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Abstract—Forecasting of chaotic time-series has increasingly 

become a challenging subject. Non-linear models such as 

recurrent neural networks have been successfully applied in 

generating short term forecasts, but perform poorly in long term 

forecasts due to the vanishing gradient problem when the 

forecasting period increases. This study proposes a robust model 

that can be applied in long term forecasting of henon chaotic 

time-series whilst reducing the vanishing gradient problem 

through enhancing the models ability in learning of long-term 

dependencies. The proposed hybrid model is tested using henon 

simulated chaotic time-series data. Empirical analysis is 

performed using quantitative forecasting metrics and 

comparative model performance on the generated forecasts. 

Performance evaluation results confirm that the proposed 

recurrent model performs long term forecasts on henon chaotic 

time-series effectively in terms of error metrics compared to 

existing forecasting models. 

 

Index Terms—Chaotic Time-Series; Recurrent Networks; 

Henon Time-Series. 

 

I. INTRODUCTION 

 

Chaotic forecasting is a huge problem in many real-world 

applications. Performance of chaotic time-series models is 

built on historic data which is used for model training and 

accuracy is solely applied to validate the performance of any 

time-series forecasting model. 

For more than a decade, statistical models have been 

utilized in time-series forecasting. However their ability to 

forecast is limited to the nature of time-series applied which 

is of linear behavior unlike real world problems which are 

non-linear. Box-Jenkins [1], Multi Regressions [2-3] and 

Exponential Smoothing [4-5] are examples of statistical 

methods applied in time-series forecasting. 

Non-statistical models which are non-linear models have 

also been applied in time-series forecasting. Examples 

include fuzzy logic [6], genetic algorithm [7], support vector 

machines [8] and artificial neural networks [9-11]. 

Forecasting chaotic time-series is classified as long term or 

short term. In the latter, neural network models have no loop 

that provides a feedback between the network output and the 

input regressor [12]. Only actual data samples are used in this 

model unlike the long-term forecasting model that utilizes the 

actual and target data as inputs to the model. The long-term 

forecast has a feedback loop that feeds the input for a number 

of time steps depending on the horizon set by the forecaster 

[13]. The input regressor is constituted of replaced actual data 

from previously forecasted values of the time-series, 

nonetheless when the time steps tend to infinity the values in 

the input regressor consist of only estimated time-series 

values. The infinity process makes long term forecasting a 

much more complex dynamic modelling process than short 

term forecasting [14].  

Forecaster’s aim is to apply various approaches in 

successfully forecasting the applicable data using legal 

forecasting policies. “The central idea to successful chaotic 

time-series forecasting is achieving the best results using 

minimum required input data and the least complex model” 

[15]. With a focus on this idea it is evident that as a result of 

the complex nature of chaotic time-series forecasting, there is 

need for the application of dynamic forecasting models which 

would help in estimating future trends and reducing risks of 

decision making. 

The outline of this paper is as follows: the problem 

statement is highlighted in Section 2. In Section 3, the 

proposed hybrid recurrent network model is proposed, and 

Section 4 presents experimental results. Finally, the findings 

are summarized in the last section. 

 

II. PROBLEM STATEMENT 

 

Recurrent neural networks are very powerful sequence 

models proposed for modelling time-series, however they do 

not enjoy widespread use because it is extremely difficult to 

train them properly due to the vanishing gradient problem 

[16-19]  

In an RNN trained over long sequences (e.g. minimum of 

100 time steps) the gradients can easily vanish due to the 

magnitude of gradients being back propagated through the 

recurrent layers [16-19] This problem affects the performance 

of recurrent networks in generating long term forecasts. 

In previous models [16-20] this problem still persists which 

hinders the ability of the models in generating long term 

forecasts when applied on chaotic cases. Therefore, the 

proposed hybrid model provides procedures in enhancing 

learning of long-term dependencies with the aim of reducing 

the vanishing gradient problem as a result of the network 

being trained over long sequences (more than 100 time steps); 

hence generating robust long term forecasts. 

This hypothesizes that the new non-linear hybrid model is 

able to cope with multifactor in chaotic time-series for robust 

multi-step-ahead forecasts as a result of enhanced learning in 

long-term dependencies. 

 

III. HYBRID RECURRENT NETWORK MODEL 

 

In the proposed recurrent model, as shown in Figure 1, a 

time-series filter is added onto the input layer for noise 

reduction [21]. An unscented kalman filter is used whereby a 

set of identified points is selected to represent the applied data 

distribution. To control the distribution, a scaling parameter 
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is used within the filter. 

With the dataset, points referred to as sigma points are 

chosen using the function 𝑦(𝑖) = 𝑔(𝑥(𝑖)).  The distribution of 

the states are obtained using the following: 

 

For 𝑘 = 1,2, … … . . , ∞: 
 

1. Using the state covariance, the ideal number of sigma 

points are obtained by ( 𝛾 is a scaling parameter given 

by): 

 

𝛾 = √𝑁 +⋋, (1) 

⋋= 𝛼2(𝑁 + 𝜅) − 𝑁, (2) 

 

where 𝛼 and 𝜅 are tuning parameters. The 

parameter ⋋, controls the size of the sigma point 

distribution.  

 

2. Time-update equations: Using the state-update 

function, apriori state estimate and apriori covariance 

transform sigma points using: 
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3. Measurement-update equations: The generated sigma 

points are used in transformation through the 

measurement-update function: 
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 The Kalman gain is given by: 

  

,= 1

k
y

k
y

k
xk PPK

 
(5) 

 

and the Scaled kalman filter estimate and its covariance are 

generated by: 
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Filtered chaotic henon data is then fed into the 

autoregressive recurrent network. In the training process, 

historic data is split into training and testing i.e. 70-30%. To 

perform long term forecasting, the 30% of henon data is used 

in closed loop and there would be no input updates within the 

network: 

 

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), … , 𝑦(𝑛 − 𝑑𝑦 + 1); 

                   𝑢(𝑛), … , 𝑢(𝑛 − 𝑑𝑢 + 1)]    
(8) 

 

 
 

Figure 1: Proposed recurrent hybrid neural network model with time-series filter 
 

A. Bayes’ Training Algorithm 

The training data (chaotic henon) is assigned as 𝑅 = (𝑥𝑖 , 𝑡𝑖) 

and 𝑖 = 1,2, … , 𝑛. Where, 𝑛 is the number of training 

samples, 𝑤 is the parameters within the network, 𝑚 is the 

number of parameters and (𝛼, 𝛽) are regularization 

parameters. Given the network framework 𝑄, supervised 

model is expressed as 𝑦𝑖  = 𝑓(𝑥𝑖 , 𝑤; 𝑄). Without training 

data, the prior distribution is 𝑃(𝑤 | 𝛼, 𝑄), once given sample 

data R, according to Bayes theorem the posterior distribution 

𝑃(𝑤 | 𝑅, 𝛼, 𝛽, 𝑄), is written as: 

 

𝑃(𝑤| 𝑅, 𝛼, 𝛽, 𝑄) =
𝑃(𝑅| 𝑤,𝛽,𝑄) 𝑃(𝑤| 𝛼,𝑄)

𝑃(𝑅 |𝛼,𝛽,𝑄)
  (9) 

 

where, 𝑃(𝑅| 𝑤, 𝛽, 𝑄) is a likelihood function, 𝑃(𝑅 |𝛼, 𝛽, 𝑄) 

is a normalization factor and is expressed as: 

 

𝑃(𝑅| 𝛼, 𝛽, 𝑄) =  ∫ 𝑃(𝑅| 𝛼, 𝛽, 𝑄) 𝑃(𝑤|𝛼, 𝑄)
+∞

−∞
  (10) 

 

Prior distribution 𝑃(𝑤 | 𝛼, 𝑄) takes index distribution and 

is expressed as: 

 

𝑃(𝑤 | 𝛼, 𝑄) =
1

𝑍𝑤(𝛼)
exp(−𝛼𝐸𝑤)  (11) 

 

𝑍𝑤 represents the normalization factor if an assumption is 

made that the prior distribution is Gaussian with zero mean 

and variance 1 𝛼⁄ . 

 

𝑍𝑤 = ∫ exp(−𝛼𝐸𝑤) 𝑑𝑤 = (
2𝜋

𝛼
) 𝑚

2⁄   (12) 
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With respect to the distribution, the probability of 

occurrence of data is achieved by:  

 

𝑃(𝑅| 𝑤, 𝛽, 𝑄) = ∏ 𝑃(𝑡𝑖| 𝑥𝑖 , 𝑤, 𝑄)𝑛
𝑖=1   (13) 

 

Hence, the error outcome of the network is: 

 

𝑒 = 𝑦(𝑥𝑖 |𝑤, 𝑄) −  𝑡𝑖 (14) 

 

 

 
Figure 2: Filtered henon simulated time-series (500 samples) 

 

IV. EXPERIMENTAL RESULTS 
 

A. Simulated Dataset 
 

In the experimental setup, a dynamic discrete time-series 

system is simulated using mathematical formulae. The 

simulated test case is a common example of systems that 

displays chaotic behavior. In previous studies the henon map 

originates from a single point to a new projected position 

which is dependent on two variables 𝑎 and 𝑏. Specific values 

of the parameters can result in a chaotic scenario which are  𝑎 

= 1.4 and 𝑏 = 0.3.   

In this case of simulation, new values of parameters are 

used and tested to provide a new case study for henon time-

series.  Using Equations 11 and 12, 500 samples of simulated 

henon time-series are generated as shown in Figure 2. 

 

𝑥𝑡+1 = 1 − 𝑎𝑥𝑡
2 + 𝑏𝑦𝑡  (15) 

𝑦𝑡+1 = 𝑥𝑡  (16) 

 

B. Recurrent network analysis 

Largest lyapunov exponent (LEE) is used to check whether 

the generated Henon time-series (500 samples) are chaotic. 

When tested, Lorenz time series have an LEE value of 22.21 

(positive) which demonstrates the existence of chaotic nature 

in the selected time-series.  

To optimize the time-series input selection by reducing the 

level of noise associated with the selected simulated henon 

time-series, a time-series filter is used to lower and reduce 

noise levels in the proposed recurrent hybrid model. The 

selected value parameters for measurement and process 

noises are 0.001 and 1 respectively [18]. For optimal scaling 

values 𝜅, numerical analysis using NMSE error metric is used 

to adjust and obtain the scaling value within the rage of 0-12.  

 
 

 

 
 

 

Table 1 

Analysis of optimal scaling factor in time-series filter 

 

Scaling 
Factor 

Normalized MSE 
Scaling 
Factor 

Normalized MSE 

0 1.02e-11 5 1.14e-12 

1 3.57e-11 8 1.05e-12 
2 2.24e-11 9 1.92e-12 

4 1.99e-12 12 2.12e-12 

 

Using a forecasting metric that normalizes the mean 

squared error (NMSE), optimal scaling parameter is selected. 

Table 1 shows the normalized mean square error (NMSE) for 

applied scaling values with the optimal number being 8 sigma 

points as shown in Table 1.  

To avoid model overfitting, the total number of henon time-

series samples of 500 is divided into 300 and 200 samples for 

training and testing respectively. Division of data samples is 

done using block validation whereby the 200 samples of data 

are used in closed loop performance to verify the models 

ability in performing long-term forecasting. In the structural 

setup of the recurrent model, the number of delays is 

increased with the aim of further overcoming the problem of 

vanishing gradients during the training process. 

Using the network structure, the model produces forecasted 

outputs for simulated henon time-series using the proposed 

recurrent hybrid model as shown in Figure 3. For comparative 

purposes the same structure is applied to the normal recurrent 

model as shown in Figure 4. The difference between the two 

models is the error outcome which is higher in normal 

recurrent model due to the level of noise associated with an 

unfiltered henon time-series data. 

For model evaluation, both short and long-term forecasts 

obtained from the proposed recurrent hybrid model and 

normal recurrent model are evaluated using an error 

histogram as shown in Figures 5 and 6. Based on the 

inclination and level of error per histogram bin, the proposed 

recurrent hybrid model produces lower error rates as 

compared to the normal recurrent model.
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Figure 3: Henon training and testing outcomes using proposed recurrent hybrid model 

 
Figure 4: Henon training and testing outcomes using normal recurrent model 

 

 
Figure 5: Error histogram for proposed recurrent hybrid model 

 

 
 

Figure 6: Error histogram for normal recurrent model 

 

 

Experimental analysis based on regression value showed 

that the proposed hybrid recurrent model with a regression 

value of 1 which translates to a fit model. However for the 

normal singular recurrent model, it had a regression value of 

0.95963. In the case for normal recurrent model, lower levels 

of accuracy in both the training and testing phases resulted in 

a low regression value as compared to the proposed hybrid 

recurrent model. 

 

V. CONCLUSION 

 

The central idea to successful chaotic time-series 

forecasting is attaining robust results from non-complex 

model in terms of computational complexity and robust 

results in terms of accuracy. With a focus on this idea it is 

evident that there is the need for the application of dynamic 

forecasting models which would help in estimating future 

trends and reducing risks of decision making.  
For more than a decade, statistical models have been 

utilized in time-series forecasting; however, their ability to 

forecast is limited to the nature of time-series applied which 

is of linear behavior, unlike real world problems which are 

non-linear. In this study, simulated henon time-series is 

applied in forecasting with the aim of trying to improve the 

performance of recurrent neural networks.  
Based on the proposed modification to the structural 

network of recurrent networks, the addition of a time-series 



Analysis of Recurrent Neural Networks for Henon Simulated Time-Series Forecasting 

 e-ISSN: 2289-8131   Vol. 10 No. 1-8 159 

filter in the input layer provided increases forecasting 

performance by reducing the noise levels that affects network 

training process. Empirical analysis is performed using 

quantitative forecasting metrics and comparative model 

performance on the generated forecasts. Performance 

evaluation results confirm that the proposed recurrent model 

performs long term forecasts on henon simulated time-series 

efficiently as per the experimental outcomes of error metrics 

compared to the current recurrent model. 
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