

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 131

Modern Fortran Transformation Rules for UML

Sequence Diagrams

Aziz Nanthaamornphong and Anawat Leatongkam
Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Thailand.

aziz.n@phuket.psu.ac.th

Abstract—Recently, reverse engineering has been widely

adopted as a valuable process for extracting system abstractions

and design information from existing software systems. The

proposed research will focus on ForUML, a reverse engineering

tool developed to extract UML diagrams from modern, object-

oriented Fortran code, which are still used by scientists and

engineering application developers. The first version of

ForUML produces only UML class diagrams, which provide a

useful window into the static structure of a program, including

the make-up of each class and the relationships between classes.

Rather than visualizing class diagrams, the developers need to

understand class behavior and interactions between classes.

UML sequence diagrams provide such important algorithmic

information. Therefore, we proposed rules for transforming

object-oriented Fortran into UML sequence diagrams with the

goal to extend the ability of ForUML. The proposed rules were

designed by Atlas Transformation Language. We believe that

the contribution of this work would enhance the development,

maintenance practices, decision processes, and communications

in the scientific software community worldwide.

Index Terms—Fortran; Reverse Engineering; Software

Engineering; UML Sequence Diagram.

I. INTRODUCTION

At present, reverse engineering becomes widely well known,

especially for software developers. Reverse engineering for

software engineering is about reviewing source codes to

understand the software. In terms of software development, if

a software is large or comprises of numerous lines of code, it

will result in complexity, thereby being difficult in reviewing

and understanding those source codes. Thus, reverse

engineering will help developers understand an overall

picture of the system easily in order to maintain and improve

the software. However, the reverse engineering of large or

complex software is painful and challenging [1]. One of

reverse engineering process challenges is to build a point of

view that represents the meaning of abstract or intangible of

the complex system by visualizing the source code in a form

of readable and understandable notations [2]; such as, Unified

Modeling Language (UML).

In the previous work, the second author developed a tool

namely ForUML [3], which is capable of extracting UML

class diagrams from object-oriented Fortran code. The UML

class diagram is a diagram that represents classes’ structure

and relationship between other classes. A Fortran

programming language was further developed to be an

object-oriented programming language like Java or C++. It is

still a popular programming language for scientific and

engineering software development in various domains, such

as weather forecast, astronomy, and mechanical engineering.

However, software development for these fields still lacks of

quality software development tools [4]. Furthermore, such

software development is largely based on a trial and error

method and self-studies, since developers in these fields are

generally scientists and engineers who have only fundamental

programming knowledge which limits them on advance

coding [5].

The first version of ForUML has been adopting by multiple

Fortran software development teams. However, the first

version of ForUML has some limitations, because this tool

can only represent codes in a class diagram, which represents

a structural model of the system but that does not imply

operational behaviors, procedures or sequences. Hence, the

diagram is not enough for analyzing and understanding the

system. In addition, a user of this tool suggests about adding

new properties or capabilities, such as UML sequence

diagram generation, since this behavioral diagram will

describe a sequence in a system and that will not only show

the overall system developed from Fortran language, but also

help make better decisions about software development and

maintenance.

With this regard, this study aimed to propose

transformation rules to convert Fortran source codes to an

UML sequence diagram. As far as we know, no one has

created transformation rules for that case. We argue that this

study will benefit to adding ForUML capabilities on creation

of UML sequence diagram, and also having a variety of

design documents will help developers better analyze and

understand the software, as well as develop and maintain the

system [6].

The remainder of this paper is organized as follows.

Section II provides an overview of related work. Section III,

the transformation rules are described. Section IV summaries

the results. Finally, conclusions are drawn and future work is

presented in Section V.

II. RELATED WORK

This section describes related theories and literature,

including the Fortran programming language, reverse

engineering, UML metamodel, and ForUML.

A. Fortran Programming Language

Currently, Fortran is developed to support an object-

oriented concept, which is called Modern Fortran [7] to

support complex software development. Modern Fortran also

emphasizes on software engineering principles for better

software performance and that leads to more interests and

adoption of Modern Fortran for software development by

many scientists and engineers [8,9]. Besides, at present, a lot

of Fortran compiler makers have enhanced their compilers to

support Modern Fortran; for example, Numerical Algorithm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229273785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

132 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Group (NAG) and Intel Fortran.

Modern Fortran has many important features of object-

oriented language, including inheritance, polymorphism,

dynamic type allocation, and type-bound procedures.

Nonetheless, since Modern Fortran is relatively new in the

world of object-oriented programming, so there are a few

tools available and those do not really adopt a software

engineering concept, compared to other object-oriented

languages such as Java and C++, especially for program

comprehension tools, which help software developers and

designers understand source codes or the software easier.

B. Reverse Engineering

Reverse engineering for large software frequently relates to

analyzing parts of source codes to understand the system.

Generally, it is used for analyzing binary codes. An example

of reverse engineering software that can decompile binary

codes to get source codes is Jad [10], a software that can

decompile binary codes of Java language, such as a file with

.class extension, to get back source codes, which developers

can review and understand.

Periklis Andritsos and Renee J. Miller [11] state that, in

general, when a software get older, it is difficult to understand

and maintain the software. Sometimes, this characteristic

leads to an inefficient system and additional maintenance

cost. Thus, the software engineering community pays

attention to building tools to help software engineers

understand a structure of the system.

However, there are a few existing reverse engineering tools

designed for Modern Fortran. This challenge inspired us to

work on the Fortran-related reverse engineering tool.

C. UML Metamodel

UML is a modeling language which is standardized for

generating object-oriented models or visualizing a system’s

architectural blueprints. UML can be used to create system’s

point of views, define system specifications, and develop the

system. In this research, XML Metadata Interchange)XMI(

document was used to represent an UML sequence diagram.

XMI is an open standard with which developers or software

vendors can create, read, manage, and generate XMI tools.

Transforming the model)Modern Fortran code(to XMI

requires the Model Driven Architecture technology, which is

a standard using modeling issued by the Object Management

Group)OMG(. The information in the XMI document can be

used to develop their own applications among a set of tools

to crate and exchange. The basic idea of using an XMI file is

to maintain the metadata for UML diagrams, called UML

metamodel, which is used to describe syntax definition and

meaning for structures or components in an UML model. This

metamodel helps developers get insights into the meaning of

model in the same way and creates the model in accordance

with the UML standard.

D. ForUML

ForUML [3] is a reverse engineering tool that can be used

to extract UML class diagrams from Modern Fortran source

code. This tool is available as free software [12]. The model

for transforming source codes to UML diagrams is based on

the schema for the static structure of source code, called

Dagstuhl Middle Metamodel (DMM) [13], which is widely

used to represent models extracted from source code written

in most common object-oriented programming languages.

The transformation process of ForUML comprises of four

steps with details as follows.

i. Parsing: The tool parses source codes into elements by

using Open Fortran Parser)OFP(library. To do so, this

process will use grammar files and Fortran syntax in

the OFP library. This step will validate the correctness

of codes that are supplied by a user to a system to

prevent errors in the next step.

ii. Extraction: This step is to find relationships among the

elements obtained from Step 1. Then, the extraction

module maps each relationship to a specific

relationship’s type object.

iii. Generating: The tool will collect elements and their

relationships, which are the output of Step 1 and 2

respectively to build a document in a form of XMI.

This XMI document stores necessary data to form an

UML class diagram.

iv. Importing: The generated XMI document will be

imported into a UML modeling tool to display the

resulting class diagram. Note that ForUML currently

integrates ArgoUML for displaying the class diagram.

In this study, we proposed rules for reversing Fortran

source codes into a UML sequence diagram. We designed

rules by using a metamodel of UML sequence diagrams and

Fortran source code files. The proposed rules will be

developed to a new feature, which will be integrated into

ForUML.

III. THE TRANSFORMATION RULES

This research aimed at designing rules for transforming

Fortran source codes to UML sequence diagrams. The

transformation was based on applications of UML sequence

diagram standards from UML specifications [14] and UML

sequence diagram transformation rules from related literature

[15-17] to create rules for transforming Fortran source codes

to UML sequence diagrams.

Designing the rules for transforming Fortran source codes

to UML sequence diagrams started from studying the

specifications of XMI document, which are based on OMG.

An example of XMI document embedding data of an UML

sequence diagram for the Fortran code is shown in Figure 1.

Based on Figure 1, the XMI document consists of two main

parts as follows.

i. xmi:type=“uml:Lifeline” defines specifications of

each lifeline, including xmi:id=“66rKFjKG”, which

represents a lifeline ID and name=“Person”, which

represents a lifeline name.

ii. xmi:type=“uml:Message” defines message details of

each message, including xmi:id=“Xhr8sYT”, which is

a message ID, messageSort=“reply”, which represents

a message type, name=“Person”, which represents a

message name, receiveEvent=“Person”, which

represents a lifeline that receives a message, and

sendEvent=“Date”, which represents a lifeline that

sends a message.

The main step of designing rules for transforming Modern

Fortran codes to UML sequence diagrams is extracting for

relationships between Abstract Syntax Tree)AST(

metamodel of Fortran language and XMI document. The

metamodel of both models will be a representative of the

main model as shown in Figure 2.

Modern Fortran Transformation Rules for UML Sequence Diagrams

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 133

Figure 1: An example of XMI document for an UML sequence diagram of Fortran based program

Figure 2: An overview of the transformation process

We will refer to Figure 3 to describe our developed rules

for transforming Fortran source codes to UML sequence

diagrams. To build transformation rules, we chose Atlas

Transformation Language)ATL(, a popular language for

transforming models [18-20]. The important parts of

transformation rules are listed as follows.

Figure 3: An example of rules for transforming Fortran source codes to

UML sequence diagrams

1) Lifeline creation rules

These rules are used to bind between each lifeline in an

UML sequence diagram and corresponding class name in

Fortran source codes)as shown in Figure 4(.

Figure 4: Lifeline creation rules

2) Message creation rules

These rules link each message between lifelines in an UML

sequence diagram and corresponding method name in Fortran

source codes (as shown in Figure 5).

3) Message sending and receiving rules

These rules are used to define how a lifeline sends and

receives a message)as shown in Figure 6(.

4) Rules for defining start and finish occurrences of

message execution

These rules are to define start and finish occurrences of

message execution on a lifeline)as shown in Figure 6(.

5) Rules for specifying a message execution

These rules specify how a message will execute on a

lifeline)as shown in Figure 6(.

Mapping rules

Sequence

Diagram

Metamodel

Conform to Conform to

Fortran

Code

AST

Metamodel

XMI

File

Journal of Telecommunication, Electronic and Computer Engineering

134 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Figure 5: Rules for creating synchronous call and asynchronous call

messages between lifelines

Figure 6: Communication rules between messages and lifelines

6) Rules for creating a frame

The frame is for conditions, multi-conditional alternatives,

and iterations)as shown in Figure 7(.

Figure 7: Rules for creating a frame for a condition area

IV. RESULTS

From the design of rules for transforming Fortran source

code to UML sequence diagrams, we presented study results

to Modern Fortran experts, who are the founders of training

center and advisors on Modern Fortran and scientific

software development [12], which the organization is located

at the United States of America, for validating correctness of

transformation rules. Besides, we asked two experts to

consider comparing syntax of object-oriented languages to

find similarity in a representation of each notation of a UML

sequence diagram. Each expert separately verified nine

design rules based on his opinion and experience. The

experts reported us that all rules are correct without any

problems. In this study, we compared Fortran to Java, which

is a popular object-oriented programming language, as shown

in Table 1. The comparison splits into two perspectives in

accordance with characteristics of notations as follows.

Table 1

A comparison of transformation from source codes to UML sequence
diagrams between Java and Fortran

Rule Java Syntax
Modern

Fortran Syntax
Notations

Lifeline
public class

MyClass
type MyClass

Messages

Create

Message

MyClass my =
new MyClass)(;

type)MyClass(
::my

Reply

Message

public int

getID)({

return id; }

function getID)(
result)id(

Synchronous
Message

my.getID();

call

my%getID)(

my = getID)(;

Asynchronous

Message
my.getID();

call

my%getID)(

i. Lifelines that are representatives of the class. These

include an instance name and class name.

ii. Messages that sent between lifelines. These comprise

of create message, reply message, synchronous call

message, and asynchronous call message.

For interaction fragments, which represent a period in the

instance’s lifetime, including sending and receiving a

message, start and finish occurrences of message execution

on a lifeline, execution occurrence specifications on a lifeline

and frame, the representation of corresponding notations is

similar to that of Java as shown in Table 2.

Table 2

UML notations for interaction fragments

Rule Fortran Semantics Notations

Interaction Fragment

Message Occurrence
Send and Receive

Occurrence

Execution Specification
Start and Finish

Occurrence

Execution Occurrence Activation

Combined Fragment
Loops, Branches,

and Other Alternatives

 Instance:Class

create

start

finish

Modern Fortran Transformation Rules for UML Sequence Diagrams

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 135

To verify whether the transformation rules could be

practically applied to Fortran, we developed a software

application for generating the XMI document. The

transformation rules were employed in the developed

application to generate a XMI document from the Fortran

source codes brought from [21])the code is available at

http://research.te.psu.ac.th/aziz/FortranCode/page1.html(.

Figure 8 presents an excerpt of XMI document obtained

from the application of transformation rules. It consists of

lifelines for a Main program, Person, Date, and Student. For

interaction fragments, they can be categorized into two

groups. The first category defines interactions between

messages and lifelines, including message occurrence

specifications, behavior execution specifications, and

execution occurrence specifications, while the second

category defines a frame for alternatives, options and loops

)Note that the testing source codes did not have any combined

fragments(. The last messages, such as “create” in the

example, is a create message, which, for instance, represents

object instantiation of a class, defines a lifeline for sending

and receiving messages, etc. Last but not least, we verified

the results by manually comparing a XMI document from the

testing application to Fortran source code. The verification

results confirmed that transformation was correct.

<?xml version="1.0" encoding="UTF-8"?>

<uml:Model xmlns:uml="http://schema.omg.org/spec/UML/2.1.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmi:version="2.1">

 <packagedElement xmi:type="uml:Interaction" xmi:id="_Q5lC9CwhEeeE65EyuZJOSA">

 <lifeline xmi:id="_Q5lC9iwhEeeE65EyuZJOSA" name="Program main" coveredBy="_Q5lC-iwhEeeE65EyuZJOSA _Q5lC_CwhEeeE65EyuZJOSA …"/>

 <lifeline xmi:id="_Q5lC9ywhEeeE65EyuZJOSA" name="Person" coveredBy="_Q5lC-ywhEeeE65EyuZJOSA _Q5lC_SwhEeeE65EyuZJOSA … "/>

 <lifeline xmi:id="_Q5lC-CwhEeeE65EyuZJOSA" name="Date" coveredBy="_Q5lDAiwhEeeE65EyuZJOSA _Q5lDFywhEeeE65EyuZJOSA …"/>

 <lifeline xmi:id="_Q5lC-SwhEeeE65EyuZJOSA" name="Student" coveredBy="_Q5lDDSwhEeeE65EyuZJOSA _Q5lDIywhEeeE65EyuZJOSA … "/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="_Q5lC-iwhEeeE65EyuZJOSA" covered="_Q5lC9iwhEeeE65EyuZJOSA" message="_Q5lDOywhEeeE65EyuZJOSA"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="_Q5lC-ywhEeeE65EyuZJOSA" covered="_Q5lC9ywhEeeE65EyuZJOSA" message="_Q5lDOywhEeeE65EyuZJOSA"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="_Q5lC_CwhEeeE65EyuZJOSA" covered="_Q5lC9iwhEeeE65EyuZJOSA" message="_Q5lDPCwhEeeE65EyuZJOSA"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="_Q5lC_SwhEeeE65EyuZJOSA" covered="_Q5lC9ywhEeeE65EyuZJOSA" message="_Q5lDPCwhEeeE65EyuZJOSA"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="_Q5lC_iwhEeeE65EyuZJOSA" covered="_Q5lC9ywhEeeE65EyuZJOSA" start="_Q5lC_SwhEeeE65EyuZJOSA"

 finish="_Q5lDBSwhEeeE65EyuZJOSA"/>

…

 <message xmi:type="uml:Message" xmi:id="_Q5lDOywhEeeE65EyuZJOSA" name="create" messageSort="createMessage" receiveEvent="_Q5lC-ywhEeeE65EyuZJOSA"

 sendEvent="_Q5lC-iwhEeeE65EyuZJOSA"/>

 <message xmi:type="uml:Message" xmi:id="_Q5lDPCwhEeeE65EyuZJOSA" name="make_Person" receiveEvent="_Q5lC_SwhEeeE65EyuZJOSA" sendEvent="_Q5lC_CwhEeeE65EyuZJOSA"/>

 <message xmi:type="uml:Message" xmi:id="_Q5lDPSwhEeeE65EyuZJOSA" name="Person_" receiveEvent="_Q5lDACwhEeeE65EyuZJOSA" sendEvent="_Q5lC_ywhEeeE65EyuZJOSA"/>

 <message xmi:type="uml:Message" xmi:id="_Q5lDPiwhEeeE65EyuZJOSA" messageSort="reply" receiveEvent="_Q5lDAywhEeeE65EyuZJOSA" sendEvent="_Q5lDAiwhEeeE65EyuZJOSA"/>

 <message xmi:type="uml:Message" xmi:id="_Q5lDPywhEeeE65EyuZJOSA" messageSort="reply" receiveEvent="_Q5lDBiwhEeeE65EyuZJOSA" sendEvent="_Q5lDBSwhEeeE65EyuZJOSA"/>

 <message xmi:type="uml:Message" xmi:id="_Q5lDQCwhEeeE65EyuZJOSA" name="set_DOB" receiveEvent="_Q5lDCCwhEeeE65EyuZJOSA" sendEvent="_Q5lDBywhEeeE65EyuZJOSA"/>

 <message xmi:type="uml:Message" xmi:id="_Q5lDQSwhEeeE65EyuZJOSA" messageSort="reply" receiveEvent="_Q5lDCywhEeeE65EyuZJOSA" sendEvent="_Q5lDCiwhEeeE65EyuZJOSA"/>

 <message xmi:type="uml:Message" xmi:id="_Q5lDQiwhEeeE65EyuZJOSA" name="create" messageSort="createMessage" receiveEvent="_Q5lDDSwhEeeE65EyuZJOSA"

 sendEvent="_Q5lDDCwhEeeE65EyuZJOSA"/>

...

 <message xmi:type="uml:Message" xmi:id="_Q5lDVCwhEeeE65EyuZJOSA" messageSort="reply" receiveEvent="_Q5lDOiwhEeeE65EyuZJOSA" sendEvent="_Q5lDOSwhEeeE65EyuZJOSA"/>

</packagedElement>

</uml:Model>

Figure 8: XMI documents obtained from applying the rules

V. CONCLUSION

This study proposed a design concept of rules for

transforming Modern Fortran source code to UML sequence

diagrams with the aim of applying the rules for development

of transformation tool to convert Modern Fortran source code

to UML sequence diagrams. From the design of

transformation rules, we compared those rules to Java, which

is purely an object-oriented language, while Fortran is

developed to be an object-oriented language later. When

compared to each other, both languages had the same

features, albeit different representations such as a class name

and method name.

In the future, we will apply transformation rules presented

in this study to enhance capabilities of ForUML on sequence

diagram generation.

REFERENCES

[1] M. Lanza and S. Ducasse, “Polymetric views-a lightweight visual

approach to reverse engineering,” IEEE Transactions on Software
Engineering, vol. 29, no. 9, pp. 782–795, Sep. 2003.

[2] T. Systa, “On the relationships between static and dynamic models in

reverse engineering java software,” in Proceedings of the IEEE 6th
Working Conference on Reverse Engineering, 1999, pp. 304–313.

[3] A. Nanthaamornphong, J. Carver, K. Morris, and S. Filippone,

“Extracting uml class diagrams from object-oriented fortran:
ForUML,” Scientific Programming, vol. 2015, pp. 1–15, Jan. 2015.

[4] J.C. Carver, R.P. Kendall, S.E. Squires, and D.E. Post, “Software

development environments for scientific and engineering software: A
series of case studies,” in Proceedings of the IEEE 29th International

Conference on Software Engineering (ICSE), 2007, pp. 550–559.

[5] J.C. Carver, “Report: the second international workshop on software

engineering for CSE,” Computing in Science & Engineering, vol. 11,

no. 6, pp. 14–19, Nov. 2009,.
[6] B. Dobing and J. Parsons, “How UML is used,” Communications of the

ACM, vol. 49, no. 5, pp. 109–113, May 2006.

[7] N.S. Clerman and W. Spector, Modern Fortran: Style and Usage,
Cambridge University Press, 2011.

[8] D. Barbieri, V. Cardellini, S. Filippone, and D. Rouson, “Design

patterns for scientific computations on sparse matrices,” in
Proceedings of the European Conference on Parallel, Springer, 2011,

pp. 367–376.
[9] K. Morris, D.W. Rouson, M.N. Lemaster, and S. Filippone, “Exploring

capabilities within ForTrilinos by solving the 3D burgers equation,”

Scientific Programming, vol. 20, no. 3, pp. 275–292, Jul. 2012.
[10] “A. Rukin - Java decompilers.” Available at

http://www.javadecompilers.com/. [Accessed: 12-June-2017].

[11] P. Andritsos and R.J. Miller, “Reverse engineering meets data
analysis,” in Proceedings of the IEEE 9th International Workshop on

Program Comprehension, 2001, pp. 157–166.

[12] “D. Rouson - Sourcery Institute.” Available at
http://www.sourceryinstitute.org/. [Accessed: 12-June-2017].

[13] T.C. Lethbridge, S. Tichelaar, and E. Plödereder, “The dagstuhl middle

metamodel: a schema for reverse engineering,” Electronic Notes in
Theoretical Computer Science, vol. 94, pp. 7–18, May 2004.

[14] “OMG - UML specification v2.5” Available at

http://www.omg.org/spec/UML/2.5/. [Accessed: 12-June-2017].
[15] P. Sawprakhon and Y. Limpiyakorn, “Sequence diagram generation

with model transformation technology,” in Proceedings of the

International MultiConference of Engineers and Computer Scientists,

2014, pp. 12–14.

[16] C. Li, L. Dou, and Z. Yang, “A metamodeling level transformation

from UML sequence diagrams to Coq.,” in Proceedings of
International Conference on Information and Communication

Technology for Competitive Strategies, 2014, pp. 147–157.

[17] E. Merah, “Design of ATL rules for transforming UML 2 sequence
diagrams into petri nets,” International Journal of Computer Science

and Business Informatics, vol. 8, no. 1, pp. 1–21, Jan. 2014.

Journal of Telecommunication, Electronic and Computer Engineering

136 e-ISSN: 2289-8131 Vol. 9 No. 3-4

[18] S. Buckl, A.M. Ernst, J. Lankes, F. Matthes, C.M. Schweda, and A.
Wittenburg, “Generating visualizations of enterprise architectures

using model transformations,” Enterprise Modelling and Information

Systems Architectures, vol. 2, no. 2, pp. 3–13, Dec. 2015.
[19] Y. Rhazali, Y. Hadi, and A. Mouloudi, “Model transformation with

ATL into MDA from CIM to PIM structured through MVC,” Procedia

Computer Science, vol. 83, pp. 1096–1101, Dec. 2016.

[20] J. Troya, A. Bergmayr, L. Burgueño, and M. Wimmer, “Towards
systematic mutations for and with ATL model transformations,” in

Proceedings of the IEEE 8th International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), 2015, pp. 1–
10.

[21] J. Akin, “Object oriented programming via Fortran 90,” Engineering

Computations, vol. 16, no.1, pp. 26–48, Feb. 1999.

