View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

MISSOURI

S&l

Library and 1 .
Learning Resources Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2008

A time series classifier

Christopher Mark Gore

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

b Part of the Computer Sciences Commons
Department:

Recommended Citation
Gore, Christopher Mark, "A time series classifier" (2008). Masters Theses. 4609.
https://scholarsmine.mst.edu/masters_theses/4609

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://core.ac.uk/display/229273047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4609&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4609?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A TIME SERIES CLASSIFIER

by

CHRISTOPHER MARK GORE

A THESIS

Presented to the Faculty of the Graduate School of
MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2008

Approved by

Daniel R. Tauritz, Advisor
Ralph W. Wilkerson
Ray Luechtefeld

Copyright © 2008
Christopher Mark Gore
All Rights Reserved

ABSTRACT

A time series is a sequence of data measured at successaviatervals. Time series
analysis refers to all of the methods employed to underssaicti data, either with the
purpose of explaining the underlying system producing tit@ dr to try to predict future
data points in the time series. Time series analysis is eggk to many problems since
there are so many areas that require a more thorough unuirgjaof a time series or the
prediction of future values of the time series. The mostdgphistorical examples of time
series would be the weather and the financial markets bug #rermany more real-world
time series problems.

An evolutionary algorithm is a non-deterministic methodsefarching a solution
space, and modelled after biological evolutionary proegs#\ learning classifier system
(LCS) is a form of evolutionary algorithm that operates oroaydation of mapping rules.
We introduce the time series classifie@G a new type of LCS that allows for the modeling
and prediction of time series data, derived from Wilson’sSKC an LCS designed for use
with real-valued inputs. Our method works by modifying thekaup of the rules in the
LCS so that they are suitable for use on a time series. All efdperations (mutation,
crossover, etc.) applied to the rules also were changedttiemtraditional forms.

We tested TSC on real-world historical stock data. The systeuld always return
a profit, but not as much as the stock market itself is capdbietarning by the utilization
of an indexing fund. The stock market is a notoriously diffieystem to model effectively
and therefore any positive results at all are notable, anérmesing money in the long-term
is impressive in itself, often a difficult task for unskilledman traders.

Although this initial system appears incapable of prodgeimonetary returns better
than that of the stock market itself and may not be the evéstlation, it does perform
well enough to demonstrate that the system is capable afifepm a very complex envi-
ronment. The inherent complexity of the market makes theesysinusable for automated
trading, but this approach should prove to be useful in oees challenging real-world
time series problems.

ACKNOWLEDGMENTS

| would like to thank for all of their support and help my pate&harles and Carolyn

Gore, my wife Monica, and my advisor Daniel Tauritz.

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..o e

LIST OF ILLUSTRATIONS . .. e e

LIST OF TABLES

LIST OF ALGORITHMS . .. et

SECTION

1.

2.

3.

INTRODUGCTION . ..ottt e e e
0 T |V I/ 1
1.2. BACKGROUND ...t ettt e e e e e e
1.3. REINFORCEMENT LEARNING......coiiiiii e
1.3.1. Exploration versus Exploitationcccooiiiiiiiiiii.
1.3.2. The Whole Problemot e iie e
1.4. EVOLUTIONARY ALGORITHMS ... e
1.4.1. Learning Classifier Systemscccooiiiiiiiiiii i
L4 2. ZC S o
L4, 3. XS e
L4 4. XC SR i
TIME SERIES PREDICTIONttt i e e e e
2.1. ARIMA AND OTHER STATISTICAL METHODSccoeeeeets
2.2. ARTIFICIAL NEURAL NETWORKSo e
2.3. NON-LCS EVOLUTIONARY APPROACHESciiiiieeeee
2.4. LCS-BASED APPROACHES ..o i
2. 8. L. X C S i
A 3]
APPROACH AND DESIGN OF THE TIME SERIES CLASSIFIER
3.1. FUNDAMENTAL OPERATIONS ...t
3.1.1. TheSort OnAlgorithm..... ... e
3.1.2. TheSort OrderAlgorithm ..o e

3.1.3. Rasterized Linear Paths Through Arrays.....ooeeeunn...
3.1.3.1. Apurely horizontalpath....................cooiii

3.1.3.2. Apurelyvertical path.coooiiiiiaiiiii

3.1.3.3. Atraditional diagonal path.o

3.1.3.4. Non-equal diagonal paths.cccooeiiin...

3.1.3.5. The Raster Line Algorithm.cociii..

3. 1.4, LISt SICES ittt
3.2. DATAREPRESENTATION ...ttt e e e
3.3. RULE REPRESENTATION ...t e
34, MUTATION ot e e e e n
3.5. CROSSOVER. ...\ e e i e e
3.6. LEARNING PARAMETERSt e e
3.6.1. From XCS .. e
3.6.1.1. General Parameters...........covvvneesmmmmneeeneennn.

3.6.1.2. Recalculating Fitnesscoviiiceeceiiiii e,

3.6.1.3. Multi-Step SPeCifiCcovviiiiii e

3.6.1.4. GASPECITIC ...t

3.6.1.5. Rule Set SPeCIfiC.........uviiiiiiiiii e

3.6.2.
3.6.3.

From XC S R . . e e
NEW IN TSC . e e

3.7. TRIVIALLY MODIFIED ALGORITHMSo
3.8. THEMATCH?PREDICATE e e
3.9. THEGENERATE COVERING CLASSIFIBRGORITHM................
3.10.THEMORE GENERALPREDICATE ...

4. EXPERIME

NTAL RESULTS ..o e e

4.1. THE NATURE OF AREALISTIC TIME SERIES.................ooo
4.2. THE SIMPLISTIC INCREASING/DECREASING TESTS.....ccu......
4.3. THE STOCK MARKET ... e e

4.3.1.
4.3.2.
4.3.3.
4.3.4.
4.3.5.

5. CONCLUSI

Reward Methods....... ... e
GAThresholds.o e
Crossover Probabilities. ... e
Mutation Probabilities.............coiiiiaa
Exploration Probabilities............c.coooiiie i

ONS AND FINAL RESULTS ... o

6. FUTURE WORK e i e

Vi

Vil

LIST OF ILLUSTRATIONS

Figure Page

1.1 ZCS'SDASIC SIUCIUIE ...ttt et i et e e e eens 6
1.2 XCS'ShasiC StrUCIUIE ...ttt e e et eeens 9
1.3 XCSR'sinterval rules.cooiiiiii e e 11
4.1 Increasing/decreasing method 4 sampleplot. ...l 34

4.2 Increasing/decreasing method 4 sample performance...................... 35

Table
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
51

viii

LIST OF TABLES

Page
Initial parameters forthe TSC.t e 36
TSCresultsforrewardmethagl. ... 73
TSCresultsforrewardmetheg. ... 73
TSC results forreward meth®dd. ... 38
TSC results forreward meth@a. ...t 38
TSC results for reward metholgpt. ... 39
TSC results for reward methOgesscooovvveii 40
TSC results for a GA threshold of 35. ... 40
TSC results for a GA threshold of 45. ... 41
TSC results for a GA threshold of 50.o 41
TSCresUltS Ok = 0.3, ..o e e 42
TSCresults fOoR = 0.5, ..o 42
TSC resUtS fOR = 0.7. ..o e 43
TSCresUlts fok = 0.9, ... e 43
TSCresults fopr =0.06.oouiiii e e 44
TSCresultsfopr =0.08. ..o 44
TSCresults for = 0.10. ... e 45
TSCresults fopr = 0.15. ... i e 45
TSCresults fopr =0.20.oiiii e 45
TSC results foPeypir = 0.1.....oooii 46
TSC results foPexpir = 0.15. ... 46
TSC results foPeypir = 0.3, 47
TSC results foPeypir = 0.4.....ooi 47
TSC Final Parameters e 48

LIST OF ALGORITHMS

Algorithm Page

1.1 The eVolULIONary PrOCESS. ...ttt e e e e es 4
. SOOIt DN, e 17
TS T o] 0 = 17
3.3 RASIEI NG, o 20
3.4 LISt SHCE. oot 21
3.5 Generating covering classifiers.c.coovviiiiiii i 31

1. INTRODUCTION

This thesis considers applying learning classifier systgr@$’s) to the prediction
of time series data. A time series as used here is a sequedatadfuccessively measured
through time. Time series analysis encompasses many neetihaidattempt to understand
such time series, aimed at either understanding the undgrigeory present in the data
points or to make real-world predictions. Time series priain is the use of a model to
predict future events based on known past events: to priedice data points before they
are measured. One standard example is the opening pricenaf@ af stock based on its

past performance.

1.1. MOTIVATION

No LCS to date has been designed for time series data buatgtey were generally
limited to Markov systems lacking any memory, which we vieves a major limitation of
LCS’s. LCS’s are designed specifically with the concept afl\dang an effective rule set
for a specified problem, which is specifically the sort of dalg that would be desirable
for time series analysis and prediction: generating usefalsets.

An LCS is an evolutionary algorithm that operates on a pdmriaomprised of rules
referred to as the rule set: this rule set is used to attemgagsify a situation. The first
LCS was created by Holland [1] shortly after he created gemdégorithms (GAs) [2], one
of the classical types of evolutionary algorithms. Hollarfdst LCS originally used a GA
as the evolutionary device. Our system as described heveuats a GA for evolution,
although it has been modified from the original form.

Holland’s original LCS was quite complicated and failed toguce quality results
for most real-world problems. Because of this, the study©$ls was somewhat inactive
until Wilson introduced ZCS [3], a re-imagining of Hollasdriginal LCS distilled to its
most basic elements. Wilson’s ZCS was capable of produadogable results on certain

problems and was simple enough to easily understand, gairating LCS research.

A few years after introducing ZCS, Wilson modified it intrasiug XCS [4], which is
currently one of the best performing and most popular LC8gypVilson’s XCS was based
on ZCS but with several important modifications mostly aimmednproving the accuracy
of the rules produced and also for a more full coverage of thblpm space by the rules. A
significant portion of the LCS’s being worked on today are ifications or enhancements
of Wilson’s XCS.

One such enhancement of XCS is known as XCSR [5], which wasdaigeloped by
Wilson. XCSR improves upon XCS by allowing it to operate wi#al-valued ranges for
input instead of on the traditional ternary alphabet so comio LCS'’s, consisting dfue,

false and a covering symbol (usually represented as-#.or

1.2. BACKGROUND

The system presented here is derived from Wilson’s XCSR¢hwisi an extension of
Wilson’s XCS, which in turn was derived from Wilson’s ZCS. 8CXCS, XCSR, and this
system are all learning classifier systems (LCS'’s), a crassaf the fields of evolutionary
computation (EC) and reinforcement learning (RL), both bfala are quite large fields on

their own. We will describe in this section the previous wottkis system was built upon.

1.3. REINFORCEMENT LEARNING

Reinforcement learning [6] is the process of learning homép situations to actions
to maximize a numerical reward. The learning system is ridtwdich actions to take, as
in most forms of machine learning, but instead must discedrech actions yield the most
reward by exploration. In the most interesting and challeggases, actions may affect
not only the immediate reward but also the next situation #mwdugh that, all subsequent

rewards. The two primary distinguishing characteristiceemforcement learning are:
1. trial-and-error search and
2. delayed reward.

Reinforcement learning is defined not by characterizingnieg methods, but by charac-
terizing a learning problem. We consider any method thate$ suited to solving that

problem to be a reinforcement learning method. The ideadspdure the most important

aspects of the problem facing the learning agent intergetith its environment to achieve

its goal. Such an agent must be able to:

1. perceive the state of the environment,
2. act on the environment, and

3. have a goal or goals relating to the state of the envirobmen

Tersely put:sensationaction, andgoal.

1.3.1. Exploration versus Exploitation. A primary challenge is the trade-off
between exploration and exploitation. A reinforcementriéay agent will prefer actions
that it has tried in the past and found to be effective in ponalyireward in order to reliably
obtain more reward. But to discover such actions, it hag/tadtions that it has not selected
before. The agent has &xploit existing knowledge to obtain reward, but it also must
exploreto make better action selections in the future. Neither@gion nor exploitation
can be pursued exclusively without failure. The agent mysatvariety of actions and
progressively favor those that appear to be best. On a stichask, each action must be
tried many times to gain a reliable estimate of its expectedrd.

1.3.2. The Whole Problem. Reinforcement learning explicitly considers the
whole problem of a goal-directed agent interacting with aneutain environment, start-
ing with a complete, interactive, goal-seeking agent,eadtof considering subproblems
without addressing how they might fit into a larger picturell l®inforcement learning
agents have explicit goals, can sense aspects of theioenvents, and can choose actions
to influence their environments. From the beginning, thenagperates with significant
uncertainty about its environment. For learning reseavahdke progress, important sub-
problems have to be isolated and studied, but they shouldlygreblems that play clear
roles in complete, interactive, goal-seeking agents, @valhthe details of the complete

agent cannot yet be filled in.

1.4. EVOLUTIONARY ALGORITHMS

In artificial intelligence (Al), evolutionary algorithm$&QA's) are a style of generic
population-based meta-heuristic optimization algorghmhose processes are inspired by
those of natural biological evolution. The primary meclsam employed in EA's to evolve

a population of possible solutions towards an optimal oee ar

1. parent selection based on fitness,

2. recombination,

3. mutation, and

4. and survivor selection based on fitness.

Evolution serves as a powerful metaphor and demonstrages greativity in both the nat-
ural world and in the world of computer science.

In normal biological evolution the environment that the plagpion exists in exerts
various pressures on the individuals in the population deé¢rmines the likelihood that
any particular individual will manage to survive long enaug reproduce, and it is through
this process that the fitness of an individual in the poporethust be determined: relative
to its environment. In an EA, the environment relates to ttoblem we wish to solve, the
individuals in the population encode potential solutianthat problem, and their fitness is
their quality as a solution to the problem. By mimicking thethods of natural evolution
in this manner we can often arrive at good solutions. Thecbagblutionary process is

outlined in Algorithm 1.1.

1. Initialize the population, either with randomly-genechte seeded candidate solutions
or both.
2. Evaluate the fitness of each member of the population.

3. repeat

4. Select members of the population to act as parents. Thipicaljy related to the
relative fitness of the parents in some way.

5. Recombine the genetic material of the parents, produciisghg to be added o
the population.

6. Mutate some or all of the newly-created offspring.

7. Evaluate the fitness of the offspring.

8. Select survivors from the current population or a subsettife often only the

newly-created offspring, to survive to the next generation
9. until some specified termination condition is satisfied.

Algorithm 1.1. The evolutionary process.

1.4.1. Learning Classifier Systems. A learning classifier system is a type of EA
in which a description of a current situation is used in aemafit to map that description to
some classification or action. This is achieved through kitad evolutionary processes,
where the population being evolved consists of varioussfuder entire population forms
a rule set, and we apply concepts from Darwinism to our imftigl rules. This is known
in learning classifiers as thdichigan approacl{7]. The other primary method employed,
where each individual is an entire solution, and thereforghale rule set, is known as
the Pittsburgh approachWe use a modification of XCSR here, which uses the Michigan
approach, and therefore so do we.

1.4.2. ZCS. ZCS is azeroth level classifier systeariginally proposed in [3].
ZCS preserves most of the functionality of traditional LESut it is a very simplified
version, which aids in the understanding of the classifieritmactions. This was a very
useful contribution, because many of the problems with Is®8&fore then were their overly
complex and detailed nature. A good short summary of ZCS edound in [7], and this
summary is based primarily on that. The basic structure & Byraphically illustrated in
Figure 1.1.

In ZCS there is no message list, a much-welcomed simpli@inati the traditional
LCS. This comes with a cost: there is no explicit method fansmitting information
between cycles without the message list. This makes the&aonteentirely dependent on
the interface of the system with its environment, and thesm&s a Markov process. This
is most definitely an invalid assumption for real-world gddmarkets and for other time-
series data.

Each ruler is of the formr = (c, a,s) where:

 cis the condition matched by the ruteand is comprised of elements from some
alphabet, typically 0, 1,#}, where # is the matching symbol, matching both 0 and 1;

e ais the action that the rulerecommends;

» andsis the real-valued strength measurement of themutec R, which determines

how much of a vote rule has in selecting the action to pursue.

In each time cyclé the match seM; is found, a subset of the populatiad; C P,

with P being the entire population of rules, the rule set. The memattime cycld of

the problem's environment

genetic algorithm

'
ZCS H
credit allocation

action set

match set

rule set
(population)

Figure 1.1. ZCS'’s basic structure

the match sell; can be divided into disjoint subsets based on the actionrgymmend.

With a finite set of possible actions

’q:{a07a17"'7a\}4|} (l)

and4’ C 4 where
a' = {ap,ay,... ’afﬂ’l} (2)

comprises all of the actions represented in the matchMsetFor any specific actioa
represented in the match 9dt we can form the set of all members of the match set that
recommend actiog!, represented a\dt@/ C M with

Mt@{:{r:reMtAar:a{}. 3)

The fitness of an actiod € 4’ is then

fitnesgaf) = 5 s, (4)

vreM

/

4

the sum of the fitness of all of the ruleshat recommend that particular action present in
M o The action to take is selected in a fitness-proportionathode choosing the action
a’ with the greatest fithess. Nl; = 0 then covering must take place; a random rule that
matches the current situation is created by initially sgttito exactly the current situation
and then replacing a few elementsaét random with the # symbol, and that suggests a
randomly-selected action.

The credit assignment scheme used by ZCS is somewhat inl@wad is referred to
as animplicit bucket brigade It attempts to reward sequences which lead to reward from
the environment and which are short. First, the rules in tpufationP but excluded from

the match se; are originally unchanged:

S =SVr ¢ M. %)

Next, the rules in the match sk% but excluded from the action st (those advocating

weaker actions than the one chosen) have their strengthsaedy a factor € [0,1):

§ =TSV € Mi\ A (6)

Then the strength of the rules in the current actionsétave a fractior3 € [0,1) of their
strengths transferred to the members of the previous asgti 1, reduced by a factor
y<[0,1):

g =(1-B)sVreA, (7)
§ =g+ 2R ey ®

Finally, any feedback from the environment is reduced ilyand distributed to the rules

in the current action se;:

g = S’/—I—WW e A. (9)

A mostly standard GA is run on the population (the rule setigokcally, with parent
selection directly related te and death selection inversely relatedThe new rules are

usually assigned the mean of their parents’ strength liyitia

1.4.3. XCS. ZCS has many positive features, especially its simplicitg ¢he
benefits derived from its cooperative fitness sharing, larethre some notable drawbacks,
primarily that it usually will not evolve a complete mappiotthe environmental states and
allowable actions to the possible rewards, often quicklgae local optima, and breeds
across niches, as noted in [4]. These drawbacks led Wilstvedwily modify ZCS into
what is called XCS [4]. In XCS, several of the deficiencies DZare addressed. The
basic structure of XCS is graphically illustrated in Figar2.

In ZCS, the GA is run on the entire populationpanmicticapproach [7, p. 155].
This is ineffective for most problems, so in XCS the GA was ouly in the current match
set at the time step that the GA is run in the initial versioiX@fS, and only in the current
action set at the time step that the GA is run in the later mésiaf XCS. We run the GA on
the current action set in this work. This allows for a moreusate rule set to be evolved,
since each niche is best viewed as its own sub-problem.

In ZCS, a rule is allowed to survive by the GA on the basis ofpiiyoff. This
is problematic, since it biases against rules early in arcbfevents that are eventually
profitable, and because rules that may be the most appmpoiatn event might have a
relatively low payoff. This caused ZCS to often fail to ceeatcomplete mapping and fail
to evolve accurate generalizations. This is remedied in ¥ E&reating a fithess measure
for the rules, separate from the predicted payoff, used &y3A.

Each ruler is now of the more complex form

r=(c,a,p,¢,Fexptsasn), (20)

where:

 cis the condition matched by the rulecomprised of elements from some alphabet

such ag0,1,#}, where # is the matching symbol, matching both 0 and 1.

e ais the action that the rulerecommends.

p is the predicted payoff.

* ¢is an estimate of the prediction error.

F is the fitness used by the GA. Itis vital that the fithess uselth®y:A is a measure

of theaccuracyof the rule, and not a measure of timagnitudeof the rule, where the

the problem's environment

genetic algorithm

XCS
credit allocation

action set
(population)

match set

rule set

Figure 1.2. XCS’s basic structure

magnitude of a rule is how active that rule is in relation te tbst of the rules in the
rule set, since a rule with greater magnitude but lower ayucan be a detriment
to the system. For example, a rule that always matched eveation (all #'s in

the condition) but only accurately predicted 51% of theatittns would have high

magnitude but low accuracy.

expis the experience of the rule, a count of the number of timasesihis classifier's

creation that it has belonged to the action set.

tsis a time stamp of the last occurrence of a call to the GA in @goaset that this

classifier was a part of, as the generational number.
asis an estimate of the average action set size this class#gbélonged to.

n is the numerosity of this macro-classifier. This is how mamagitional micro-
classifiers this macro-classifier represents. Groups afegntdentical normal clas-
sifiers (the micro-classifiers) are subsumed into macrssdiars instead of being al-

lowed to exist separately within the rule set; this servdslg@s a computational

10

time-saver. Therefore the only difference between a nowtesifier (a micro-
classifier) and a macro-classifier is the presence of the rasityg which is a count

of how many micro-classifiers that specific macro-classigpresents.

1.4.4. XCSR. Wilson extended his concept of XCS with XCSR in [5]. Classifie
systems had typically taken strings from some small alphalfien binary, as input until
then even though many real-world problems have input froerethvironment of the form
R" for some orden € Z,n > 0. Wilson’s XCSR allows XCS to operate on just such an
input. XCSR is identical to normal XCS with the exceptionlod input interface, the nature
of the predicates, the mutation operator, and the detadswdring. The basic structure of
an XCSR rule is graphically illustrated in Figure 1.3.

Originally the predicates in XCSR were intervals of the form

interval = {center,spreaq}, (11)

such that an environmental inpxgtwas matched binterval if and only if

center —spread < x; < center+ spreag, (22)

but this was discovered to induce a bias [8], so the reprasentwas eventually changed
to be

interval = {lower,,uppek}, (13)

where nowy; is matched bynterval if and only if

lower, < X < uppes. (14)

We use thelower,upper} form in this work.

11

XCSR rule region

@)

matched
point

unmatched
point

Figure 1.3. XCSR’s interval rules

Crossover is simple two-point crossover, but on the seqienc

{centep,spreaq,...} (15)

or

{lowery,uppep,...} (16)

depending on the predicate type, in both cases therefmwiaty the crossover points to
fall within a single allele.

In the original XCSR, mutation was performed by adding a smaadom quantity
from the rangg—0.1,0.1] to each allele, and all problems were to have their inputstal
to [0,1]. The variation of XCSR used here is capable of scaling oetefd0.0,1.0], so
instead mutation is performed as the addition or subtracifoa small percentage of the

overall range as seen so far.

12

2. TIME SERIES PREDICTION

2.1. ARIMA AND OTHER STATISTICAL METHODS

ARIMA, the autoregressive integrated moving averaigea common and very power-
ful statistical method often used in econometric models¢ha help forecast and estimate
what is going to happen in the future. The ARIMA time seriealgsis uses lags and shifts
in the historical data to uncover patterns (e.g., movingayes, seasonality) and predict
the future [9]. The ARIMA model was first developed in the |&850s but was not sys-
temized until the work of Box and Jenkins in 1976 [10]. ARIMArcbe more complex to
use than other statistical forecasting techniques, atthethen implemented properly can
be quite powerful and flexible. ARIMA is a method for determoptwo things:

1. how much of the past should be used to predict the next wdtsem (length of
weights) and

2. the values of the weights.

Three common models of time series data aneoregressivé AR) models, then-
tegrated(l) models, and thenoving averagédMA) models. These three classes depend
linearly on previous data points and are combined in theragtessive integrated moving
average (ARIMA) model. A model of this form is referred to asARIMA(p,d,q) model
wherep,d,q € N*. The order of the autoregressive parpjshe order of the integrated part
is d, and the order of the moving average par.issiven a time series of dadq (wheret
is integer valued and thg are real numbers) then &RIMA(p,d,q) model is given by

(1_imu> (1—L)9% = <1+_ie.u> & (17)

wherelL is the lag operatokp are the parameters of the autoregressive part of the m@del,
are the parameters of the moving average pha N* (if instead we havel = 0 then this
model is equivalent to an ARMA model), and theare error terms. The error termsare

generally assumed to be independent and identically loiged variables sampled from a

13

normal distribution with zero meais; ~ N(0, 02) whereo? is the variance. ARIMA mod-
els are commonly used for predicting and analyzing simphee series. They have been
used on the stock market, but are generally viewed only asdinator, not a predictive
tool, due to the complexity of the market and because of treed for accurate knowledge
about the time series itself. It is for similar reasons thashtraditional statistical methods
fail to be of any real use in this task.

For example

y(t) = y(t ; 3) + y(t ; 2) + Y(t; 1) (18)

is a potential ARIMA model; another potential ARIMA model is

o= X2, M2 v 19

The correct ARIMA model requires identification of the righimber of lags and the coef-
ficients that should be used. ARIMA model identification ugetregressions to identify
the underling model. Care must be taken to robustly idemstifgt estimate parameters as

outliers (pulses, level shifts, local time trends) can \krieavoc.

2.2. ARTIFICIAL NEURAL NETWORKS

An artificial neural network is a graph of connected proagegsiements called neu-
rons which can exhibit complex global behavior as deterchimethe connections between
the neurons and their parameters. This technique was alliginspired by the examina-
tion of the central nervous systems of living creatures, tmogably that of humans, the
most significant information processing system found iureatWhile a neural network is
not adaptive itself, most practical examples use algostdesigned to alter the weights of
the connections in the network to produce a desired signal fldhese networks are also
similar to their biological counterparts in that their ftions are performed collectively in
parallel by the entire network, with no clear delineatiosob-tasks to which various units
are assigned. Modern artificial neural networks often abanduch of this for a more
practical approach based on statistics and signal progefkl]. There have been many
attempts to predict financial time series with artificial redunetworks [12, 13], and there
have even been somewhat successful results using gengtrdtams to evolve the weights

for neural networks [14, 15]. However, there is one main dr@vk that comes with the

14

use of artificial neural networks. There is no easy way tostege the neural network that
has been produced into an understandable set of rulesluiagdts innate knowledge: the
information is effectively trapped in the weights on the mes. Extracting useful rules

from ANN’s is a challenging field unto itself [16].

2.3. NON-LCS EVOLUTIONARY APPROACHES

There have been attempts at using evolutionary approathestban LCS'’s to pre-
dict and analyze markets and other time series, ranging fr@rsimplistic to the very
complex. In [17], traditional genetic algorithms were usedptimize the exact numbers
to be used in traditional technical analysis. In [18], ttexiial genetic algorithms were
again used, but this time in optimizing the rule sets for ¢astetk-style analysis; this out-
performed a random trader. In [19], a simplified variant an¢bncept of genetic program-
ming, coded in C++, was used to develop trading rules for twigks, and they managed
to return better results than both the market and a naivertratbwever, the innate chal-
lenges of the real market have lead many researchers td tesonulated markets, whose
simplicity can make fundamental discoveries about econdh@ory sometimes less chal-

lenging to achieve; a small survey of these sorts of marketse found in [20].

2.4. LCS-BASED APPROACHES

There have been a few attempts at using LCS’s to analyze adicpfinancial mar-
kets. We will highlight a few derived from XCS here, since #ystem presented here is
also derived from XCS.

2.4.1. XCS. A predictive system lacking a memory component is almost-com
pletely useless in attempting to model a highly interdepahdonlinear multivariate time
series such as the stock market with any hope of utility; nbadess, it has been attempted.
One of the more notable attempts at this is described in jAMhich an XCS was used
to predict the correct trading action for a stock on conseeutading days. Later work
by Schulenburg and Ross in [22] does show some promise: tileeuhe opinions of a
large host of simulated traders in order to make a decisidmns Would yield in the gen-
eral vicinity of 9%p.a. returns: not spectacular or apjleao real-world trading, but

respectable.

15

2.4.2. XCSF. In [23] Wilson outlined an extension to XCS for the approxiioa

of functions, called XCSF, which attempts to learn a functd the formy = f(x), where

y € R, |[X| = n, andx € Zvx € x. A classifier consists af interval predicates of the form
inti = (lj,u;) and matches an inputif and only if l; < x < u;Vi € N. Classical two-point
crossover is employed, but where crossover may occur indest the alleles or at the ends
of the prediction, although the action is not involved in tnessover process. A covering
classifier is generated for a situatigty forming thel; through subtracting frong; some
random integer fron0,rg|, and formingu; by adding some other random integer from
[0, 0] to x;, both limited to a maximum range of possible input, wheyes a parameter. A
ruler! can subsume a rul@ if and only if I1 <12 Au? < ulvi. While this could possibly
be used to predict some very simplistic time series datatimmapproximation often does
not perform very well in real-world problems, as is well-kyroin reinforcement learning
literature [24, 25], and this drawback of XCSF (and similpp@aches) is explicitly ac-
knowledged in [26]. This would be most definitely true of ateys as complex as the stock

market, which cannot be easily and usefully mapped to anynoohial.

16

3. APPROACH AND DESIGN OF THE TIME SERIES CLASSIFIER

3.1. FUNDAMENTAL OPERATIONS

Our representation of a time series and our approach toekelutionary methods
requires us to be capable of generating multi-dimensi@astér paths, where a raster path
is a one-dimensional path through a raster space. This isasave can run raster paths
through a raster space of data, a discrete sampling of datast&r space is one that is
representable b¥, x Zy x --- x Z5. In other words, all of the dimensions are along sets
of finite integers instead of the real numbers. A common exanspraster imagery: a
two-dimensional bitmap of sizen x n can be viewed as a complete representation of the
two-dimensional raster space Bf, x Z,. A multidimensional matrix can therefore fully
represent these spaces, instead of merely being sampfitigsreal space, although we are
using these raster spaces for sampling of real data in ovoagip. We form a useful sample
of the data for further analysis and classification by TSC éyagating paths through the
data and it is these raster paths that the TSC actually fiksstie situations with, not with
the entire data set which is generally very large. We will reastline the basic operations
we use to generate raster lines.

3.1.1. TheSort On Algorithm. This algorithm sorts a sequengaccording to the

ordering of another sequenteand is outlined in Algorithm 3.1.

17

Input: A sequenceto be sorted.
Input: A sequencé upon which to sors with.
Input: A comparatorc to sort with, typically> or <.
Require: |s|=n<|t|.
1. Construct a sequencecontaining pairs of the forr; = (s,ti) as elementgu| = n,

U= (Up,...,Un-1) = ((So,t0), -, (Sr-1,tn-1)). (20)
2. Sortu using the second elements as the key, using any normalgafgorithm, giving
U/ = ((%Jé)?'“?(ilfl?tr/]fl)) (21)

wheret) <... <t/ , if we are sorting in ascending order (with thkecomparator).
3. return s = (s,...,5, 1)

Algorithm 3.1. Sort on.

3.1.2. TheSort Order Algorithm. This algorithm returns the re-ordered indices

of a sorted sequence, and is outlined in Algorithm 3.2. FangXe, ift = {4,5,3,9} then
the sorted ordering dfwould be{3,1,0,2} sincet; > t; > tg > t.

Input: A sequence.
Input: A comparatorc, usually< or >.
1. letn — |t|.
2. Generat&Z, = (0,...,n—1).
3. return The result of thesort onalgorithm from 83.1 ors = Z, with t and the com
paratorc.

Algorithm 3.2. Sort order.

3.1.3. Rasterized Linear Paths Through Arrays. Given an arrayA of rankr and
dimensiongdy x --- x dr_1, we wish to pull a one-dimensional list or vectoof values
from the array, starting at positiok, ... s, and finishing at positiods, ¢, ,, following a

linear path through the array.

18

As an example consider the<6 array:

a b cd e f

h i j k |
AZQ J

mnopqr

s t uv w X

3.1.3.1. A purely horizontal path. The linear path fromAgo to Ags would be

composed of the values

(Aoo,Ao1,A02,A03,A04,A05)
and would be
(a,b,c,d,e f)
as illustrated by
a b* ¢ dr & f*
h i | k |
A g J
m n o p q r
s t u v w X

3.1.3.2. A purely vertical path. The linear path fromf\go to Az would be com-
posed of the values
(A00,A10,A20,A30)

and would be
<a7 g? m7 S>

as illustrated by
c d e f

b

hi j k |
nopagqg:r
t uv w X

3* (Q* ng

K

3.1.3.3. Atraditional diagonal path. The linear path fronf\go to Az3 would be
composed of the values
(A00,A11,A22,A33)

19

and would be

(a,h,0,Vv)
as illustrated by
a b ¢ d e f
h* i j k |
A g J
m n o p qr
s t u Vv w X

3.1.3.4. Non-equal diagonal paths. The confusing part arises when we are deal-
ing with diagonal paths with unequal steps. Consider thealippath fromAgo to Azs. We
end up with a stair-stepping path through the array:

(A007 Al 1, A2 1 A327 A427 A53)

and would be
(a,h,i, p,q,x)

as illustrated by

aa b c d e f
h i*] k |
A g J
m n o p" g r
s t u v wXx

3.1.3.5. The Raster Line Algorithm. This is the algorithm used to determine a
linear raster path, and is outlined in Algorithm 3.3. It mgisi a list of points that follow
the linear path from the starting poiptto the ending poing. This is derived from the

algorithm for raster conversion of a 3D line as describe@ifi.[This should work for any
dimensionality.

20

Input: a starting poinp and a final poing, both represented as lists.
Require: |p| =g/ A pi € NVp; € pAG € NVq; € q.

=

25.
26.
27.
28.

if p=qthen // This is a simple degenerate case.
return {p}, a list containing only one elemerq,

. let n — |p| = |q| be the dimensionality.

2
3
4. let o — {|p0—(]0‘,...,|pn_1—qn_1‘}, ‘5| =nN.
5.
6
7
8
9

let o be the sorted ordering @ by > from thesort orderalgorithm in 83.2.

. let p andq’ be p andq respectively, sorted according@o
. if py < o then // We want the starting point to have the lower initial dimiens

Swapp’ with d'.

letd — {|ph—a|,- -, [Ph1— sl }-
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

lets«— (sgn(pp—ap) »---.SAN(P,_1 —d_1)), Where sgn is the signum function.
letd — {di,...,dr_1},|d| = n—1, the deciders, whemd «— 2§/ — dyVd; € d.
leta<— {ai,...,an-1}, |8 =n—1, the if-incrementsy — 25'Va € a.
letb «— {bs,...,bh_1},|b| = n—1, the else-incrementk; — 2 (6,’ — 5(’)) Vb € b.
letr — {p'}, initializing the result of the algorithm, an ordered li${pmints.
let z+ p/, initializing the current point.
while zy < g do // After this, we have = {p/,...,d }.

Incrementz by 1.

for all di € d do

if di < Othen
increment; by &.
else // In this case we haveg & 0.
increment; by b; andz by s.

Push a duplicate afto the back of, so that now = {p/,...,z}.
Reorder the coordinate of the pointsriaccording to the original coordinate order
formingr’ by applying the inverse af, which iso.
if we originally swapped the start and end potiisn

return the reverse of’.
else

return r’.

Algorithm 3.3. Raster line.

ng

3.1.4. List Slices. This function returns a slice from a one-dimensional lisgtt

is, a modular subset of the list, and is outlined in AlgoritBr. For example, a 2-slice of
the list{1,2,3,4,5,6,7,8,9} would be the lis{1,3,5,7,9}.

21

Input: A list of elementd = {lo,l1,..., 1)}
Input: A positive rational slice size.
1. Initialize the resulting list < nil = {}, initially empty.
2. Initialize the moving index < 0.
3. whilei < |l| do
4. if i € Z then
5 Appendl; to the end of.
6 i «—i+s
7. return r.

Algorithm 3.4. List slice.

3.2. DATA REPRESENTATION

This LCS is intended to operate on a multivariate time seri€se data consists
of a single temporal dimension, several positional dimamsi and a single dimension of
type. This is represented as a linked list consisting of ichuitensional arrays, where each
element in the matrices is a structure. Each array of strestepresents a single time step;
the position in the list is the position in time. The fields bétstructures are independent
data. Thus, any specific value in the multivariate time sec@uld be uniquely referenced

in the form:
{t7X07-~-,Xn—17§0} (22)

wheret is the temporal positionxg,...,x,_1 are the dimensional positions (fardimen-
sions), andp is the field selector. It must hold thak; € N*. The temporal positionh
specifies a timéyrrent — t, @and it must also hold thate Np.

This representation can be simplified: the entries can ligesglements instead of
full structures, and the arrays themselves can even beeddasingle elements, reducing
to a traditional one-dimensional time series, all usingstli@e code. Thisis whatis done in
the examples here, and all tests were performed on one-diareah time series, although
each entry was a structure containing multiple related.dB&ta our example of market
analysist is the number of days from present time, and the fields are fleaing price,
closing price, high price, low price, adjusted closing priand the volume of the trades for

that particular stock at that particular time.

22

3.3. RULE REPRESENTATION
The representation of a single rule is a collection of pratgis; each predicate must
match the current situation for the rule to match the situatiA single predicate consists

of an initial and a final position, each of the form

{t,x0,.. ., %01}, (23)

a field selectokp, an operatorw, and a range pair consisting of a lower and upper bound
[I,u]l. The field selector is to be a lexical closure taking only one argument, which is
the structure at the positioft, X, ...,xn—1}. If the structure is not a structure, but rather
a single element, the only value that would usually makeesérsp would be an identity
function: simple transformative functions would be acebpg otherwise. Any function
that operates in a uniform manner, applied to a single entvy)d be an acceptabtg The
operatorw is also a lexical closure, and is intended for classificaporposes; altv's must
operate over a one-dimensional vector of data.

If we take the data along the straight line segment from th@ipoint A to the final

pointB, forming a vectod, we can then fornd’ by applyingg to each element id:
d = ¢@(d)Vd €d. (24)
The predicate is said to match the data if and only if
| <w(d) <u (25)

When all of the predicates of the rule match, then the ruleches; the rule then recom-

mends a particular classification or action.

3.4. MUTATION
The approach to mutation of the paths is to restrict the naurtatf the line segment
to the same line, only allowing the end points to move up orm@ng that line. In

this method, the alteration of the line segment is minor, thedefore there is very little

23

change in the actual information held by the path. This isctidhe sort of effect we
wish in mutation: small changes. By only allowing for smalieutations we do not have
the information stored in the rule itself destroyed comgdietbut instead it is just slightly

modified.

®
®
[]

The lower and upper values of the range are altered, butediyy a maximum mutation
parameter, and also limited to ensure that the currenttgtuemaintains its current classi-

fication under the classifier rule.

3.5. CROSSOVER

We use a marginally-modified form of one-point crossover.ngder viewing the
environment condition of a rule as consisting of severatijpages, each possessing an
initial point A, a final pointB, a lower bound, an upper bound, a fieldg and an operation

w. We could choose to view this as a list of the form

{A07 BO7 |07 Uo, @, W, - - - 7Ap—17 Bp—17 I p—1, Up—17 %—17 wp—l} (26)

wherep is the number of predicates contained in the rule. Apply poiet crossover on

two lists of this form, but insure that both lists break thegicates in the same way.

3.6. LEARNING PARAMETERS

There are numerous parameters used in XCS, a few added by X&6Ra few
more still added here. Choosing their values wisely can bgiagoortant in some problem
domains unfortunately. This subsection gives brief desiomns of the important parameters
and specifies sensible default values for typical probleinis. important that any results
described should also list the parameter settings used.

3.6.1. From XCS. These are the parameters that are present in XCS. As such,
they are also presentin XCSR and TSC.

3.6.1.1. General Parameters These are parameters related to the general opera-
tion of XCS.

Maximum total numerosity. This isN in [28]. It specifies the maximum size of the pop-

ulation in micro-classifiers, that is, the maximum sum of thenerosities of the

24

classifiers. This should be a positive integer, normalhhmhundreds or at most the

thousands.

Learning rate. Thisis in [28]. It is used as the learning rate for the predicted ffayo
prediction error estimate, GA fitness, and action set sitimate for the classifiers.
This should be in the rang@®.1,0.2] for most problems, and always in the range
[0,1).

Possible actions.This is 4, the set of all of the possible actions that the classifiezsul

may take for values .

3.6.1.2. Recalculating Fitness These parameters are used in XCS while recalcu-

lating the fitness of the rules in the population.

Multiplier parameter. This isa in [28]. This is the multiplier used in recalculating the
fitness of the classifiers in thgdate fithesalgorithm from 83.7. It is usually around
0.1.

Equal error threshold. This is&g in [28]. This is the threshold used in recalculating the
fithess of the classifiers in thgpdate fitnesalgorithm from 83.7 to decide if the

errors are essentially the same. It is usually around 1%egb tithe reward.

Power parameter. This isv in [28]. This is the exponent used in recalculating the fisnes

of the classifiers in thapdate fithesalgorithm from 83.7. It is typically set to 5.

3.6.1.3. Multi-Step Specific These are parameters that are only used in multi-step

problems.

Discount factor. This isy in [28]. It is the discount factor used in multi-step probem

when updating the classifier predictions. It is typicallgwand 0.71.
3.6.1.4. GA Specific These parameters are only used by the GA within XCS.

GA Threshold. This is 6ga in [28]. The GA is run whenever the average number of
generations since the last time the GA was run is greaterttiiarthreshold. It is

typically in the rang€25,50|, and should always be N*.

25

Crossover probability. This is x in [28]. It is the probability of applying the crossover
operator while executing the GA. Itis typically in the rarn@eb, 1.0.

Mutation probability. This is u in [28]. It is the probability of applying the mutation
operator while executing the GA. Itis typically in the rarj@e1,0.05].

Deletion threshold. This is B4¢ in [28]. It is the threshold for classifier deletion. If a
classifier's experience is greater than this parameter ithmay be considered for

deletion. It is typically 20.

Fitness fraction threshold. This isd in [28]. It is the fraction of the mean fitness of the
population below which the fitness of a classifier may be c®red in its probability

of deletion. It is typically around 0.1.

Initial fitness. Thisisk in [28]. Itis used as the initial value of the fithess used l&y&A

for the newly-created classifiers. It is typically only $itty more than zero.
3.6.1.5. Rule Set Specific These parameters deal with the rule set as a whole.

Minimum subsumption experience. This is 65 in [28]. The experience of a classifier
must be greater than this threshold for it to subsume ancthssifier. It must hold

that 65,p € N*, and typically we havés,, > 20.

Covering probability. This isPxin [28]. It is the probability of using the covering element

in a single attribute. It is typically around 0.33.

Initial prediction. This isp, in [28]. It is used as the initial value of the predicted pdyof

for the newly-created classifiers. This is typically slighthore than zero.

Initial prediction error. This isg in [28]. It is used as the initial value of the estimated
prediction error for the newly-created classifiers. It ipitally only slightly more

than zero.

Exploration probability. This isPexpir in [28]. It specifies the probability of exploration

during the action selection phase. It is typically arourt O.

Minimal number of actions. This is 6nnain [28]. This should be N, and is typically

equal to the number of possible actions, so that completercaywill take place.

26

Maximum number of steps. This is the maximum number of steps that a multistep prob-
lem can spend in one trial. This variable is not mentione@8j,[but it is present in

Butz's XCS code written in the C programming language.

GA subsumption? This isdoGASubsumption [28]. Itis a boolean parameter specifying
if the offspring are to be tested for possible logical subgtiom by the parents. It is

usually best to set this toue.

Action set subsumption? This isdoActionSetSubsumptiomn[28]. It is a boolean param-
eter specifying if action sets are to be tested for subsumiessifiers. It is usually

best to set this torue.

3.6.2. From XCSR. These are the learning parameters that are added to an XCS
system by XCSR. Since our system derives from XCSR, we use teewell. The variables

used here are slightly different from those in a traditiok@SR.

Problem range. This is a two-element list of the lower and upper values thatinput is
expected to lie within. As the input violates this, this ramgiexpanded automatically.
As an example, if it is known for a specific problem that theuinghould always lie
within the real-valued rang@, 1], then this should be set to the li€.0,1.0}.

Covering maximum. This is how large of a fraction of the range can be added to both
the lower and upper bounds combined in the covering. Theenudefault value
we are using is 0.1. Thus, if we wish to coy@r3, 0.5], which has a spread of®—
0.3=0.2, the largest allowable spread would(le- coveringnaximumSpread= (1+
0.1)0.2=0.22.

Mutation maximum. This is how large of a fraction of the range may be added or sub-
tracted from the lower and upper bounds in the mutation nektifbe current default
value we are using is 0.1. For example, if we are mutatingewich matches the
bounds|0.3,0.72], which has a spread of T2 — 0.3 = 0.42, we would have a max-
imum change of 0.042, so our mutated rule would now match é®aetermined
randomly from[0.3+ 0.0420.72+ 0.042], but enforced to be within the problem

bounds.

27

Initial spread limit. This iss in [5]. It is the maximum initial spread when a new predi-

cate is created through the covering operator.
3.6.3. New in TSC. These parameters are introduced here in TSC.

Maximum environment condition length. This is how many predicates we may have at

the maximum in any individual classifier. It should alwaysabhgositive integer.

Maximum temporal mutation. This is the most that the temporal element of the posi-
tion may be randomly perturbed during the mutation procksshould always be a

positive integer.

Maximum position mutation. This is the most any dimensional element of a position
may be randomly perturbed during the mutation process ollshalways be a posi-

tive integer.

Valid operations. This is a list of all the valid operations for the classifidre t's, a
list of first-order lexical closures. A first-order lexicdbsure is, roughly speaking,
a function and its associated scope. Theseeach must be capable of operating
on any arbitrary list of data extracted from the data set, thede lists of data are

extracted by following the raster paths through the data.

Valid fields. This is the list of valid fields for the classifier, thgs, a list of first-order
lexical closures. Thesg's must be capable of operating on a single time instance of
the data.

Visible time range. This is the range in time that is visible to the classifiersndlof the
classifiers are allowed to look beyond this window. This @&sgenerally how much
of a history should be generated before the classifier systaltowed to start. This

is a set interval.

3.7. TRIVIALLY MODIFIED ALGORITHMS
There are several algorithms from XCS and XCSR that are diglytly modified for

our purposes from their original forms.

28

The Generate Match Set Algorithm. This is theGENERATE MATCH SETunction in
[28]. The match sa¥l contains all of the classifiers in the populati®mvhich match
the current situation. After filling the match set with alkpexisting matching clas-
sifiers, it repeatedly generates new covering classifigistba minimum number of

actions is satisfied.

The Select Action Algorithm. This is the same as in traditional XCS. There are two meth-

ods for selecting an action used here: either randomly,eb#st action.

The Generate Action Set Algorithm. This is theGENERATE ACTION SEfunction in
[28]. It forms the action seA out of the match sa¥l, all of the classifiers that match

the selected action.

The Update Set Algorithm. This is theUPDATE SETfunction in [28]. It updates the

parameters for classifiers in the action set.

The Update Fitness Algorithm. This is theUPDATE FITNESSunction in [28]. The fit-

ness of all of the classifiers in the action set are updatedormalized manner.

The Run GA Algorithm. This is theRUN GAfunction in [28]. It runs a simple genetic
algorithm, not on the full populatioR, but instead only on the action s&tin order

to induce niching.

The Select Offspring Algorithm. This is theSELECT OFFSPRINGunction in [28]. It

uses a roulette-wheel method of selection.

The Insert into the Population Algorithm. This is theINSERT IN POPULATIOMlgo-
rithm in [28]. It is slightly more complex than just pushidgetnew classifier into the
population list: we need to check to see if it is already pnesethe population. If it
is, we must increment that classifier’'s numerosity inst&ad.a new classifier, find
anr’ € P, with P being the entire population, such thia@ndr’ are identical. If such

anr’ exists, increment,; otherwise insert into P.

The Delete from Population Algorithm. This is the same as tHe2ELETE FROM POPU-
LATION function in [28]. It decides which members of the populatawe suitable

for deletion, allowing for niching, and then removes lowiss individuals.

29

The Deletion Vote Algorithm. This is the same as thBELETION VOTEalgorithm in
[28]. The deletion vote for a classifieis dependent upon its action set size estimate.
Let Faveragebe the average fitness in the entire population. We wantifs&sswith
sufficient experience and a significantly lower than avefagess than the rest of the
population to be deleted before others. Expressed in tefithe @ SC parameters as

outlined in §3.6:

e
Fexp > edel/\ P < OFaverage (27)
n

This then returns)
I'as'nFaverage _ Tadp Faverage

'e B e
n

as the deletion vote for this classifierotherwise it returnsagn as the deletion vote

(28)

for this classifier.

The Do Action Set Subsumption Algorithm. This is theDO ACTION SET SUBSUMP-
TION function in [28]. The function chooses the subsumer fromrtiwest general
classifiers capable of subsumption and then subsumes albpmslassifiers in to the

subsumer.

The Could Subsume? Predicate. We say that a specific classifiers capable of subsum-
ing others if it has both sufficient accuracy and sufficiemeasience. That is, if
the experience of the classifier is greater than the minimfagsmption experience
threshold, and the prediction error of the classifier is thas the equal error thresh-
old. In symbols:

Fexp> Bsun/\ Te < £o. (29)

The Subsume? Predicate. This is calledDOES SUBSUMEnN [28]. A classifierr! sub-
sumes another classifigrif the following conditions are all met:
1. Their actions are identicatl =r2.
2. The classifier! is capable of subsumption, as decided bydbald subsume?
predicate described in 83.7.
3. The classifier?® is more general than the classifigtr as decided by thenore

general?predicate described in §3.10.

30

3.8. THE MATCH? PREDICATE

This is based upon the algorithm calle@ES MATCHnN [28], but it has been gener-
alized in order to suit our needs here. Assume a classiéiad a situatiow. In traditional
learning classifiersg € { falsetrue} which is usually representgd, 1}, and therefore it
is only necessary to see if every element in the conditiohgfahe classifier, that isr,

is either equal to each other or a covering symbat in

(rci = Gj \/rci = #) Vi e Z\rc\:|a|~ (30)

For us, it is slightly more involved due to the more completuna of the conditions used

in the construction of the classifiers.

The match? predicate for ternary values. For ternary values as used in traditional learn-
ing classifiers, a ternary predicdtenatches a situation elemexntvhen eithett = x
or t = #, the covering symbol. Similarly, a ternary predicatmatches a second
ternary predicat@ whent matches all of the situations matchedupythat is, when
t=uVt=*%#.

The match? predicate for ranges. For ranges as used in Wilson’'s XCSR [5], a range
predicata matches a situationwhen that situatiom lies within the lower and upper

bounds specified by the range predicate, x < u.

The match? predicate for a time-series. If we take the data along the straight line seg-
ment from the initial pointA to the final pointB, forming a vectord, we can then

form d’ by applyingg to each element id:
d = ¢@(d)Vd €d. (32)
The predicate is said to match the data if and only if

| <w(d)<u (32)

31

When all of the predicates of the rule match, then the ruleches; the rule then

recommends a particular classification or action.

Two situationso; ando, match if every one of their elements match element-wise:

match? oy, 0z) =trueVi € Zig,|—|qg,|- (33)

The match? predicate for classifiers and situations.A classifierr matches a situatioo
if r* andr? match, as decided by tmeatch?predicate described in §3.8, and at least

one of the elements of the classifier is more generat than inr?.

The match? predicate for classifiers. A classifierr! matches another classifiet if the

environment condition of! matches the environment condition of the classiffer

3.9. THE GENERATE COVERING CLASSIFIER ALGORITHM

This is derived from th&ENERATE COVERING CLASSIFIE&ction in [28]. It
creates a classifier which matches the current situatiors i$thandled somewhat differ-
ently in TSC than in XCS or in XCSR, and the method operateseasribed in Algo-
rithm 3.5.

Input: a TSC instance.
1. let| be randomly chosen, 4 | < the maximum environment condition length.
2. let ¢, the condition— nil = {}, an empty list.
3. let a, the action— a random element from the set of all possible actions thatatran
the match set.
4. for | timesdo
push a covering predicatento ¢
6. return a new classifier instance with environment condit@mactiona, time stamp
set to the current number of situations, and the rest of thte skt to their defaults.

o

Algorithm 3.5. Generating covering classifiers.

3.10. THEMORE GENERAL? PREDICATE
This is derived from théS MORE GENERAIKunction in [28].

32

The more general? predicate for a TSC predicate. This returns true only if the predicate
p matches predicatg and if it is more general than it as well. Predicatés more

general than predicatgif and only if:

p matchegA

(Ip <lqVug < upV (pathy lies completely alongathy A path, # pathy)) .

The more general? predicate for classifiers. This is based upon the algorithm call&sl
MORE GENERAIn [28], but it has been generalized in order to suit our néwxis.
In traditional learning classifiers, it is only necessargaont the occurrences of the
covering symbol, #, in order to determine which of two cléess is more general:
the one with the greater number of occurrences of it. For issglightly more in-
volved due to the more complex nature of the conditions uséka construction of
the classifiers. A classifigf is more general than another classifiéiif r! andr?
match, as decided by tmeatch?predicate described in 83.8, and at least one of the

elements of the classifier is more generatlithan inr?.

33

4. EXPERIMENTAL RESULTS

4.1. THE NATURE OF A REALISTIC TIME SERIES

The primary difficulty experienced in testing was an unkn@spect of time series
themselves. Originally the test problem was a very simptedimensional sine wave, with
only a simple slope function for an operator, and with thesikécation task of deciding if
the next point will be up or down from the current point. Thippears as if it were a trivial
problem, and indeed a high degree of accuracy can be achatlrednly two very simple
rules: if the previous point is below the current one thenrbgt point will be above;
otherwise the next point will be below the current point.

This approach will not work in general. There are severalirtis types of time
series, such as: up-trending, down-trending, steadyogieriup-step, down-step, hills, and
valleys. Real-world time series are comprised of sever#hefcharacteristics from each
type, and any system that would be capable of operating oal-avwald time series would
need to be able to handle all of the different types simuttasly. The problem is that a
simple slope operator is only capable of learning time sehat are primarily linear, and a

periodic time series such as the sine wave requires entliégrent operators.

4.2. THE SIMPLISTIC INCREASING/DECREASING TESTS

The original test time series was a sine wave, which is a peeleample of a peri-
odic function, but the simple slope operator is only capalblearning linear time series
data. The new tests were designed with this in mind, and isaigta closer match to the
appearance of real market data.

The first new test was simply a randomly chosen slope for a &iteer upward or
downward; the classification question is still whether arthe next point will be above or
below the current one; this was very quickly optimally lezdrby the system.

In the second simple test, the series is randomly selectdx teither upward or
downward for a random number of time steps, with a randombgeh slope, over and over
again with completely different random elements each tiffileis was also very quickly

optimally learned by the system.

34

increasing/decreasing method 4 sample plot

50

) \ l
"inde-values.data™——

-50
-100
-150
-200

-250 | | | | |
0 500 1000 1500 2000 2500 3000

time step

value

Figure 4.1. Increasing/decreasing method 4 sample plot.

The third simple test added random noise to the second t&«T; Would typically
optimally learn this problem within 1,000 to 2,000 time step

The fourth simple test randomly switched the direction eftilne step with a certain
probability. This, as well, was optimally learned withi®@Q to 2,000 time steps. This test
would superficially resemble a traded entity, so it is of jgatar interest. What is shown
in Figures 4.1 and 4.2 is a typical run under this test, witliabgbility of exploration of
0.35 and a probability of random misdirection of 0.1; thisaebimply a best-case eventual
accuracy of:

0.35

1-—-01=0.725
2

or 72.5%, which eventually appears.

4.3. THE STOCK MARKET

We experimentally determined many of the parameters tleabeast for use on the
stock market. We used actual historical data of the Dow Jowsstrial Average ("DJI),
with daily trading data starting on August 20, 1990, withadahding on August 18, 2006.
The data was gathered from Yahoo! Finance. The first 100 dztaspof the time se-

ries were skipped, allowing for historical data that far bbagen in the very first day of

35

increasing/decreasing method 4 sample performance

0.9 ! ! \ T -
0.8 inde-hist.data

accuracy

0 | | | | |

0 500 1000 1500 2000 2500 3000
time step

Figure 4.2. Increasing/decreasing method 4 sample peafuce

simulated data, causing an actual start of analysis of Jgrilig 1991. In each of these
experiments, a statistical sample of at least 30 runs wdsegad, each run going on for
1,500 simulated trading days (2,167 actual days, 5.93 }darsan end of December 16,
1996. At each trading day the stock was given the option teeeput all of its resources
into the "DJI or into a bank account yielding roughly 4% pen@m. The system initially

had $1,000,000.00.

In these trials we report:
1. the trial number,
2. the number of correct actions,
3. the percentage of correct actions,
4. the final financial return,
5. the ratio of the final financial return to that of the buy-dmadd strategy,

6. and the percentage returned per annum.

36

Table 4.1. Initial parameters for the TSC.
parameter | value
max environment condition length10
valid operationg simple slope
valid fields| closing price, opening price, and trading volume
max total numerosity\ | 400
learning ratef3 | 0.2
discount factory | 0.71
GA thresholdBga | 25
equal error thresholdy | 20.0
multiplier parametergr | 0.1
crossover probabilityy | 0.8
mutation probabilityu | 0.04
exploration probabilityPexpr | 0.2
fitness fraction threshold, | 0.1
covering probabilityPy | 0.33
initial prediction,p; | 10.0
initial prediction errorg | 0.0
initial fitness,/ | 0.01

We will use the buy-and-hold (B&H) strategy as our primaryfpemance benchmark. In
this strategy, the stock is purchased outright, and themthreey is just left in the stock for
the entire duration of the experiment.

Our initial parameters are listed in Table 4.1, and were ehds/ general trial and
error throughout the software development process.

4.3.1. Reward Methods. Several different possible reward methods for use in
the stock market were considered, and we analyzed thefivee[zerformance. We refer to
these different reward methodsas ap, b, ¢, dopt, anddpess

Reward methody is very simple:

1. if the correct action is takehen

2. return areward of 1,000.
3. else
4, return areward of O,

It had the results as described in Table 4.2 over 36 trials.

37

Table 4.2. TSC results for reward methad

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 754 50.256% $1,853,080.30 0.67500 10.96%pa
std dev | 22.3 1.489% $333,964.25 0.12165 1.98%pa
max 797 53.133% $2,527,462.80 0.92065 16.91%pa
min 697 46.467% $1,117,451.00 0.40704 1.89%pa

Reward methody, is almost identical t@y:

1. if the correct action is takahen

2. return areward of 1,000.
3. else
4, return a reward of -200.

It had the results as described in Table 4.3 over 44 trials.

Table 4.3. TSC results for reward methad

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 748 49.867% $1,863,365.60 0.67875 11.06%pa
std dev | 23.4 1.557% $294,466.10 0.10726 1.75%pa
max 790 52.667% $2,571,187.50 0.93657 17.25%pa
min 693 46.2% $1,358,889.10 0.49499 5.31%pa

Reward method offers slightly more incentive for good-performing rules:

1. let $4ti0, the money ratio— % the ratio of the money the classifier has immediately
one time-step in the future to the money it currently has.
2. if $ratio > 1005then

3. return areward of 1,000.

4. else

5. return areward of O.

It had the results as described in Table 4.4 over 57 trials.

Table 4.4. TSC results for reward methad

38

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 750 49.992% $1,792,041.90 0.65276 10.33%pa
stddev | 27.9% 1.8631344 $378,179.50 0.13775 2.18%pa
max 815 54.333% $2,820,059.80 1.02723 19.09%pa
min 692 46.133% $1,219,942.60 0.44437 3.41%pa
Reward method tries to scale the reward:
1. let $atio be the money ratio as previously defined.
2. letm+«+ 1000, a multiplier.
3. lete « 2, an exponent.
4. let s+ 1.015, a threshold term.
5. return m- ($ratio —S)°
It had the results as described in Table 4.5 over 30 trials.
Table 4.5. TSC results for reward method
— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 747 49.791% $1,795,971.30 0.65420 10.37%pa
stddev | 20.2 1.345% $300,842.88 0.10958 1.74%pa
max 790 52.667% $2,407,121.50 0.87681 15.95%pa
min 702 46.8% $1,340,345.30 0.48823 5.07%pa

39

Reward method is slightly more complex than the rest:
Input: cu, the amount of reward if the classifier is correct on an up day.
Input: cd, the amount of reward if the classifier is correct on an down da
Input: iu, the amount of reward if the classifier is incorrect on an up da
Input: id, the amount of reward if the classifier is incorrect on an daay // Days that
are not up are viewed as down days here.
1. if the classifier has chosen the correct actiahis an up daythen
2. return cu.
3. else ifthe classifier has chosen the correct actriahis a down daythen
4. return cd.
5. else ifthe classifier has chosen the incorrect actiahis an up daythen
6. return iu.
7. else ifthe classifier has chosen the incorrect actiahis a down daythen
8. return id.
From this we have the two reward methaijs:, which is optimistic, andlpess Which is
pessimistic.
Reward methodi, callsd with the values otu= 1000 cd = 750,iu = 0,id = 200.

It had the results as described in Table 4.6 over 45 trials.

Table 4.6. TSC results for reward methahg:.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 728 48.526% $1,624,189.40 0.59162 8.52%pa
std dev | 22.2 1.477% $223,009.56 0.08123 1.17%pa
max 786 52.4% $2,122,616.30 0.77318 13.52%pa
min 689 45.933% $1,163,151.90 0.42369 2.58%pa

Reward methodpesscallsd with the values otu= 750,cd = 100Qiu = 200,id = 0.

It had the results as described in Table 4.7 over 45 trials.

40

Table 4.7. TSC results for reward methagss

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 728 48.526% $1,624,189.40 0.59162 8.52%pa
std dev | 22.2% 1.477 $223,009.56 0.08123 1.17%pa
max 786 52.4% $2,122,616.30 0.77318 13.52%pa
min 689 45.933% $1,163,151.90 0.42369 2.58%pa

From these experiments we see thatdahmeethods are the best performing, although
there is no effective difference between the performance;cind ap: this is because
the scaling of the reward should not effect the outcome ofr¢fneard method at all. We
arbitrarily choose of the two to empl@g for the remaining experiments.

4.3.2. GA Thresholds. After deciding ona, as the best reward method and keep-
ing it for the rest of these tests, we turn our attention tonozing the GA thresholdga,
which is described earlier in 83.6.1.4. We chose to look atgbssible values for this
parameter of 25, 35, 45, and 50.

A GA threshold of 25 was used in the previous situation, soaveliorrow the results
from thatay run; refer to Table 4.3.

For a GA threshold value of 35, we observed the results agiledcn Table 4.8

over 30 trials.

Table 4.8. TSC results for a GA threshold of 35.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 759 50.571% $1,874,746.50 0.68289 11.17%pa
stddev | 22.7 1.513% $315,092.60 0.11477 1.88%pa
max 806 53.733% $2,627,517.80 0.95709 17.68%pa
min 719 47.933% $1,346,346.10 0.49042 5.14%pa

41

For a GA threshold value of 45, we observed the results agibedcin Table 4.9

over 31 trials.

Table 4.9. TSC results for a GA threshold of 45.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 760 50.688% $1,881,119.10 0.68521 11.24%pa
std dev | 25.6 1.706% $217,843.06 0.07935 1.30%pa
max 816 54.4% $2,297,796.00 0.83699 15.05%pa
min 699 46.6% $1,250,916.30 0.45566 3.85%pa

For a GA threshold value of 50, we observed the results asideddn Table 4.10

over 30 trials.

Table 4.10. TSC results for a GA threshold of 50.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 763 50.891% $1,885,079.90 0.68665 11.28%pa
stddev | 21.1 1.405% $293,885.56 0.10705 1.76%pa
max 808 53.867% $2,425,741.30 0.88359 16.10%pa
min 713 47.533% $1,329,746.00 0.48437 4.91%pa

There was no significant effect on the results of the algoritased on the GA thresh-
old: all of the other means fall well withié of a standard deviation relative to the initial
value of6a = 25, so we will employ that value for all remaining experinsent

4.3.3. Crossover Probabilities. After deciding on the correct reward method and
the correct GA threshold, using those results, we invesgtéhe crossover probability,

which is described earlier in §3.6.1.4. We chose to look&t@6, 0.7, 0.8, and 0.9.

42

For a crossover probability gf = 0.3, we obtained the results as described in Ta-

ble 4.11 over 33 trials.

Table 4.11. TSC results fof = 0.3.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 755 50.358% $1,862,015.40 0.67825 11.05%pa
std dev | 24.3 1.621% $213,367.14 0.07772 1.27%pa
max 829 55.267% $2,354,066.50 0.85749 15.52%pa
min 712 47.467% $1,313,611.90 0.47849 4.71%pa

For a crossover probability gf = 0.5, we obtained the results as described in Ta-

ble 4.12 over 31 trials.

Table 4.12. TSC results fof = 0.5.

For a crossover probability gf = 0.7, we obtained the results as described in Ta-

ble 4.13 over 34 trials.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 754 50.275% $1,882,082.30 0.68556 11.25%pa
std dev | 24.9 1.662% $265,281.13 0.09663 1.59%pa
max 799 53.267% $2,426,894.30 0.88401 16.11%pa
min 717 47.8 $1,354,985.40 0.49356 5.25%pa

43

Table 4.13. TSC results fof = 0.7.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 754 50.275% $1,884,173.30 0.68632 11.27%pa
std dev | 28.9 1.930% $258,017.90 0.09399 1.54%pa
max 809 53.933% $2,526,742.80 0.92039 16.90%pa
min 688 45.867% $1,264,236.40 0.46051 4.03%pa

A crossover probability of 0.8 was used in the previous $ibna so we can borrow
the results from théga = 25 run; refer to Table 4.3.

For a crossover probability gf = 0.9, we obtained the results as described in Ta-
ble 4.14 over 39 trials.

Table 4.14. TSC results fo = 0.9.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 759 50.626% $1,943,606.10 0.70797 11.86%
stddev | 21.9 1.462% $277,516.22 0.10109 1.69%
max 801 53.400% $2,399,683.00 0.87410 15.89%
min 707 47.133% $1,419,889.40 0.51721 6.09%

We can now easily observe that a crossover probability ef 0.9 offers the best
results with an arithmetic mean of 11.85%pa, and we empléyriall of the remaining
experiments.

4.3.4. Mutation Probabilities. Using all of our previous results, we then looked
into the mutation probability, described earlier in 83.6.1We looked at values of 0.04,
0.06, 0.08, 0.10, 0.15, and 0.20.

A mutation probabilityu = 0.04 was used in the previous situation, so we can borrow

the results from thg = 0.9 run; refer to Table 4.14.

For a mutation probabilityy = 0.06, we observed the results as described in Ta-

ble 4.15 over 34 trials.

Table 4.15. TSC results for = 0.06.

44

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 762 50.831% $1,972,095.00 0.71835 12.13%pa
stddev | 21.5 1.433% $255,299.13 0.09299 1.57%pa
max 792 52.800% $2,734,496.80 0.99606 18.47%pa
min 704 46.933% $1,579,600.50 0.57538 8.01%pa

For a mutation probabilityy = 0.08, we observed the results as described in Ta-
ble 4.16 over 39 trials.

Table 4.16. TSC results for = 0.08.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 754 50.285% $1,905,925.10 0.69425 11.48%pa
std dev | 29.79326 1.986% $285,127.30 0.10386 1.72%pa
max 806 53.733% $2,421,790.30 0.88216 16.07%pa
min 668 44.533% $1,230,840.30 0.44834 3.56%pa

For a mutation probabilityy = 0.10, we observed the results as described in Ta-
ble 4.17 over 36 trials.

Table 4.17. TSC results for = 0.10.

45

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 761 50.744% $1,950,889.10 0.71063 11.92%pa
std dev | 22.6 1.506% $299,845.56 0.10922 1.83%pa
max 796 53.067% $2,891,320.00 1.05319 19.59%pa
min 709 47.267% $1,250,508.00 0.45551 3.84%pa

For a mutation probabilityy = 0.15, we observed the results as described in Ta-
ble 4.18 over 32 trials.

Table 4.18. TSC results for = 0.15.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 763 50.908% $2,037,007.90 0.74200 12.74%pa
std dev | 22.299% 1.487% $320,506.80 0.11675 2.00%pa
max 804 53.600% $2,975,396.80 1.08381 20.17%pa
min 719 47.933% $1,406,036.50 0.51216 5.91%pa

For a mutation probabilityy = 0.20, we observed the results as described in Ta-
ble 4.19 over 36 trials.

Table 4.19. TSC results far = 0.20.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 762 50.800% $1,889,297.80 0.68819 11.42%pa
std dev | 24.369835 1.625% $232,916.92 0.08484 1.40%pa
max 803 53.533% $2,708,086.00 0.98644 18.28%pa
min 697 46.467% $1,502,196.10 0.54719 7.10%pa

46

We can now easily observe that a mutation probability ef 0.15 offers the best re-
sults with a arithmetic mean of 12.74%pa, and we therefoeehett value for all remaining
experiments.

4.3.5. Exploration Probabilities. After this we looked at the exploration proba-
bility, which we describe in §3.6.1.5. We investigated tlosgble values of 0.1, 0.2, 0.3,
and 0.4, using our previous results for the rest of the patensie

For an exploration probability d?ypr = 0.1, we observed the results as described in
Table 4.20 over 42 trials.

Table 4.20. TSC results féyr = 0.1.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 762 50.795% $1,849,187.80 0.67358 10.92%pa
std dev | 28.9 1.925% $233,230.42 0.08496 1.38%pa
max 810 54.000% $2,446,262.50 0.89107 16.27%pa
min 691 46.067% $1,210,933.40 0.44109 3.28%pa

An exploration probability 0Py = 0.2 was used in the previous situation, so we

can borrow the results from the= 0.15 run; refer to Table 4.18.

Table 4.21. TSC results féypr = 0.15.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 763 50.908% $2,037,007.90 0.74200 12.74%pa
std dev | 22.3 1.487% $320,506.80 0.11675 2.00%pa
max 804 53.600% $2,975,396.80 1.08381 20.17%pa
min 719 47.933% $1,406,036.50 0.51216 5.91%pa

47

For an exploration probability ¢%y - = 0.3, we observed the results as described in
Table 4.22 over 40 trials.

Table 4.22. TSC results féypr = 0.3.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 765 50.985% $2,090,409.40 0.76145 13.23%pa
std dev | 22.8 1.521% $295,592.78 0.10768 1.87%pa
max 817 54.467% $2,848,646.30 1.03764 19.29%pa
min 725 48.333% $1,536,175.30 0.55956 7.50%pa

For an exploration probability ¢%y - = 0.4, we observed the results as described in
Table 4.23 over 47 trials.

Table 4.23. TSC results féypr = 0.4.

— correct % correct returns B&H ratio %pa
B&H 806 53.733% $2,745,309.50 1.0 18.54%pa
arith mean| 767 51.119% $1,950,627.60 0.71053 11.92%pa
stddev | 19.5 1.299% $196,644.44 0.07163 1.20%pa
max 806 53.733% $2,395,224.50 0.87248 15.86%pa
min 730 48.667% $1,637,668.40 0.59653 8.67%pa

We can now easily observe that an exploration probabilitfegfir = 0.3 offers the
best results with an arithmetic mean of 13.23%pa, and wether use that value.

48

5. CONCLUSIONS AND FINAL RESULTS

After all of our tests we arrived at the set of parameters inld&.1 for the time
series classifier. In this table the return is the equivgbententage per-year (%pa) return
provided by the parameters at that setting, and the B&H ratibe performance relative
to a simplistic buy-and-hold stategy, with 1.0 being eqless than 1.0 implying an under-
performing result over the same period, and greater thaimhlging a superior result over
the same time period. The DJIA returned 18.54%pa over thegeestigated here, and
we failed to meet that in any of our tests. For example, 11 f%%mplies that with all of
the other parameters set to their initial default and thearrdwnethod set ta, is equivalent
to a savings account yielding 11.06%pa returns, but undenpeing the DJIA itself if we
were to merely buy and hold it for the same period of time. Witilese results demon-
strate the system’s ability to learn a complex situatioeythre not at a level acceptable
for real-world use on the stock market, underperformingsihgplistic buy-and-hold strat-
egy. Instead this system in its current form will only truly applicable to less interesting
problem spaces.

TSC would not be a usable real-world system for the stock atarkless it were to
resultin returns in excess of the buy-and-hold strategichvibdid not. If it were capable of
outperforming buy-and-hold then we could use it for aut@datnd unsupervised trading.
As it is, a more effective real-world approach would be toynpurchase an indexing

fund. TSCis nolonger useful to us since our interest is $jgatly automated stock trading,

Table 5.1. TSC Final Parameters
parameter | value return B&H ratio

reward method a 11.06%pa 0.67875
GA thresholdBga | 25 e e
crossover probabilityy | 0.9 11.85%pa 0.7079]
mutation probabilityu | 0.15 | 12.74%pa 0.7420
exploration probabilityPeypir | 0.3 13.23%pa 0.7614}

A\~

OO

49

and our research will continue towards other avenues ohaatid time series analysis and
prediction, probably still in the area of evolutionary camgttion and possibly employing
a novel type of LCS.

There are many real-world applications comprising simiphee series than the stock
market, and TSC does have a lot of room left to grow still, satiomed research by others
would be welcomed and potentially fruitful. TSC demongsathat an LCS can natively
represent a time series under analysis and learn in suclvanr@ment: that demonstration
is the most valuable result of this research, perhaps eagmg more attempts at LCS-

based time series analysis methods.

50

6. FUTURE WORK

There are several opportunities for improvement on TSC.&ohthese are obvious
and result from known simplifications and limitations of therent TSC system. The most

obvious paths for future research with this TSC fall intofiblélowing major tasks:
1. using more advancegls,
2. using more advanced's,
3. finishing the implementation of multidimensionality,
4. using more advanced concepts in the GA,
5. represent the rule strengths with polynomials insteadais,
6. changing from a Michigan to a Pittsburg approach,
7. using a GP instead of a GA,
8. and applying the system to other real-world problems.

Using more advanceg's, is the most straightforward to start on. In the version of
TSC as outlined here, and in the associated code, it is Bnpiossible to use any lexical
closure as @, as long as it is capable of operating on one position of the Beries data.
In our use we only useg to select the data field, but there is no reason why this shaatld
or could not have vastly more complex operations. Any opanatthat would be useful in
discernment might be useful.

Using more advancead’s would address what is probably the greatest weakness of
the current system. At present we have only used a simple &lmgtion for thew and have
not attempted anything else. There are bound to be many nsefaldunctions available.
We specifically expect that the ability to match against polyials and against periodic

functions would be of the most intrinsic value.

51

Extending TSC so that it is a system fully capable of handimdtivariate time series
depends on the previous two tasks’ completion first. The T¥&em as described and the
code used were both originally designed to handle multwariime series, and therefore
much of the work is already completed, but exactly what edseains to be finished is not
entirely clear. We assert that at least neis that are designed with multivariate time series
in mind would be required, but there may be other elemente®fSC system that need
revision as well.

Using more advanced concepts within TSC’s GA would be onbeétasiest methods
of improvement. The form of crossover we used was simplepmiet crossover, and
there are several well-known forms of crossover with bgienformance in general use.
Employing a self-adaptive GA to evolve its own parameterdrd in its gene could also
provide for some major gains, as this has been the most catnmally intensive part
of our investigation. Other methods of mutation may be beirsfialthough this would
require novel work: the non-standard form of the individual TSC appears to necessitate
non-standard mutation approaches. The easiest modificatithe mutation that would
possibly be beneficial would be to try a Gaussian form of nmathich would allow for
more drastic alteration to the population members on racasions. This would allow the
system to adapt more fully to notably different environnsent

The measures of the strengths here are real numbers cyriautive suspect that
they may be better represented by polynomials, especialthe stock market problem
since there is a great deal of difference in the value of a iruléiffering times for any
specific stock.

XCS and company use the so-called Michagan approach, wiessntire population
is the rule set. We suspect that the Pittsburgh approachreveaeh individual in the pop-
ulation is a complete rule set, could possibly be a betteofibfir stock market problem
in specific and possibly time series problems in generals Woiuld be quite involved, and
almost a complete redesign of the system.

Replacing the GA with a genetic program (GP), would be quiteradertaking. This
would allow for vastly more complex classification rules awdild possibly discover new
basic metrics for the time series problems presented to/8ters. This would be of partic-
ular value with the stock market even though there are skeweteknown metrics because
they are rarely of any quality. This would even more valudbteless-investigated time

series problems since there might not even be any knowngseisiof yet for the problem.

52

The final task is actually many tasks: TSC should be appli@toy more real-world
problems, both to better solve those problems and to impr@@itself. We hope that this

work will prove useful in many problems and look forward te itse by others.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

53

BIBLIOGRAPHY

John H. Holland and J. S. Reitman. Cognitive systemsdaseadaptive algorithms.
In D. A. Waterman and F. Hayes-Roth, editoPattern directed inference systems
pages 313—-329. Academic Press, New York, NY, 1978.

John H. Holland.Adaptation in Natural and Artificial Systemsniversity of Michi-
gan Press, 1975.

Stewart W. Wilson. ZCS: A zeroth level classifier systdtwolutionary Computation
2(1):1-18, 1994,

Stewart W. Wilson. Classifier fithess based on accur&syplutionary Computation
3(2):149 — 175, 1995.

Stewart W. Wilson. Get real! XCS with continuous-valuegduts. In Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editdrsarning Classifier Systems:
From Foundations to Applicationsolume 1813 ot.ecture Notes in Atrtificial Intelli-
gence (LNAI)pages 209 — 219. Springer-Verlag, 2000.

Richard S. Sutton and Andrew G. Bart®einforcement LearningThe MIT Press,
Cambridge, Massachusetts, 1998.

A. E. Eiben and J. E. Smith.Introduction to Evolutionary ComputingSpringer-
Verlag, 2003.

C. Stone and L. Bull. For real! xcs with continuous-valu@puts. Evolutionary
Computation2003.

George Edward Pelham Box and Gwilym M. JenkinBme Series Analysis: Fore-
casting and ControlPrentice Hall PTR, Upper Saddle River, NJ, USA, 1994.

George Edward Pelham Box and Gwilym M. JenkifSme Series Analysis: Fore-
casting and ControlHolden-Day, 1976.

Fredic M. Ham and Ivica KostanicPrinciples of Neurocomputing for Science and
Engineering McGraw-Hill Higher Education, 2000.

Shaun-Inn Wu and Ruey-Pyng Lu. Combining artificial rasmetworks and statistics
for stock-market forecasting. I8SC '93: Proceedings of the 1993 ACM conference
on Computer scien¢g@ages 257-264, New York, NY, USA, 1993. ACM Press.

Thomas Kolarik and Gottfried Rudorfer. Time seriesefasting using neural net-
works. InAPL '94: Proceedings of the international conference on ARhe lan-
guage and its applicationpages 86—94, New York, NY, USA, 1994. ACM Press.

54

[14] Andrew Skabar and lan Cloete. Neural networks, findricaaing, and the efficient
markets hypothesis. CSC '02: Proceedings of the twenty-fifth Australasian eonf
ence on Computer sciengeages 241-249, Darlinghurst, Australia, Australia, 2002
Australian Computer Society, Inc.

[15] Yung-Keun Kwon, Sung-Soon Choi, and Byung-Ro Moon.cBtorediction based on
financial correlation. IIGECCO ’'05: Proceedings of the 2005 conference on Genetic
and evolutionary computatigmpages 2061-2066, New York, NY, USA, 2005. ACM
Press.

[16] Robert Andrews and Shlomo Geva. Rule extraction fronalaluster neural nets.
Neurocomputing2000.

[17] David de la Fuente, Alejandro Garrido, Jaime Laviadwa) Alberto Gomez. Genetic
algorithms to optimise the time to make stock market investin In GECCO ’'06:
Proceedings of the 8th annual conference on Genetic andiggoary computation
pages 1857-1858, New York, NY, USA, 2006. ACM Press.

[18] Peter Belford. Candlestick stock analysis with gematgorithms. InGECCO '06:
Proceedings of the 8th annual conference on Genetic andigeoary computation
pages 1851-1852, New York, NY, USA, 2006. ACM Press.

[19] M. A. Kaboudan. Genetic programming prediction of &t@cices. Comput. Econ.
16(3):207-236, 2000.

[20] Hakman A. Wan, Andrew Hunter, and Peter Dunne. Autonasnagent models of
stock marketsArtif. Intell. Rev, 17(2):87-128, 2002.

[21] Sonia Schulenburg and Peter Ross. Strength and momelgsfapproach to increas-
ing returns. In Lanzi et al. [29], pages 114 — 137.

[22] Sonia Schulenburg and Peter Ross. A learning evolatitrading system, May 29
2002.

[23] Stewart W. Wilson. Function approximation with a clifies system. In Lee Spec-
tor, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michaaigt, Mitsuo
Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Gaaral Edmund
Burke, editorsProceedings of the Genetic and Evolutionary Computationf@ence
(GECCO-2001) pages 974-981, San Francisco, California, USA, 7-11 JO012
Morgan Kaufmann.

[24] Justin A. Boyan and Andrew W. Moore. Generalization@mforcement learning:
Safely approximating the value function, April 25 2004.

[25] Theodore J. Perkins and Doina Precup. A convergent foiri@pproximate policy
iteration. In Suzanna Becker, Sebastian Thrun, and Klawes®dyer, editord\IPS
pages 1595-1602. MIT Press, 2002.

[26]

[27]

[28]

[29]

55

Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilsongd@avid E. Goldberg. XCS
with computed prediction in multistep environments. In Bl&eorg Beyer, Una-May
O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian BlujrEric W. Bonabeau,
Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, Jamdsoater, Edwin D.
de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, MaRelikan, Guenther R.
Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watsod, Bokart Zitzler, editors,
GECCO 2005: Proceedings of the 2005 conference on Genaliewaslutionary com-
putation volume 2, pages 1859-1866, Washington DC, USA, 25-29 Jo0&. 2ACM
Press.

Arie Kaufman and Eyal Shimony. 3d scan-conversion algms for voxel-based
graphics. ISI13D '86: Proceedings of the 1986 workshop on Interactiveg8aphics
pages 45-75, New York, NY, USA, 1987. ACM Press.

Martin V. Butz and Stewart W. Wilson. An algorithmic degption of XCS. In Lanzi
et al. [29], pages 253 — 272.

Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W.9tMil, editors Advances in
Learning Classifier Systemgolume 1996 oL ecture Notes in Artificial Intelligence
(LNAI). Springer-Verlag, 2001.

56

VITA

Christopher Mark Gore was born in Cleveland, Ohio, on Decamp 1978. He re-
ceived his High School Diploma from Triad High School in Salacob, lllinois in 1997.
Then he received his Associate of Science from Southwedtigrois College, located in
Belleville, lllinois, in 2001. After this he received his Blaelor of Science in Mathematics
and Computer Science from Eastern lllinois Universitygked in Charleston, lIllinois, in
2003. This thesis is part of the requirements for the congietf his Master of Science
in Computer Science from the Missouri University of Sciemcel Technology, located
in Rolla, Missouri, in 2008. His computational interestslude evolutionary algorithms
and other methods of unaided computational learning, fiahsonulation and analysis,
and Lisp. His interest in investing is being actively andcassfully engaged, but without
the aid of the computational analysis presented here. Hearremly employed at As-
tronautics Corporation of America developing softwaretfa Integrated Network Server
Unit (INSU) that will fly with the Airbus A400M, a large turbepp-driven military cargo
aircraft designed to replace the aging C-130 Hercules girout the world. He married
Monica Louise Gore (née Smith) on May 27, 2006, and theyetuly reside in Oak Creek,

Wisconsin, a suburb of Milwaukee, with their cat Casper.

	A time series classifier
	Recommended Citation

	A time series classifier

