

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 83

Enhancing Availability of Marine Bigdata

Repository with a New Fault Tolerance Technique

Ahmad Shukri Mohd Noor , Farizah Yunus, Rabiei Mamat, Emma A. Sirajuddin and Nur F. Mat Zin

School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu,

21030 Kuala Nerus, Terengganu, Malaysia.

ashukri@umt.edu.my

Abstract—System availability is one of the crucial properties

of a dependable knowledge repository system in order to

preserve and pull through from minor outages in a short

timespan by an automated process. National Marine

Bioinformatics System or NABTICS is a Marine Microbial

Bigdata Repository that unites the integrated information on

genomic sequence and associated metadata which projected to

be a large and growing database as well as a metadata system

for inputs of research analysis and solving community issues.

Therefore, it is decisive to maintain the availability of the system

by accurately detecting the failure in a timely manner and a

prompt recovery action during the event of failure. The failure

in any of NABTICS' system component can be devastating for

the system causing the system is inaccessible for a period of time.

In this paper, we integrated NABTICS with Cloud-based

Neighbour Replication and Failure Recovery (NRFR) in order

to enhance the availability of the system. We showed that the

implementation resulted in better user experience with

minimum system downtime as well as online database

application is said to be highly available. Furthermore,

NABTICS also performed better resource utilization and higher

response application during runtime.

Index Terms—Availability; Bigdata; Database Replication;

Distributed System.

I. INTRODUCTION

National Marine Bioinformatics System (NABTICS) is a

Marine Bigdata Repository initiative by Institute of Marine

Biotechnology, University Malaysia Terengganu (UMT),

with the goal to serve the needs of the marine ecology

research community by creating a rich, distinctive data

repository and bioinformatics tools that specifically focuses

on the inventory of marine organisms. Its application also

includes metadata system where the datasheets would allow

researchers to input results from computer-based data

analysis.

A system of high availability is a system that is designed to

avoid loss of service. In computing, such system is achieved

by having several copies of files and databases on multiple

machines. Site replication gives very high availability as it

masks environmental failures, hardware failures, operator

error and even some software faults [1]. In this particular

technique, neighbor replication will be employed where

neighboring servers or nodes maintain a replica of a primary

file and database. Prior to this, an application is spread across

the multiple nodes thus fulfilling the concept of distributed

system.

On top of this, a monitor is also deployed to continuously

check the aliveness of the nodes called Heartbeat Monitor

(HBM). It constantly pings the servers and invokes recovery

action to an Index Server (IS) in the event of a confirmed

failure of a node via SSH command. Consequently the IS will

perform a neighbor selection process to determine which

replica should take over the failed node. It then invokes the

selected node that contains the replica to activate Virtual IP.

The user’s client is then redirected to this replica without any

other intervention.

An available system is desirable in critical and heavy usage

setting. Providing availability to NABTICS can help

researchers have convenience in doing their work and it adds

to the system itself in terms of superiority, usability and

consistency. As a result, NABTICS could also be a reliable

system that is almost fault free.

II. RELATED WORKS

Adding availability to a system is similar to adding more

reliability where an available system is guaranteed to be

reliable while a reliable system may not necessarily be

available. Many different works have also considered

availability as an attribute of dependability. By adding the

notion of recovery, system availability is branched from the

concept of system reliability. According to Gokhale et al. [2],

a crucial difference between reliability and availability is that

reliability refers to failure-free operation during an entire

interval, while availability refers to failure-free operation at a

given instant of time.

A prompt and accurate failure detection with minimum

time to recover is a critical factor in providing high

availability in distributed system. Failure detection and

recovery has become an active research area due to the needs

that arise with more and more complex system. Failures are

arising due to the inherently unreliable nature of distributed

environment. The diverse nature of Grid Computing for

example, requires the inclusion of fault tolerance capability

not as a supplementary feature but rather a prerequisite [3].

As for cloud computing, it has become a critical issue due to

its nature of complex multi layers and the most of current

approaches, fault tolerance is exclusively handled by the

provider or the customer which leads to partial or inefficient

solutions [4].

A. Failure Detection

Failure detection is a process in which information about

faulty nodes is collected [5]. This process involves isolation

and declaration of a fault to enable proper recovery actions to

start. It is a prerequisite to failure recovery in distributed

systems. The properties of failure detection technique are

completeness and accuracy. A third property was added by

Stelling et. al [6] that is timeliness. Timeliness refers to how

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229273487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

84 e-ISSN: 2289-8131 Vol. 9 No. 3-5

fast a fault can be detected in complete and accurate manner

so that corrective action can be initiated soon. The Quality of

Service for failure detectors are detection time, mistake

recurrence time and mistake duration. These calculations can

also be used to measure availability of a system. Two

implementations of failure detection are discussed that are

Adaptive Affirmative Failure Detection (AAFD) and Gossip

Enabled Monitoring System (GEMS) for gossip-style failure

detection.

In [7], an adaptive technique for failure detection AAFD

was introduced. This technique incorporates pinging to

ensure the liveliness of a node once it is suspected for failure

thus is aptly called affirmative. This technique performs a

central sampling on the heartbeat inter-arrival time to obtain

the estimation for the next heartbeat arrival. If the next

heartbeat did not arrive within this timeframe, the detector

raises a state of suspicion and sends a ping echo request to the

monitored node. The threshold for the heartbeat to arrive

reflects the current state of the node CPU load and network

condition.

Subramaniyan et al. [8] introduced GEMS, a gossip

enabled monitoring service. Their technique uses gossip

protocols to detect failures in large, distributed systems in an

asynchronous manner without the limitations of

reliable multicasting in group communications. GEMS is a

highly scalable technique being able to detect network

partitions and dynamic insertion of new nodes. Using the very

simple methodology, the technique combines reachability

data from a lot of different nodes to quickly determine if a

node is down. Other than for failure detection, the technique

also use gossip as a form of messaging making an abstract

communication from application level code instead of

individual module connection.

B. Failure Recovery

In distributed environment, failures can become a

normalcy. A failure recovery procedure is required to restore

the system to its functional state thus ensuring High

Availability. Redundancy is commonly used to eliminate

Single Point of Failure (SPOF) and is a notorious technique

for failure recovery in distributed environment. Basically,

there are three techniques used for redundancy which are

checkpointing, replication and rescheduling. However, this

paper focus on replication technique.

Replication is a key technique to achieve high availability

in distributed and dynamic system. In replication based

recovery technique, there must be multiple copies of the same

object (replicas) that are running on parallel. If one replicated

object fails there will be another replica that will take over it

without having to take the system offline. Replication d is the

primary goals in designing a dependable distributed system

[9] emphasized maintaining the data on some replicas to

provide reliable services. On the other hand, keeping all of

the replicas updated requires extra communication and

processing. Several techniques have been proposed for

replicating data management with different reliability levels.

They can classified into two categories; synchronous

replication and asynchronous replication. The lack of global

clock makes the asynchronous replication less precise but is

less costly to deploy. The terminology to also consider is for

active and passive replication in systems that replicate data or

services. Active replication is performed by processing the

same request at every replica, while passive replication

involves processing each single request on a single replica

and them transferring its resultant state to the other replicas.

Many classical approaches to replication are based on a

primary/backup model where one device or process has

unilateral control over one or more other processes or devices

[10]. Two Replica Distribution technique (TRDT) proposed

by Shen et al. [11], is composed of a primary and a secondary

(which can become primary) nodes and is depicted in the

diagram. In this technique, the nodes have identical storage

capacity and all data has two replicas on different nodes and

all nodes have two data replicas as presented in Figure 1. A

replicator in TRDT technique is the key component that

performs the replication protocol. It builds a replication link

between the primary and secondary replica with a log and

storage for synchronization on individual nodes.

Figure 1: TRDT data replica distribution technique when N=2n

In Neighbor Replica Distribution Technique (NRDT), all

nodes are logically designed in the form of two-dimensional

nxn grid structure [12] as shown in Figure 2. If there are nodes

in an environment where N = n2, which is a set of all nodes

that are logically arranged in a grid form, then it will logically

be arranged in the form of nxn grid. Each node has a primary

data file while its adjacent neighbor contains a replica of its

primary data file.

Figure 2: NRDT with 3x3 grid

C. Resource Management System for High Availability

Designing an automated high-availability resource

monitoring framework with the capability to perform self-

recovery has been a research interest for many years. They

differentiate each other in terms of architecture, features and

type of computer systems they specialize for. High

Performance Computing usually requires scalability as large

amount of nodes are involved such as in Grid [7]. Most

monitoring system for High Performance computing uses

hierarchical monitoring and replication such as with multicast

and peer to peer protocols (Ganglia by UC Berkeley and

Astrolabe [13]). Though redundancy is easily heightened,

Enhancing Availability of Marine Bigdata Repository with a New Fault Tolerance Technique

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 85

these types of communications can introduce high overhead

cost in both monitoring and replication which may not be

worthwhile for scaled system. There are also many different

solutions for resource monitoring for enterprise (Nagios

(NAGIOS) Zenoss (Zennos,Inc.) OpenNMS (The Open-

NMS Group, Inc.) Safekit (Evidian)). They are usually

designed for more heterogeneous computing as there could

be different types of resources within the enterprise. The

usage can be prone to error as their design is incorporated

with many functions and is usually quite complex for average

users.

Cloud-based monitoring provides monitoring as a service

to customers. Similar to enterprise solution, cloud-based

monitoring perform centralized infrastructure/application

monitoring. However the installation and maintenance are

provided for which can reduce the complexity. In term of

cost, it might be more expensive than hosting a monitoring

service in house, especially for long term as cloud service

usually charges per usage.

According to Haas [14], a high-availability stack serves one

purpose: through a redundant setup of two or more nodes,

ensure service availability and recover services automatically

in case of a problem. Linux-HA endorses an active project

and of recent Pacemaker, which is branched from Linux

Heartbeat is a popular open source High Availability Stack.

The stack consists of four layers: storage, cluster

communications, resource management and applications.

The Pacemaker’s crm shell is a command interface that aims

to provide simplified interface for resource management.

There are many usages that involves integrating Pacemaker

in Linux Heartbeat clusters.

III. FRAMEWORK

A highly available system is very much desired. There are

many approaches to attain high availability that both cover

hardware and software. The primary principle in these

approaches is redundancy. In this research redundancy will

be achieved by having additional identical components in the

system namely replicas. The multiple copies are standbys for

backup in case a primary application server has failed to

respond. This research utilizes the distributed application

architecture methodology to build a new version of

NABTICS which will run on multiple servers inside a cluster.

The purpose of having a distributed environment is to prepare

a policy for replicated components. The replicas are placed

strategically on each of the neighbors of the module’s primary

server.

Using the LAMP stack (Linux-Apache-MySQLPHP), a

new distributed architecture of the NABTICS was designed

to allow users to access information and applications through

a single, consistent user environment. Rearrangement of the

NABTICS involves modest restructuring of the design and

software. The goal is to recreate applications that are domain

specific and uses remote database as well as a local database.

Applying the modularity concept in Software Engineering,

the applications were restructured to be independent from

each other by making separate modules.

On client-end, the application is accessed through a proxy

server. This way the architecture of the distributed application

delivers transparency to clients where clients only query on a

single IP although the applications come from different

sources. In this research distributed system, middleware is not

used as on application level, the nodes are not required to

communicate with each other. However, consistency is

maintained through replication of database in addition to

module replication in each node’s neighbors.

With the administration of a resource monitor and a

replication technique, server clusters are designed so that the

servers in the cluster work together to protect data, keep

applications and services running after failure on one of the

servers, and maintain consistency of the cluster over time.

The ability to handle failure allows server clusters to meet

requirements for high availability. The primitive version of

NABTICS is a unified system with multiple applications that

run on a single site and operate a single database. In the

proposed new version of NABTICS however, software

modularity concept is applied where a unified system is

broken down into singular independent applications. It is an

important step to reduce the complexity and to also enhance

scalability in this framework. Modularization is also

compulsory to incorporate neighbor replication which will

introduce redundancy in the system. This in return will

eliminate single points of failure in the system.

Redundancy is key aspect in implementing high

availability system. Each module operates on an individual

server. This setting makes up a distributed architecture that

comprises multiple servers running different applications for

one system. All these application nodes are administered by

a partnership of a monitoring and indexing services. Their

function is to monitor the availability of their member nodes

and enable a fail-over when a node cannot perform its duty

due to a failure. This framework enables service continuity

where on the user side, a minimal downtime is experienced

when a site is having a problem. The novelty of this fault

tolerance mechanism lies in the dynamic adaptive failure

detection which will be discussed in more details.

The neighbor replication technique imposes each server to

contain a copy of their immediate neighbors modules. During

recovery performance, these neighbors go through a selection

process to determine the best one for a fail-over based on a

number of criteria. The selected node will be ordered to create

a virtual IP for the failed node. As a result, the IP is kept alive

and still accessible by others.

NABTICS is an application that is data centric therefore a

new arrangement of database is developed to ensure data is

sufficiently shared and consistent across the multiple site

environment. A data replication technique is employed to

manage updates and ensure retrieves of data from any site is

consistent. The architectural framework of the new model

includes a server cluster, a proxy server, monitoring server

and an indexing server as depicted in Figure 3.

Figure 3: NABTICS in a cluster server with a resource monitor

The new model which is Neighbor Replication and Fault

Recovery (NRFR) is using four instances to complement the

NABTICS application. Each instance would comprise a part

Journal of Telecommunication, Electronic and Computer Engineering

86 e-ISSN: 2289-8131 Vol. 9 No. 3-5

of the application and support backup for other parts of the

application by keeping a replica of that part. Each instance

also would keep a copy of the databases. The availability of

the whole system will be measured. Availability refers to the

probability that a system is completely working over a period

of operating time. In other words, availability is the measure

of how often or how long a service or a system component is

available for use [15]-[17]. The model is illustrated in Figure

2.

IV. DEPLOYMENT

Use The experiment is performed using a hypervisor called

VMWare where multiple servers are run at the same time on

different instances. The breakdown of the NABTICS

application into distributed setting is as described in Figure 4.

The NABTICS application was developed using PHP and

MySQL. Apache and MySQL were installed on the Linux

servers. Client can access the application cloud through host

IP address and access the right files for the application in use.

Figure 5 describes the event when a server fails and a

recovery action has taken place where the neighbour replica

is activated. A heartbeat monitor (HBM) is deployed to

continuously check the aliveness of each server. An Index

Service (IS) is deployed to keep records and status of all

servers in this environment. In an event where the HBM

detects a down server, it will reconfirm by pinging one more

time. A node is said to fail if it does not respond to this

pinging. HBM then will notify IS and update the status of the

server. IS then performs a neighbor selection process to

determine which replica is best to take to serve the client of

the down server. This is done by invoking the selected

neighbor to activate virtual IP. Consequently the NABTICS

application process is resumed and client does only

experience minimum downtime while using the application.

Figure 4: NABTICS model for applying Neighbor Replication and Fault

Recovery NRFR

Figure 5: Instance3 is failed, its application (Bioactive) is activated in its

neighbour Instance 4 within cloud using NRFR

V. PERFORMANCE EVALUATION

In this section, an analysis of the availability of the

replication techniques will be presented. Availability refers to

the probability a system is completely working over a period

of operating time. In other words, availability is the measure

of how often or how long a service or a system component is

available for use as shown in Equation (1) [16].

lOperationaNonlOperationa

lOperationa
tyAvailabili

 (1)

Let be the number of nodes that are operating correctly at

time t, be the number of nodes that have failed at time t, and

N be the number of nodes that are in operation at time t as in

Equation (2) [17].

 tjNtN

tN

N

tN
tA

0

00
(2)

The availability in series can be expressed as in Equation

(3) [7].

ZV AAA (3)

And the availability in parallel can be expressed as equation

(4).

 ZV AAA 111 (4)

If however there is a mixed environment between parallel

and serial the availability A can be defined as equation (5).

 ZAVAXAWAA 111111 (5)

For the performance evaluation purposes let consider a

simple model of a distributed system with nine (9) nodes.

Since we want to shows the significant of technique, this

evaluation used nine nodes instead of using 4 nodes. Each

component/site has availability as in Table 1.

Without any replication technique or single point of failure

(SPOF) such system components are in series, therefore the

system availability is the product of all the components’

availability, as given in (4). System availability = 0.95 ×0.955

×0.95 ×0.97 ×0.96 ×0.97 ×0.95 ×0.95 ×0.99 =0.6956.

Table 1

The nine components of interdependent servers and its availabilities

Component Availability

Web 0.95
Application 0.955

Database 0.95
DNS 0.97

Firewall 0.96

Switch 0.97

Data Center 0.95

Applications2 0.95

Manager 0.99
Total Availability 0.6956

The TRDT availability prediction model adds a second

replica to each of the servers. When a system is comprised of

two redundant components, then the availability of the system

Enhancing Availability of Marine Bigdata Repository with a New Fault Tolerance Technique

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 87

can be calculated by using parallel formula as expressed (5).

The system availability using three replication models of

the same nine components have been evaluated based on

Equation (3) for SFOP, Equation (4) for TRDT and

Equation (5) for NRFR. Summary of the result is shown the

following Table 2.

Table 2
Comparison of improvements using different replication model

Replication Model
System

Availability
Improvement

SPOF 0.6956 0.000%

TRDT 0.98458 41.544%

NRFR 0.99978 43.729%

In terms of system availability score, NRFR is the most

excellent followed by TRDT. However this is the the first

year only. The availability and unavailability prediction over

an extended period of 10 year for TRDT and NRFR. The

availability prediction for second year (Ay2) can be calculated

as Ay2 = 1 - 2Qs , for the third year Ay3 = 1 - 3Q and so forth.

From the Figure 6 observation, it demonstrates that, as the

years goes by the availability gap is apparently larger and

larger. This is especially for TRDT, the TRDT availability

reduce about 4% per year or 40% for ten years. However the

NRFR availability reduces about 0.12% per year or 1.2% for

period of ten years. The graph plotted in figure 6

demonstrated the availability gap between TRDT and NRFR

for 10 years.

Figure 6: The availability gap between TRDT and NRFR for 10 years

VI. CONCLUSION AND FUTURE WORKS

A high availability framework often combines a resource

monitoring to supervise sites, failure detection technique and

recovery to gives fault tolerance to a system. A system with

fault tolerance can withstand a number of failures and become

more available therefore more reliable.

Therefore, to provide the repository for large number of

users and data as well as to provide robust and reliable

service, the NRFR Replication technique for NABTICS

system need to be deployed within cloud environment. As an

active community of researchers in this field, the scope of this

system is dynamic and wide covering. This application

provides tools for research and data management. Heavy

usage of this application would also require reliability and

availability to ensure continuity during task. Cloud based

neighbour replica failure recovery is a dynamic technique that

can ensure fault detection and recovery by keeping replicas

on multiple servers. Having multiple replicas databases

requires a mechanism to ensure these databases are

synchronous during updates and retrieves by users.

ACKNOWLEDGMENT

The research was supported by Ministry of Higher

Education of Malaysia (MOHE) for the grant of Fundamental

Research Grant Scheme (FRGS). (Ref:

FRGS/2/2014/ICT07/UMT/02/1) A New and Efficient

Technique for High Dependable Marine Knowledge

Repository in Cloud Environment.

REFERENCES

[1] K. An, S. Shekhar, F. Caglar, A. Gokhale, and S. Sastry, “A cloud

middleware for assuring performance and high availability of soft real-
time applications,” Journal of Systems Architecture, vol. 60, no. 9, pp.

757-769, 2014.

[2] S. Gokhale, J. Crigler, W. Farr, and D. Wallace, “System availability
analysis considering hardware/software failure severities,” in Proc.

29th Annual IEEE/NASA Software Engineering Workshop 2005,

Greenbelt, USA, 2005, pp. 47–56.
[3] F. G. Khan, K. Qureshi, and B. Nazir, “Performance evaluation of fault

tolerance techniques in grid computing system,” Computers &

Electrical Engineering, vol. 36, pp. 1110–1122, Nov 2010.
[4] T.L. Broto, and D. Hagimont, “Approaches to cloud computing fault

tolerance,” in Proc. International Conference on Computer,

Information and Telecommunication Systems (CITS), Amman, Jordan,
2012, pp. 1–6.

[5] S. S. Sathya and K. S. Babu, “Survey of fault tolerant techniques for

grid,” Computer Science Review, vol. 4, no. 2, pp. 101-120, 2010.
[6] T. Ma, J. Hillston and S. Anderson, “Evaluation of the QoS of crash-

recovery failure detection categories and subject descriptors,” in Proc.

of the 2007 ACM symposium on Applied Computing, Seoul, Korea,
2007, pp. 538–542.

[7] A. S. M. Noor, Data Neighbor Replica Affirmative Adaptive Failure

Detection and Autonomous Recovery. Dissertation for Doctor of
Philosophy in Computer Science, Universiti Tun Hussein Onn

Malaysia, 2012.

[8] R. Subramaniyan, P. Raman, A. D. George, and M. Radlinski, “GEMS:
Gossip-enabled monitoring Service for scalable heterogeneous

distributed systems,” Cluster Computing, vol. 9, pp. 101–120, Jan.

2006.
[9] T. Amjad, M. Sher, and A. Daud, “A survey of dynamic replication

strategies for improving data availability in data grids,” Future
Generation Computer Systems, vol. 28, pp. 337–349, Feb. 2012.

[10] H. H. Shen, S. M. Chen, W. M. Zheng, and S. M. Shi, “A

communication model for data availability on server clusters,” in Proc.
Int’l. Symposium on Distributed Computing and Application, Wuhan,

2001, pp. 169-171.

[11] R. Mamat, M. M. Deris, and M. Jalil, “Neighbor replica distribution
technique for cluster server systems,” Malaysian Journal of Computer

Science, vol. 17, pp. 11–20, 2004.

[12] D. Ford, F. I. Popovici, M. Stokely, V.-a. Truong, L. Barroso, C.
Grimes, and S. Quinlan, “Availability in globally distributed storage

systems,” in Proc. of the 9th USENIX Symposium on Operating

Systems Design and Implementation, USENIX, 2010.
[13] H. Lin, K. Chen, and X. Yan, “Astrolabe: a Grid Operating

Environment with Full-fledged Usability,” in Proc. 6th International

Conference on Grid and Cooperative Computing, Los Alamitos, USA,
2007.

[14] F. Haas, “Ahead of the pack: the pacemaker high-availability stack,”

Linux Digital Journal Magazine, pp. 98–100, April 2012.

[15] J. Gray and D. P. Siewiorek, “High availability computer systems,”

IEEE Computer, vol. 24, no. 9, pp. 39-48, 1991.

[16] A. S. M. Noor and M. M. Deris, “Fail-stop failure recovery in neighbor
replica environment,” Procedia Computer Science, vol. 19, pp. 1040,

2013.

[17] A. S. M. Noor and M. M. Deris, “Failure recovery mechanism in
neighbor replica distribution architecture,” in Lecture Notes in

Computer Science (LNCS), vol. 6377, 2010, pp. 41-48.

0.50000

0.60000

0.70000

0.80000

0.90000

1.00000

1 2 3 4 5 6 7 8 9 10

Year

Availability

NRFR
TRDT

