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ABSTRACT 

Originally this work was initiated to develope a 

method for measur1ng the thermal diffusivlty and thermal 

conductivity of metals. Due to the characteristics of 

the method and the equipment used, it was concluded 

that the technique ls not suitable for materials of 

high conductivity. However, results show that the ap

paratus is valuable for the determination of the thermal 

diffuslvity of relatively poor heat conductors. The 

favorable characteristics of the method are its rapidity 

and basic simplicity. 
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I. INTRODUCTION 

Although much effort has been expended in designing 

methods to accurately determine the thermal conductivity 

of materials, there exists no technique that is applicable 

for all materials in all temperature ranges. This failure 

to develope a general method of measuring conductivity 
• 

is due to the fact that the thermophyslcal properties 

themselves vary extensively and are affected by different 

parameters. At the outset of this work, it was felt that 

the method to be investigated would apply well to solid 

materials in the temperature range of 50 to 1000°F. 

Desirable characteristics of any method are accuracy 

and simplicity. It is, also, convenient if the technique 

is inexpensive and does not require a great deal of time. 

The various methods used to measure the conductivity 

of materials can be divided into two groups, an absolute 

method and a . comparative method. The absolute method 

usually requires measurement of the heat flux, which in 

many cases is difficult because a constant heat flux is 

hard to maintain. The comparative method requires a 

material, for which the thermophysical properties are 

known quite accurately, which is similar to the material 

of unknown conductivity. The comparative method, also. 

solves the heat loss problem l'lhich is one of the dis-

advantages of the absolute method. 
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The method chosen for this research is of the com

parative type, and furthermore requires heat flow in 

the unsteady state. Two of the parameters that effect 

heat flow under transient conditions when a convective 

boundary is present are the thermal diffusivity and the 

Blot Number. The diffusivity is a combination of the 

thermal conductivity, density, and specific heat of the 

material. The Blot Number is a combination of the con

vection. hea.t transfer coefficient,. the thermal conductivity 

of the material, and for the case of a cylindrical specimen, 

the radius of the specimen. 

The method itself involves recording the difference 

in center temperatures of two cylinders as they are cooled. 

One of the cylinders is a standard for which the thermal 

properties are known. The density and specific heat of the 

unkno~·m material are measured and the diffusi vi ty is 

calcula:ted when a value for the conductivity is assumed. 

2 

The convection coefficient is calculated either theoretically 

or by experimental means and then a theoretical solution 

for the difference in center temperatures between the two 

cylinders is found. The thermal conductivity is varied 

until the theoretical solution and the experimental results 

match and a value for the conductivity of the unknown 

material is thus determined. 

It was discovered that the method is not suited to 

materials of high conductivity, such as metals, if the 



2 . 
convection coefficie~t is of the order of 100 Btu/hr ft °F 

or less and the specimens are reasonably small. The method 

is unsuitable because if the conductivity is high compa.red 

to the convection coe~~icient, the internal resistance o~ 

the material is negligible and the body cools according 

to the Law of Newtonian Cooling. Newtonian Cooling implies 

that the temperature of the body at any time and position 

is independent of the thermal conductivity. 

3 



II. LITERATURE REVIEW 

The subject of thermal conductivity has inspired 

continuing research because the experimental techn~ques 

required for its determination have never reached the 

accuracy or convenience that is desired. Most of the 

recent work has been done in improving existing methods 

by making them simpler, extending their range of application 

and increasing the accuracy of the technique. 

The conventional longitudinal heat flow, guard ring 

apparatus is still the basis for accurate measurements 

of the thermal conductivity at moderate temperatures. 

However. attainment of ideal conditions. especially at 

elevated temperatures is tedious and the method is often 

hard to control. Many investigators of thermal properties 

at high temperatures have concentrated on the measurement 

of the thermal dlffusivity to overcome the problem of 

heat loss. Since the thermal conductivity is often the 

most desired property, measurereent of the diffusivity 

requires accurate knowledge of the specific heat and 

density of the material due to the definition of thermal 

dlffusi vi ty. The dlffus 1 vi ty. ~ • is defined as k/.;0 c, 

where k is the thermal conductlvlty.f'the density, and c 

is the specific heat of the material. 

Since the method under consideration is of the 

unsteady-state type and the dl:ff'usivity is an important 
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factor, the literature investigation was completed with 

this in mind. Due to the fact that there exists an 

enormous amount of publications on thermal properties 

and their measurement. the author concentrated on some 

of the more recent works. 

Angstrom's method (2), which depends on the attenuation 

and change of phase of a temperature wave as it travels 

do~m a long sample. has benefitted from the application 

s 

of modern electronic techniques. Many of the recent 

developments were derived f'ro:r:t this basic method. Angstrom's 

method consists of the following: one end of a bar of a 

material whose conductivity is desired is subjected to 

alternate heating and cooling so that a temperature 

oscillation ls set up in the bar. After initial transients 

have died out, the temperature oscillation approaches 

a steady state value in such a manner that the waveform 

at any given point along the bar reproduces indefinitely 

with a fundamental period equal to the period of the 

heating and cooling cycle on the end of the bar. Angstrot:J. 

was able to show that from oeasurements of these wavefor~ 

at two different points on the bar that the diffuslvity 

of the solid material could be determined. The beauty 

of: this 1!lethod lies in the :fact that one needs only the 

amplitude and the phase shift o:f a single Fourier component 

of the waveform at two locations. The results are independent 

of the conditions at the ends of the ba;r: lf these conditions 



are the same. 

A modification of Angstrom's method is discussed 

by Eichhorn (11):- His modification consists of thermally 

insulating the bar. At first glance, insulating the bar 

seems desirable, since then a more reproducible boundary 

condition is obtained. However, the thermal properties 

of the insultaion influence the results and one must 

consider the heat capacity of the encasing material. 

Eichhorn concludes that the method should be used with 

caution if an insulated boundary is used and he also 

gives some criteria for obtaining the best results with 

his method. 

An optical method for measuring the thermal dif'fusivity 

of solids derived from the classical Angstrom method 

ls presented by Hirschman, Dennis, Derksen and Monahan (13). 

The technique is applicable for solids from room temperature 

up to their melting points. The method is of the periodic 

steady-ste.te type based on linear heat flow in a slab. 

The boundary conditions are generated by subjecting one 

face of the slab to periodic irradiation in a chopper 

modulated ca rbon-arc imag e furnace. The diffusivity is 

calculated as a function of the observed phase lag between 

the periodic heating on one face and the result~nt per iodic 

temp e rature change on the othe r face. 

Cerceo and Childers (5) made diffusivity measure ments 

by observing the t e mper a ture wa v e pha s e shi f t. In t h e i r 
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method, they heated one face of a slab by electron bom

bardment. These authors found the method very successful 

at elevated temperatures, up to the melting point of the 

material. 

One technique that has benefitted greatly from modern 

electronic equipment is described by Cutler and Cheney (8) .. 

The method consists of suddenly heating one end of a sample 

and measuring the time it takes for a heat wave to arrive 

at the other end. They discuss two kinds of boundary 

conditions relating to the heat input. One condition is 

step-function heating by radiation and the other condition 

is created by good contact wlth a constant te..-::perature 

heat source such as liquid metal. 

Taylor (23) investigated the heat pulse method for 

determining the diffusivity to see if it would apply to 

measuring the changes in thermal conductivity of graphite 

and various ceramics under neutron bombardment. He verified 

that heat losses and a finite pulse time effect, alter 

the temperature-time curve for the specimen's unheated 

face. Taylor concluded that a reliable value of diffusivity 

and, ultimately, conductivity may be calculated even when 

the heat losses are high. 

Other investigations based on the original method 

proposed by Angstrom or related to it were made by Abeles, 

Cody, and Beers (1); and by Sidles and Danielson (21). 

7 



One method for the measurement of diffusivity and 

conductivity independently is described by Jaeger and Sass 

(15). The method is based on line source heat generation 

using cylindrical specimens. The technique involves 

heating the specimen by a wire placed in a shallow 

longitudinal saw cut. The wire emits heat at a constant 

rate. Due to the method of generating heat within the 

specimen, the equation that describes the temperature 

distribution is quite complex. However, after an initial 

transient term diminishes, the resulting temperature at 

any radial point is a linear function of time. This 

straight line relationship is such that the conductivity 

is proportlonal to the intercept at time zero and the 

product of density and specific heat is proportional to 

the slope of the line. The outer surface of the cylinder 

may be insulated or left open to a~bient conditions. 

Good expe rimental results were achieved in the range 

20 to 200°C for dolerite when compared with value s cal

culated from its mineralog ical compostion. The technique 

is adva ntageous for relative ly poor conductors and it 

is relatively simple to obtain data. The method is also 

a n abso l ute one, thus a sta nda rd material is not neede d 

as a reference. Since it measures both the diffusivity 

and the conductivity, if the dens ity and specific heat 

are known, t h e method may be checked again s t it s elf. The 

preparation of the specimens is relatively simple and in 

many cas es the method is applicable over a wide temperature 

8 



range. 

Another method for determining tne conductivity of 

poor conductors ls described by Zierfuss (30). The con-

ductivity of a small sample may be measured by bringing 

it 1n contact with a hot copper bar and recording the 

temperature developed at the interfacial contact. The 

method ls rapid, requiring only 30 seconds for a sample 

of 10 cc. The steady temperature reached is directly 

related to the conductivity and diffusivity by the fol

lowing relation developed by Carslaw and Jaeger (4). 

?;-?;: 
T,-7; 

where: 

~ is the temperature of the copper bar, 

~ is the temperature of the material of unknown 

conductivity, 

7i is the interfacial temperature, 

£; is the conductivity of the copper bar, 

k; is the conductivity to be measured, 

q, is the dlffusivlty of the copper, 

and c:r'2 is the dlffus 1 vi ty of the unlmo~vn specimen. 

The above equation may be solved for the conductivity of 

the unknot.o.m specimen if values for the density and specific 

heat are known. The method just described was derived from 

one suggested by Powell (18) to produce a method that would 
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yield results directly. Powell and Clark (7) later 

developed a direct reading ~orm o~ the original method. 

The accuracy attainable by the methods o~ Zierfuss and 

of Po"t.;ell a.nd Clark is reported to be near 5%. It was 

also pointed out that due to the small time required to 

obtain data, that many runs could be made in a short 

period o~ time and the results then averaged to achieve 

more reliable results. Other variations of the above 

comparator techniques were investl3ated by Thomas (24) 

and by van der Vliet and Zierfuss (25). 

Neasurements of di~fusivity have also been made on 

disked shaped samples using the flash method. A recent 

improvement has been made by using a laser beam as a 

heat source. The method applies well to measurements at 

high temperatures as demonstrated by Wheeler (12). He 

heated the material by an electron beam modulated 

slnusiodally to create a temperature wave. The phase 

difference between the two faces of the sa~ple is detected 

with a photoelectric pyrometer ~nd displayed on an oscil

loscope. 

10 

An accurate dynamic method was developed by Joffe (12), 

who applied it to n~~erous semi-conductors and insulators. 

In this method, a metal block attached to one face of the 

sample is cooled by a refrigerant, while the temperature 

chan,5es of another block of known heat ca.paci ty attached to 

the opposite face are monitored. The method has been used 



up to temperatures of 1000 °C by Delle ( 12). As an 

original technique, the thermal conductivity is found 

from the rate of chan.se of temperature of the second 

block as a function of the temperature difference betNecn 

the two blocks. 

Park (17) investigated a transient method for the 

measurement of the mean thermal conductivity of porous 

catalyst particles using a comparative technique. The 

results of his work were good. and the method seemed 

feasible for other materials such as metals. The original 

purpose of this work \·;ras to ascertain if the above 

postulate is true. 

The published works on the m.ea.sure:rr..ent of therr:]al 

conductivity and diffusivity are numerous and no attempt 

has been ~ade to cover all of the basic methods employed. 

The author suggests Worthing and Halliday (29) and 

Wilkes ( 27) for further informe. t ion on the s u.bj ec t. 

11. 



III. THEORY 

The Fourier Equation states that i~ the temperature 

distribution for a body as a function of space and time 

is kno~m. the thermal diff'usi vl ty may be determined i m

plicitly. In practice. it is advisable to reduce the 

Fourier Equation as much as possible by considering only 

one space dimension. If two infinitely long cylinders 

are cooled in the same way. the difference in center 

temperatures as a function of time may be used to de teru ine 

the mean thermal conductivity of one o~ t.he cylinders . 

The equations that describe the flow of heat i n the 

cylinders are derived with the follo1-Iin g as sumpt i ons .. 

1. The cylinders are homogeneous and infini t e in 

length. 

2. The thermal properties of one of the cylinders 

vary with temperature as a linear f unc t ion. 

J. Losses due to radiation are neg ligible. 

4. A hollow cylinder may be ass ~med soli d if 

the ratio of major to minor diameters is l a r g e . 

The initial condition and the boundary conditions 

for the cylinders are as follows. 

12 

1. Both cylinders are at the sa~e uniform te~perature 

prior to cooling. 

2. The spacial gradient of temperature at the 

centers of both cylinders is zero for all time . 



J. The only mode of heat transfer at the surface 

o~ the cylinders is forced convection which 

occurs with a uniform coefficient of convection. 

13 

The equation that describes the temperature distribution 

for the material of unknown conductivity is derived first. 

It.is assumed that a mean value for the properties can 

be chosen. The solution to this problem is \'Iell known 

and is given by Schneider (20). However, solution of 

this equation is quite cumbersome. The eigenvalues of 

the Bessel Functions depend on the value of the conductivity 

of the material and also on the convection coefficient. 

Each time the conductivity is varied to try and match 

the data, a new set of eigenvalues must be fou..Yld, by a 

trial and error procedure. Also, due to the slow converg e n ce 

of the Bessel Functions, the solution would require a 

great deal of time. 

The bes:t approa.ch to the problem is to break dot•m 

the system into a number of elements and use a finite 

difference e.pproxi rt1ation technique. Figure 1 illustrates 

the location of the nodal points used in the approximation. 

R--

Figure 1 Location of the Nodal Points 



The following definitions apply to Figure 1. 

7;. is the tempera.ture of the cooling mediur.1. 

h is the coefficient of convection. 

R is the radius of' the cylinder. 

;n is the radial distance from the center of the 

cylinder to node n ; 

• tS is the distance bet~reen nodal points. 

The Fourier Equation given by Schneider (20) for a n 

infinite cylinder gives the temperature in t h e cylinder 

as: 

where: 

+ _I oT I dT 
....... or == ~ ae 

T is the tempera.ture at point r a nd time e » 

q is the thermal diffusivity, 

and B is the elapsed time. 

The spacewise dervatives are approxi rl!a ted by cen t ra l 

differences as follows: 

Tn+l- ""fn_, 
26 

fn+l- 2~ +Tn-J 
62 

The dervative with respect to time is approx irr~a t ed 

by a forward difference as: 

where: 

7;, is the temperature at n ode n, 

--r-/ . 
/;, ~s the future tenp era.tu:re at node n. 



~B is the time increment to be used. 

The radial distance is now a set of discrete points 

given by: 

where: f 

• Substitution into the Fourier Equation yields: 

The Fourier Modulus is defined as: 

Solving for the future temperature, the equ.ation 

becomes: 

where: 

Notice that if the coef~icient of z; is less than 

zero, the larger ?:; beco:o.es, the sr-1aller will be the future 

ter:tperatu.re. This is a violation of the Second LaT .. : of 

·rhermodynamics. It is thus n e cessary to r es trict @ to 

be less than or equal to one-half to maintain stability 

in the equation. It is des ired. to EI.ake €J as larg e as 

possible to make solution of t he equation less time con

suming. Therefore, @ is set equal to one-half and the 

equation may be reduced as shovm: 

Tn/ =- } fo+z~) Tn+/ -1- (;-z~J J;_J 
A new dependent variable is defined as: 

t= 

15 



where: 

r is the initial tempere.ture of the cylinder. 

With the above substituted, the equation descrl~ing 

the temperature distribution becomes: 

I,'= J/ll-r2~}-!nn + (1-z;;)!,_J 
With the definition of t,the initial condition on 

the cylinder is: 

0 /.2 A/ d 8.:::0 for n: J ~ .,• ·~ ~/V • an 

Considering the center of the cylinder , it has been 

s.ssum.ed that no heat flows across the exis, thn.s: 

aT =O or at r=O 

Approxima ting;-;. by a :forward di:fference: 

HJ ,_ 
drJ,-= 0 -

Thus the boundary condition is: 

or 

At the surface of the cyli~der~ all heat cond~cted 

is convected to the cooling medium. Theref~re: 

However, the above equation does not t ake into con-

sideration the volume of the surface ele~ent. For a value 

of/Vas large as 14, this volume is 7% of t h e total volu~e. 

16 

and, as sh :::nvn in the appendix, the volume :r::.ust "be considered . 



The sur~ace boundary condition is found by writing the 

energy balance for the surface ele:r\ent as follo\'liS : 

Substituting in the eppropria te values· for t h e 

areas a.nd volume the equation becomes: 

• 

Solving :for the :future te~perature of n ode ~: 

where: 

Bi is the Blot Number, defined a s hR/,.e 

·rhe surface boundary condition pla. c e s a f urther 

restriction on the Fourier Modulus: 

_!_ .> /-? I)+ 2Bi. 
fij) - (L-/V AI 

It is noticed that when the Blot Nu mbe r is one -hal:f~ 

the critical value of (!j) is the sa.m.e as fo und previously .. 

Introducing the dimensionless temperat ure i nto t he 

boundary condition: 

For Blot Numbers of one-half or less, 8 r::a y have 

the value of one-half. The bounda .. ry condl t lon i s n ..:> w 

reduced by assuming that the Blot Number is in t h is r ange. 

17 
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The solution for the cylinder with constant properties 

is now summarized. 

• 

1. Define a value for the coefficient of convection. 

2. Assume a value for the conductivity. 

J. Calculate a value for the diffusivity using 

the assumed conductivity, where the density and 

spe.cific heat of the rnaterial are knov.-n. 

4. Calculate the Blot Number. 

5. Assume e. value for N, the number of spacev.rise 

divisions, m.aking certain that it is la.rge enough 

to insure accurate results. 

6. Compute the increment betv-reen nodal points 

from: ~ =RIN • 

7. Determine the time lncrenent at vlhich the solution 

will proceed, from: LIB =B~k. "t\There: GJ= fi. 

8. Initialize the dimensionless temperature: 

; 

9. Calculate the nelv te ::npereture for the internal 

points at the next ti~e step using: 

In'~ J.[t/~z~}fn~~ ~ {;-2;)/x_j 
-10. Calculate the new surface temperature by: 

1; = z:V {t2A1-!)/v_1 f- ( 1- Z B~) IN} 
11. Determine the new center tempera.ture fron: 

12. Continue vJith steps 9 through 11 until the 

desired time has elapsed. 



Now that the temperature ~istribution for the w~terial 

of unknown conductivity may be computed if a value for the 

conductivity is assumed, the temperature distribution for 

the standard n~terial must be derived. The temperature 

range that the experimental apparatus covers is such that 

the thermal conductivity of most ~aterials varies~ but the 

variation is usually linear with temperature or at least 

may be closely approximated by a linear function. It is 

desired to make the solution for the standard specimen as 

s.ccurate as possible since its temperature directly affects 

the results of the entire experiment. Thus. the equations 

that describe the heat flow must take into consideration 

the varience of the thermal properties with temperature. 

There are several techniques for· solving this problem 

numerically, and one of the more efficient ones we,s in

vestigated by Chan (6) in which he applied the concept of 

19 

a temperature function. The use of the tempera tur·e function 

simplifies the equations and reduces the number of paraneters 

required for the solution. The elemental division of the 

cylinder is the same as for the case of constant properties. 

The . following definitions and assumptions are necessary to 

develope the equations. 

,P is the density o:f the material, and is assumed 

to be constant over the temperature range . 

L7r is the specific heat of the material and varies 

with temperature. 



Kr is the conductivity of the material .and varies 

linearly with temperature . 

.Sris the product of density and specific h eat. 

7:! is an arbitrary datum temperature. 

Ka is the conductivity at the datum tempera ture. 

!-3.r~ is the product of density and specific heat 

at the datum temperature. 

"'== kr/ka' 
8=/5-r/~a' 

~ is the temperature function defined by: 

Fourier's Law for heat flow over a s ma ll region wi t h 

variable properties nay be expressed as: 

?r-
Q == A_ If, dT 
0 d 4+ 

where Cj is the rate at which heat is conducted .. 

Considering the genera l interna l ele~ent of t h e 

cylinder, n. the energy balance may be written as: 

d!L 
~nn~n Cj11-.n-t dg 

where li is the internal ene rgy of the element. 

Substituting in the appropriate terms. ~the energy 

balance becomes: 

20 



When the expressions f'or the areas and volume are 

introduced, the energy balance becomes:· 
M.j• 7ii-r 

(1-1-2~) r;dT_ I {t-zf;}..{! d T 'Jf; -,; 

Rearranging the internal energy term: 

Jf) 

However, 

Jf;dT 
J~ 

The equation now reduces to: 

Introducing the diffusivity as: 

The partial dervati ve with respect to time is e.p-

proximated by a forward difference, and the energy 'tala nce 

takes the forrn: 

The Fourier }!odulus. eT. is defined as cfrL18/J"2 , and 

t;/ls the future temperature of the ele~ent. 

The temperature function is now introduced as 

follows: 

21 



j:t;r= . sz-S~, ~ g5_; 
7ii 

~-/ . lkciT =. ~-/ ~k 
71;/ 

-- (kelT= <;£_: 
.J?d 

Substituting in the above ~xp~es~ions and solving 

for ¢_:: 

Again, the Fourier Modulus must be one-half or less 

to avoid violating the Second Law of The.rmodyna!alcs. 

The boundary condition for the cent.ra.l element 

implies that: 
at r=O 

When approximated by a fort11ard difference .. 

In ter~s of the temperature :function: 

At the surface of the cylinder, all heat conducted 
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is convected into the cooling medium. · The surf'ace temperature 

may be found as a function of' the temperature of' the element 

adjacent to it and also the Blot Number. as was done for 

the cylinder of constant properties. Ho~~<rever, when the 



boundary condition is in terms of the temperature function, 

the temperature function corresponding to the surface 

element must be found implicitly. In order to avoid a 

trial and error solution for the surface temperature, a 

different approach was used to determine the equation 

that describes the surface condition of the cylinder • 

• The energy balance for the surface element was vrri tten 

as was done for the cylinder of constant properties. 

This technique will a.lso yield more accurate results. 

The energy balance is: 

[ .,.,_, 
AN-\ k- dT-

cS T 
IN 

Substituting in the expressions for areas and volume, 

and transforming the internal energy ter:m as before: 

When the temperature function is introduced, the 

equa tion takes the form: 

It was assumed that the thermal conductivity is 

a linear function of temperature, thus: 

Kr :::: a -1- .b T 
The datum temperature is novr fixed at 0°F, then: 

ke:~ = a_ 

and k== / + b, T , where 

The equation for the temperature function may no1-r 
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be integrated, with the result: 

cP.· =- T + _j_b T 2 
J :; z 'J 

Thus. 'Z; IIJ,ay be written a.s: 

w= :, (/1-;zJ.,/dA/ -;) 
When the above equation is substituted into the 

energy equation for the surface element, the result is: 

Again, this puts another restriction the value of 

the ?ourier Modulus, that is: 

_L == (z- ~)..;. 
@, 

The critical value of the Fourier 1'1odulus rr:a y on l y 

be det~rmined approximately, due to its depende nce on 

the surface temperature itself. An estimate of the c r it i c a l 

value of ~,is made; from this value, a time increment is 

calculated which will be fixed throughout the solut ion 

of the problem. The Fourier Eodulus is allowed to va r y 

with temper.a ture. The solution for the stande~rd s pe c i l!len 

may now be s ummarized as follo ws: 

1. Determine the tempex·ature variation of the con-

ductivity and specific heat of the material. 

2. Choose sufficient number of elements for the 

finite difference approximation to insure acc u r a c y . 

J. Calculate the maximum value for the d iffusivity 

in the temperature range considered. 
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· 4. Calculate the Blot Number referenced to the 

datum temperature. 

5. Estizr.a. te the critical value of the Fourier Hodulus. 

6. Calculate the time increment that is to be used. 

:from the definition of the :fourier Nodulus and 

the computed value for the maximum diffu.si vi ty. 

7. Transform the expressions :for the variable 

properties so that they are functions of the 

temperature function. 

8. Initialize the value of the temperature function 

:from the initial temperature. 

9. Calculate the new surface temperature for the 

next time step :from: 

¢,J'== @r(rz-~)¢d-;-!- :B~::d~ + 

r~' -(2-1)- §:.t/r_,2 + ~- ....!.)lk} L (b, /f/h, (Jf¢.v ¢,... <PH!)~ 

10. Compute the temperature :functions for the internal 

ele~ents for the next time step using: 

11. Calculate the temperature function for the center 

element from: 

12. Transform the temperature function of the center 

element into the dJ.m.enslonless temperature so 

that it may be compared to the corresponding 

temperature of the unknown material. 

13. Continue with steps 9 through 12. 



It is important to realize that the final solution 

in terms of a dimensionless temperature is still dependent 

upon the initial and final temperatures of the cylinder. 

This ls not the case for the solution of the problem 

when constant properties are assw:1ed. 

Now that the temperature distributions are knorm 

for both of the cylinders, the difference in center 

temperatures as a function of time must be c omput ed 
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and compared to the experimental data. A computer program 

was "tvri tten to solve for the difference in cen ter temperature 

curve, and is listed in the ap~endlx. 



IV. EXPERIHE NTAL APPARATUS 

Primary components of the appara t us are a h ea t g un, 

recorder, blo"t•rer and motor, and hea ting a n d c~ol ing 

chambers. A diagram of the basic equipment l s s hown 

in Figure 2. 

The test specimens 1..:ere 1~ inch es i n length and 

approximately -1 inch in diameter. Temperatures ltre r e 

sensed with JO gauge copper-consta nta n thermoco:J.p l e wire 

butt welded toget!'ler using a mercury be. th and c urren t 

source. .A bead was formed just l arge e nou.-;h so tha t 

the junction fit snu3ly "t~ithin the s .12eci n:.en to d e cre.:tse 

as much as possible the contact resis tance and stil l 

achieve good time response. 

The specimen holder 1-:as constru c ted of an 18 inc h 

alurainun tube -,.·.ri th a 1-1/16 inch ir:s ide d.i.auete r end a 

1~ inch outside dia.neter. Both e nds or the tube 1rrere 

three~ded and capped. At 4b inches .i n l ength fror:J one 
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end, t h ree slots 11.:-ere Dilled out, 1 ~- i nche s in le n,:5 th a n d 

eq_ual in ~ridth, leaving three ribs i n the tu'te . Tb.ese 

milled holes allo1ved air to flow perpendi c ularlly through 

the tube. Two teflon discs were :mac h i ned to :fit inside the 

aluminu?.:1 tube. One -v:as fixed in pla c e by three Allen 

screws so that a base was formed at t h e bottom o f the 

three slots. The other disc ~·re.s ello\·red to s llde f reely 

in the upper portion of the speci r~.:.en holder .. 
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One lead from each thermocouple was threaded through 

two small holes in the fixed teflon disc. The sliding 

disc was then brought do~~ on the specimens and the two 

remaining leads were threaded through it. A screw in the 

upper cap was then tightened do~m on the disc so that the 

specimens could not move. 

The ends of the aluminum tube were filled with 

insulation and the caps put on. The caps also had sr~ll 

holes so that the thermocouple leads could be brought out 

and connected to the switching circuit. The switching 

circuit made it possible to measure the difference in 

center temperatures between the two cylinders as well as 

the absolute te~peratures of each one. A Honeywell 

Electronic 19 recorder with variable span was used to 

record all temperatures. 

The specimen holder was slipped into the heating 

chamber. Figure 3 is a sketch of the heating chamber and 

surroundin3 portion of the apparatus. The chamber was 

made from a 4 inch length of 2 inch diameter steel pipe 

which was welded perpendicular to the cooling pipe. Two 

brass bushi~gs machined to a 1! inch inside diameter were 

inserted in the 4 inch pipe to reduce it for the specimen 

holder. . The gap between the specimen holder and the pipe 

was filled 1-rith insulation. A 1.0 inch hole was cut in 

the pipe and through the insulation for the hot air inlet. 
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A J/8 inch hole was drilled opposite t he inlet for the exhaust. 
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Figure 3 Test Section 
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A. 2 ft. long duct of steam pipe insulation brought 

heat from the heat gun to the h-eating chamber. Within 

this duct semi-circular baffles were place to induce 

turbulence. The nozzle of the heat gun was inserted 

in the insulation· tube. The heat gun was supplied by 

the Master Appliance Corp. and was rated at 750~. It 

• was rewired with a Superior Electric Go. po1·.rerstat so 

output temperatures could be varied from 100 to 750°F. 

The heat gun itself consisted of electrical heating 

coils with a centrifugal blo1rrer. 

The cooling chamber was a portion of a 6 ft. long, 

2 in. diameter steel pipe with a 1~ in. hole drilled 

perpendicular so that the speci:11.en holder could slide 

from the heating chamber directly into the cooling 

chamber. A B.F. Sturtevant Co. blow·er driven by an 

Emerson Electric Co. 1/3 hp. motor supplied approximately 
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65 cfm of air which was used as the cooling medium. Upstream 

of the cooling chamber, baffles were placed to create 

turbulence. 



V. EXPERI.tvr.ENTAL TECHNIQUE 

The samples used · were glass capillary tubing of 

l inch nocinal diameter. The inside diameters were 

1.0 wn in size. · The tubing was cut in li inch lengths 

to maintain an L/D ratio of 6, which is sufficient to 

asfeume an infinite cylinder. The JO gauge thermocouple 

wire was stripped of its outer insulation. The junctions 

were formed by _passing a current through the twisted 

ends irn.raersed in mercury. The tlvists were · of two turns of 

the wire and this left a small bead slightly larger than 

the ·vJire itself. The wire 1vas then threaded through the 

capillary tubing and the junction placed in the center. 

The samples 1-rere then placed in the specimen holder 

and the mechanism inserted into the heating chamber. The 

leads were connected to the switching circuit which had 

a reference junction placed in an lee bath. 

The cooling blower and heat gun were started with the 

specimens placed directly ln front of the heat duct outlet. 

·rhe swl tch was set to read the absolute temperature of 

either of the two cylinders. The recorder was turn~d on 

and the system. left to come to equilibrium. This normally 

took 30 to 45 minutes, counting the tlm.e required to 

adjust the sample holder. This adjustment was necessary 

due to a channelling of :flmv from the heat gun. Originally 

the problem of maintainln,; the two cylinders at the same 
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initial temperature was quite extreme. and it Nas~found 

that there were large temperature gradients within the 

test chamber. After a trial and error procedure of varying 

the inlet and exit conditions to the heating chamber. this 

difficulty was reduced considerably, although not entirely. 

Various combinations of baffles and ducts from the heat 

gun to the test section were tried; also the inlet area 

was varied and the back pressure varied by using a valve 

at the exl t. The best combination 1-1as found to be a 

2 ft. duct from the heat gun to the chamber ~ri th semi

circular baffles placed within it, leading to the inlet 

of the chamber v.rhich vras a 1 inch diameter hole. The 

exit pressure was left at atmospheric. 

Once the temperatures of the cylinders appeared to 

be the same , the swl tch 1·1as turned so that the d.ifference 

ln center temperatures was monitored. Due to the better 

accuracy of using a s maller span for this measurement. 

final adjust ments were required. During the hea t up period, 

noise from the heat g un affected the .recorder, ho"t·rever, 

this was found to be an aid in te.king the data. The 

magnitude of the dlst trrbance was 0.0015 millivolt or 

less, thus it did not effect the process of maintaining 

an initial temperature difference of zero. Due to this 

noise it was possible to pinpoint the time that the s aillples 

were dropped into the cooling medi~~ by shutting off the 

heat gu..11. and dropping the specir.:J.en holder s l mul taneous ly. 
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Thus. the time of drop was taken as i'rhen the noise 

disappeared from the recorder output. 

The cylinders were alloNed to cool :for approximately 

one minute. By this time the maximum temperature difference 

had occurred and the system was approaching equilibrium 

ag~in. The data from the recorder was then converted 

to degrees Fahrenheit from millivolts. Since the initial 

and final temperatures vrere also recorded, the data 

could be converted to a dimensionless temperature that 

could readily be co~pared to the theoretical solution. 

As shm..rn in the appendix~ the theoretical value for 

the convection c:::>eff lcient was calculated.. Due to the ·· fact 

that most metals follow the law of Newtonian Cooling for the 

apparatus used, it was a simple task to measure the film 

coef:ficient experim.entally. This determination -v;as ac

complished by ins ertln2: a theri.noc;.)uple Inside a. cylinder 

of pure zinc . and following the sa2te procedure as stated 

above, the coDling curve l'fas recorded. Since the properties 

of pure zinc are vrell kn:::n·m, the only un~cno1'rn in t!le 

Kewtonian So6ling equation is the c:::>nvection coefficient 

which could be calculated directly. 
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VI. RESULTS 

Theoretical solutions for the temperature difference 

between Pyrex and Kimax* glass cylinders were compQted 

for various initial temperatures. Only th.e conductivity 

of the Kimax was varied, to determine its effect on the 

temperature-time curve. Typical results of these com-

putations are shown in Figure 4. Figure 5 summarizes 

these results by relating the maximum or minimum differences 

in center temperature to the conductivity of Kimax, for 

three initial temperatures. The independent variable 

in Figure 5, ~ , is defined as: 

3 = ~ (~)2 
where: 

f?p is the radius of the Pyrex cylinder, 

)? is the radius of the Kimax cylinder, 

qp is the diffusivity of the Pyrex cylinder at 

the datQ~ temperature, 

a nd cr is the diffus i vi ty ,)f t he Ki r.L:.ax cylinder. 

For values of :J bet-vreen 0.45 and 0. 90, the difference 

in c enter temperatures is both positive and negative, 

depending on the time elapsed since cooling was started. 

This is a result of using variable properties for the 

*Pyrex (Corning 7740 ) and Kimax (Kimble Standa rd Flint , 
R-6) capillary tubes were used as the test specinens. 
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Pyrex glass. It was also fow~d that this temperature 

dependence produced different curves for each te:mperature 

range considered. 

Experimental data was taken for three different 

initial temperatures. The temperature o:f the co:Jling 

mediw~ remained constant for all of the runs. From the 

thermocouples within the glass cylinders, the difference 

in center temperatures was recorded directly in terrns of 

millivolts. Conversion from millivolts to degrees was 

made considering that the conversion factor is a function 

of the absolute temperature of the cylinder. 

The results of the experinental work are condensed 

in Table 1. The average deviation of the experimental 

values for the :maximum or mimimum temperature difference 
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was fairly low; however, a maximum deviation of approximately 

30% vias detected in some cases. It 1"las concluded that 

the lar3e deviation was due to misalignment of the 

speci :r:aen holder. t-Iisalignment caused the center temperatures 

of each cylinder to be the same 1\Thile the surface te.;:lp

eratures were different, thus producing a nonuniform 

initial condition. 

From the rr~xim~~ or mlnimQ~ values of the difference 

in center te:aperatures, expressed in dimensionless form., 

a value of!] vras found from Figure 5. A value for the 

conductivity v-ras then calculated. for each run. For each 
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Table 1 Thermal Conductivity of Kimax 

-,-; K "M&AN #. 

Llfo)MA;< Run No. C'F) /1 (Brv/HA' Er °F) 

1 400 .0510 . 635 -353 

2 .0388 .585 .325 

3 .0556 .655 .364 

4 .0553 .653 .J63 

5 .0503 • 635 -353 .362 

6 .0103 .LJ-80 .267 

7 .0581 .668 ·371 

8 .0550 .651 .362 

9 .0581 .668 • 371 

10 JDO .o581 • 7 50 .417 

11 .0_581 ·750 .417 
.. . - 12 .0081 .520 .289 .412 

13 .0545 .?45 .414 

14 .05_51} .?J4 .408 

15 .0531 .?25 .403 

16 200 .0703 . 97 5 .542 

f7 .0639 .915 .508 

18 .0654 . 925 .514 ._512 

19 .0640 .916 .509 

20 .0653 • 926 ._514 

21 .0650 .923 .513 



temp.era·ture range considered, an ave.rage value for the 

conduct! vi ty 1-ras determined. This avera.ge value was 

interpreted as the mean value of thermal conductivity 

for the particular temperature range. 

It was assumed that the conductivity could be 

expressed, in general, by a second degree polynomial. 

The coefficients of the polynomial were then determined 

from the three experimental values of mean conductivity. 

This equation is sho1m gra.phically in Figure 6. The 

experi~ental results predict that the conductivity of' 

Kimax decreases for the temperature range of 60 to 400'1:<"'. 

'rhe only available data to compare with this curve is 

a value of 0.532 Btu/hr ft°F at 670p; obtained fro~ the 

1967 Kimble Glass·Nare Catalo :;ue. The experimental results 

are approxlrr:ately 11}~ above this value at that particular 

point. However, it is doubtful that the conductivity of 

Kima.x decreases as shown. Similar glasses, such as Pyrex 

and Vycor~- , experience an lnc.rE:ase in condu ct! vi t y Hi th 

temperature in this range. 

To establish more d efin ite conclusions on the method, 

the t he.r nJ.a.l dif'fus i v i ty o f Pyrex and Vycor a.re compa red 

with the experimental values for Kimax. These curves are 

pres e nted in Figure 7. All three curves s how a decrease 

*Vycor (Corning 7900) capillary tubing. 
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in diff'usivity with increasing temperature. Due to 

the assumption of a mean value for the specific heat of 

Kimax, the variation that should have occured in the 
. . 

specific heat for Kimax was experienced by the values 

of the mean conductivity that were determined. Since 

accurate specific heat data was not available for Kimax 
• 

glass, more credibility is placed on the results of the 

experiment when put in terms of diffusivity rather 

than conductivity. 

Figure 8 represents a comparison of the theoretical 

solution for the difference in center te~peratures to 

experimental data of the sa2e quantity. The deviation 

of the two curves is due to the assumption of a cean 

value for the therrr~l conductivity of Kirr~x. 
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VII. SONE Lit'liTATIOJ:\:S ON THE HETROD 

As stated previously, it was originally planned to 

apply this method to the determination of the therillal 

conductivity of metals. It vras found. that v:ri th the 

particular apparatus and high conductivity metals used, 

th~t the variation of temperature in the re.dial direction 

vJas essentially zero. Thus it ;;.,ras concluded that the 

metals exhibited negligible internal resistance as 

C~)!npared 1-'lith the surface resistance. The Blot number 

is the ratio of internal resistence to surface resistance 

and can be used to de 'termine hoi·: a material heats or 

cools with e. convect 1 ve boundary. If the Blot r;umber 

is relatively small, then the internal resistance is 

negligible; that is, the thermal co~ductivity L~y be 

assumed infinite. Such is the case for nost r2.etal : 

cylinders of approximately ~ inch diam.eter wh en the 

convection C:)efficient is of the order of 100 Etu/hr ft20P 

or less. This ir:1plies a phenor.:ena :kno~·.rn as l'~ el•rtonlan 

Cooling. If, on the other hand, the Eiot Nu~ber is 

relatively large, then the interna l resistance ·Nill 

cause tempera ture g r adients, the ma;snitude of the 3ra dient 

increasing with an increase in the Blot Number. 

To determine quantitatively t he effect of the Eiot 

Number on t h e magnitude of the tempe ra ture g r a dient, t he 

tern..._::> er9..ture distribution for an infinite cylinder ';•:-as 

solved usina; va rious values of the Biot Hu mber. The 
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results of this solution are show-n in Figure 9. It is 

noticed that for a value of the· Blot Number of 0.1 that 

the difference between the surface and center temperature 

is approximately 5%, increas lng up to 80% for a Blot 

Number of' 10.0. 

For best results, the n~gnitude of the Blot Number 

should be at least 0.4. and preferably larger. For a 

Blot Number of this magnitude, the tenperature gradient 

is sufficient so that the conductivity r~y be deterBined. 

With the equipment used in this experiment, t h e convection 

coefficient was approximately 33 Btu/hr ft2~ and could 

not be changed conveniently. It 1.-.ras also impr a ctical to 

increase the diameter of the speci mens since a· :minimwn 

value of an L/D r a tio of 4 n ust be maintained for the 

infinite length approxirr:a tion to hold. Thus, for the 

partic~la.r apparatus used, the conductivities of the 

cylinders were restricted to 0.86 Etu/hr ft°F or less. 

One other limitation of the me thod is that the 

standard ra.a terle.l should be sufficiently different in 

therma l properties from the unlmo\·Tn speciTien so t hat 

an a pprecia ble difference in c enter t emperat ures ma y 

be recorded. If the experimental curve is sca ll in 

magnitude, any error in t he rec.:>rding system could 

g rea t l y effect the results. A w..a.gni tude of approx i rr:a t ely 

50p should be larg e en:>ugh so the inherent errors in 

t e r:1perature n:eas ure n ent :may be neglected~ 



VIII. DISCUSSION OF ERRORS 

There are primarily three sources of errors in the 

experimental work that could accom1t for inaccuracies in 

the results. One source is the error between the measured 

temperature and the actual teoperature of the center of 

the•cylinder. Any time a thermocouple junction is made, 

a contamination is present due to the method of making 
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the junction. If the temperature within the nonhomogeneous 

portion of the junction is not uniform. it will be uncertain 

as to what temperature within that range 1-J"ill be indicated 

by the thermocouple. The best r.·ray to minimize this error 

is to make the junction as small as possible. This t-ras 

done, and lt is felt that any error within the junction 

itself can be considered negligible. 

Another source of error is the thermal conte.ct 

resiste.nce betli'reen the thermocouple junction and the 

internal wall o:f the cylinder. The error introduced by 

this reslstence r.-:as mininized by rr.akins the jmlCtion 

fit snugly in the axial hole of the capillary tubi~g. 

There is also an error introduced by the accuracy 

of the recorder and values read fran the recorder output. 

Assuming the recorder re~~i~ed calibrated, the error 

in reading values from the chart paper "t'lf,)Uld be ±0.005 

millivolt or less, . corresponding to about 0.18~. 

Of more concern than the above Eentioned errors are 



the uncertainties . which are present "ii th the method. In 

the first place. the thern2l properties of the standard 

specimen must be known accurately. Any errors in the 

properties of the sta.ndard material will effect the results. 

Also, the asswnption that a hollo1·r cylinder ma.y be assumed 

solid mey not be justified Hhen highly accurate results 

are•desired. For the particular case of capillary tubing, 

the axial hole comprises only about 1/50 of the total 

volume, so it \'ras felt that the assumption was valid. 

The magnitude of the temperatu.re gra.dient should 

be large so that a SI!'.all chan3e in the conductivity of 

the unkno1...m specimen t·li 11 greatly effect t h e center ter:t

perature curve. The larger this gradient is, the greater 

the accuracy of the calculated conductivity will be. 

Also, since the final value of conductivity is depender..t 

upon the density and specific heat of the un-::cnm .. 'TI. sam.ple, 

more reliance is placed on the value o:f diffusivity than 

tha t of conductivity. 

The value of the convection coefficient used for t he 

calculations will also introduce an error if the value 

used· is not a ccura te. It is esti :rr.a ted that the experi n:.ental 

value used in this work is within 5% of the actual value. 
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IX. CONCLUSIONS 

The results of this research indicate that the 

method described is well suited for measuring the thermal 

properties of relatively poor heat conductors. By taking 

data over various temperature ranges, the temperature 

dependence of the thermal diffusivity may be determined. 

If an accurate expression for the specific heat of the 

material is knovm, it is then possible to find the tem

perature variance of' the therrr;al conductivity over the 

range considered. 

Once the theoretical solutions are obtained. it 

is possible to determine values of the nean conductivity 

using only the nini~um or ~~XiRUD differences in center 

ten~eratures fro~ the experi~ental data. The technique 

requires little time once the equipment is set up and 

put in ~rorking order. The method is also economic8.1, due 

to the relatively si~ple equipment required. 

50 



BIBLI OGR..~PHY 

1. B. ABELES, G. D. CODY and D. S. BEERS (1960), Journal 
or Applied Physics, 31, p. 1585-92 

51 

2. A. J • .A.NGSTRON (1863), Philosopical l·1Bgazine, 25, p. 130 

3. H. D. BAKER, N.H. BAKER and E. A. RYDER (195J), 
Temperature r~:easurement in Engineering, Vol. I, 
John Wiley and Sons, Inc., New York, 179 p. 

4. H. C. CARSLA\v and J. c. JAE-::;ER (1959), Conduction of' 
Heat in Solids, 2nd ed., Clarendon Press. 
Oxford, sec. 2.15 

5. l1. CERCEO and H. J.1. CHI LDERS (1963), Journa l of Applied 
Physics, vol. 34, no. 5, p. 1445-9 

6. K. S. CHAN (1963), Journal of r·Iechanical Engineering 
Science, vol. 5, no. 2, p. 172-4 

7. vl. T. CLARK and R. H. P01d ELL ( 1962) , Journal of 
Scientific Instrumenta.tion, 39, p. 5!1-5-51 

8. M. CUTlER and G. T. CHE~ EY (1962), Journa l of Applied 
Physics, vol. 34, no. 7, p. 1902-9 

9. R. N . DRAKE and E. R. G. EC.t:(ERT (1. 9 59), He.~t and I·~ass 
Trans:fer, Addison-Ues ley Publishing Co. , 1.nc. , 
Reading, Mass., 530 p. 

10. G. r-:. DUSI NBERRE (1961), Heat-Transfer Ca.lc u.la tions 
by Finite Differences, Internationc;l Textbook 
co., Scranton, Pa., 291 p. 

11. R. EICHHO?J...; (1964), InternE.tional Journe.l of Heat and 
Hass Transfer, 7, p. 6?5-9 

12. H. J. GOLDSM ID (1964), British Journal of Applied 
Physics, vol. 15. no. 11, p. 1259-65 

13. A. HIRSCHE.AN , J. DENNIS . W. DERKSEN and T. EONAHAN (1962), 
Proceeding s of the 1961-1962 International 
Heat Transfer Conference, no. 104, p. 863-8 

14~ J. P. HOLHAN (1963). Hee.t Transfer, f·~gGra~l-Hill Book Co •• 
Nev; York, 297 p. 

15. J. C. JAEGER and J. H. SASS (1964), British Journal of 
Applied Physics, vol. 15, no. 11, p. 1187-94 



. 52 

16. !1. JAKOB (1949), Heat Transfer, Vol. I, John Wiley and 
Sons, Inc., New York, p. 68-117 

17. E. L. PARK, Jr. (1962), Determination or the TherBal 
Properties of Porous Catalyst Particles. 
N. s. Thesis, William Harsh Rice Univ., 54 p. 

18. A. W. POWELL (1957), Journal of Scientific Instru::-;Jentation 
34, '·P· 485-9 

19. J. B. SCARBOROUGH (1958), Nurr~erical Ea.the~atical 
• Analysis, 4th ed., The Johns Hopkins ?ress, 

Baltimore, Md., p. 324-68 

20. P. J. SCHNEIDER (1957), Conduction Heat Transfer, 
Addison-Wesley Publishing Co., Inc., 
Reading, Mass .• 395 p. 

21. P. H. SIDLES and G. C. DANIELSON (1954-), Journal of 
Applied Physics, 25, p. 58-66 

22. R. 1•1. B. STEPHENS ( 1932), Philosopical Nagazine, 
7, p. 897-902 

23. R. TAYLOR (1965), British Journal of Applied Physics, 
6, p. 509-13 

24. P. H. TH0i:1IAS ( 1957) , Quarterly Journal of r-:echgnics, 
vol. 10, no. 4, p. 482-7 

25. G. VANDER VLIET and H. ZIE.BFUSS (1956), Bulletin of 
the American Association of Petroleum 
Geologists, 40, p. 2475-88 

26. THOS. DE VRIES (1930), Industrial Bnd Engineering 
Chemistry, 22, p. 617-23 

27. G. B. WILKE3 (1950), Heat Insulation, John Wiley and 
Sons, Inc., New York, p. 36-71 

28. WRIGHT AIR DEVELOPEENT CORP. ( 1960) , Technical Report 
58-4?6, Vol. ill 

29. A. G. WORlHING and D. HALLIDAY (1948), Heat, John 
Wiley and Sons, Inc., New York, p. 160-98 

JO H. ZIERFUSS (1963), Journal of Scientl~ic Instrumentation, 
40, p. 69-73 



53 

APPENDI CES 



1. THEORETICAL SOLUTION FOR THE CONVECTION COEFFICIENT 

The Nusselt Number. according to Eckert and Soehngen 

(9) for air flowing normal to a cylinder's axis ls: 

Hilpert (9) lists values for the constants C and IJ1 as a 

function of the Reynolds Number. For values of the Reynolds 

Number between 4, 000 and 40, 000; C' has the value 0. 174 and 

h7 is 0.618. Both the Reynolds and Nusselt Numbers are 

calculated with the cylinder diameter as the reference 

length and the freestream velocity as the reference velocity. 

Data for calculation of the convection coefficient: 

d is the cylinder diameter, 0.25 in. 

r is the freestream velocity, 49.6 ft/sec 

.76 is the bulk teraperature of the air~ ?B"F 

,.,JI~~. is the dynamic viscosity of air, 1.24·x1o-5 lbm/sec ft 

~ is the thermal conductivity of air, 0.0154 Btu/hr f:tOp 

and a is the density of air, 0 .0?29 lbm/ft3 

The above properties correspond to the bulk temperature. 

Calculation of the Reynolds Number: 

/il_,&T' =- ~ d ~ 

49.6 J7lkd f%1 [HJ ftJ.t1JL'9)fo~//Jj' 
/,:?4x/trs-£~"" n~c: /'-rJ 

~4" == tbJ 030 

Calculation of the Nusselt Number: 
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Calculation of the convection coefficient: 

h= A'l/A/d 
atJ/S"~LB~q/hr /-/ ~J 33: ~? 

taz5//z) £ /"r-J h==-

2. EXPEHIMENTAL DETERI1IINATION OF THE CONVECTION COEFFICIENT 

Properties of pure zinc, from Holman (14): 

~ = ~--~~ 4A? /~> 

~ - a tJ9/g E/4-//.J.~:>J c.,.c 

Assuming that the convection coefficient is relatively 

small, the zinc cylinder will follow· the Law of Newtonian 

Cooling, which states: 

where: 

Tis the te iJ.pera ture of the cylinder inOp. 

Ta is the temperature of the cooling medium in°F, 

7.: is the initial temperature of the cylinder 

,4 is the surface area of the cylinder in ft 2 , 

t/ is the volume of the cylinder in ft3, 

/-)is the density of the material in lb~/ft3, 

in°F, 

C is the specific heat o:f the material in Btu/lbm~~ 

and B is the elapsed time in hr. 



Introducing the diEensionless temperature defined 

by: f =- T- k 
77-"74· 

Solving for the convection coefficient: 

h= 
A thermocouple Has embedded in the center of the zinc 

cylinder and the cylinder placed in the specimen holder 

with another dummy cylinder to create the same conditions 

as for the glass cylinders. The specimen holder was 

inserted into the heating chamber and B.llo\-.red to come 

to equilibrium at an elevated temperature. The zinc 

cylinder was then cooled and the cooling temperature 

recorded. Four different runs were made and t h e follow·ing 

data taken. 

Initial and Final Temperature Data 

Run No. T To. 7:-74 

1 JJ5 87 248 

2 J42 87 255 

J 216 87 129 

4 357 87 270 

erhr) 
Cooling Data 

-r(~>F) 
,c;>uN: / 2 3 4 

.0028 244 251 172 - 277 

.0055 185 190 141 214 

.008] 150 154 122 172 

.0111 127 130 111 146 

.0139 113 116 104 129 
• 0167 106 107 100 117 



57 

Sample of' Calculated Data for Run No. 1 

BIAr) J/t fin(!//) pl/t!/4g h 
.0028 -1.531 .426 80.91 34.47 

.0055 2.408 .879 41.19 36.21 

.0083 3.645 1.292 27.30 35.27 

.0111 5.511 1.708 20.41 34.86 

.0139 8.000 2.080 16.)0 3J.90 

.0167 10.333 2.335 13.56 31.67 
206.38 

The average convection coefficient for Run No. 1 
- ;:;:: 20(0,33/~ = 34;-?- 2:?-/~/Ar./lzo.;e:-is calculated: A 

The average value for the four runs was calculated as: 

The convection coefficient calculated experimentally 

was taken as the actual value. 

3· THERHOPHYSICAL PROPERITES OF ·THE STANDARD SPECINEN 

Pyrex (Corning 7740) capillary tubing was used as the 

standard specimen . 

density: /39 /.i.....,. /H 3 WADC (28) 

specific heat: 

Two sources were used for determining - the specific 

heat of Pyrex, WADC (28) a.nd De Vries (26). Both sources 

were consistent, yielding the equation: 

L'p =- t:J,/74 -r .t?, O?JtJ/5 T 

where Tis in°F and c; in Btu/lbmOp 



thermal conductivity: 

Three sources were located that expressed the 

conductivity of Pyrex as a function of temperature: 

WADC, Jakob (16), and Stephens(22). The data varies 

considerably, as shown in Figure 10. 

CoN~VCT/V/TY or PYREX 

OWAI>C 
DJAKOB 
6.STEPNEN.S 

/00 400 

Figure 10 Conductivity of Pyrex 

.500 
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The 1967 Corning Laboratory Glass Catalogue reported 

a con d uctivity for Pyrex 7740 of 0.655 Btu/hr ft°F at 670p. 

This value agrees we ll with the da t a from WADC~ s o this 

curve was used as the conductivity of Pyrex. The con-

duct i vi ty may be express e d functionally as fo l lo"t'l"S: 



where Tis in ~ and/;- is in Btu/hr ft 0p. 

thermal diffusivity: 

The diffusivity was calculated for various 

temperatures and the points plotted. From this 

curve. the :following equation was determined: 

where T is in °F and <::Y7 in ft2/hr. 

4. TRANSFORHA'TION OF VARIABLES 

The independent variable for the diffusivlty 

of Pyrex must be transformed fro rn temperature to the 

temperature function., The temperature function - is 

found as follows: 

thus: 

,{;.- = o; 635 -r o, ooo-?.3 T 

K= / + o, £Joo677T 

c;6 = _;:_r. ,:/T 
/q' 

The diffusi vi ty was plotted with' the temperature 

:function as the independent variable. This curve 

is shown in Figure 11. The equation of this curve 

~'las found by assuming a linear relationship. 

Thus: 
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LJ/F~VS/V/TY OF PYREX 

Figure 11 Diffuslvity of Pyrex 

5· CONPARISON OF SURPASE BOUNDARY CONDI·riONS 

The surface boundary condition for the specimen of 

unknown conductivity may be expressed by two finite dif-

ference equations. One which takes into account the 

finite vol,~me of the surface element and the other m.ere ly 

states that the heat conducted at the surface is convected 

to the cooling medium. The first equation, shol'm belo1·r, 

implies that the new surface temperature is a function of 

the previous temperature at the surface, the previous 

temperature of the next lnter:rt...a.l element, and the Blot 

Number. This equation accurately describes the surface 

condition since lt does con sider the heat capacity of the 



element. The other equation that may be used to describe • 
the boundary condition is: 

/ 
-cA.I-/ 

This equation states that the ne'k'l surface temperature is 

dependent only on the temperature of the next internal 

element ~nd the Blot Nwrrber. 

To determine whether there is a significent difference 

bet1veen the resultant temperature distributions using the 

two boundary conditions, two solutions were made using 

the properties of Kimax glass. It 1-ras found that the 

deviation wa s less than J.:t at any tlme. Hot-rever, 1-;rhen the 

t\-;ro solutions are compared with another temperature 

distribution for a different material, the devia tion 

becomes mo r e signif i cant. The center temperatures for 

each of the two solutions for Kiruax were compared to the 

center temperature of Pyrex. The results are sho-.,Tn in 

Fig ure 12. The devia t i on ls as much as 25~ . thus the 

heat capacity of the surface ele~ent must be considered. 

6. COI-~?ARISON OF RADIATI0N HEAT LOSS TO CONVEC'riON 

HE._A.T LOSS 

Jeo,w = h/l (?;- 7,;) 

jlrt)aonv == h(7;-h) 
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Comparison of' Surface Boundary Conditions 
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7~ = B0°F 

h = .33_ & 23-fq //;r 1'-f -z ~,..c-

f}fJ)e.onv = .33, &, (4trD -cf'"o) 

jm)eo#Y= /D_;7SO :51-L-~/h~rHl. 

Blackbody radiation is assumed, with a shape factor 

of one. This will yield the worst possible condition. 

CT== 

The radiation heat loss, at most, is 7% of the 

total heat transferred. 

7. CONV3R3ION FROE NILLIVOLI'S ·TO DEG3EE3 FAHRENHEIT 

To convert the recorder output from millivolts to 

degrees :fahrenheit, the conversion factor 't';as calculated 
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as a function o:f the temperature at which the test specimens 

were at. This resulted in a curve of the conversion 

.factor versus temperature. To I!lB.lte this curve easier 

to use wit? the experimental data, a set of curves was 

plotted ~ri th time as the independent variable. The 



variable change was based on the cooling curve for Kimax 

glass. Conversion curves for three initial temperatures 

are shown in Figure 13. 

8. TEHPERATURI<:; VARIATION OF THE CONDUCTIVITY AND 

DIFFUSIVITY OF KIK4..X FROI'-'I EXPERir-'iENTAL RESULTS 

Experimental results: 

fm -= 0. 362 8-/q /Ar /'-/ •,r::-

/'H? = OJ#2 

K.H? = O.S/Z 

ass tune: K ~ a. -r .6T -r C Tz 

78- goo oF 

78-20o°F 

then the mean value of conductivity is given by; 

}',., =-?; !7i f (r.-7:1 -1-.j-(T..'-l1-r -f-(7.!- J:j/ 
Solving for the unkno"tqn coef'f iclents, the conductivity 

is found to be: 

Since the soecific heat and the density of Kinax ... . 

were assumed to be constants: 

o( = K~c 

r:> == /5'7, 9 /h#f //t- 3 

c ~ o .. 2 Blu. //£_, or 
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9. CONFUTER PROGRAM 



C PYREX VS KI:t-IAX 
DOUBLE PRECISION F(30) ,FP(30) 1 T(30) ,Cl(JO) ~C2(30), · 

2THETA ( JO) ITT ( 30) • TTP ( JO), CON, DEN. CP ,ALFIE. RX I DELTAX I 

2F.EODX, BIOTX ,ALPHA ,A, B,H, TI, TA, R 1 DEI~TAR 1 DTINE 1 CONS, 
2TIHE ,D, BIOT. THE·rAs, DN I coEF 1 I coEF2, z ,zz. Bl,A 1 1FFFF. 
2FFFFF I FFFE'FF, DSQRT, Zl ,AA 'HX 

C DEFINE ALPHA OF PHI FUNCTION 
ALPHA(AA)=.026-(.225d-5)*AA 

C DEFINE CONDUCTIVITY CONS'rANTS FOR PYREX 
A=.6J5 
B=.00043 

• A1=1.00 
B1=B/A 
H=J2.18 
HX=JB.71 

C DEFINE INITIAL AND FINAL TE~WERATURES 
TI=L~OO. 0 
TA=78.0 
DTIHE==0.0250 

C RADIUS OF PYREX CYLINDER IN INCHES 
R=.261/2.0 
R=R/12.0 

C N=NUl1BER OF SPACEWISE DIVISIONS 
N=14 

C PROPER'I'IES OF THE UNKNOWN SPECIN.E.:N 
CON=0.400 
DEN=157-9 
CP=0.20 
ALFIE=CONI(DEN*CP ) 

C RADI US OF THE UNKN Oh'N SPECIHEN IN INCH~.S 
RX=.217/2.0 
RX=RX/12. 0 
DELTAX=RX/FLOAT(N) 
F NODX=AL..t?IE* DTif'tE/ ( 3600. *DEL1'AX**2) 
DELTAR=1 .. 0/FLOA·r (N) 
CONS= (D'I' I!viEIJ600.) I (R*DELTAB.) **2 
WRI'rE ( 3, 300) 

300 F ORT·I.AT ( • 1 • , 14X' ·rrY!E' 20X' I' ~;.;PsHATUB.E' I I/) 
TINE=0.000 
1:--J'"P 1=N+ 1 
DO 10 I = 1,NP1 
F(I) =TI+.5*B1*TI**2 
F'FFF=1.0+ 2.*B1*F (I) 
FFFF=DSQRT (FFFF) 
TT(I)=1.0000 
T(I)=(FFFF-Al)/B l 
T(I)=(T(I)-TA)/(TI-TA) 

10 DIFF =TT (1)-T(1) 
WRIT:2: (J, J 01) TINE , T·r ( 1 ) , T (1) , DI FF 

301 FORh A'T ( 10X,F10 .4, 5X, 3F18. 5) 
25 DO 99 E=1, 10 

DO 20 I=2, N 
D= I-1 



C1(I)=1 .. 0-.5/D 
20· C2 (I) =1. 0+. 5/D 

BIO·r=H*R/A 
BIOTX=HX-~RX/CON 
Z1=F (N+1) 
THETAS==ALPHA (Z1) ~-DI'IlVlE/ ( .3600. * (R~~DELTAR) -lh~2) 
DN=N 
FF'FFFF=F (N+1) 
COEF'1=DSQRT ( (A1/FFFFFF) ->f*2+2. *B1/FFFFFF) -Al/FI~'FFFF 
C0EF'2=1. 0/I'HETAS- ( 2. -1./DN)- (2 . .;{-BIOT/ (DN"~B1)) -l~COEF1 
FP ( N+ 1) =THETAS.;{- ( ( 2. -1. /DN) -.-:-p (N) +2. -l*-BI OT~-TA/DN+ 

2COEF2*F(N+1)) 
TTP (N+1) =Ff'IODX* ( (2. -1./DN) .,~TT (N) +TT (N+1) ir ( 1./FT·~ODX~ 

2(2.-1./DN)-2.*BIOTX/DN)) 
DO JO I=2,N 
ZZ=F(I) 
THETA(I)=CONS*ALPK~(ZZ) 
TTP (I) -FICODX* ( C 1 (I) ~f-TT (I -1) +C2 (I) * JI'T (I+ 1) + 

2(1./FMODX-2.)*TT(I)) 
JO FP(I)=T!iETA(I)*(C1(I)*F(I-1)+C2(I)*F(I+1)+ 

2F(I)*(1./THETA(I)-2.)) 
FP ( 1) =FP ( 2) 
TTP ( 1) ='I\(rp ( 2) 
DO 31 I=1,NP1 
F?FPF=FP(I) 
T (I)= ( DSQRT (A 1 *·*2+2. ~-B1->(·FFFFF) -A 1) /B1 
T ( I ) = ( T ( I ) -TA) I ('I' I-TA ) 
T·r (I) =1'TP (I) 
DIFF=TT(1)-T(1) 

31 F { I) =F P ( I) 
99 TINE=Tif·iE+DTIHE 

WRITE(3,301) TIEE,TT(1),T(1),DIFF 
IF (TII>:E-40. 0) 25,26, 26 

26 COXTINUE 
CALL EXIT 
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10. EXPERI¥iliNTAL DATA 

The temperature of the cooling medium was the same 

for all runs; 78°F. 

Three typical sets of data are presentedJ corresponding 

to the three different initial temperatures used. 
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RUN NO. 8 

Initial Temperature: 4ooOp 

TIME l:::.V l:::.T .6.t 
(sec.) (mv.) (oF) 

0 0 0 0 

1 0 0 0 

2 .045 1.5 .0047 

3 .110 3·7 .0115 

4 .175 6.0 .0187 

5 .2]0 8.0 .0249 

6 .275 9.6 .0298 

7 .J13 11.1 .OJ45 

8 .J45 12.3 .0382 

9 ·370 13-3 .0414 

10 ·392 14.2 .0442 

11 .410 15.0 .0467 

12 .425 15.7 .0488 

13 .4]8 16.) .0507 

14 .447 16.8 .0522 

15 .452 17.0 .0527 

16 .456 17 .J .0537 

17 .460 17.6 .0546 

18 .460 17.8 .0548 

19 .457 17.8 .0550 

20 .455 17.8 .0550 

21 .450 17.7 .0550 
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22 • 445 17.6 • 0546 . 

23 .4)9 17.5 .0544 

24 .431 17.2 .0535 

25 .423 17.0 .0529 

26 .415 16.8 .0522 

27 .406 16.5 .0513 

28 .J95 16.1 .0500 

29 .J85 15·7 .0488 

JO .J76 15.4 .0479 

35 .J24 13-5 .0420 

40 .273 11.6 .0361 
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RUN NO. 11 

Initial Temperature: J000p 

TIME ~v .6T ~t 
(sec.) (mv.) (OF) 

· o 0 0 0 

1 0 0 0 

2 .012 0.4 .0018 

3 .055 2.0 .0090 

4 .100 3·7 .0167 

5 .144 5-3 .0238 

6 .179 6.7 .0)01 

7 .208 7.8 .0351 

8 .2)1 8.7 .0)91 

9 .251 9-5 .0428 

10 .268 10.) .0464 

11 .282 10.9 .0491 

12 .294 11.4 .0514 

13 .J02 11.8 .0532 

14 .)10 12.1 -0534 

15 .)15 12.4 .0559 
16 .)18 12.6 .0568 

17 .)20 12.8 .0577 

18 .)22 12.9 .0581 

19 .)21 12.9 .0581 

20 .)17 12.9 .0581 

21 .)14 12.8 .0577 
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22 .J10 12.7 .0571 

23 .J05 12.5 .0562 

24 .JOO 12 .. 3 .0553 

25 .. 295 12.2 .0549 

26 .288 11.9 .0536 

27 .283 11.7 .0526 

28 .2?6 11.5 .0518 

29 .268 11.2 .0504 

JO .261 11.0 .0496 

35 .2J4 9.9 .044.5 

40 .198 8.5 .0382 



RUN NO. 18 

Initial Temperature: 200°F 

TII1E b.V b.T .6.t 
(sec.) (mv.) (Op) 

I 
-o 0 0 0 

1 0 0 0 

I 2 0 0 0 

3 .022 0.9 .0074 

4 .050 2.0 .0164 

5 .077 J.O .0246 

6 .097 J.8 .0312 

7 .115 4.6 .0377 

8 .131 5-J .043.5 

9 .145 5.8 .0476 

10 .155 6.2 .0509 

11 .165 6.7 .0550 

12 .172 ?.0 .0574 

1.3 .1?8 7-.3 .0598 

14 .184 7-5 .0615 

15 .187 ?.7 .0631 

16 .190 ?.8 .0640 

17 .192 7-9 ·f .0648 

18 .192 8.0 .0652 

19 .192 8.0 .06_54 

20 .191 8.0 .06_54 

21 , .190 8.0 .0653 



75 

22 .189 7-9 .0648 

23 .187 7-9 .0648 

24 .185 7.8 .0640 

25 .185 7.8 .0640 

26 .178 7-5 .0615 

27 .175 7.4 .0607 

28 .171 7.3 .0598 

29 .167 7-1 .0582 

30 .163 6.9 .0566 

35 .140 6.1 .0500 

40 .117 5.1 .0418 
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