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Abstract—This paper proposed a solution to the Finite Escape 

Time problem in H∞ Filter based Simultaneous Localization and 

Mapping problem. Finite escape time has been one of the obstacle 

that holding the realization of H∞ Filter in many applications. For 

this reason, a method of decorrelating some of the updated state 

covariance of the filter is suggested to avoid the finite escape time 

from occurred during mobile robot estimations. Two main cases 

are investigated in this paper to observe the filter performances 

which are the unstable partially observable and stable partially 

observable H∞ Filter-SLAM. The simulation results have shown 

convincing outcomes to the overall estimation, which can prevent 

the finite escape time in the estimation especially for the stable 

partially observable H∞ Filter-SLAM case. 

 

Index Terms—H∞ Filter; Kalman Filter; SLAM; Decorrelation. 

 

I. INTRODUCTION 

 

Nowadays, the development of autonomous robot in various 

applications can be notably recognized. Especially, in the task 

of exploration and navigation, the role of autonomous robot is 

very important in order to explore, observe and plan for its 

movement. One of the task which attempt to continuously 

observing landmarks and collecting information while moving 

through an unknown environment is referred as the SLAM 

(Simultaneous Localization and Mapping) problem. The 

problem became famous after a series of influential seminal 

papers introduced in 1990’s such as Smith and Cheeseman et 

al. [1] introduced the relationship between mobile robot and 

landmarks. Due to its capability in realizing a truly autonomous 

robot behavior, the SLAM problem has gained researcher’s 

attention over some past decades. Unfortunately, even though a 

lot of discussion and development efforts have been 

continuously conducted, the problem still facing a lot of 

unsolved issues such as the condition of data association, 

effects of dynamic environment and uncertainties. 

Human limitations to work in hazardous areas is one of the 

key factor making the SLAM becomes the ultimate way to 

solve the problem. Hence, the application can be found widely 

not only in space exploration, but also in underwater navigation, 

mining operations and military. As the application can be 

applied in such cases, the system is also well-designed to 

consider both 2D and 3D configurations [2-5] as shown in 

Figure 1. Further explanation about SLAM can be found in [6]. 

With regards to uncertainties, it is a wise decision to model a 

system that is able to take into account for a worst case of noise 

or when the noise statistics is unknown. Hence, H∞ Filter could 

be the best to tolerate with such robust system. H∞ Filter 

theoretically assumes that the noises are bounded in a level of 

energy. This approach is recommended to a system where the 

worst-case estimation is considered. Even though this approach 

is a family of Kalman Filter approach [7, 8], Kalman Filter do 

not exhibit such issue that affects the overall estimation.  

Throughout this paper, H∞ Filter based SLAM performance 

in nonlinear SLAM problem under two partially observable 

SLAM cases is examined; Unstable Partially Observable 

SLAM and Stable Partially Observable SLAM. Simulation 

analysis is carried which considers a planar and small 

environment that consists of some stationary landmarks. 

Kalman Filter and Extended Kalman filter(EKF) have been 

studied immensely in the SLAM problem using various 

approaches [9, 10]. However due to the limitation of 

incapabilities or incompetency in non-gaussian noise 

environment, others methods are also welcomed such as the 

Particle Filter, and the Uncented Kalman Filter. Unfortunately, 

those two methods suffer in terms of computational cost and for 

online application. Hence, H∞ Filter is chosen as a solution to 

SLAM problem. 

Despite of current papers that has been published regarding 

the observability of SLAM using Kalman Filter and H∞ Filter 

already exists, more analysis still expected. The reason is due 

to complexity of correlation of the state covariance. The two 

cases stated above needs proper analysis especially for H∞ 

where the finite escape time problem exist compared to Kalman 

Filter, which the problem do not occur. Previous study [11-13] 

examined the partial observability in SLAM for H∞ Filter about 

its theoretical analysis. Further analysis in this paper suggested 

that the finite escape time problem in H∞ Filter can be prevented 

if proper selection of γ is selected. Furthermore, the analysis is 

carried longer with more amount of observation noise. To prove 

this, the simulation result also shows that the finite escape time 

in H∞ Filter can be avoided.  

This paper is organized as follows. In section II, the general 

SLAM problem and H∞ Filter algorithm are presented with a 

brief comparison to Kalman Filter, while section III explains 

about decorrelation strategy applied in this paper. The results 

are then shown in section IV, which demonstrates the 

simulation and experimental result of both mentioned cases in 

H∞ Filter-SLAM problem. Finally section V, concludes the 

paper. 
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Figure 1: SLAM problem 
 

II. SLAM GENERAL MODEL 

 

SLAM is designed from two base models, which are known 

as the process model that explains how the robot moves through 

the environment and the measurement model which calculates 

and measures the distance between mobile robot and landmarks 

continuously. For process model, the robot kinematics model 

should be determined first to understand the robot motion 

through the environment. The landmarks or features are also 

important in order to verify the environment. We made an 

assumption that the landmarks are stationary for convenience. 

For the SLAM process model, we have the following equations 

that demonstrate the linear discrete time process. 

 

 (1) 

                         

where Fk is the state transition matrix, xk is the vehicle and 

observed landmark states, uk is the control inputs and vk is 

temporally uncorrelated process noise with its associated 

covariance, Qk.  

In a simpler representation if a linear case is considered, (1) 

can be represented as follows. 

 

 
(2) 

                         

For the second stage, the measurement or observation process 

can be shown as the following equation: 

 

 (3) 

 

where zk+1 is the relative angle, and relative distance for any 

observed landmarks with respect to the mobile robot location. 

ωk is the temporally uncorrelated observation error with 

covariance Rk. Hk on the other hand is the measurement between 

mobile robot and any measured landmarks based on angle and 

distance. 

 

H∞ Filter based SLAM 

This section includes brief introduction of H∞ Filter-Based 

SLAM by considering its convergence properties and some 

comparison to Kalman Filter. Previous works in [7, 9] have 

presented a satisfactory explanation of the H∞ filtering that will 

be a good reading for further references. Referring to those, an 

assumption is made for the noise characteristics. 

 

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 1: 𝑅𝑘 ≅ 𝐷𝐷𝑇  

 

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 2: 𝐵𝑜𝑢𝑛𝑑𝑒𝑑 𝑛𝑜𝑖𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦;  
 

∑‖𝜔𝑘‖
2 ≥ 0,

𝑁

𝑡=0

∑‖𝑣𝑘‖
2 ≥ 0

𝑁

𝑡=0

 

 

where D is the noise variance. 

 

Σ0 > 0 is the initial covariance matrix for state xk, Qk > 0, and 

Rk > 0 are the weighting matrix for process and measurement 

noises ωk, and vk respectively. Above assumption is similar to 

the standard Kalman Filter assumption where all components 

of the measurement vector are assumed to be corrupted by noise 

and bounded at all time. For more detail descriptions of H∞ 

Filter, refer to [7]. 

H∞ Filter algorithm is very similar to the Kalman Filter. H∞ 

Filter concerns about the linear relationship of the system state 

xk given by zk = lkxk instead of the state estimation itself as 

shown in Kalman Filter. The difference between Kalman Filter 

and H∞ Filter is in its form of gain and covariance 

characteristics; integration of the prediction and update process. 

For Kalman Filter, the equation for its gain and covariance are 

given by; 

 

𝐾𝑘 = 𝑃𝑘(𝐼 + 𝐻𝐾
𝑇𝑅𝐾

−1𝐻𝑘𝑃𝑘)
−1 (4) 

𝑃𝑘+1 = 𝐹𝑘𝑃𝑘(𝐼 + 𝐻𝐾
𝑇𝑅𝐾

−1𝐻𝑘𝑃𝑘)
−1𝐹𝐾

𝑇 + 𝑄𝑘 (5) 

                             

The H∞ Filter on the other hand holds the following 

equations. 

 

𝐾𝑘 = 𝑃𝑘(𝐼 − 𝛾−2𝑃𝑘 + 𝐻𝐾
𝑇𝑅𝐾

−1𝐻𝑘𝑃𝑘)
−1 (6) 

𝑃𝑘+1 = 𝐹𝑘𝑃𝑘(𝐼 − 𝛾−2𝑃𝑘 + 𝐻𝐾
𝑇𝑅𝐾

−1𝐻𝑘𝑃𝑘)
−1𝐹𝐾

𝑇 + 𝑄𝑘 (7) 

 

As shown above, H∞ Filter relies heavily on the covariance 

matrix of error signals; Qk, Rk>0. These two error covariances 

are designed to achieve the desired performance. Another 

important parameters to be considered is γ>0. γ must be 

guaranteed to be positive all the time and selected properly to 

obtain a good estimation results. If γ becomes bigger, equations 

(6) and (7) yields the same values as equation (4) and (5) 

respectively. In other words, the results will be similar to the 

Kalman Filter estimation. 

 

III. DECORRELATION USING COVARIANCE INFLATION UNIT 

 

The effects of partial observability are being examined in this 

section. The problem is analyzed in two different categories. 

 O(N) but unstable partially observable H∞ Filter-SLAM 

 O(N) but stable partially observable H∞ Filter-SLAM 

Those two conditions have been investigated in [13], where 

the analysis focusses on the theoretical development of the 

Covariance Inflation under defined situations. With respect to 

the outcomes demonstrated in their results, this paper extends 

the work to check whether the stable partially observable 
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condition can preserve the best performance. Besides, the study 

analyzed the results considering a uniform noise characteristic 

in which H∞ Filter is said robust to. As the decorrelation used 

Covariance Inflation is a method that adding pseudo-noise to 

the system, mathematical description for the covariance 

inflation are included for convenience. This will be the same 

results to EKF-SLAM [4, 13] as it has almost the same 

structure.  

 

𝑃𝑘+1 = 𝐹𝑘𝑃𝑘𝐹𝑘
𝑇 + Δ𝑃𝑘  (8) 

 

The ΔPk≥0 is design such that it is able to produce a small 

amount of state covariance, P. Details can be found in [11],[13] 

regarding the selection of ΔPk. As stated in [13], the state 

covariance matrix, which defines the uncertainties on the 

system is converging to a steady state and almost zero after a 

period of time. However, it is not clearly demonstrated 

previously about the conditions of the state covariance during 

the mobile robot observations. The finite escape time, which is 

the main problem in H∞ filtering has not been analyzed in 

different cases of noise. Furthermore, this paper suggests that 

the proposed approach can avoid the finite escape time problem 

if the γ is selected appropriately by referring to Theorem 2 

proposed in [13].  

Assume that the initial covariance P0≥0. The first observation 

of mobile robot yields a state covariance as follows. 

 

𝑃1 = [
𝑃0𝑣 0
0 𝑃0𝑚

] (9) 

 

where P0v, P0m are the initial state covariance for the mobile 

robot and landmarks respectively. 

From the results of [12], the covariance matrix of a stationary 

robot observing one time of one landmark at point A is given 

by: 

 

P1 = [
P0 P0(A

−1HA)T

A−1HAP0 A−1HAP0(A
−1HA)T + A−1R−1A−1] (10) 

 

where: 

 

A =

[
 
 
 

𝑥𝑚−𝑥𝐴

√𝑥𝑚−𝑥𝐴
2+𝑦𝑚−𝑦𝐴

2

𝑦𝑚−𝑦𝐴

√𝑥𝑚−𝑥𝐴
2 +𝑦𝑚−𝑦𝐴

2

𝑦𝑚−𝑦𝐴

√𝑥𝑚−𝑥𝐴
2 +𝑦𝑚−𝑦𝐴

2

𝑥𝑚−𝑥𝐴

√𝑥𝑚−𝑥𝐴
2 +𝑦𝑚−𝑦𝐴

2 ]
 
 
 

 (11) 

 

and 

 

𝐻𝐴 = [𝑒 𝐴], 𝑒 = [0 −1]       
   

Then the Covariance Inflation method adds a pseudo noise 

∆Pi ≥ 0 to the updated state covariance. Assuming that the 

process noise covariance is too small and after one step 

inflation, then the covariance matrix yields:  
 

𝑃1 = 𝐹1𝑃0(𝐼 − 𝛾−2𝑃0 + 𝐻1
𝑇𝑅1

−1𝐻1𝑃0)
−1𝐹1

𝑇 + Δ𝑃0
1 

(12) 
         > 𝐹1𝑃0(𝐼 − 𝛾−2𝑃0 + 𝐻1

𝑇𝑅1
−1𝐻1𝑃0)

−1𝐹1
𝑇 

  

where: 

  

∆𝑃0
1 = [

𝑘P0(A
−1HA)T −P0(A

−1HA)T

A−1HAP0

P0(A
−1HA)T

𝑘

] 

 

From the positive semidefinite matrix properties, any 

submatrix of a psd is also a psd. Therefore, the map state 

covariance matrix is also holding the same criteria as above 

equation. Hence, the following equation of the map state 

covariance element can be derived. 

 
𝑃𝑘+1 = 𝐹1𝑃0(𝐼 − 𝛾−2𝑃0 + 𝐻1

𝑇𝑅1
−1𝐻1𝑃0)

−1𝐹1
𝑇 + Δ𝑃𝑘+1

1 ≥ 𝑃𝐾+1 (13) 

 

For better understanding of above equation, consider that γ 

posses a very big value such that γ∞. If this is happening, 

then the updated state covariance becomes the normal Kalman 

Filter equation. 

Examining further the condition, the map state covariance 

eventually has become bigger as more observations are being 

made by the mobile robot. Hence, the process will produce 

higher amount of noises as time passed by. Such a case 

normally makes the estimation becomes erroneous as the 

uncertainties is growing fast per observations. This is supposed 

not to be happening in SLAM problem. 

Consider a case when γ is selected such that it can satisfy the 

following equation. 

 

𝐼+𝐻𝐾
𝑇𝑅𝐾

−1𝐻𝑘𝑃𝑘 > 𝛾−2𝑃𝑘 > 0 (14) 

 

Comparing (5), (12) and (14), if γ>0, then the state covariance 

is bigger than the previous state covariance and also bigger than 

the Kalman Filter state covariance. 

To understand how a finite escape time occurred during 

estimation, further examination on (12) can be organized. 

Assume that γ=1, then: 

 

𝑃1 = 𝐹1𝑃0(𝐼 − 𝑃0 + 𝐻1
𝑇𝑅1

−1𝐻1𝑃0)
−1𝐹1

𝑇  
(15) 

                   > 𝐹1𝑃0(𝐼+𝐻1
𝑇𝑅1

−1𝐻1𝑃0)
−1𝐹1

𝑇 

 

The left side of equation (15) or the updated state covariance 

is clearly bigger than the previous equation. The continuation 

of these properties will yield an increasing value of state 

covariance or uncertainties and ended with higher value of state 

covariance. On the other perspective, if the P0 on the left side 

equation has the property of 𝑃0 > 1 + 𝐻1
𝑇𝑅1

−1𝐻1𝑃0, then the 

updated state covariance exhibits a negative definite value. 

Again, this situation is unacceptable in SLAM problem. Several 

experimental results and analysis have shown this before [13]. 

Thus, there are two possible values that the updated state 

covariance shows whether it holds a negative definite matrix of 

positive definite matrix if γ is not chosen correctly. 

To avoid this issue, the addition of pseudo matrix ΔP to the 

updated state covariance can be a solution. ΔP can be design 

such that it can tolerate the value of updated state covariance to 

be positive semidefinite at all time. In other words, 1 − 𝑃0 +
𝐻1

𝑇𝑅1
−1𝐻1𝑃0 + 𝛥𝑃 ≥ 0 or can be stated as𝛥𝑃𝑘 > 𝑃𝑘. These 

rules must be satisfied in preserving a good estimation in H∞ 

Filter-SLAM. Furthermore, the addition of 𝛥𝑃𝑘  has now 



Journal of Telecommunication, Electronic and Computer Engineering 

10 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 11  

guarantees that the negative semidefinite matrix is not exist 

during observations.  

One of the important things to be realized is that, 𝛥𝑃𝑘can be 

simply added without control or rules. If 𝛥𝑃𝑘 is added 

continuously without depending on the previous state 

covariance, then the updated state covariance now will be 

increase unexpectedly. Subsequently, the estimation becomes 

erroneous again even though finite escape time is not observed. 

This case explains the first case of partial observability known 

as unstable partial observability. 

A stable partially observable case is a case where the 

estimation can guarantee a level of good estimation while at the 

same time can reduce the computational cost of the system. 

Looking into the H∞ Filter-SLAM algorithm and Kalman Filter, 

the measurement matrix, Hk is actually playing an important 

role that defines whether the state covariance converge at steady 

state after a successive observation by mobile robot [3]. The 

measurement matrix, Hk, which describes the relative angle and 

distance between mobile robot and the landmarks can yield 

smaller or high value of information. Theoretically if Hk holds 

small value and 𝛾 = 1, then equation 1 − 𝑃0 + 𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘𝑃0 is 

highly depends on the Hk such that it can leads to negative 

semidefinite matrix especially if Po or the previously calculated 

state covariance is having large uncertainties. Hence, both Hk 

and 𝛾 are related and must be considered to gain better 

estimation performance in H∞ Filter-SLAM. Making 𝛾 bigger 

eventually makes H∞ Filter-SLAM exhibit the similar results to 

the Kalman Filter. Thus, 𝛾 must be defined appropriately to 

pursue better estimation results according to the condition of 

Hk.  

Rather than adjusting the value of 𝛾, an addition of pseudo 

matrix 𝛥𝑃𝑘 can decrease the difficulty of finding the right value 

of 𝛾. Again, if 𝛾 = 1 then with the addition of 𝛥𝑃𝑘 ≥ 0 the 

equation becomes: 

 

1 − 𝑃0 + 𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘𝑃0 + 𝛥𝑃𝑘 > 0 (16) 

 

𝛥𝑃𝑘 ≥ 0 refrain the possibility of the updated state 

covariance becomes negative definite matrix or the finite 

escape time. Even sometimes, Hk contains small value, thanks 

to 𝛥𝑃𝑘, the equation is assured to hold a positive semidefinite 

matrix. As the 𝛥𝑃𝑘 is calculated on each of the predicted state 

covariance, then the updated state covariance will consistently 

converge. This is how the stable partially observable H∞ Filter-

SLAM is working. 

Theoretical explanation is always help to understand how this 

is happening. The result of [12] is referred to analyze further the 

condition when a stationary mobile robot is observing two 

different landmarks at a specified time at point A. The state 

covariance yields the following equation. 

 

𝑃1 = [

𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

] (17) 

 

where:  

𝑃11 = 𝑃0                             

𝑃12 = 𝑃0(𝐴
−1𝐻𝐴)𝑇 = 𝑃21

𝑇  

𝑃13 = 𝑃0(𝐴̅
−1𝐻𝐴̅)𝑇 = 𝑃31

𝑇  

𝑃22 = 𝐴−1𝐻𝐴𝑃0(𝐴
−1𝐻𝐴)𝑇 + 𝐴−1𝑅𝐴

−1𝐴 

𝑃23 = 𝐴−1𝐻𝐴𝑃0(𝐴̅
−1𝐻𝐴̅)𝑇 = 𝑃32

𝑇  

𝑃33 = 𝐴̅−1𝐻𝐴̅𝑃0(𝐴̅
−1𝐻𝐴̅)𝑇 + 𝐴̅−1𝑅𝐴̅

−1𝐴̅ 

 

When the covariance inflation method is applied on the 

landmarks state covariance of the updated state covariance 

especially on the diagonal elements of equation (17), the state 

covariance becomes: 

 

𝑃22 = 𝐴−1𝐻𝐴𝑃0(𝐴
−1𝐻𝐴)𝑇 + 𝐴−1𝑅𝐴

−1𝐴 + 𝑘𝑃23 

𝑃23 = 𝐴−1𝐻𝐴𝑃0(𝐴̅
−1𝐻𝐴̅)𝑇 = 𝑃32

𝑇 = 0 

𝑃33 = 𝐴̅−1𝐻𝐴̅𝑃0(𝐴̅
−1𝐻𝐴̅)𝑇 + 𝐴̅−1𝑅𝐴̅

−1𝐴̅ + 𝑃23 𝑘⁄  
 

where k>0 and other elements are unchanged for all observation 

times. The addition does not change the properties of the state 

covariance and can be guaranteed to be converge with a slightly 

bigger value of uncertainties on the updated landmarks state 

covariance. However, the computational time can be further 

reduced as some of the elements do not need to be inverse 

during calculations.  

 

IV. SIMULATION RESULTS AND DISCUSSION 

 

Simulation for a nonlinear case SLAM for a moving mobile 

robot observing landmarks is organized to understand the 

behavior for the two cases of H∞ Filter-SLAM. The mobile 

robot is assumed to start its task from a global coordinate 

system of (0, 0). The analysis is mainly covering an indoor 

environment with a small mobile robot with some randomly 

placed features. Two cases are examined as stated previously in 

the preceding section; Unstable partially observable and stable 

partially observable H∞ Filter-SLAM. 

 
Table 1 

Control Parameters for Simulation 
 

Indoor Parameters Value 

Gaussian robot Process Noise, Qv 0.0000001 

Gaussian landmark process noise 0 

Gaussian Observation noise, R [
0.0001 0

0 0.0001
] 

Process with random noise [
𝑄𝑚𝑎𝑥 = 0.001
𝑄𝑚𝑖𝑛 = −0.001

] 

Observation with random noise 

[
 
 
 

𝑅𝜃𝑚𝑎𝑥 = 0.16
𝑅𝜃𝑚𝑖𝑛 = −0.08

𝑅𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(max) = 0.5

𝑅𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(min) = −0.5]
 
 
 

 

Initial covariance 
𝑃𝑣 = 0.00001
𝑃𝑚 = 10000

 

Landmarks location Defined at certain locations 

 
A. Unstable Partially Observable H∞ Filter-SLAM  

Following Figures 2 and 3 show the results of simulations 

results based on the unstable partially observable H∞ Filter-

SLAM. It seems that similar results presented on [9] was also 

achieved. The estimation of both mobile robot and landmarks 

are far from the expected value and erroneous. This is due to 

the continuous addition of pseudo-noise to the diagonal 

elements of covariance matrix. The repetition of pseudo-noise 

addition eventually has make the covariance matrix bigger and 

finally effects the overall estimation where mobile robot 

becomes unsure about its location and landmarks coordinates. 
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Interestingly, the constructed map illustrates that the unstable 

H∞ Filter-SLAM show no finite escape time than the normal H∞ 

Filter-SLAM. This subsequently proved that the addition of 

pseudo psd to H∞ Filter-SLAM can prevent the finite escape 

time problem from occurring during observations. Figures 4 

and 5 demonstrate that both mobile robot and landmarks 

updated state covariance is increasing as the mobile robot 

continues to observe its surroundings. 

 

B. Stable Partially Observable H∞ Filter-SLAM 

In this case, the simulation time is increased up to 2000s with 

the same sampling time as carried by the previous case. Below 

Figures 6 and 8 illustrate the results of estimations. In contrast 

with the previous case of unstable partially observable H∞ 

Filter-SLAM, now the estimations has becomes better. Both 

estimations for mobile robot and landmarks agree with the 

expected results and surpassed the normal performance of H∞ 

Filter-SLAM.  

It is worth to note that the assumption of each landmark is 

independent to each other has a significant contribution to the 

results. It is also interesting to recognize that this is one of the 

available approached to avoid the finite escape time problem in 

H∞ Filter-SLAM. To check the consistency of the proposed 

technique, the simulation time was extended until 5000s. Even 

though the time of observation has increased, the proposed 

technique still yields its best performance and no finite escape 

time has been observed. 

 

 
 

Figure 2: Comparison between normal H∞ Filter-SLAM and unstable 
partially observable H∞ Filter-SLAM 

 

 
Figure 3: Mobile robot state covariance when observing landmarks 

 

 
Figure 4: Landmarks state covariance  

 

  
 

Figure 5: Increasing landmarks state covariance on unstable partially 
observable H∞ Filter-SLAM 
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Figure 6: Comparison between normal H∞ Filter-SLAM and stable partially 

observable H∞ Filter-SLAM 

 

  
Figure 7: Mobile robot state covariance when observing landmarks 

 

 
 

Figure 8: Landmarks state covariance 

 

 
 

Figure 9: Simulation results for 5000s; no Finite Escape Time is observed 

 

C. The case of random noise effect to H∞ Filter-SLAM and 

Kalman Filter based-SLAM on Stable Partially 

Observable SLAM 

The result of the stable partially observable H∞ Filter-SLAM 

is compared to EKF-SLAM in this section using non-gaussian 

noise. This is one of the essential requirements when prior 

information about the environment is unknown. It can be 

concluded that from Figure 10, H∞ Filter-SLAM is better than 

EKF-SLAM although it present slightly bigger covariance than 

EKF-SLAM about its estimations. 

 

 
 

Figure 10: Estimation result with different noise characteristics (random 

noise) for Kalman Filter based SLAM and H∞ Filter-SLAM 

 
V. CONCLUSION 

 

This paper proposed H∞ Filter-SLAM with covariance 

inflation method to prevent the finite escape time problem. The 

covariance inflation, which relies on the decorrelation 

algorithm may sufficiently reduce the cost computation as well 

as well as the condition where the estimation become 

erroneous. There is also a possibility that it may result 

unbounded uncertainties in the estimation as shown by the 

unstable partially observable SLAM problem. These are the 

results when a full rank of ∆P is added to the state covariance 

and without considering the other state covariance elements. If 

this happen, the estimation becomes erroneous. To overcome 

such problem, a minor change that relates the mobile robot with 
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the landmark state covariance is taken into account by adding a 

partial pseudo psd to the state covariance. However, this 

sequence can also still influence the estimation i.e it could 

produce high amount of uncertainties if not being design well.  
 

ACKNOWLEDGMENT 

 

This research is organized under Malaysian Ministry of 

Higher Education(MOHE) under RDU160145, and Universiti 

Malaysia Pahang grant, RDU160379.  

 

REFERENCES 

 
[1] R. C. Smith and P. Cheeseman, On the representation and estimation of 

spatial uncertainty, Tech. Report TR 4760 and 7239, SRI, 1985.  

[2] [S.Thrun, W.Burgard, D.Fox, Probabilistic Robotics, MIT Press, 2005). 

[3] G.Dissayanake, P.Newman, S.Clark, H.Durrant-Whyte, M.Csorba, A 
Solution to the simultaneous localization and map building(SLAM) 

problem, IEEE Trans. of Robot and Automation, Vol.17-3, pp.229-241, 

2001.  
[4] S. Thrun, W. Burgard, D. Fox, A Real Time Algorithm for Mobile Robot 

Mapping with Applications to Multi-Robot and 3d Mapping, IEEE Intl. 

Conf. on Robotics and Automation, 2000, Vol.1, pp. 321328. 

[5] D. Hahnel, W. Burgard, and S. Thrun, Learning Compact 3d Models of 

Indoor and Outdoor Environments with a Mobile Robot, In Proc. 
European workshop on Advanced Mobile Robots. IEEE, 2001.  

[6] S. Thrun, Robotic mapping, A survey, in Exploring Artificial Intelli- gence 

in the New Millenium, G. Lakemeyer and B. Nebel, Eds.Morgan 
Kaufmann, pp. 135, 2003. 

[7] T Katayama, Applied Kalman filter, Asakura Publishing Co. Ltd, pp.191-

211, 2000.  
[8] T.Vidal-Calleja, J.Andrade-Cetto,A.Sanfeliu, Conditions for Subopti- 

mal filter Stability in SLAM, Proc. of 2004 IEEE/RSJ Int. Conf. on 

Intelligent Robots and Systems, Sept 28-Oct.2 2004, Sendai, Japan. 
[9] L.M.Paz, J. Neira, ”Optimal local map size for EKF-based SLAM”, 

IEEE/RSJ Int. Conf. of Intelligent Robots and Systems, 2006, pp.5019 – 

5025. 
[10] S.Rongchuan, M.Shugen, L Bin, W.Yuechao, ”Improving consistency of 

EKF-based SLAM algorithms by using accurate linear approxima- tion”, 

IEEE/ASME Int. Conf. of Advanced Intelligent Mechatronics, 2008, pp. 
619 – 624. 

[11] S.J.Julier, ”The Stability of Covariance Inflation Methods for SLAM”, 

Proc. IEEE/RSJ Int. Conf. of Intell.Robots Syst., 2010, Las Vegas, pp. 
2749 – 2754.  

[12] S.Huang, M.W.M.G Dissayanake, ”Convergence and Consistency 

Analysis for Extended Kalman Filter Based SLAM”, IEEE Transca- tions 
on Robotics, Vol.23, no.5, pp. 1036-1049, 2007.  

[13] H.Ahmad, T.Namerikawa, ”Feasibility Study of Partial Observability in 

H infinity filtering for Robot Localization and Mapping Problem”, 
American Control Conference(ACC2010), 2010 Baltimore, Maryland, 

USA, pp.3980-3985. 
 


