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ABSTRACT 

Although synthesis procedures for active distributed 

RC networks are well developed, the approximation problem 

is largely unsolved. Previously proposed solutions have 

several disadvantages. A better solution to the approxima

tion problem is obtained by developing an error expression 

involving the difference between the ideal specification 

and the exact realization, then minimizing this error by 

numerical techniques. The method is illustrated by 

designing a set of active distributed RC low-pass filters. 
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I. INTRODUCTION 

There are many advantages to be gained by using dis

tributed RC networks in integrated circuits. For example, 

on an integrated circuit chip a distributed RC network 

occupies approximately the same amount of space as a single 

lumped capacitor [1]. Thus, if a distributed RC network 

can be made to function in approximately the same way as 

a lumped resistor and capacitor, or even a group of resistors 

and capacitors, a saving of space as well as a reduction in 

the total number of elements in the circuit can be achieved 

[2]. Also, as is shown below, distributed RC circuits perform 

better than lumped circuits in some applications. 

Unfortunately these advantages are somewhat offset by 

the mathematical complications that occur when distributed 

RC networks are used in circuit synthesis. As shown later, 

simple synthesis methods for distributed RC networks exist; 

thus, the majority of these complications occur in the approxi

mation of a given ideal specification by some realizable 

network transfer function. For example, in the frequency 

domain the ideal specification may be in the form of a gain 

or impedance function. This function must be approximated 

by another function of w that can be transformed into a 

realizable driving-point immittance or transfer function by 

the relationship w = s/j. For lumped circuits this problem 
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has largely been solved. However, realizable transfer 

functions or driving-point immittances for distributed RC 

circuits contain hyperbolic, exponential, or algebraic 

functions of /8 ' [3]. Therefore, in order to obtain a 

realizable transfer function the ideal specification should 

be approximated by hyperbolic or exponential functions of 

/jw. This is a non-trivial task. 

One approach to the solution of this problem has been 

to find a realizable distributed RC transfer function that 

has approximately the same frequency response as that of a 

lumped network [1,4,5]. This is done either by matching the 

dominant poles of the distributed RC network to the poles of 

the lumped transfer function or by some means finding the 

distributed RC network transfer function that has the smallest 

deviation in frequency response from that of a given lumped 

network transfer function. The ideal specification is then 

approximated by a lumped transfer function, which can be 

obtained from design tables or by other means; then the 

lumped transfer function is approximated by the distributed 

RC transfer function. 

Although this method produces good results, it has two 

main disadvantages. First of all, the end result is an 

approximation of an approximation. Also, this method limits 

the response of the distributed RC network to that of a 

lumped network. There is the possibility that in a different 

circuit the distributed RC network would approximate the 

desired specification much better than the approximation 

obtained by the lumped circuit. 
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The second approach to the approximation problem in

volves investigating the frequency responses of a number of 

different realizable distributed RC transfer functions 

[6,7,8]. Usually the transfer functions are of the same 

general form, and only one parameter is varied. The frequency 

responses are then plotted as a one-parameter family of 

curves. The design procedure is to choose the particular 

curve that best approximates the desired specification. 

The major problem with this method is the limited 

number of curves available. Interpolation must be made 

between the available curves to get an estimate of the best 

approximation of the ideal specification. 

The third approach to the problem is the one proposed 

in this paper. It is similar to the second approach men

tioned above in that the transfer function that best 

approximates a desired specification is obtained. However, 

in this method a mathematical expression for the difference 

between the desired and the actual response is formulated. 

Then standard numerical optimization techniques are applied 

to minimize this difference and thus find the transfer 

function which has a frequency response that best approxi

mates the desired specification in some sense. 

The advantages of this approach are that it assures 

that the "best" approximation is obtained, it eliminates 

the need for a large number of plots, and it allows a set 

of filter design tables to be constructed for standard 
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filters such as low-pass, high-pass, and band-pass, similar 

to those for lumped networks. 

This paper develops a general expression for the func

tion to be minimized and illustrates the method by designing 

a set of active distributed RC low-pass filters with a 

corresponding design table to simplify the synthesis. This 

table is then used to construct an actual circuit, and the 

performance is compared with the theoretical results. 
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II. REVIEW OF THE LITERATURE 

A. DISTRIBUTED RC NETWORKS 

1. Electrical Characteristics 

A distributed network can be defined as an element for 

which the current-voltage relations must be described by 

partial differential equations [9]. A distributed RC net-

work can be represented by the incremental model shown in 

Figure 1 and is described by the following equations [10]: 

dV 
rx = 

ai = ax 

-r(x)i 

av -c(x) at 

( 2 .la) 

(2.lb) 

where r(x) and c(x) are the resistance and capacitance at 

point x along the line; x is measured from a zero reference 

at the input terminal of the network. 

If the network is a uniformly distributed RC network 

(URC), that is, if the resistance and capacitance are 

independent of x, then equations (2.la) and (2.lb) become 

av = -r 1. ax 0 
( 2. 2a) 
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I(x) 
-+ 

V (x) c(x)dx 

n-----..... ------·- -
x=O X x=d 

Figure 1. Incremental Model of an RC Line 

o~----~~~-----o + 

+ + 

Figure 2. Circuit Symbol for a URC Two-Port Network 



3i = 
3x 

-c 
0 

7 

(2.2b) 

where r and c are the constant per unit length values of 
0 0 

resistance and capacitance, respectively. If r(x) and 

c(x) are not constants the network is called a tapered 

distributed RC network. If the URC is considered a two-

port network as symbolized in Figure 2, and the terminal 

voltages and currents are taken as the boundary conditions, 

the resulting solutions of equations 2.2 can be expressed 

as the ABCD parameters of a URC of length d which are [11] 

= 

where 

cosh /r c d 2s 
0 0 

A 

= 

c 

B 

D -I 2 

-I 
2 

( 2 • 3a) 

(2.3b) 
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These may readily be converted into the z and y matrices 

which are, respectively, [9,10]: 

coth IRes csch IRes 

(2.4) 

csch IRes coth IRes 

coth /Res -csch IRes 

=~ R 
( 2. 5) 

-csch /RC·s coth {RCs 

where R=r d and C=c d. 
0 0 

2. Physical Characteristics 

Physically, URC networks are of two types. A thin 

film URC is constructed as shown in Figure 3 [10]. A 

conducting film is deposited on a substrate followed by a 

dielectric, and a resistive layer is placed on top. The 

structure shown in Figure 4 is a pn-junction distributed 

network [2]. It consists of a revese-biased junction with 



..._ 
~ 

-u 

RESISTIVE 
LAYER 

DIELECTRIC 

CONDUCTI NG 
LAYER 

SUBSTRATE 

Figure 3 . A Thin-Film URC 

HIGH RESISTIVE 
P TYPE ---------HIGH CONDUCTIVE 
n TYPE 

-"V' 

~ -

Figure 4. A pn Junction Distributed Network 

9 
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one side made of a material with high resistivity and the 

other side made of a high-conductivity material. The high-

conductivity side serves as a common short circuit, and the 

h igh-resistivity layer serves as the distributed resistance. 

Distributed capacitance comes from the junction capacitance 

of the revese-biased junction. 

B. STATE-VARIABLE SYNTHESIS OF DISTRIBUTED RC NETWORKS 

1. Extended State-Variable Synthesis 

Consider the lumped scalar transfer function given in 

equation (2.6). 

T ( s) 
N (s) 

= 
D (s) 

n-1 
bn-l s + ... + b 1 s + b

0 
= d + n n-1 

s +a 1 s + ... +a n- o 

( 2. 6) 

, 

T(s) may be realized by the block diagram shown in Figure 5. 

The summing junctions and 1/s b locks are standard operational 

amp~ifier circuits [10]. 

Now consider the transfer function described by equation 

(2.7), where F(s) is any scalar function of s. 

T ( s) = T(F(s)) 
b 

1
Fn-l(s)+b 

2
Fn- 2 (s)+ ... +b

1
F(s)+b 

= d + n- n- o 
n n-1 F (s)+a 1F (n)+ ... + a n- o 

( 2. 7) 



X 
1 ---...... 
s 

b n-1 

1 
s 

1 ...... 
s 

Figure 5. Block Diagram Realization of Equation (2.6) 

y 
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Equation (2.7) may be realized by the block diagram of 

Figure 6. It should be noted that the only difference 

between this diagram and the diagram of Figure 5 is that 

the 1/s blocks have been replaced by 1/F(s) "integrators". 

Kozemchak (p. 151) refers to this as extended state

variable synthesis, and he presents the following theorem 

[ 3] • 

Let F=F(s) be any function of the Laplace variable s. 

The necessary and sufficient condition for T(F)=N(F)/D(F) 

to be realizable by this extended state-variable procedure 

is that 1/F(s) be the transfer function of a realizable 

network. 

It follows that since no restrictions are placed on 

F(s), F(s) can be hyperbolic or exponential function of 

IS. As has been stated before, distributed RC networks 

are characterized by such functions; thus, the extended 

state-variable procedure can be used for synthesis of dis

tributed RC networks. 

2. Integrators for Extended State-Variable Synthesis 

Three main transformations have been used in the synthesis 

of distributed RC networks. These are [6,12,13]: 

A = tanh lsRC 

P = cosh lsRC 

(2.8a) 

(2.8b) 



X 

a n-2 

1 
rn 

Figure 6. Block Diagram Realization of Equation (2.7) 

y 

1--' 
w 
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w = exp lsRC. (2.8c) 

"Integrators" for the extended state-variable syntheses have 

been developed using each of these transformations [3,14]. 

These are shown in Figure 7. The derivations of the trans-

fer functions for each of these circuits may be summarized 

as follows: 

For Figure 7a (A-plane integrator) 

V2(s) zf(s) 
= v1 (s)=-zi(s) 

where z 
0 

=ft: sc 

z 
0 

IS tanh ISRc 
1 z 

0 

1 
= 

tanh lsRC 

For Figure 7b (P-plane integrator) 

= 
I =0 2 

= 
csch IReS 
coth IRes 

= 

For Figure 7c (w-plane integrator) 

1 
= I 

1 

cosh IRes 
= 

( 2. 9a) 

1 
p· (2.9b) 



zi (s) 

I 
I 
1. 

I 
I 
I 

(a) 

(b) 

15 

zt(s) 

+ 

+ 

Figure 7. Integrators for Extended State-va~iable Synthesis 
(continued) 



NET~10RK a NETWORK b 

(c) 

Figure 7. Integrators for Extended State-Variable 
Synthesis 

16 



-Y2la 

1 
Y22a + 

zllb 

= 

= 
e 

-v'R C s 
a a 

17 

~ e = 
-v'R C s l a a 

w (2.9c) 

c 
where Ra 

a 

The A. and w-plane "integrators" require an infinite 

length line for an exact realization. This is not intolerable, 

however, since the RC line is dissipative. A relatively long 

line will be sufficient to approximate an infinite length 

line to a fair degree of accuracy [3, 14]. 

In summary, "integrators" for the extended state-

variable synthesis of distributed RC networks exist and 

use three of the most common transformations found in the 

literature .. 
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3. Stability of Distributed RC Network Transfer Functions 

Although the extended state-variable synthesis allows 

transfer functions to contain poles anywhere in the trans

formed planes, it has been found that stable transfer 

functions contain poles only in certain regions of the 

transformed planes. The stable regions for each of the 

three transformed planes are shown in Figure 8 [3,12,13]. 
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Im:\ 

.4 
STABLE 

w>o 

UNSTABLE 

.1 

w<o 

(a) 

Im P 

UNSTABLE 

w> o 

STABLE 

-6.0 Re P 

w<o 

(b) 

Figure 8. Stable Regions for the A, P, and w-planes (continued) 
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Im w 

UNSTABLE 

w>o 

1. 0 Re ~~ 

STABLE 

w<o 

(c) 

Figure 8. Stable Regions for the ~' P, and w-planes 
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III. THE APPROXIMATION PROBLEM 

A. FORMULATION OF AN ERROR EXPRESSION 

For the purposes of this paper error is defined to 

be 

Error=(Desired specification)-(Actual realization). ( 3 .1) 

An often-used error expression is the integral squared 

error (I.S.E.) [15]. In this error expression equation 

(3.1) is squared and integrated over all frequencies. 

The resulting expression is 

I.S.E. 

0 

2 (Error) dw. ( 3 • 2) 

If the desired magnitude function is defined as G(w), 

and the actual realization is a distributed RC network 

transfer function, T(s), then equation (3.2) becomes 

I. s . E • = r [ G ( w) - I T ( j w) I / dw 
0 

( 3 • 3) 

where IT(jw) I denotes tbe magnitude of the transfer func

tion, T(s), at s=jw. It is often desirable to add a weighting 

function, F, to the error expression to penalize some 

frequencies more than others. The general error expression 
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becomes 

I. s . E. = r F [ G ( (;)) - I T ( j (;)) I] 2 
dw • 

0 

( 3. 4) 

The approximation procedure is then to start with a 

particular T(s) of a known form, such as in equation (2.7), 

but with unknown coefficients, a. and b.. Numerical 
l. l. 

optimization techniques are then used to find the coeffi-

cients of T(s) that give the smallest I.S.E. The only 

constraint on the a. and b. is that they do not cause a 
l. l. 

pole of T(s) to be outside the stability regions shown 

in Figure 8. Since equation (3.4) involves an expression 

containing the magnitude of a transfer function, the I.S.E. 

will almost always be impossible to evaluate analytically; 

fortunately this integral may be accurately approximated 

by numerical methods [16]. 

B. USE OF THE TECHNIQUE TO APPROXIMATE AN IDEAL LOW-PASS 

FREQUENCY RESPONSE 

Now consider the curve given in Figure 9. This is an 

ideal low-pass filter response, and the G(w) of equation 

(3.4) may be written as 

G(w) = 1 

G(w) = 0 ( 3. 5) 



G(w) 

1~------------------~ 

0 

w 
0 

-
w 

Figure 9. Frequency Response of an Ideal Low-Pass Filter 

23 
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It can be shown that this response is impossible to 

obtain exactly [17]. Although it is impossible to attain 

exactly, Figure 9 is an excellent ideal specification to 

approximate using the method described above. 

First, equation (3.4) is rewritten for the G(w) of 

equation (3.5) as 

I. s • E • = r ° F [ 1-1 T ( j w) 11
2 

dw + ( F I T ( j w) 1
2 

dw • (3.6) 

0 0 

Previous results have shown that distributed RC trans-

fer functions of the form 

(3.7a) 

T
2

(w(s)) = ( 3 • 7b) 

where K
1 

and K
2 

are real constants, have frequency responses 

that approximate Figure 9 [7,8]. The A-plane is not well 

suited for low-pass approximation. Both T1 and T2 can easily 

be realized by the extended state-variable synthesis technique. 

For each computer run n or m is fixed, and the resulting 
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output contains the values of the a. or b. that give the 
]_ ]_ 

smallest I.S.E. without placing poles of the transfer func-

tion outside of the stability regions shown in Figure 8. 

w is taken as the 3db frequency. 
0 

To insure that the minimum I . S.E. is obtained w is not 
0 

fixed. If w
0 

were fixed, the ai or bi that give a minimum 

I.S.E. for that particular w would be obtained, but the 
0 

possibility would exist that with another w
0 

another set of 

a. or b. would give an even smaller I.S.E. Thus, w is 
]_ ]_ 0 

calculated for each set of a. or b. obtained in the optimiza-
J. ]_ 

tion process. 

Unfortunately, another problem arises when w is allowed 
0 

to vary. Since it may be that 

lim 
a-+o r f (x) dx = 0' 

0 

( 3 • 8) 

a small w might result in a correspondingly small I.S.E., 
0 

not because jT(jw) I is approaching G(w), but because the upper 

limit on the first integral of equation (3.6) is approach-

ing zero. To avoid this problem the weighting function 

F is defined to be 

F = 
w2 + 100 

0 

2 
w 

0 

( 3 • 9) 

and thus can be placed outside the integrals of equation 

( 3 • 6) • This serves to penalize low values of w • 
0 

This does 
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not interfere with the approximation process, since transfer 

functions with low w are usually poor approximations of the 
0 

ideal response [7,8]. 

Finally to facilitate a solution by numerical methods, 

the infinite limit on the second integral in equation (3.6) 

. * 1s changed to 100 w . Thus, the I.S.E. expression for the 
0 

low-pass filter approximation becomes 

I.S.E. ~ 

100+w2 
0 

2 
w 

0 

(3.10) 

With the error expressed in this way the problem has 

now been reduced to a typical non-linear programming problem, 

and various computer routines have been written to solve 

such problems [18]. 

A block diagram of the computer program used to find 

the minimum I.S.E. is shown in Figure 10. The particular 

T(s) must be entered as well as an initial estimate of the 

coefficients. A Newton-Raphson technique is used to find 

the cutoff frequency. The value of w is then placed into 
0 

equation (3.10), the integrals of which are numerically 

evaluated by a 32-point Gaussian quadrature formula. The 

resulting value of I.S.E. is stored in the optimization 

routine, a new set of coefficients are generated, and the 

I.S.E. is again computed. This value is compared with the 

previous value of I.S.E., and from the difference of these 

two values a corresponding change in the coefficients is 

* See appendix 



ENTER 

T ( s) 

a. 
l. 

~, 

COMPUTE . 
• w - 0 

, , 
COMPUTE 

I.S.E. 

~· 
OPTIMIZATION ROUTINE 

IS I.S.E. A MINIMUM? 

NO YES 

ADJUST a. 
l. 

CHECK CONSTRAINTS 

Figure 10. Block Diagram of Computer Routine 

~ PRINT 
a. I.S.E. 

l 
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made; the process is repeated until a minimum I.S.E. is 

obtained. 

Both a gradient technique and a direct-search technique 

were used for the optimization routine, and both worked 

equally well. This suggests that any optimization routine 

should work. 

The procedure described above was used on first-second-

third-and fourth-order P-plane transfer functions and on 

first-second-and third-order w-plane transfer functions. The 

resulting frequency-response curves are shown in Figures 11 

and 12. These curves show that a first-order P-plane filter 

has a high frequency roll-off rate that is exponentially 

. -44dB increasing with a minimum value of approx1mately D d eca e 
which is greater than a second-order lumped filter. 

Similarly a second-order P-plane filter has a minimum roll-

off rate of -ll4 dB h' h · t than a fifth-order Decade w 1c 1s grea er 

lumped filter. Further increases in the order result in 

correspondingly sharper roll-off rates. The high-frequency 

roll-off rates for the w-plane filters are approximately the 

same as those for the P-plane filters but the w-plane filters 

have slightly more ripple in the passband than the P-plane 

filters. 

Table I contains the coefficients of the optimum low-

pass transfer functions, and Table II gives the pole locations 

of these transfer functions. It should be noted here that 

throughout this discussion the RC product of the distributed 
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For T ( s) = K 
Pn n-1 

+ a n-1 
p + ... + a

1
P + a 

0 

T ( s) K or = n n-1 w + a 
n-1 w + ... + a

1
w + a 

0 

rABLE I. COEFFICIENTS OF P-AND w-PLANE LOW-PASS TRANSFER 
FUNCTIONS 

n RC for w =1 a3 a2 al a 
0 0 

1 15.6 -- -- -- 2.92 

2 19.0 -- -- 9.21 11.38 
P-plane 

3 19.2 -- 13.98 48.78 41.9 

4 19.27 27.41 262.6 1013.0 l287.0 

1 16.97 -- -- -- 7.16 

w-p1ane 2 18.84 -- -- 19.12 62.1 

3 19.22 -- 29.16 228.8 542.9 
I 

trABLE II. POLES OF P-AND w-PLANE LO~'J-PASS TRANSFER FUNCTION 

n POLES 

1 -2.92 

2 -1.47, -7.74 

P-plane 3 ·-1.29, -3.54, -9.14 

4 -1.09, -2.55, -5.35, -9.80 

1 -7.16 

w-plane 2 -4.15, -14.98 

3 -5.43, -5.48, -18.25 
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network has been normalized to 1. Frequency scaling is 

done by adjusting the RC product. To aid in scaling, Table 

I also includes the value of RC required to make w =1. Thus, 
0 

for example, if it were desired to make the cutoff frequency 

of a first order P-plane filter equal to 1 kHz, it is first 

determined that 

w = 2rrf 
0 0 

= 6.28 x 10 3 radians/second. 

Now from Table I 

or 

so finally, 

RC w = 15.6 
0 

RC 
15.6 = w 

0 

15.6 = 
6.28 X 10 3 

RC = 2.48 x 10-3 seconds 

for a cutoff frequency of 1 kHz. 

( 3 .11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

No attempt is made to optimize the phase response of 

the filters, and as a result, the phase response has no 
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particularly advantageous characterisitcs. The phase angle 

increases monotonically with frequency at a r ate proportional 

to the order of the transfer function as shown in Figures 

13 and 14 for the P and w-planes, respectively. 

C. COMPARISON WITH PREVIOUS TECHNIQUES 

For a comparison with previous methods of solution a 

second-order transfer function is taken as a representative 

example. The curves of Figure 15 show the results obtained 

by the three techniques discussed in the introduction. Curve 

1 shows the dominant-pole approach which matches the fre

quency response of the distributed RC transfer function to 

a lumped transfer function--in this case a fourth order 

Butterworth [4]. Curves 2 and 3 show frequency responses of 

second-order P-plane and w-plane transfer functions, respec

tively, that were picked from available curves [7,8]. Curves 

4 and 5 are, respectively, the optimized second-order P-and 

w-plane low pass frequency responses. 

Examination of the curves reveals that the optimized 

frequency responses are better than those obtained by the 

other two methods and that the optimized P-plane response 

(Curve 4) is the best. This conclusion can also be drawn 

from Table III, which contains the I.S.E. of all five of 

the curves shown in Figure 15. 

In conclusion, barr ing other considerations such as 

sensitivity or ease o f fabrication, it appears that the 
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optimized P-plane transfer function produces the "best" 

approximation to the ideal low-pass frequency response. 
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TABLE III. I.S.E. 'S OF THE CURVES OF FIGURE 15 

CURVE I.S.E. 

1 11.15 

2 10.79 

3 9.17 

4 4.18 

5 5.48 
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IV. DESIGN EXAMPLE 

Consider the following design example: 

Design a low-pass filter with a 3-db cutoff-frequency 

of 3. 92 kHz and with at least 30 db of attenuation at 7. 84 

kHz. The first step is to normalize the cutoff frequency 

to w
0

=1. After normalization an inspection of Figure 11 

reveals that a second-order P-plane filter meets the design 

specifications. By consulting Table I the second-order 

P-plane transfer function is found to be: 

K RC = 19.0 ( 4 .1) 
P 2 + 9.21 p + 11.38 

where K is an arbitrary gain constant. 

The block diagram of this transfer function is shown 

in Figure 16. Straight-foreward synthesis techniques are 

then used to obtain the circuit of Figure 17 [10]. K is 

chosen to be approximately 2158 which gives a de gain of 20 

db. Amplifier A4 is used to provide this gain; it may be 

removed without affecting the filter performance. Thus, the 

actual filter consists of only three operational amplifiers, 

six lumped resistors and two distributed RC networks. All 

the resistors are within the range of 100 ~ to 30 K~, which 

is the most typical range for inte·:3"rated circuits [19]. 

Frequency scaling is done as illustrated in Chapter 3. 

In this case 
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Figure 16. Block Diagram Realization of Equation (4.1) 
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RC w = 19.0 
0 

RC = 19
·

0 
3 = 0.772 msec. 

24.6 X 10 

This time constant may be realized by making R=27.6 Kn 

and C = 0.028 ~f. 
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( 4. 2) 

( 4. 3) 

Figure 18 shows the frequency response of the circuit 

of Figure 17 taken from actual laboratory data compared with 

the theoretical frequency response of equation (4.1). The 

two curves show good agreement in most places with slight 

differences that can be attributed to stray effects in the 

circuit. These differences can possibly be decreased by 

adjusting the circuit components. Thus, it is demonstrated 

that the extended state-variable synthesis of the optimum 

transfer function yields a circuit that performs very close 

to the theoretical expectations and that is capable of being 

completely integrated. 
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V. CONCLUSIONS AND RECO~MENDATIONS 

The simplicity and versatility of the extended state

variable synthesis technique for distributed RC networks 

suggests an equally simple and versatile solution to the 

approximation problem. An error expression is formulated 

in Chapter 3 for any desired response. Using numerical 

optimization techniques to minimize the error, a set of 

design tables are constructed that not only simplify the 

approximation problem, but also produce approximations that 

are superior to those obtained by other methods. Chapter 

4 shows the practicality of the entire process by con

structing a working circuit from the theoretical data. 

A comparison of the P-plane and w-plane realizations 

of the low-pass filter indicate that the P-plane realization 

is more successful in approximating the ideal low-pass 

frequency response. ~he P-plane "integrator" is also 

easier to fabricate. 

The only disadvantage of this approximation procedure 

is that the optimum values obtained are only optimum be

cause they satisfy the error expression derived in Chapter 

3. Another error expression undoubtedly produces another 

set of optimum values. In short, there are as many optimum 

solutions, as there are error expressions. The user 

must carefully consider which set of optimum values is best 

for the particular application. Thus, the solution obtained 

in this paper is not intended to be the final solution to 
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the low-pass approximation problem for distributed RC net

works. But at present the values obtained here are the only 

ones available. They can serve as a "general-purpose" set of 

coefficients until more insight into the problem is obtain ed 

and new error expressions and corresponding optimum values 

for more specific applications are produced. 

The obvious extension of the present research would be 

in the determination of the transfer functions of optimum 

high-pass and band-pass active distributed RC filters. The 

procedures would be similar to those used for the low-pass 

case. 

Other topics for further research would be sensitivity 

studies of the distributed RC transfer functions. A compari

son of the sensitivities of a P-plane and a w-plane transfer 

function would be informative. Another possible research 

topic would be the investigation of the use of tapered 

distributed RC networks in the synthesis. An optimization 

of both the taper and the coefficients of the transfer 

function may produce better approximations. 
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APPENDIX 

JUSTIFICATION OF THE REPLACEMENT OF INFINITY BY 

100 w IN EQUATION (3.10) 
0 
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In equation (3.10) the infinite limit on the integral 

of equation (3.8) was replaced by 100 w • This change can 
0 

be justified by showing that the error from 100 w to in
o 

finity is small compared with the error from w to 100 w . 
0 0 

This is done by finding a lower bound on the error from w 
0 

to 100 w and finding an upper bound on the error from 
0 

100 w to oo then proving that the ratio of the upper bound 
0 

on the error from 100 w to infinity to the lower bound on 
0 

the error from w to 100 w is considerably less than one. 
0 0 

The first step is to rewrite equation (3.10) with the 

error term from 100 w to infinity included. Equation 
0 

(3.10) becomes 

I.S.E.= 2 
w 

0 
Jwo JlOOw Joo 

[ 
0 

[ 1-1 T ( j w) I ] 2 
dw+ 0 IT ( j w) 12 dw+ IT ( j w) 12 dw] 

wo lOOw 
0 

(A .1) 

Now proceed to find a lower bound on the error from 

w
0 

to 100w
0

• The P-plane transfer functions that are 

optimized to approximate an ideal low-pass f requency 

response are of the form 

T( P (s)) = 
K 

n 

I 
k=O 

(A. 2) 



where P = cosh IS. 

They may also be written as 

T(P(s)) = 

"' 

K 
n 
II (P - ak) 

k=O 
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(A. 3) 

where K = K/an and the ak are the roots of the denominator 

polynomial. It follows then that 

IT(P (jw))l = 

where now P = cosh ljw. 

Now note that 

Thus, 

n 
II ( I P - ak I ) 

k=O 

(A. 4) 

(A. 5) 



< 

< 

ljw e 
-2- + 

/7) ·If f ~ J -2 2 e e 
2 

-v'jw I 
e 2 + lakl 

+ 

lw .IW ... ,2 -Jr2 
e e 

2 

Now from stability considerations 

so 

Now since 

< e~+! + 11.59 
2 

/f 
< ~ + 12.09. 
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(A. 6) 

(A. 7) 

(A. 8) 



This implies that 

and that 

11 e :::1> 12.09 
12.5 

fi 2 12.5 e > 12.09 

ff If 
13 e 

2 
> 12.09 + ~ 

IP -
ff 2 e 

n { ~ n 
II ( I P - ak I ) < ( 13 e ) 

k=O 

This in turn implies that 

and 

IKI 
IT(jw) I > 

13n 

> 

-n.rf 
e 2 

-2nrf 
e 2 

To get a lower bound on the error from w to lOOw 
0 0 

integrate the righthand side of (A.l4). 
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(A. 9) 

(A .10) 

(A .11) 

(A .12) 

(A. 13) 

(A. 14) 
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-2n.f7J 
e 2 dw 

K2 -2n/5 r;- -20nj5; /W 
> 2 [ e 2 

( 2 nl ~2 ° + 1 ) - e 2 ( 2 0 nt/ ~2° + 1) ] • 
13 nn2 

(A .15) 

A lower bound on the second integral of equation (A.l) 

has now been obtained. 

To find an upper bound on the last integral of equa-

tion (A.l) recall that 

IT(jw) I 

Now note that 

= n 
II 

k=O 
( I P - ak I) 

I P - ak I ~ 11 P I - I ak I I 

> 

(A. 4) 

(A . 16) 
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Since the third integral in equation (A.l) concerns 

values of w ~ lOOw and since only values of w > 1 are of 
0 0 

practical interest, it follows that 

IT 
~- 12.09 > 0 

for w ~ lOOw • 
0 

Therefore, 

e 
{]w 

I 1 -~ I I - e 2 I - I ak I 

1

/r 
> 2 e 

-2-

2 

-If 
2 

e 
2 

If 
IP -akl > ~~ ; - lakl I · 

Again, from stability considerations 

1 < [ ak I < 11. 59 

so 

rf 
le 2 

2 
- 12.091 IP - akl : 

(A .17) 

(A .18) 

(A .19) 

(A. 20) 



Now note that for w>lOOw 
0 

r; 
e 
-2--12.09 

~ 
e 2 
-2--12.09 

(f /IO~wo -:/100 wo 
> e 8 [e 

2 
8 

- 12.09 ef 8 ]. 
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(A. 21) 

(A. 2 2) 

The expression inside the bracket on the right of 

(A.22) is a constant for any particular value of 

fore 

IW_w2 rw 
f ~ 1 ~ 
~- 12.09 > ce 

where 

I J..bow 
. --n--0 

8 
- 12.09 e c = 2 

This implies that 

> ce 
~~ 

and 

W 1 
0 

there-

(A. 2 3) 

(A. 2 4) 

(A. 2 5) 



and 

n 
II ( I P - ak I ) 

k=O 

IT(jw) 1
2 

< 
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{A. 27) 

(A. 2 8) 

To get an upper bound on the error from 100w to in
o 

finity integrate the righthand side of (A.28). 

r 
100w 

0 

< 

r 
100w 

0 

-2nfi 
e 

8 dw 

4K2 -lOn~ ;w; 
2n 2 [e (10n~ ~ + 1)]. 

c n 
(A. 2 9) 

Now divide the righthand side of {A.29) by the right-

hand side of (A.15) and define the quotient to be R. 

-lon.ffi f'W':"' -in [e (10n{ -:/- + 1)] (A. 3 0) 

R = c 

-2~ Fo -2on{'!j. 1 [e -z(2n{~ + 1) - e ~ + 1)] 
132n 
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Now proceed to show that R<l. First, consider the 

term 

- 2 n/'S.. ~ -2 0 n ,f'!;_ f'W":" 
e 

2 
(2n{ ~ + 1) -e 2 (20n{ ~ + 1). (A. 31) 

This term can be rewritten as 

-2n~ .{£ -lsn/5 ~ 2 0 2 0 e [ ( 2n 2 + 1) -e ( 20n 2 + 1)] • (A. 3 2) 

Now find the minimum value of the term inside the 

brackets of (A.32). 

Let X = nfi!j and define 

g(x) = 2x + 1 - e-lSx (20x + 1) (A. 3 4) 

g' (x)= 2-e-lSx [20 + (20x+l)] (-18) (A. 3 5) 

0 = 2 - e-lSx (2-360x). (A. 3 6) 

Solving this equation reveals that x = 0 is the only solution. 

Now check to see if this is a minimum. 

g" (x) = -e-lBx [-360 + (2-360x) (-18)]. (A. 3 7) 



x=O. 
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g"(O) = 396>0 

This implies that the function g(x) has a minimum at 

But x=O implies that either n=O or w =0 neither of 
0 ' 

which are permissible due to practical considerations. In 

fact, 

n > 1 

w > 1 . 
0 

(A. 3 8) 

Thus, the minimum value of g(x) must be found subject 

to the constraints of (A.38). Now define 

h(x) = 2x + 1 

k(x) = e-lSx (20x + 1). 

Graphs of h(x) and k(x) are shown in Figure 19. 

Now note that 

h' (x) = 2 

and that 

k' (x) = e-lSx(2-360x) 

k" (x) = (5480x - 396) -18x e 

(A. 3 9) 

(A. 4 0) 

(A. 41) 

(A. 4 2) 

(A. 4 3) 

From (A.42) and (A.43), it is found that k(x) has a 

maximum at x = 1/180 and that the slope of k(x) is negative 



60 

h(x) 

1 

Figure 19. Graphs of h(x) and k(x) 
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for any x greater than 1/180. From (A.41) it is seen that 

the slope of h(x) is equal to 2, and from (A.38) it is 

found that the smallest feasible value of x is --1- . Thus, 
12 

it is concluded that for x greater than 1/180 the slopes 

of h(x) and k(x) are always opposite in sign; therefore, 

the smallest feasible value that h(x) - k(x) can achieve 

is at the smallest feasible x, that is, at x = 

Now returning to (A.31) it can be stated that 

1 

12 

/W ./i -2on.;wj ~ 
-2n~ ~ (2n + 1) -e (20n + 1) = 

2 e 

-2n~ ~ -18n/§ /'W': 
e 2 [(2n{ ~ + 1) -e 2 (20n/ ~ + 1)] > 

-2n~ /T r-c 
e 2 [ { 2'/ ~ + 1) - e- 9 

v 
2 ( 10 12 + 1) ] > 

2 

e-2n/;- [2.4]. 

Therefore it follows from (A.30) that 

(A. 4 4) 



4 -10;;.. ~ 
2n [e (lOn{ -:f- + 1)] 

R < _c ________________ -===~-----------

1~2n [2.4e- 2~ ] 

~n (10n~ + 1) 

R < c 

( 2. 4) 

-sn.tfi 2 e 

Now consider the term 

fii':: - 8 n .0-
(lOn{ -:/- + 1) e 2 • 

Let X = n/;- and define 

m(x) = lOxe- 8x. 

It is found then that 

m' (x) = e- 8x (10-80x) 
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(A. 4 5) 

(A. 4 6) 

(A. 4 7) 

(A. 4 8) 

(A. 4 9) 

and that the maximum value of m(x) occurs at x=l/8; but 1/8 

is less than the minimum feasible value of x which is --1 - . 
12 

Since the slope of m(x) is negative for x greater than 1/8, 

the maximum feasible value of m(x) is 



Therefrom (A. 4 6) 

1 m(-) < .03. 
12 

4 
2n 

R < c . 0125 
1 

132n 

R < .05 (.!2) 2n c • 

Now recall from (A.24) that 

c = 

f 1bbw
0 

e 8 - 12.09 

Now let x 

2 

r (x) = 

and define 

X e 
2 

X 

- 12.09 -x 
e 

e -x r' (x)= + 12.09 e 2 
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(A. 50) 

(A. 51) 

(A. 52) 

(A.24) 

(A. 53) 

(A. 54) 

From (A.53) and (A.54) it can be concluded that r(x) 

has no minimum on the interior of the interval [O,oo]. But 

since r(x) increases monotonically the minimum value of r(x) 
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is r(x) evaluated at the minimum feasible value of x, 

which is 3.56. Therefore 

r(3.56) > 17 . (A. 55) 

Thus from (A.52) 

(A. 56) 

Thus since n~ 1 

R < • 03. (A. 57) 

Thus it is concluded that since R < .03, the area 

contributed by the third integral of equation (A.l) is 

insignificant compared with the values of the other two 

integrals. This allows the third integral of (A.l) to 

be ignored and then (A.l) can be written as 

I. S. E. 

(A. 58) 

and this corresponds to equation (3.10). By a similar line 

of reasoning the same result can be shown for the w-plane. 
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