentralized mate selection in agent-based EAs where each individual,

selects a mate by itself to reproduce. Double-point crossover was selected due to the

simplicity of the recombination scheme. It is a popular crossover scheme along with

one-point crossover for binary encoded EAs and is commonly used in both panmictic

and cellular EAs. However, very few agent-based EAs exist which have attempted to

solve binary encoded optimization problems and therefore the commonality of this

recombination scheme cannot be claimed. The replacement scheme used, replaces

the worst individual in the neighborhood by the offspring produced if the offspring is

better than the said worst individual. This is a popular replacement scheme in cEA.
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Time to convergence of the best and average fitness is measured in generations than

in number of fitness evaluations which is commonly used in evolutionary computa-

tion, to facilitate comparison with agent-based EAs. In the current study, a single

generation is said to have passed when each individual in the population has had

a chance to reproduce. In cellular EAs, this results in the generation of number of

offsprings equal to the size of the population. In mcEAs, however, when no individu-

als are present in the neighborhood of the current individual, reproduction does not

happen. Therefore in the case of mcEAs, in a generation, the number of offspring

generated is less than or at most equal to the number of offsprings generated in the

cellular EA case. However, the main aim of this thesis is to provide a characterization

of mcEAs and agent-based EA and not to discuss the actual performance of these

algorithms. Surely, better variational operators for the problems considered in spe-

cific and mobile cellular EAs in general can be developed to suit the behaviors of the

algorithms. Therefore, reporting generations as the time-to-solution is justified. Also

the algorithms are terminated when the average fitness of the population is equal to

best fitness of the population within an error of 10−5. This is done to include the

takeover time of the best individual in the presence of variational operators. This

provides a much better estimate of the time for the population to converge to a solu-

tion (whether local or global optimal) and is strong indicator of the selection pressure

induced by the algorithm. However, in the case of massively multimodal deceptive

problem (MMDP), the algorithm is also terminated if the number of generations ex-

ceed 30,000 generations. The MMDP search landscape consists of a large number of

local optimal solutions and population convergence to a single peak within the error

margin resulted in finding the global optimal solution each and every time. To reduce

this effect, the limit of 30,000 generations was empirically selected. The values for

probability of recombination and mutation were the values most commonly used in

literature for the problems considered.

3.4.3. Results. Table 3.4 shows the average time to convergence (genera-

tions) in 100 runs on each problem. The labels for mcEA results are generated as “<s,

n> <density> <mobility>”, with an “s” in the second field indicating synchronous

update scheme and an “n” indicating NRS update scheme.
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Table 3.4: Average number of generations on each problem.

Algorithm FMS MMDP P-PEAKS

cEA sync 182.55 ± 34.578 30000 ± 0.000 74.29 ± 6.293
s 0.9 1 175.92 ± 33.805 30000 ± 0.000 73.81 ± 6.019
s 0.9 2 180.86 ± 38.507 30000 ± 0.000 73.37 ± 5.705
s 0.9 3 171.59 ± 32.804 30000 ± 0.000 72.11 ± 5.474
s 0.9 16 162.90 ± 28.358 30000 ± 0.000 66.32 ± 4.183
s 0.75 1 174.99 ± 30.107 30000 ± 0.000 75.74 ± 6.933
s 0.75 2 173.32 ± 35.009 30000 ± 0.000 73.04 ± 5.224
s 0.75 3 177.37 ± 37.567 30000 ± 0.000 72.06 ± 6.058
s 0.75 16 161.22 ± 25.733 30000 ± 0.000 63.69 ± 3.805
s 0.5 1 188.28 ± 39.588 30000 ± 0.000 82.15 ± 7.235
s 0.5 2 190.68 ± 52.130 30000 ± 0.000 78.86 ± 7.654
s 0.5 3 181.43 ± 38.113 30000 ± 0.000 73.84 ± 6.888
s 0.5 16 163.00 ± 29.005 30000 ± 0.000 66.68 ± 4.431
cEA NRS 138.96 ± 30.944 30000 ± 0.000 55.12 ± 5.174
n 0.9 1 158.30 ± 44.187 30000 ± 0.000 53.80 ± 2.740
n 0.9 2 123.81 ± 24.765 30000 ± 0.000 55.83 ± 7.208
n 0.9 3 130.51 ± 17.348 30000 ± 0.000 57.65 ± 4.442
n 0.9 16 128.23 ± 17.180 30000 ± 0.000 49.28 ± 2.440
n 0.75 1 134.30 ± 16.364 30000 ± 0.000 55.90 ± 3.932
n 0.75 2 139.49 ± 21.365 30000 ± 0.000 55.23 ± 2.858
n 0.75 3 136.81 ± 22.710 30000 ± 0.000 55.10 ± 4.598
n 0.75 16 126.84 ± 12.664 30000 ± 0.000 48.41 ± 2.980
n 0.5 1 152.92 ± 29.524 30000 ± 0.000 65.12 ± 4.254
n 0.5 2 156.11 ± 24.837 30000 ± 0.000 61.45 ± 6.003
n 0.5 3 135.33 ± 14.682 30000 ± 0.000 61.33 ± 7.087
n 0.5 16 138.59 ± 39.483 30000 ± 0.000 51.30 ± 3.888

The following general trends which closely agree with the trends in selection

pressure study can be observed from the average number of generations to solution:

• New random sweep update scheme induces higher selection pressure on the

individuals than synchronous update scheme, reducing the time to convergence.

• For the same update scheme higher population densities in mcEA facilitates

faster convergence than lower population densities. It can be noticed that for

population densities 0.9 and 0.75 the average number of generations in mcEAs is

lower than that in synchronous cEA, and for lower population density, namely,
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0.5, the average number of generations is higher than that of the synchronous

cEA.

• Following the trend in selection pressure study. Higher mobility induces a high

selection pressure on individual thereby reducing the time to convergence than

with lower mobility.

Table 3.5 shows the best, worst and mean fitness of 100 runs with the syn-

chronous update scheme.

The following observations can be made from the quality of solutions with the

synchronous update scheme:

• On the FMS problem, the best solutions was found by mcEA with density 0.9.

On an average, the best solution was found by mcEA with density 0.9 and mo-

bility radius 3, followed by the cellular EA. Although in terms of best solutions,

other configuration of mcEA also performed well, their average performance

was worse than these two cases. It is interesting to note that these two con-

figurations induced the highest selection pressure of all the configuration. In

fact, configurations with lower selection pressure are expected to perform bet-

ter on the FMS problem due to its strong epistatic nature, however, from the

results it appears that the selection pressure induced by lower population den-

sities is too low to facilitate sufficient exploitation of the fitness landscape by

the recombination operator.

• On the MMDP problem, all the configurations were able to find the global op-

timal solution. However, in the average case the best performance was achieved

by mcEA with density 0.75. It appears that the exploration-to-exploitation

trade off was well-balanced for this configuration. However, it should be noted

that the number of generations expended for the MMDP problem was 30000,

which is very high in terms of search effort. This high search effect could be

the reason for all configurations to find the global optimal solution. However,

even at the end of this massive search effort, no configuration achieved the

primary stopping condition of low difference in average and best fitness of the

population. This shows that all the configurations were able to maintain a good
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population diversity on one of the representative problems of the deceptive class

of problems.

• No interesting observations can be made from the P-PEAKS problem. All

configurations including synchronous cEA were able to find the global optimal

solution, in 100% of the runs. This shows that the medium-high epistatic in-

stance selected for the study was not as strong as the epistatis in the FMS

problem case.

Table 3.6 shows the best, worst and mean fitness of 100 runs with the asyn-

chronous new random sweep update scheme.

The following observation can be made from the quality of solutions with the

NRS update scheme:

• Although all the configuration found good solutions on the FMS problem, no

configuration of mcEA performed better than the cellular EA in the average

case. However, the best solution was found by mcEA with density 0.5 and

mobility radius 2, which represents a very low selection pressure.

• On the MMDP problem, low density configuration (d = 0.5), performed the

best. It is interesting to not that while in the synchronous case, low density

configuration performed poorly, they performed better with the NRS update

scheme. This is due to the fact that when using NRS update scheme, the selec-

tion pressure of the configuration is increased, which improves the performance

of lower density configurations.

• Again no iteresting observation can be made from the P-PEAKS problem as all

the configuration could find the global optimal solution in 100% of the runs.

In general, on the test problems considered, one or the other configuration of

mcEA performed on par with cellular EAs. This strongly supports the primary claim

of this thesis that an mcEA can be used as a highly tunable evolutionary algorithm

in which the parameters can be appropriately tuned for a particular problem.
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Table 3.5: Quality of solution on each problem using synchronous update scheme.

Algorithm FMS MMDP P-PEAKS
best worst mean best worst mean best worst mean
×(10−6)

cEA sync 1.581 17.430 6.285
±
5.917

40.000 39.001 39.729
±
0.251

1.000 1.000 1.000
±
0.000

s 0.9 1 0.099 18.397 8.379
±
5.982

40.000 39.641 39.989
±
0.061

1.000 1.000 1.000
±
0.000

s 0.9 2 0.022 20.800 7.519
±
6.322

40.000 39.125 39.456
±
0.054

1.000 1.000 1.000
±
0.000

s 0.9 3 0.013 17.099 5.819
±
5.396

40.000 39.641 39.996
±
0.035

1.000 1.000 1.000
±
0.000

s 0.9 16 13.708 18.462 7.337
±
6.056

40.000 39.023 39.443
±
0.033

1.000 1.000 1.000
±
0.000

s 0.75 1 1.756 17.714 8.265
±
5.880

40.000 40.000 40.000
±
0.000

1.000 1.000 1.000
±
0.000

s 0.75 2 0.019 19.650 8.362
±
6.083

40.000 40.000 40.000
±
0.000

1.000 1.000 1.000
±
0.000

s 0.75 3 4.402 18.725 7.195
±
6.613

40.000 39.641 39.964
±
0.108

1.000 1.000 1.000
±
0.000

s 0.75 16 1.806 18.717 6.797
±
6.270

40.000 39.331 39.932
±
0.133

1.000 1.000 1.000
±
0.000

s 0.5 1 0.048 23.284 9.713
±
6.749

40.000 39.360 39.864
±
0.225

1.000 1.000 1.000
±
0.000

s 0.5 2 82.108 19.604 8.732
±
6.656

40.000 39.641 39.928
±
0.147

1.000 1.000 1.000
±
0.000

s 0.5 3 14.252 21.533 9.307
±
6.822

40.000 39.466 39.964
±
0.110

1.000 1.000 1.000
±
0.000

s 0.5 16 0.046 19.908 8.360
±
6.570

40.000 39.332 39.233
±
0.231

1.000 1.000 1.000
±
0.000
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Table 3.6: Quality of solution on each problem using NRS update scheme.

Algorithm FMS MMDP P-PEAKS
best worst mean best worst mean best worst mean
×(10−6)

cEA NRS 14.715 17.940 5.392
±
5.837

40.000 39.001 39.762
±
0.259

1.000 1.000 1.000
±
0.000

n 0.9 1 64.658 15.190 6.169
±
5.927

40.000 39.201 39.964
±
0.110

1.000 1.000 1.000
±
0.000

n 0.9 2 91.963 20.360 7.566
±
6.220

40.000 39.332 39.854
±
0.052

1.000 1.000 1.000
±
0.000

n 0.9 3 54.665 18.052 6.717
±
6.070

40.000 39.151 39.993
±
0.074

1.000 1.000 1.000
±
0.000

n 0.9 16 54.863 17.630 5.687
±
6.226

40.000 39.641 39.966
±
0.090

1.000 1.000 1.000
±
0.000

n 0.75 1 29.511 16.485 9.698
±
6.294

40.000 40.000 40.000
±
0.000

1.000 1.000 1.000
±
0.000

n 0.75 2 53.546 18.658 11.069
±7.156

40.000 40.000 40.000
±
0.000

1.000 1.000 1.000
±
0.000

n 0.75 3 92.006 11.843 5.408
±
4.802

40.000 39.345 39.766
±
0.124

1.000 1.000 1.000
±
0.000

n 0.75 16 31.153 15.849 8.851
±
6.826

40.000 39.442 39.965
±
0.113

1.000 1.000 1.000
±
0.000

n 0.5 1 23.165 19.168 11.295
±6.555

40.000 39.630 39.952
±
0.245

1.000 1.000 1.000
±
0.000

n 0.5 2 1.408 17.625 5.850
±
4.425

40.000 39.820 39.973
±
0.127

1.000 1.000 1.000
±
0.000

n 0.5 3 93.027 20.818 9.596
±
7.236

40.000 39.532 39.930
±
0.227

1.000 1.000 1.000
±
0.000

n 0.5 16 88.572 18.772 8.987
±
7.721

40.000 39.230 39.645
±
0.185

1.000 1.000 1.000
±
0.000
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4. AGENT-BASED EVOLUTIONARY ALGORITHMS

Recently, there has been a growing interest in the use of agent-based models

(sometimes called multi-agent systems) for evolutionary computation. Agent-based

models follow a decentralized computing approach with traditional roots in artificial

life (ALife) models. While ALife models are used to study evolution in a synthetic

environment, agent-based EAs use the evolution of the digital organisms for solving

optimization problems. In this section a brief survey on some popular models is

presented. While most of the agent-based EAs in existence are aimed at multi-

objective optimization, few models for function optimization also exist.

In one of the earliest seminal works on agent-based EAs, Laumanns et al. (1998)

presented a spatial predator-prey approach for multi-objective optimization. The

model consists of a 2-D toroidal grid, with preys representing one possible decision

vector placed on each of the vertex. Predators are sparsely placed on the same grid.

Predators move around the grid and evaluate each prey with respect to a single specific

objective. In each iteration, a predator will catch the worst prey in the neighborhood

of its current location and kill it. The vacant vertex is then filled by recombination of

the individuals adjacent to it. Since each predator kills prey with respect to only one

objective over time only the prey which have survived from all the predators exist

in the grid. These prey represent the Pareto-optimal solutions since they survived

the “evaluation” of all the predators. They demonstrated the effectiveness of this

scheme on a number of test problems and noted that agent-based EAs represent an

alternative approach in multi-objective optimization.

Deb (2001) and later Grimme and Schmitt (2006) revised the predator-prey

model with a few modifications. Firstly, the restriction of one predator to one objec-

tive assignment was replaced with each predator selects the worst prey with respect

to a weighted sum of all objective, allowing each predator to steer the prey popu-

lation to a specific region on the Pareto-front. Secondly, a weighted intermediate

recombination operator was specifically designed for reproduction in multi-objective

optimization. With these changes, improved results were reported.
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Ursem (1999) presented a multinational evolutionary algorithm for finding mul-

tiple solutions, both global optimal and local optimal solutions, in the fitness land-

scape. Inspired by the political interactions of nations in the real world, the algorithm

consists of individuals from multiple nations living in the search space. While the al-

gorithm itself is not spatially structured, individuals form nations in the search space.

With rules for migration from one nation to another, merging two nations and mat-

ing among individuals of the same nation, the algorithm is highly dynamic with a

large number of tunable parameters. The algorithm was evaluated using several test

functions and was reported to have found more optimal (global and local) solutions

than even with fitness-sharing which is commonly used to preserve diversity among

individuals of an EA.

Thomsen et al. (2000) later proposed a religion based spatial model for function

optimization. In this algorithm, each individual in a 2-D torus belongs to one of

several religions. In each time step, an individual randomly walks to a new location

and tries to convert individual of another religion to his own. Conversion is based

on the fitness of the individuals. Since mating is restricted among individuals of the

same religion, religions with individuals with better fitness increase in number while

worse fitness individuals are reduced. Experiments with this model were conducted

using several test function and compared against panmictic and cellular EAs. It was

reported that on most of the test problems, the religion-based method performed far

better than either of the other algorithms.

Socha and Kisiel-Dorohinicki (2002) presented a evolutionary multi-agent sys-

tem for multi-objective optimization. In the algorithm, autonomous agents are placed

on a 2-D toroid and move around in the grid. Each agent is associated with some

energy level of life energy. Each behavior in the agent’s behavior set require some

energy to execute with reproduction requiring highest energy. An agent dies when

it runs out of energy. During each time step, an agent initiates communication with

another agent and requests the quality of solution with respect to each objective.

The second then responds with its quality. If either of the agents is dominated, the

dominated agent transfers some energy to the dominant agent. This way better solu-

tions (representing the Pareto front) receive energy from other agents and reproduce

while dominated agents lose energy and ultimately die due to lack of energy. The
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algorithm was evaluated on a number of multi-objective problems and it was reported

that results were promising. However, do lack of any mechanism to avoid crowding

not all of the Pareto-front was covered. This was noted a possible future research

direction.

Berry and Vamplew (2003, 2005) presented the combative accretion model for

multi-objective optimization. In this model, agents moved around on 2-D torus and

combat among each other. In each time step, an agent fights one of the other agents

in its neighborhood. Pareto-dominance based comparison between the two agents is

made and if one of the dominated, the size of the dominant agent is increased and the

dominated agent is decreased. If neither one is dominated, then both their sizes are

increased and if the individuals are equal, one of them is killed by a global process. If

the size of an agent falls below a certain threshold the agent dies. When an agent is

killed by a dominant agent by causing it to fall below threshold, the dominant agent

is said to have contributed in reproduction. When an agent is killed, it is replaced

by a new individual created from an accretion pool of genetic material. An agent is

removed from the environment and placed in the accretion pool in two cases, either

when the size of the agent crosses a certain threshold or when it has contributed

to reproduction a set number of times. The algorithm was compared against some

of the best panmictic algorithms for multi-objective optimization and was found to

produce comparable Pareto-fronts with lower number of fitness evaluations (lower

computational effort).

Amato and Farina (2005) presented an ALife inspired spatial evolutionary al-

gorithm for dynamic multi-objective optimization. In this algorithm, agents more

around on a 2-D torus. In each time step, an agent meets with another agent with

a dynamic probability. If the agent does not meet with any other agent, the agent

undergoes a uni-sexual reproduction to spawn an offspring. With two agents meet

they can either fight based on Pareto-dominance or undergo bisexual reproduction to

produce an offspring. Interestingly a population density based dynamic population

sizing is used to determine the probability of meeting at each time step. However,

this is not locally calculated, as parameters are usually calculated in agent-based EAs,

but a global function sets this probability to the ratio of current population size to

the desired population size. The probability of bisexual reproduction is set as the
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probability of not meeting. This population sizing scheme was shown to generate a

stable equilibrium population size.

Drezewski and Siwik (2008) presented a single species agent-based algorithm and

a host-parasite based algorithm for multi-objective optimization. Both the algorithms

utilize the notion of energy and Pareto-dominance based energy-sharing similar to

other algorithms described above. It was observed that while the single species based

algorithm did poorly, the host-based algorithm performed comparable to existing

panmictic multi-objective optimization algorithms requiring lower number of fitness

evaluations.

While certainly some interesting works and appreciable results have been pre-

sented in agent-based evolutionary algorithms (abEAs), most of the algorithms dis-

cussed here are developed in an ad-hoc fashion with large number of parameters and

irrelevant ideas. Although, the field is rather young when compared to evolutionary

computation itself, no concrete justification has been presented for choosing particular

values for parameters in many of these works. Even when presented, the parameter

values can only be justified for a small set/class of problems and cannot be easily

tuned for other problems.

This thesis aims to provide a baseline for agent-based algorithms by investigating

the two important aspects of agent-based algorithms, namely, mobility and bottom-

up evolutionary operators and dynamic parameter tuning. Bottom-up indicates that

information available from local neighborhoods is used to execute local operators

which result in a globally observable phenomena. While mobility was studied in the

form of mobile cellular EAs, one evolutionary parameter, namely offspring sizing is

investing in the following sections in the form of bottom-up population dynamics.
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5. POPULATION DYNAMICS FOR AGENT-BASED ALGORITHMS

As discussed in Section 4, evolutionary operators such as selection, recombi-

nation, and mutation are incorporated into an individual’s behavior set which are

executed utilizing local information gathered by the individual. A common character-

istic of agent-based EAs is that the population size is dynamic and does not remain

constant across all iterations. In this section two bottom-up population dynamics

schemes are presented which mimic the popular survival schemes in evolutionary

computation. The first, called Age-Based Population Dynamics (ABPD) is a non-

elitist scheme in which individuals are replaced proportional to their age. The second

is an elitist scheme called Combative Population Dynamics (CPD) in which the best

individual is never eliminated/killed. While both elitist and non-elitist schemes are

commonly used in evolutionary computation, ABPD is a typical example of ALife

inspired schemes.

5.1. AGE-BASED POPULATION DYNAMICS

In age-based population dynamics (ABPD), dynamic offspring size is determined

by each individual based on the density of individuals it has experienced throughout

its lifetime. The following parameters are introduced into the algorithm to accomplish

ABPD.

Let Ni and N be the initial population size, i.e., population size at time step

zero and the desired equilibrium population size, respectively. Let r be the interaction

radius (selection radius) in which represents the local neighborhood of the individuals.

Ia denotes the number of cell (area) in the interaction radius. A new parameter termed

probability of death (Pd) is introduced, which denotes the finite probability that an

individual would die in any time step. As a consequence the average life time of

an individual would be 1/Pd. As mentioned earlier, the concept of probability of

death makes this scheme non-elitist wherein the best individual even if found, is not

guaranteed to survive till the end of the simulation. However, due to this constant

death and reproduce cycle, higher population diversity is maintained which aids in

solving highly multimodal and epistatic problems.
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The desired density of the population is assumed to be known to all individuals

due to genetic memory and is given by

Gd =
N

S2
(8)

where S2 is the area (number of cells) in the environment.

Since an individual can only interact within its neighborhood, in the ABPD

scheme, each individual keeps a moving average estimate of the local population

density around it. This estimated density, d for each individual each given by

dt = dt−1 + λ(Ot − dt−1) (9)

where dt and dt−1 are estimated population densities at time t and t−1, respectively.

Here Ot is the directly observed density at the time instance t and λ is the confidence

coefficient for the directly observed density. Since ALife systems are inherently noisy

due to complex inter-dependencies between stochastic components,this confidence

coefficient is usually kept low (∼ 0.2)

Since Pd is the individual probability of death, the following information is

locally available to each individual:

• The current deviation in local population size is given by GdIa − dtIa

• The average number of natural deaths in the local population is equal to dtIaPd

• The estimated number of survivors to the next time step is equal to dtIa−dtIaPd

Therefore, the per-capita offsprings needed is given by

b̂ =
GdIa − dtIa + dtIaPd

dtIa − dtIaPd

(10)

simplifying and rearranging terms

b̂ =
Gd

dt(1− Pd)
− 1 (11)

Since Gd is calculated as a constant and Pd is an input, the offspring size is only

inversely proportional to the estimated density dt, during the course of the simulation.
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Figure 5.1 shows the stability of ABPD scheme for various initial population sizes and

a desired population size of 1000 individuals.
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Figure 5.1: ABPD convergence for various initial population sizes. The desired pop-
ulation size is 1000.

The population size quickly reaches and stays around the desired population

density. The overshoot and undershoot artifacts in the figure are due to the fact

that only first order relationships between the variables are considered here. A more

non-linear model which takes into account the per-capita changes in death rate due

to one individual’s death would result in a much smoother albeit slower response to

the density change.

5.2. COMBATIVE POPULATION DYNAMICS

In this elitist scheme, an additional behavior, combat, is added to the behavior

set of the individuals. In each iteration, each individual based on the observed popu-

lation density fights one of the individuals in its interaction radius. The outcome of
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each battle is that the weaker (less fit) individual is killed. The winner increments

a counter, Nk of offsprings to be produced to compensate for the loss. If the fitness

of both individuals is the same, then the combat ends in a draw and no individual

dies. An individual only fights another individual if its observed population is greater

than the desired density (genetic density). Notice that in this scheme not only does

the individual with best fitness never die, but will produce more offsprings during the

course of the simulation than others.

Following the discussion for ABPD, based on the observed population density,

the following information is locally available to an individual:

• The current deviation in local population size is given by GdIa − dtIa

• The number of weaker individuals killed by the individual is given by N i
k

• The estimated number of survivors to the next time step according to this

individual is equal to dtIa −N i
k

Therefore, the number of offsprings to be produced by an individual i is given

by

b̂i = (
Gd

dt

− 1) + N i
k (12)

Figure 5.2 shows the stability of CPD scheme for various initial population sizes

and a desired population size of 1000 individuals.

It can be observed that even with this scheme the population quickly reaches

a stable size. However the equilibrium population size is slightly higher ( 10%) than

the desired population size, this is due to the simple theoretical modeling of the

population deficit. The number of individuals eliminated by an individual which is

later killed before it can reproduce is not taken into account. As with ABPD, a non-

linear estimate of the population deficit would be required to accurately reach the

desired population level. However, the important aim of this preliminary investigation

into bottom-up population dynamics model is to establish schemes which are able to

maintain an equilibrium population size which has been achieved in both the cases.
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Figure 5.2: CPD convergence for various initial population sizes. The desired popu-
lation size is 1000.

Another interesting artifact in the plot, is that even for high population values,

the population quickly drops in the first time step. This is due to the combative

scheme selected. This could lead to a very drastic decrease in diversity in the popu-

lation. This problem is left as an open problem for future investigation.
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6. ARTIFICIAL ECOSYSTEMS

Numerous examples of relatively closed ecosystems can be found in nature,

which sustain and regulate themselves even in the presence of enormous uncertainty

and variability in their environment. Inspired by these naturally occurring ecosys-

tems, this section, presents a novel approach for developing agent-based evolution-

ary algorithms. Termed as Artificial Ecosystems, this approach utilizes the observa-

tions from experiments with mobile cellular EAs and bottom-up population dynamics

schemes presented in the previous section to develop agent-based evolutionary algo-

rithms.

Figure 6.1 shows the schematic representation of AES.

Figure 6.1: Schematic representation of AES approach.

Individuals of an AES are modeled as autonomous mobile agents similar to

ALife simulations with selection and parameter control being incorporated into the
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behavior set of the agents. Each individual has several associated properties such

as age, mortality rate, ability to reproduce, etc. These individuals live in spatially

structured environment either alone or along side or other species. In Figure 6.1,

arrows between any two species indicate the interspecific interactions such as preda-

tion, parasitoidism, grazing, symbiotism and other similar behaviors which can occur

between individuals of different species. Apart from these, intraspecific interactions

(not depicted in figure) which may occur between individuals of the same species such

as mate selection, social and territorial dominance can be modeled where required.

Apart from providing a spatial structure to the population, the environment can also

be used to model additional information about the problem, e.g., change in fitness

function as in the case of dynamic multiobjective optimization. Effects of the envi-

ronment on each species varies and are depicted by the open ended arrow from each

species.

For an instance of AES, the parameter set of the problem to be optimized is

mapped as adaptable characteristics (genome) of one or more of the evolving species.

Not all species in AES need to be evolving. One or more non-evolving species can

also inhabit the ecosystem. They still participate in the evolutionary dynamics of

the ecosystem due to interactions with other evolving species. Examples of such

non-evolving species are as follows. Consider the satisfiability problem, in which a

given solution needs to satisfy certain number of constraints. In this situation, the

solution vector is mapped to a evolving species as the solution needs to be evolved.

However, as the given constraints are absolute and need no evolving, the constraints

are mapped to a non-evolving species. One can think of the non-evolving species

as having the best survival algorithm in the ecosystem and only other species need

to adapt taking the non-evolving species into consideration. As another example,

consider the predator-prey ecosystem for multiobjective optimization (Grimme and

Schmitt, 2006). The prey represent the decision vector which needs to be evolve a

solution on the Pareto front. The predators kill a prey based on its relative fitness in

its neighborhood. Fitness of the preys is improved due to evolutionary pressure, but

the predators’ algorithm to hunt does not need any alteration and therefore predators

have no evolvable characteristics. This kind of decentralization between the parameter

set to be evolved and the constraints on the solution would be beneficial in cases where



46

the fitness landscape is highly chaotic and high local optima to global optima ratio.

In such cases, due to spatial dispersion the constraints are not always enforced on the

solution enabling constraint violating solutions to participate and hopefully assist the

search process.

6.1. SINGLE SPECIES AND LANDSCAPE MODEL

In this section, the simplest possible AES model with a single species and land-

scape (environment) is presented for function optimization. Generally, individual-

based ecological models (Grimm and Railsback, 2005) and several agent-based models

discussed in Section 4 explicitly model resources of the environment for individuals

to consume, grow and reproduce. In the single species and landscape (SSL) model

however, the bottom-up population dynamics schemes presented in Section 5 take

into account this resource modeling. The population growth models assume that

there is always sufficient resources to sustain the desired population density, thereby

alleviating the need to explicitly model the resources.

Algorithm 6.1 lists the pseudocode for a SSL model.

Algorithm 6.1 Psuedocode for single species and landscape AES.

1: GenerateLandscape(landscape)
2: GenerateInitialPopulation(pop)
3: while !StopCondition() do
4: for all individual ∈ pop do
5: individual→Move()
6: individual→Interact()
7: individual→SelectMate()
8: individual→Reproduce()
9: individual→Death()

10: end for
11: end while
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The parameters to be optimized are mapped as the genotype of the individuals

and the function value corresponding to the parameter set are mapped to the phe-

notype of the individual. Each individual is associated with five behaviors which it

executes each time step. The five behaviors are as follows:

• In Move, an individual moves to a vacant location in its interaction radius.

• In Interact, the individual estimates the local population density by counting

the number of other individuals in its interaction radius.

• In SelectMate, the individual selects another individual to mate in its selection

neighborhood (which can be same as the interaction radius).

• In Reproduce, the individual reproduces according to the population dynamics

scheme selected.

• Death can occur due to age in the case of age-based population dynamics or

due to combat in the case of combative population dynamics scheme.

6.1.1. Experimental Setup. The same test suite used for evaluating

mobile cellular EAs is used for evaluating the SSL model, namely, FMS, MMDP and

P-PEAKS problems. Table 6.1 shows the parameter values used for this study. In

the case of combative population dynamics, a simulations is stopped in the same as

with mcEA evaluation, i.e., when the absolute difference between the average fitness

of the population and the best fitness of the population is less than 10−5. However,

in the case of age-based population dynamics the simulation is stopped after 1500

generations. This is due to the fact that ABPD is a non-elitist scheme which does

not guarantee the survival of the best solution forever. Therefore the simulation is

run for the specified 1500 generations and mean of 100 runs are reported as results.

6.1.2. Results. Tables 6.2 and 6.3 show the average number of generations

and fitness values achieved by the two population dynamics based SSL models.
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Table 6.1: Parameters used for the test suite.

Grid size 32× 32
Update scheme Each individual updates each time step
Neighborhood C9
Initial population size 1000
Desired population size 1000
Population density 0.97656
Observed density confidence λ 0.2
Offspring sizing (population
dynamics)

ABPD, CPD

Death rate (for ABPD) 0.05
Maximum generations (for
ABPD)

1500

Mobility function random-hop
Mobility radius 1
Mate selection Uniform random
Recombination DPX (double point crossover)
Mutation Bit-flip mutation
Time step All individuals updated

Chromosome length (L)
240 (MMDP)
192 (FMS)
100 (P-PEAKS)

Probability of crossover (Pc) 1.0

Probability of mutation (Pm)
1/L = 0.0042 (MMDP)
10/L = 0.052 (FMS)
1/L = 0.01 (P-PEAKS)

Table 6.2: Average number of generations on each problem.

Algorithm FMS MMDP P-PEAKS

SSL (ABPD) 1500 ± 0.000 1500 ± 0.000 1500 ± 0.000
SSL (CPD) 734.452 ± 56.334 30000.000 ±

0.000
512.987 ±
100.298

It is interesting to note that in the CPD case, the number of generations on

FMS and PPEAKS problems is significantly higher than any configuration of the

mcEA presented in the Section 3. This indicates that very low selection pressure is
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induced by the combative population dynamics scheme. As mentioned earlier, the

ABPD scheme is a non elitist scheme which constantly replaces the population with

new individuals and cannot guarantee convergence of the population to a small region

in the search landscape and therefore, the algorithm was run for a specified number

of generations and results are presented from the final state of the population.

Table 6.3: Quality of solution on each problem.

Algorithm FMS MMDP P-PEAKS
best worst mean best worst mean best worst mean
×(10−6)

SSL
(ABPD)

27.371 30.568 29.495
±
1.0036

38.360 36.000 37.378
±
0.6887

0.800 0.710 0.748
±
0.026

SSL
(CPD)

3.873 10.223 2.334
±
1.839

40.000 40.000 40.000
±
0.000

1.000 1.000 1.000
±
0.000

As expected, ABPD based SSL algorithm, performed far worse than any config-

uration of mcEA or CPD based SSL algorithm. ABPD based algorithm, did not find

the best solution8 for any of the three problems, including the P-PEAKS problem

which was easily solved by all the configuration of mcEA.

The CPD based algorithm on the other hand performed very well produced

results comparable to the best solutions found by cellular and mobile cellular EAs.

On both, the MMDP and the P-PEAKS problems, CPD based algorithm was able

to find the global optimal solution in 100% of the runs. On FMS problem, however,

the algorithm slightly under performed in the average case.

Based on these results, combative population dynamics shows promise for static

function optimization while age-based population dynamics seems appropriate for

dynamic optimization problems where the fitness function changes over time. The

8Or did not sustain the best solution till the end of the simulation.
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investigation into dynamic optimization using ABPD based SSL algorithm is left for

future work.

6.2. MULTI-SPECIES AES FOR OPEN ENDED PROBLEMS

In this section, a theoretical discussion on the efficacy of the AES approach

to spatially asynchronous co-evolutionary experiments is presented. As AES is in-

herently based on individual interaction, co-evolutionary class of algorithms can be

easily implemented to solve problems with vague or no absolute fitness measures or

problems where more complex interacting sub-components need to be designed or

optimized simultaneously.

As a example, a competitive co-evolutionary predator-prey ecosystem is de-

scribed here to solve, the problem of pattern recognition in 2-D signals. The objective

of the problem is to identify distinct spatio-temporal patterns in the input signal.

Let the predator-prey ecosystem have three components - environment, preda-

tors and prey. Assuming no other information about the input signal is provided,

there is no absolute fitness function to evaluate the fitness of a pattern solution. Here

the input signal is mapped to the environment as a landcover in which the predators

and prey “live”. The prey genotype represents the parameters of a general 2-D sig-

nal, i.e., prey represent a possible pattern in the input signal and therefore represent

solutions to the problem. Using the density dependent reproduction and movement

behaviors, the prey move about in the environment interacting with each other. The

parameter set mapped to the prey project a phenotype which is a 2-D signal. The

predator has the “visual acuity” to distinguish prey signal from the background.

Therefore the preys whose phenotype closely matches with the landcover will receive

more camouflage than those whose phenotype does not match the landcover. Preda-

tors can start with some arbitrary threshold to distinguish prey from land cover. As

the prey which are “easily” visible to the predator are killed, predators find it difficult

to sustain the killing spree. Predators whose visual acuity is improved due to their

reproduction cycle would be able to hunt more prey. This evolutionary arms-race for

survival would not only provide the patterns in the input signal (from the prey geno-

type), but also provide an approximate algorithm to detect the patterns in similar

signals (from the predator genotype).
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While the example presented here utilizes a antagonistic interaction between

the two species (Predators kill prey), other forms of coevolution such as competitive,

in which multiple species compete for the same resource and cooperative, in which

species have to co-exist for mutual benefit, can also be achieved under this framework.

A comparison of AES with existing panmictic and spatially structured coevolu-

tionary techniques is an important future direction of this research.
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7. CONCLUSIONS AND FUTURE WORK

This thesis presented a new class of evolutionary algorithms called mobile cel-

lular EAs (mcEAs). These algorithms are characterized by individuals which move

around on a spatial population structure. Selection pressure in these algorithms was

investigated and the results pertaining to the effects of population density and mo-

bility were presented. It was observed that selection pressure in mcEAs was much

more tunable that what was possible with existing cellular EAs. Experiments with a

test suite of combinatorial problems also support this claim.

This thesis also presented a general architecture for developing agent-based EAs

called Artificial Ecosystems (AES). Individual-based bottom-up reproduction schemes

were developed along with a simple agent-based algorithm for function optimization.

Experiments with a test suite of problems showed promising results for the architec-

ture and hopes to inspire a new way of developed agent-based evolutionary algorithms.

Although significant results for mobile cellular EAs and the AES framework,

it is none the less a preliminary investigation into both and further investigation

is required to fully characterize their behaviors. In the current work, only a few

possible combinations of update schemes, neighborhoods and mobility functions for

mcEAs were investigated. Further investigation into these parameters is necessary

to characterize mcEAs. For the AES framework, the developed population dynamics

schemes only considered first-order relationships among parameters. It is believed

that better performing schemes can be developed if higher-order relationships and

inter-dependencies between behaviors are taken into account. Population dynamics

is an important aspect of agent-based algorithms and certainly warrants further inves-

tigation. While the simple AES example, demonstrates the efficacy of the framework

for function optimization, examples of multi-species instantiations of AES need to be

developed to demonstrate coevolutionary mechanisms. Finally, better understanding

of the performance characteristics of the algorithms presented in this thesis can be

only evaluated using high-quality test and real-world problems using state-of-the-art

selection and recombination operators.
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Another important future scope of this research is developing parallel implemen-

tations of mobile cellular EAs and AES framework. Parallelization on both Beowulf

type configurations and Graphics Processing Units (GPUs) are being considered to

study complex optimization problems involving large search spaces. Existing im-

plementations of cellular EAs and agent-based models on these architectures should

facilitate in fast development of this future direction.
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APPENDIX

TEST SUITE FOR ALGORITHM EVALUATION

A.1. FREQUENCY MODULATION SOUNDS (FMS)

The Frequency Modulation Sounds (FMS) parameter identification problem was

proposed by Tsutsui et al. (1997) as a difficult problem for evolutionary algorithms

to optimize. The problem involves identifying parameters of a model (say y(t)) to a

basic sound generator y0(t). The goal of any optimization algorithm is therefore to

minimize the sum of squared errors (SSE) given by

fFMS(
→

x) =
100
∑

t=0

(y(t)− y0(t))
2 (A.1)

The problem involves evolving 6 parameters
→

x = (a1, w1, a2, w2, a3, w3) in order

to fit the evolved model y(t) to the original model y0(t), given by Equations A.2 and

A.3 respectively.

y(t) = a1sin(w1tθ + a2sin(w2tθ + a3sin(w3tθ))) (A.2)

y0(t) = 1.0sin(5.0tθ + 1.5sin(4.8tθ + 2.0sin(4.9tθ))) (A.3)

In the current work, each parameter is encoded with 32 bits, resulting in a

chromosome of length 192 bits. When calculating fitness, this binary representation is

scaled into the range -6.4 to +6.35. Also, θ = 2π/100 to match the 100 time steps used

to calculate the SSE of a given solution. The resulting problem is highly multimodal

with strong epistasis with minimum value (global optimal) being fFMS = 0.0.

A.2. MASSIVELY MULTIMODAL DECEPTIVE PROBLEM (MMDP)

The MMDP problem has be specifically designed by Goldberg et al. (1992) to

be a difficult problems for EAs to solve. The problem is made up of k subproblems
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of 6 bits each. This is a maximization problem with the global optimum equal to

k. To achieve this global optimum, each subproblem needs to be composed to either

all zeros or all ones. Each subproblem is given a fitness value based on the number

of ones in it according to Table A.1. The fitness of the entire solution is given by

Equation A.4.

Table A.1: 6-bit Subproblem Value

Number of ones Subproblem value

0 1.000000
1 0.000000
2 0.360384
3 0.640576
4 0.360384
5 0.000000
6 1.000000

fMMDP (
→

x) =

k
∑

i=1

subfunction(xi) (A.4)

The number of local optima is very large (22k) compared to the total number

of global optimal solutions (2k). Thus the degree of multimodality is defined by k.

A considerably large instance with k = 40 is considered in the current study. This

results in a chromosome of length 240 bits.

A.3. MULTIMODAL PROBLEM GENERATOR - P-PEAKS

This problem generator was used to study the epistasis on EAs in De Jong

et al. (1997). The P-PEAKS generator generates a set of P random N -bit strings

that represent the location of the P peaks in the search space of N dimensions. An

arbitrary bit string is evaluated by calculating the number of bits it has in common

with the nearest of the P peaks. The nearest peak is located in Hamming space. The
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fitness of a bit string is calculated using Equation A.5. Weakly/strongly epistatic

problems can be generated with small/large number of peaks. In the current study,

P = 100 peaks in a search space of N = 100 dimensions is used, which represents a

medium-high epistasis problem. This results in a chromosome of length 100.

fPP EAKS(
→

x) =
1

N

P
max
i=1

{N −HammingD(
→

x, Peaki)} (A.5)
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