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ABSTRACT

The results of an analytical study of the inelastic deformation of
a wide-flange steel beam-column are presented. Emphasis has been placed
on the influence of axial thrust on the pinned-end beam-column subjected
to equal end moments with opposite direction. For this type of beam-
column behavior, the relationship between the applied moment, axial load,
and resultant curvature for the region in the plastic range has been

studied in this investigation.
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I. INTRODUCTION

(1) Introduction

Beam—-columns are members in which both bending and thrust are
present. Figure 1 shows the typical behavior of a beam-column. The
analysis of this problem is more complicated than that of pure bending
or single axial load, because the simultaneous action of bending and
axial load produces an interaction effect on deflections, and the usual
principle of superposition is not applicable; in other words, bending
causes deflection, and the deflection multiplied by the axial load will
represent an increase in bending moment. For a typical case shown in
Figure 1 the bending moment at a distance x from the end support is

represented as

M = Mgy + P
where, Mom = Original moment due to external load
and P-S§ = Moment due to axial load.

P- 8 cannot easily be determined because it depends on the unknown
moment which is related to §.

For analysis of the strength of beam-columns, equations in the elastic
range can be found in any textbook on structure analysis. For a pinned-
end column with an eccentricity e, the maximum compression stress is

defined by the following equation (Secant formula)

Foax = [1+——S (—" )]

and the maximum deflection is

6max = e[Sec - 1]

2 JEI

P



Column under eccentric and lateral loads

MOITI

Original moment due to extermal vertical load

Total moment combined V.L. and axial load

Figure 1. Typical moment in beam-columns



This equation is applicable only within the elastic limit. If the
stress exceeds the elastic limit of the material, non-linear relation-
ships will occur, and we have to use other assumptions to solve this
problem.

(2) Purpose

The problem considered in this thesis is to determine the ultimate
bending moment that a member can sustain for a given axial load. In the
analysis, a pinned-end, wide-flange section is to be subjected to equal
end moments about the strong axis while the weak axis is laterally

braced. This way of treatment is shown in Figure 2.

P

Along this axis column is
laterally braced

\l ¥

\?Mo
P

Figure 2. Column under combined bending
and axial load
Two methods are presented in this paper, one is by numerical
analysis, the other is done by moment-curvature curves. Both analyses
are based on the assumption that the deflected shape of the beam-column
after loading is a sine curve.
Residual stresses and bending along the unbraced weak axis will

be discussed in Chapter IIT.



The basic assumptions in analyzing this problem are made as follows:
A. Bending is produced about the strong-axis of a
wide-flange section; weak axis is completely braced.
B. The material is A-36 structural steel with an idealized
strain-stress relationship; that is, a straight line
follows the lower yield point (fy = 36ksi) and the

strain hardening is neglected, as shown in Figure 3.

Stress ksi
t=t

e - — s — - — —— o — Y —

| J
W)

Strain in/in

«

Figure 3. 1Idealized stress-strain diagram

C. Residual stress is not considered.
D. Lateral torsiomal buckling is prevented.

(3) General Review of Literature

A. Elastic analysis

The strength of a beam—column can be defined with reasonable
accuracy for both axially and eccentrically loaded columns in
the elastic range. A convenient and powerful method for deter-

mining the strength of such a column is that of interaction.



The general criterion for failure of a beam-column is expressed by a
functional relationship in terms of the ratio of actual load to the
strength of a member under pure axial or pure bending load as follows:
P/P, = £1(M/M) or M/M, = f,(P/P)
where P = actual axial load
f, and f, = constants

M = maximum bending moment acting simultaneously with P

P

u ultimate strength of the particular member when subjected

to pure axial load. For long slender columns
Py =P, = n2EI/L?; for intermediate columns Py = WzEtI/LZ*
and for short columns Pu = f,A or fy-A

My = ultimate strength of the particular member when subjected
to pure flexure.

The derivation of this type of failure criterion can be best
illustrated by considering a short length of an ideally elastic pris-
matic bar which fails when the maximum fiber stress due to axial load,
or bending moment, or a combination of the two reaches a value f,, the

maximum stress in such a bar. When the member is subjected to a combina-

tion of load P and Miax i.e.

Mmax**
fmax = P/A + E‘/C— and (1.1)
failure occurs when fmaX = f,. Dividing both sides by f,, one can obtain

the following equation:

*The use of E, for intermediate columns is based on the stress-strain
curve affected by residual stress.

**See Chapter III for the amplication factor due to secondary moment.
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B. Plastic analysis
- fy
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-—h) =h - (2h - h) = 2(h -

(1.2)

neutral surface

h)

Figure 4. Stress distribution for plastic analysis

of a rectangular section

From Figure 4 it can be seen that the total tensile force,

I

(P) 2fyt(h—ﬁ)

and the total moment,

M) tfyh(ZE-h),

with respect to the neutral surface.

If

where,

If

h = 2h, for pure tension

it

P

o = 2tfgh,

it

P

o pure tension over the entire section.

h = h then, we have pure bending or

=2
M, = tf,h

Also from the above expressions,

(1.3)

(1.4)

(1.5)

(1.6)



EES
(5?2 = |2t h’] = &2 (1.7)
u

_2tfyh h
and
M _ tfyh(2R-h) _ h(2h-h)
My t fyR2 h?

(1.8)

If h is eliminated between these two equations by addition, then

_RF2 h-
(g_)z M (h-F<) . h(Zh-h) _

+ ( < 1 or
Py My < Ez HZ
P .2 M
(Pu) + M s 1 (1.9)

Equations (1.2) and (1.9) are shown graphically in Figure 5.



1.0,

P/P,~*

0.5

(B) Plastic analysis, ideally plastic
equation M/M, + (P/P )2 < 1

Elastic analysis, straight line
equation M/M, + P/Pu <1

Figure 5.

-
T

0.5

Interaction curves, bending and axial loads



IT. COMBINED BENDING AND AXIAL LOAD

(1) Influence of Axial Load

In the range of elastic behavior the stress distribution of a beam-
column subjected to an axial load P and a bending moment M can be re-
solved into two parts, as shown in Figure 6. When the extreme fiber
reaches the yield stress, fy, plastic flow begins. As the loading is
increased, yielding first begins in the flange on the compression side,
then yielding will occur on the tension side until the fully plastic con-
dition is reached. The progress of the plastic penetrations are illustrated
in Figure 6. In the fully plastic case the existance of axial load tends
to reduce the plastic moment capacity of the member. If the axial load
were great enough to produce compression yield stress over the entire
cross—-section, there would be no resistance bending moment. However, the
fully plastic case occurs only in short compressive blocks. For long
columns, failure may occur by buckling before the yield point is reached.

Most practical column failures occur in the inelastic range before
the fully plastic condition is reached. It is this case that is to be
investigated in this paper.

The general equations leading to the development of interaction
curves have been derived for a rectangular cross—-section in Chapter I.
For the case of wide-flange shapes, it was difficult to find a direct
theoretical expression because of irregularities in the cross-section,
and an attempt to derive an equation for wide-flange shapes similar to
that for a rectangular section failed due to the unwieldy mathematics
involved. However, expressions for axial load, moment and curvature

were obtained.
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It is most important, in this type of column behavior, to find the
relationship between the applied moment, axial load and resultant curva-
ture for the region in the plastic range.

(2) Plastic Deformation of Wide-Flange Sections

The relationship between the angle change ¢ per unit length and the

bending moment M at any section of the member is

¢ = M/EL (2.13a)

as long as the structural member remains in the elastic range. If the
stress is above the elastic limit, a linear relationship between M and
¢ is no longer existent. For these cases the behavior of ¢ will be
described systematically below.

When the loads are applied to the member within the elastic limit
by combined bending and axial load, stress and strain diagrams are shown

in Figure 6 where the angle change is:
¢ = (€, —e,)/d = (f - £,)/Ed (2.1b)

where €y and €, are unit strains, fl and f2 are fiber stresses, and d

is the depth of the cross-section. Since ¢ is very small, tan ¢=p. For
members loaded beyond the elastic limit, the stress diagrams are shown
in Figures 6(b) and 6(c). The determination of ¢ in the plastic range
requires consideration of that part of the section which remains elastic,
thus

b= mEN W = Y) = (F = £)/W - Y) (2.1¢)

where ey is the strain corresponding to the initial yield point stress

and YC represents the distance of compressive yield stress penetration.
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(a) Elastic range

Axial Bending f2 “P‘*’
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=
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In Equations (2.1b) and (2.lc), the sign convention considered for com-
pressive strain and stress is positive, and tension is negative.

From a stress diagram it is possible to determine both end moments
and the applied load acting on the section. The values of P and M correspond
to stress distributions obtained by applying the basic equilibrium equations

to the forces on the member as shown in Figure 6, in which

il
o
o
=2

P (2.2)

and M

1l
o
<
o
o>

(2.3)

Derivation of values M and P for each stress pattern, will be given in

the following section.

(3) Derivation of Basic Equations

Using basic equations (2.1), (2.2) and (2.3), the values of the axial
load, bending moment and curvature can be determined for any given stress
distribution diagram owing to the shape of the wide-flange cross-section and
the partially plastic to fully plastic region penetrations. There are three

1%
cases to be considered in the derivation™ ,
Case 1. Yield stress at one extreme fiber.
Case 2. Plastic-flow penetrates the cross-section on
‘one side while other side remains elastic.
Case 3. Plastic-flow penetrates through both sides of
the cross-section.

Diagrams for the three cases are shown in Figure 7. The following

equations take both stress ranges into consideration:

(a) Compressive stress on one side and tension on

the other side

*
Re ference applies to the numbered item in the list of references (page 50).



ET T
s/ ||

/

L
|

y

he]
—.I i‘—fa _'l fa F—
(a) (b)

Case 1. First yield stress distribution

f
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>
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(a) (b)

Case 2. Yielding on one side of the cross-section

Case 3. Yielding on both sides of the cross-section

Figure 7. Three cases of stress distribution



14

(b) Compressive stress on both sides.

Case 1.

Axial load
p=irtia, (2.42)
If in terms of A of wide-~flange cross-section
P = fl—;f——“c—zi Ebtf + tw(d—tha (2.4b)
Where b is the width of flange, ty is the thickness
of flange and ty denotes the thickness of web.
Bending moment
M = fL=fs=-t8g (2.5a)

Where ¢ is the distance from neutral axis to the
extreme fiber, and S represents the section modulus of
the cross section.

If in terms of S of wide-flange section

- 2
M, = lfll_zgfé E:w(d—th)3 + 2bt(3d% - 6dtg + 4tf-)J (2.5b)

Angle change

- f
Yo T R (2.6)
Case 2.
Axial load

o]
Il

btf
2fy btf + fy tw(d - 2tf) -5 [(fy - fa)

t -
+£z_—_f£(d_yc_tfa__W£z__~;f{3(d_Yc_tf)2

d - Y. 7 d-73,
btf



M=

15

te(fy - fa)
£ (fy tw fy - fa 2 2
- g :‘ - 7 Td- Y, ‘:(d - Y.)" -2(d - Yc)tf te ]

Yc/d = q
bte2(fy - fa)
2d(1 -a )

twy_ (fy - fa) 2 2
gd(iy— » [% (1 - o) =241 - g)tg + tf]

fy(tyd + 2bty - 2tyte) - bt (fy - fa) +

fy - fa
2d(1 - )

[}tfz - tgd? @ - »2 - twtf%] (2.7

fy tyd + tf(fy + fa)(b - t) +

Bending moment

btf(fy - fa) d ts btg(fy - fa)(d - Yo - tf) d 2

5 5y -3 *t ICEER) 273t
sttt o
bte(fy - fa) 4  tg bte(fy - fa)(d-Yo-tg) g 2

3 -3 ¢ 2(d - 1) 273 %
E%%§§§i7£§)(d—Yc—tf)2 [%(d + 2Y, - 4t%%
Y./d = @
btfigy - fa) (3400, + btfizz - fa)[% ) zif§_&3:}(3d—4tf)
e oo ) oo v o]
I%Z(l_'.:fz—; bcf [6d(l - o) (d - tg) - 3dtg + 4tf2]

ty [a - a - gfilz lac + 2 - 4t£1} (2.8)

Angle change

(fy - fa) _ _(fy - fa)
Ed - ¥)  Ed( - o)

(2.9)
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Case 3
Axial load
P=fy - t, (Yo - Yu) Yo < Y, < t¢

Let o = Yc/d R = Yt/d

where Y, is the distance representing tensile yield stress

penetration

P=fy - t, d(a - 8) (2.10)
Bending moment

M = fybte(d-te) + £yt (Ye-tg) (d-Y ~tg)

2fyty d 2 Yo

+

tf
a
+ (1-a-8) (1+2a-48)] (2.11)

=
i

2
fytya t
fybte(d-tg) + ——6“’—— [6(8— ) (1-g- ai)

Angle change

b = 2ty _ 2fy
E(d—Yt—YC) Ed(1-0-B)

(2.12)

(4) Load Deformation Behavior of Beam—Columns

The computation of the ultimate load of a beam-column failing by
inelastic instability is usually done by establishing sufficient points on
the M=-A curve, since a direct analytical expression is not available in
the inelastic range. For a given axial load, a typical M-A curve is shown
in Figure 8, where the bending moment applied at the ends of a pinned-end
column is plotted against the deflection at the center-section. The slope
of this curve consists of two parts; one is the ascending slope which
means the member is stable, the other is the descending slope, which repre-
sents instability. At the peak where the slope is zero, the ultimate load
is reached. The methods of construction of M-A curves will be discussed

in Chapter III.



in.-kips
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Figure 8. Typical load~deformation diagram
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III. ANALYSIS OF ULTIMATE CAPACITY OF BEAM-COLUMNS

(1) Direct Numerical Method

The deflected column as shown in Figure 9 may be obtained by the
superposition of a non-sine curve caused by end moments and a sine curve
due to PY, Since the PY effect becomes more predominant as ultimate load
is approached, a sine curve combination is assumed. The following equa-
tions based on this sine-curve deformation are developed for determining
the end moment. Deflection Y at any point having a distance X from the
end of the column is:

Y = 4 sini, (3.1)

where A is maximum deflection at mid-height of the column, and the

curvature at mid-height is,

2
=it
dx2 x=3L L2

o =Ll o AT (3.2)

The moment at this same section for the column subjected to end moments
Mg and axial load P is given by
M =M, + PeA (3.3)
or Mj, =M - P-A.
From Equations (3.2), (3.3) and (2.4) to (2.12), the ultimate end moment
can be determined for any given axial load P and column length L by
plotting the moment-deflection curve.
The procedure of calculation can be outlined as follows:
A. Using Equation (2.4a), find fj,.
B. Substituting f, into Equation (2.5a), find Me.
C. Substituting f, into Equation (2.6), find ¢e.
D. Using Equation (3.2), compute A,.

E. Using Equation (3.3), compute Mge.



L/2

N

P

Figure 9. Deflection of a beam—column under
combined bending and axial load

19
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Denote A, and M,e instead of A and My to signify the first yield
value. Steps A through E determine the first yield values.

F. Start assuming Y, = 0.5 in using Equation (2.7) find £,.

G. Substituting f, into Equation (2.8), find M.

H. Substituting f,; into Equation (2.9), find¢.

I. Using Equation (3.2), compute A.

J. Using Equation (3.3), compute M,.

Repeat steps F through J at Y. =1, 1.5, 2.0, 2.5 etc. in 0.5
increments, in order to find A and M  when -36 ksi g f; 5 36 ksi and
tr § Yo L d-tg

K. If £, < -36 ksi, use Equation (2.10) to find Y.

L. Substituting Y{ into Equation (2.11) find M.

M. Substituting Y into Equation (2.12) find ¢.

N. Using Equation (3.2), compute A.

0. Using Equation (3.3), compute M,

Increase Y. in 0.5 increments, repeat steps K through 0 to find
Mo and A.

For each set of L/r and P/Py ratios, (Py = fy-A) steps A through
0 should be followed in analyzing the end moment and deformation. The
tedious series of calculations can be checked by computer program.

Fortunately, the variation between the M-¢~P curves, and thus the
interaction curves, is almost negligible for different W - shapes, and
therefore the interaction curves developed for the 8¥31l shape can also
be used for other sections, because it has one of the lowest shape factors
of all rolled steel sections (1.10 compared to the average shape factor
1.14). It has been shown that the curves are slightly on the conservative

side for other y- shapes? For other 8w 3l data see page 22.
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Before beginning the calculations, it is better to know the first
yield values for the beam-column. By following steps A to E, the results
shown in Table I were obtained. Tahle II to Table X contain the computed
ultimate and end moments for

L/t

Il
]

40 p/py = 0.2, 0.4, 0.6, and 0.8

L/r

60 P/Py

L]
o
[
“
o
S
-

0.6, and 0.8

L/r = 80 p/py = 0.2, 0.4, 0.6, and 0.8

L/r

100 P/Py

0.2, 0.4, 0.6, and 0.8

L/r = 120 P/Py

0.2, 0.4, 0.6, and 0.8
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A= 9,12 1'n.2
I =109.7 in.4
Qo
L b=8 L 3
*] S = 27.4 in.
[ J 4‘_4,-',' r = 3.47 in.
Y -
';op) fy = 36 ksi
3 6
- t . 0 288"0 E = 30 x 10 pSi
%) W :
'_lljl
r [ 1
Data for 8 Wk 31
Py = fy*A = 36 x 9.12 = 328,3KiPs
Mo = £y°S = 36 x 27.4 = 986.4 M kiPs
Mp = fy*z = 36 x 29.876 = 1075.6 in.-kips
My 6
¢, = EI = 986.4/30 x 10° x 109.7 = 0.000299 rad.



TABLE I

FIRST YIELD VALUES FOR BEAM~COLUMN, 8W 31

(See Appendix for the detailed computer data)

L/x B/Py (kzi) (_in.}-{kips) (rid) (iﬁ.) (in.I-v-Iliips)
40 W2 -21.60 789.12 .00024 .4685 758.36
40 A -7.20 591.84 .00018 .3514 545.70
40 .6 7.20 394.56 .00012 .2342 348.42
40 .8 21.60 197.28 .00006 .1171 166.52
80 .2 -21.60 789.12 .00024 1.8739 666.07
80 A -7.20 591.84 .00018 1.4054 407.27
80 .6 7.20 394.56 .00012 .9370 309.99
80 .8 21.60 197.28 .00006 L4685 74.23

120 .2 -21.60 789.12 .00024 4.2163 512.26

120 A -7.20 591.84 .00018 3.1622 176.55

120 .6 7.20 394,56 .00012 2.1081 -20.73

.8 21.60 197.28 .00006 1.0541 -79.58




8mw 31 BEAM~-COLUMN IN PLASTIC REGION

TABLE 1T

L/r

= 40 and P/Py

0.2

(See Appendix for the detailed computer data)
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case | 0%y | @by | en  |cinsktve) (rad.) (in) finLipe)

1 0.0 - -21.60 789.12 0.00024000 L4685 758.36
2 0.5 - -23.61 831.31 0.00026496 .5172 797.35
2 1.0 - -24.72 849.24 0.00028916 .5644 812.18
2 1.5 - -25.89 866.34 0.00031738 .6195 825.66
2 2.0 - ~27.12 882.57 0.00035067 .6845 837.62
2 2.5 - ~28.43 897.87 0.00039048 .7622 847.82
2 3.0 - -29.83 912.21 0.00043887 .8567 855.96
2 3.5 - -31.35 925.53 0.00049886 .9738 861.59
2 4.0 - -33.01 937.79 0.00057506 1.1225 864.08
2 4.5 - -34.86 948.92 0.00067488 1.3174 862.42
2 5.0 - -37.00 958.88 0.00081110 1.5833 854.91

5.5 -

6.0 -

6.5 -

7.0 -
NOTE: The computed values below the horizontal line do not apply

for case 2.
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TABLE III

8 W31 BEAM-COLUMN IN PLASTIC REGION

L/xr = 40 and P/Py = Q.4

(See Appendix for the detailed computer data)

Yo Y¢ fa M ¢ A Mo

Case (in.) (in.) (ksi) (in.-kips) (rad.) (in.) (in.-kips)
1 0.0 - -7.20 591.84 .00018000 .3514 545.70
2 0.5 - -8.43 619.49 .00019744 .3854 568.88
2 1.0 - -9.25 632.86 .00021548 L4206 577.62
2 1.5 - -10.12 645.60 .00023651 L4617 584.97
2 2.0 - -11.04 657.69 .00026132 .5101 590.70
2 2.5 - -12.01 669.10 .00029099 .5680 594.50
2 3.0 - -13.06 679.78 .00032705 .6384 595.94
2 3.5 - -14.19 689.71 .00037175 .7257 594.41
2 4.0 - -15.42 698.84 .00042853 .8365 588.99
2 4.5 - -16.81 707 .14 .00050292 .9817 518.21
2 5.0 - -18.40 714.56 .00060443 1.1798 559.16
2 5.5 - -20.32 721.07 .00075089 1.4657 528.58
2 6.0 - -22.80 726.64 .00098008 1.9131 475.40
2 6.5 - -26.49 731.32 .00138862 2.7106 375.34
2 7.0 - -33.57 735.34 .00231910 4.5269 140.84
2 7.5 - —61.71\ 741.19 .00651427 12.71581 -928.75




8 W31 BEAM~COLUMN IN PLASTIC REGION

TABLE IV

L/r

= 4Q and P/Py = 0.6

(See Appendix for the detailed computer data)
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Case .YC e f? . M . b A . Mo
(in.) (in.) (ksi) (in.-kips) (rad.) (in.) (in.-kips)
1 0.0 - 7.20 394.56 0.00012000 0.2342 348.42
2 0.5 - 6.76 407.68 0.00012939 0.2536 357.71
2 1.0 - 6.22 416.47 0.00014180 0.2768 361.94
2 1.5 - 5.65 424,86 0.00015564 0.3038 365.01
2 2.0 - 5.03 432,81 0.00017197 0.3357 366.69
2 2.5 - 4,40 440,32 0.00019149 0.3738 366,68
2 3.0 - 3.72 447.35 0.00021522 0.4201 364.59
2 3.5 - 2.97 453.88 0.00024464 0.4775 359.81
2 4.0 - 2.16 459.89 0.00028201 0.5505 351.45
2 4.5 - 1.25 465.35 0.00033096 0.6460 338.09
2 5.0 - 0.20 470.24 0.00039777 0.7764 317.28
2 5.5 - -1.06 474 .52 0.00049414 0.9646 284.51
2 6.0 - -2.70 478.19 0.00064497 1.2590 230.18
2 6.5 - -5.12 481.27 0.00091382 1.7838 129.88
2 7.0 - -9.78 483,91 0.00152616 2.9790 -102.93
2 7.5 - -28.30 487.76 0.00428691 8.3680 -1160.67
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TABLE V

8 W31 BEAM~COLUMN IN PLASTIC REGION

L/r = 40 and P/Py = Q.8

(See Appendix for the detailed computer data)

Case (ii?) (ii%) (kZ?) (in.gkips) (rid.) (iﬁ.) (in.ﬁﬁips)
1 0.0 - 21.60 197.28 0.00006000 0.1171 166.52
2 0.5 - 21.95 195.86 0.00006242 0.1219 163.85
2 1.0 - 21.69 200.08 0.00006813 0.1330 165.16
2 1.5 - 21.42 204,11 0.00007478 0.1460 165.78
2 2.0 - 21.13 207 .94 0.00008262 0.1613 165.58
2 2.5 - 20.82 211.54 0.00009200 0.1796 164.37
2 3.0 - 20.49 214.92 0.00010340 0.2018 161.91
2 3.5 - 20.13 218.06 0.00011753 0.2294 157.80
2 4.0 - 19.74 220.95 0.00013549 0.2645 151.48
2 4.5 - 19.30 223.57 0.00015901 0.3104 142.05
2 5.0 - 18.80 225.92 0.00019110 0.3730 127.94
2 5.5 - 18.19 227.97 0.00023740 0.4634 106.26
2 6.0 - 17.41 229.74 0.00030986 0.6048 70.87
2 6.5 - 16.24 231.21 0.00043903 0.8570 6.12
2 7.0 - 14.00 232.49 0.00073321 1.4312 -143.43
2 7.5 - 5.11 234.33 0.00205956 4,0202 -821.61




28

TABLE VI

8W 31 BEAM-COLUMN IN PLASTIC REGION

L/r = 80 and P/Py = 0.2

(See Appendix for the detailed computer data)

Case Yc Yt fa M ) A MO
(in.) (in.) (ksi) (in.-kips) (rad.) (in.) (in.-kips)
1 0.0 - -21.60 789.12 0.00024000 1.8739 666.07
2 0.5 - -23.61 831.31 0.00026496 2.0688 695.46
2 1.0 - -24,72 849.24 0.00028916 2.2577 700.99
2 1.5 - -25.89 866.34 0.00031738 2.4781 703.62
2 2.0 - -27.12 882.57 0.00035067 2.7380 702.78
2 2.5 - -28.43 897.87 0.00039048 3.0489 697.67
2 3.0 - -29.83 912.21 0.00043887 3.4267 687.20
2 3.5 - -31.35 925.53 0.00049886 3.8951 669.77
2 4.0 - -33.01 937.79 0.00057506 4.4900 642.95
2 4.5 - -34.86 948.92 0.00067488 5.2695 602.91
2 5.0 - -37.00 958.88 0.00081110 6.3300 543.02




(See Appendix for the detailed computer data

TABLE VII

8w 31 BEAM-COLUMN IN PLASTIC REGION

L/r

80 and P/Py = 0.4
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Y fa M ¢ A Mo
(in (ksi) (in.-kips) (rad.) (in.) (in.-kips)
1 0.0 - -7.20 591.84 0.00018000 1.4054 407.27
2 0.5 - -8.43 619.49 0.00019744 1.5416 417.03
2 1.0 - -9.25 632.86 0.00021548 1.6825 411.90
2 1.5 - -10.12 645.60 0.00023651 1.8467 403.08
2 2.0 - -11.04 657.69 0.00026132 2.0404 389.73
2 2.5 - -12.01 669.10 0.00029099 2.2720 344,42
2 3.0 - -13.06 679.78 0.00032705 2.5536 344.42
2 3.5 - -14.19 689.71 0.00037175 2.9026 308.51
2 4.0 - ~15.42 698.84 0.00042853 3.3460 259.42
2 4.5 - -16.81 707 .14 0.00050292 3.9268 191.44
2 5.0 - -18.40 714.56 0.00060443 4.7194 94.77
2 5.5 - -20.32 721.07 0.00075089 5.8629 -48.89




30

TABLE VIII

8 W31 BEAM=-COLUMN IN PLASTIC REGION

L/r = 80 and P/Py = 0.6

(See Appendix for the detailed computer data)

Case Te Ye fa M ¢ A Mo
(in.) (in.) (ksi) (in.-kips) (rad.) (in.) (in.-kips)
1 0.0 - 7.20 394.56 0.00012000 0.9370 309.99
2 0.5 - 6.76 407.68 0.00012993 1.0145 207.82
2 1.0 - 6.22 416.47 0.00014180 1.1072 198,36
2 1.5 - 5.65 424,86 0.00015564 1.2153 185.46
2 2.0 - 5.05 432,81 0.00017197 1.3427 168.31
2 2.5 - 4,40 440,32 0.00019149 1.4952 145.78
2 3.0 - 3.72 447,35 0.00021522 1.6805 116.31
2 3.5 - 2.97 453,88 0.00024464 1.9102 77.60
2 4.0 - 2.16 459.89 0.00028201 2.2019 26.13
2 4.5 - 1.25 465.35 0.00033096 2.5842 -43.,71




(See

8¥ 31 BEAM-COLUMN IN PLASTIC REGION

TABLE IX

L/r

B

120 and P/Py = 0.2

Appendix for the detailed computer data)
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Case <i§?> (ii?) <i21> (in.—ﬁips) (rid.) (iﬁ.) (in.¥§ips)
1 0.0 - -21.60 789.12 0.00024000 4.2163 512.26
2 0.5 - | -23.61 831.31 0.00026496 | 4.6547 | 525.66
2 1.0 - -24.72 849,24 0.00028916 5.0799 515.68
2 1.5 - -25.89 866.34 0.00031738 5.5757 500.22
2 2.0 - | —27.12 882.57 0.00035067 | 6.1605| 478.04
2 2.5 - | -28.43 897.87 0.00039048 | 6.8600 | 447.42
2 3.0 - -29.83 912.21 0.00043887 7.7101 405.93
2 3.5 - | -31.35 925.53 0.00049886 | 8.7639 | 350.06
2 4.0 - | -33.01 937.79 0.00057506 | 10.1025| 274.42
2 4.5 - | -34.86 948.92 0.00067488 | 11.8563| 170.39
2 5.0 - -37.00 958.88 0.00081110 14.2493 23.21




8 W31 BEAM-COLUMN IN PLASTIC REGION

TABLE X

L/x

= 12Q and P/Py = 0.4

(See Appendix for the detailed computer data)
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Case | ¢ Ye fa M ® b Mo
(in.) (in.) (ksi) (in.-kips) (rad.) (in.) (in.-kips)

1 0.0 - -7.20 591.84 0.00018000 3.1622 176.55

2 0.5 - -8.43 619.49 0.00019744 3.4687 163.96

2 1.0 - -9.25 632.86 0.00021548 3.7855 135.71

2 1.5 - -10.12 645.60 0.00023651 4,1550 99.93

2 2.0 - -11.04 657.69 0.00026132 4.,5908 54,78

2 2.5 - -12.01 669.10 0.00029099 5.1121 -2.26
L/r = 120 P/Py = 0.6

1 0.0 - +7.20 394.56 0.00012000 2.1081 -20.73
L/r = 120 P/Py = 0.8

1 0.0 - 21.60 197.28 0.00006000 1.0542 -92.19




without residual stress

—————— with residual stress

1.2~

M/M

1.

0.
T ———
0.6”
0.47
0.
] [} [
1.0 2.0 3.0

¢/ 9y

Figure 10. Moment-curvature diagram for gw3110

33
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The above results from the I.B.M. computer which is available in
the computer center of the University of Missouri-Rolla are given in
detail in the Appendix.

(2) Moment-~Curvature Method

The relationship between moment and curvature is important because
the data allows for the determination of the maximum moments and angle
changes that a member can substain. Using equations in Chapter II,
moment-curvature graphs can be constructed for a given constant axial
load P. One set of curves is shown in Figure 10 where the non-linear
curves, M-¢ are shown for P=0, 0.2Py, 0.4Py, 0.6Py and 0.8Py. For P=0,
M/My ratio reaches the maximum limit 1.10 which is the shape factor of the
8 W31 wide-flange section.

The M-¢ curve method is based on a direct numerical method. The
process is shown as follows:

A. Assume a center-curvature ¢.
B. Using Equation (3.2) compute A.
C. Entering M-¢ curve (Figure 10) with the value of ¢/¢y
ratio, pick up the corresponding M/My ratio.
D. From the moment in step C compute M, from Equation (3.3)
For example:
Given L/r = 40 P/Py = 0.2
L = 138.8 in. P = 65.7%
A. Assuming ¢ = 0.00025 rad. which is greater than first yield
angle change ¢g.
B. Using Equation (3.2) compute A.

The maximum deflection at middle height is

_ ¢L% _ 0.00025 x 138.82

_TT_Z‘ 9.86 = 0.489 in.

A
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0.00025 _
= 0.q00299 ~ 0-83°

C. From ¢/¢y
Using (Figure 10) M = 0.815 x 986.4 = 805"k

D. Using Equation (3.3)
M, = M-P-A = 805=65.7 x 0.489 = 762.9 K (end moment)

The following results in Table XI is a set of M, for L/r = 40 and

P/Py = 0.4,



TABLE XTI

COMPUTED MOMENTS FOR BEAM-COLUMNS BASED ON FIGURE 10

36

L/r = 40 P/Py = 0.4 My = 986.4 in.-kips P = 131.32 kips
¢ A /oy | MMy M Bl M
(in.-kips) (in.-kips) (in.=kips)

.00018 0.352 0.600 0.600 591.9 46.2 545.70
. 00022 0.430 0.734 0.635 626.0 56.5 569.50
.00026 0.507 0.867 0.668 652.8 66.5 586.30
.00030 0.586 1.000 0.683 672.0 77.0 595.00
.00034 0.664 1.130 0.691 681.9 87.4 594.60
.00038 0.742 1.265 0.698 689.8 97.5 592.40
.00042 0.820 1.400 0.706 698.0 108.0 590.00
.00046 0.899 1.532 0.715 704.7 118.0 586.70
.00 050 0.976 1.670 0.718 708.3 128.4 579.90
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(3) Numerical Integration Method6

Based on the M-¢ curve, a numerical integration method can be applied
to find the maximum moment capacity of the beam-column when the value of
M, and configuration of deflected structure are assumed. Several cycles of
calculation are needed before the correct deflected shape is obtained.
However, for each set of given values of P and L, the above process must be
repeated until enough values of moment have been obtained to construct the
M-¢ curve for determining the critical value of bending moment. The cal-
culation is time consuming and tedious.

The procedure is as follows:

A. Divide the beam—-column into equal segments
(Roughly A = 3r or 4r)

B. Try a set of deflection values at each section.

C. Compute the moment due to axial load.

D. Assume an end moment M,, find total moment.

E. Find the deflection.

F. Compare the deflection value to assumed value, if two
values are identical, the deflection is the correct one.
I1f not, repeat above procedures as required.

Example:
Determine the ultimate strength of the following beam-column.

Material: A 36 steel, Fy = 36 ksi, E = 30,000 ksi

Section: 8w 31 Py = AFy = 9,12 x 36
My = S-Fy = 27.4 x 36 = 986.41in.-kips
2F
Sy . 2x36 _ 000299 rad.

¢y =4E " 8 = 30,000
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]

L/r = 40 L = 138.8 in,

65.7kips

1

P/Py = Q.4 P
Loading condition; Equal end moments.
Results are shown in Table XII (pages 39 and 40).

It should be noted that for the assumed end moments of 600in.—kips
(page 40), the computed moment to yield moment ratio (M/My) exceeds the
maximum value given in Figure 10 for P = 0.4 Py. For this reason, the
deflection will not converge to its true shape. Thus, the ultimate moment
in.-kips

computed on the basis of My = 600 is larger than the maximum bend-

ing capacity of the member.
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TABLE XII

DATA USED FOR THE EXAMPLE

L/t = 40 L = 138.8 in. P/Py = 0.4 P = 131.32%
¢y = 0.000299 rad. My = 986.41in.-kips A= 23,13 in.
0123456 0 1 2
3
first defl.

S=j=h
Assumed end moment Common factor 546 546 546 546 546 546 546
Assumed deflection 0 0.20 0.28 0.35 0.28 0.20 0
Moment due to P 0 26.3 36.8 46 36.8 26.3 0
Total moment 546 572.3 582.8 592 582.8 572.3 546
M/My 0.554 0.58 0.59 0.60 0.59 0.58 0.554

curvature by 0.554 0.58 0.59 0.60 0.59 0.58 0.554
S1ope o, 0 {0.55 | 1.134 |1.724 |2.324 | 2.914 | 3.494
First deflection A2¢y 0 0.554 1.688 3.412 5.736 8.650 12.144
Liner correction 2 0 | 2.02 | 4.04 | 6.06 | 8.08 |10.12 |12.144
deflection y
Final deflection 2

0 1.47 2.35 2. . .

e o) \ by 3 65 | 2.35 | 1.47 0
Final deflection 0 ]0.235 | 0.376 |0.424 |0.376 | 0.235 0
in inches
Final trial deflection A2¢X 0 |0.237 | 0.384 0.432 | 0.384 0.237 0
Final deflection 0 }0.238 | 0.38 |[0.432 |0.38 | 0.238 0
in inches

6¢




TABLE XIT

(continued)
M, =M+ PtA = 546 + 131,32 x 0.432 = 597, % kipe
Try end moment = 570 in.-kips 0 1 2 3 4 5
Final try deflection 0 0.271 0.444 0.500 0.443 0.271
Final deflection in inches 0 0.272 0.444 0.500 0.444 0.272
Hult = 570 + 131.31 x 0.500 = 615.7 in.-kips

Try end moment = 590 in.-kips

Final try deflection 0 0.320 0.527 0.600 0.527 0.325
Final deflection in inches 0 0.320 0.530 0.602 0.530 0.320

¥t 590 + 131.32 x 0.602

669 in.-kips

Try end moment = 600in.-kips

Deflection is divergent (see discussion on page 38)

0%
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(4) Development of Interaction Curyes
A. Ultimate strength interaction curves
The results of the ultimate strength calculation for beam-
columns are presented best in the form of P-M-L interaction curves.
A set of these is given in Figure 11. These particular interaction
curves are for the case of two equal end moments causing single-
curvature deformation about the strong axis of an 8W3l member.
Each curve in Figure 11 shows the relationship between P/Py and
M/Mp for given slenderness ratio L/r.
The following observations can be made about these interaction
curves:
a. When P=0, the member is a beam and can support a moment equal
to Mp.
b. When M=0, the member is a column which is able to carry a
load equal to its own critical load.
c. Except P=0, M=0, extreme cases, between these extremes,
beam-column action takes place.
d. For a given value of P, the member for which L/r, =0 can
carry considerably more moment than the member with L/ry=120.
Thus, short members are stronger than the long members.
e, Up to L/rx = 60, the interaction curves are nearly straight
lines.
For higher slenderness ratios the curve sags downward, thus
showing the larger influence of secondary moments due to deflection.
Fortunately, the variation between M-$-P curves, and thus the

interaction curves, is almost negligible for different W -~ shapes,



42

and therefore the interaction curves developed for the 8w 31
shape can be used for other sections also. It has been shown

that the curves are slightly on the conservative side for all

other ¥ —shapes.

1.0

P/P

0 0.5 M/M 1.0

Figure 1l. 1Interaction curves®

B. Interaction equations

The relatively simple, empirically determined beam-column inter-
actions have proven themselves more popular with specification writers
than other methods because the interaction equations are easily adapt-
able to a multitude of situations; Most significantly, these formulas
permit ready inclusion of provisions for lateral-torsional buckling

and biaxial bending.
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In the following discussion an ultimate strength interaction
equation will be derived from the analytically determined ultimate
strength interaction curves such as those shown in Figure 12, The
dashed line represents the analytically developed curve, and the solid
line corresponds to the approximation.

M/Mp = 1.18 [1 - P/Py]-—————

Analytical solution ———=—=—w-

6
Figure 12. Interaction curve for '"Zero Length" member

C. The straight-line interaction formula

P/P, + M/Mp = 1.0 when L/ry < 40

1
——) = ], L < 120
P/PO + M/Mp (l — P/Pe) 1.0 when 40 < L/ry
where:
S S Amplification factor
1 - P/Pe

Where Pe = The elastic buckling load of the member in

the plane of bending or in nondimensional form

ﬂZE 1 )2

Pe/Py = 7 GJF
y X
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B[R, + MMy = 1.0 ———

1.»
Analytical solution -—-—-
BP/P T
ﬂ [0}
]
§
t
0. /|
1
\
\
\
0 0.5 1.0 Jy,
M/Mp P
Figure 13. Straight~line interaction formula
P/P + (M/M )(——~l-——~9 = 1.0
1. o y 1l - P/Pe
P/Py Analytical solution -——--

Mo

P
4‘9{0
]

1
'
{
{
\
\
P

The interaction formula with
amplification factor6

Figure 14.

D. AIsC Specification9

Case (1) for columns bent in single curvature

MO/MP = l.O—H(P/Py) - J(.P/Py)2 L/r < 120 (3.4)
H and J are numerical coefficient values which depend on L/r

ratio and steel yielding stress.
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(5) Discussion and Comparison of Results

The calculations in this Chapter were based on the assumption that
the deflected shape of the beam~-column was a single sine curve. Since
the deflection at mid-height is small compared to the column length,
satisfactory results were obtained. The sine curve assumption yields good
resulfs for a column subjected to equal end moments with opposite direc-
tion. For columns loaded with either equal end moment in same direction
or with end moment at one end only, the assumption is no longer applicable.

There is no problem to determine the ultimate moment of beam-column
by direct numerical method or numerical integration method. However, the
relatively simple, empirically determined beam—~column interaction equa-
tions have proven themselves more popular with specification because the
interaction equations are easily adaptable and conservative. 1In practice,
most engineers are interested in actually applied moment at ends instead
of the ultimate capacity of beam—-column at mid height.

The results of an example obtained by different methods as presented
in this Chapter may be summarized as follows:

A. Direct numerical method (page 25)

M,1t = 679.78 in.-kips

M, = 595.94 in.-kips

o
B. Numerical integration method

My1te = 669.0 in.-kips

M, = 590.0 in.-kips
C. Straight-line interaction formula (without correction by an

amplification factor)

MO = Mp (l - P/Py)
1075.6 x (1 - 0.4)
645.4 in.-kips

i
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D. A.I.S.C. formula
M, /My = 1.0 - H(P/Py)- J(P/Py)?
where, H = 1.020 and J = 0.154 for L/r = 40

M, = 1075.6 in.-kips, P/Py = 0.4

substituting H, J, M and P/Py into the above equation, solve for Mg»

M
o

1075.6 (1.0 - 1.020 x 0.4 - 0.154 x 0.42)

]

1075.6 x 0.5674

610.3 in.-kips

The above comparison indicates that the end moment computed by the
straight-line interaction formula without correction by an amplification
factor is about 8% higher than those computed by the direct numerical
method and the numerical integration method. The end moment using AISC
formula would provide closer agreement between the computed values.

(6) Influence of Residual Stresses7

Residual stresses are formed in a structural member as a result of
plastic deformations. They are stresses which exist in the cross section
even before the application of an external load. These plastic deforma-
tions may be due to cooling after hot-rolling or welding, or due to fabri-
cation operations such as cold-bending or cambering. In rolled shapes,
these deformations always occur during the process of cooling from the
rolling temperature to air temperature; the plastic deformations result
from the fact that some parts of the shape cool much more rapidly than
others, causing inelastic deformations in the slower cooling portions.
However, the magnitude and distribution of residual stresses depends on
the shape of the cross section, rolling or welding temperature, cooling

condition, and material properties. Typical cooling residual stresses



47

for W-shapes result in average cqmpressive residual stresses at the
flange tip of about 13 ksi for structural carbon steel A-7, A-36 and
élso A-242,

Due to the presence of residual stresses, yielding commences as
the sum of the applied compressive stress and the pre~existing maximum

compressive residual stress becomes equal to the yield stress

fy = freo + £, (3.5a)
or interaction equation defining this limit is,
M f
P/Py + § 2= 1 - E& (3.5b)
y My fy

where, f .. is the compression residual stress and y
is a factor by which the end moments are modified

to obtain the maximum moment.

Because of the increased amount of yielding with each increment in
M, the stiffness of the member is reduced progressively until finally the
overall member stiffness becomes zero and no additional moment can be
supported at the peak of the curve.

Figure 15 illustrates two conditions. The solid lines represent
cases where residual stresses were neglected. Dotted lines denote cases
where residual stresses were included. The series of plotted points
represent Equation (3.4),

The method (Equations 3.5a and 3.5b) can be applied to members
containing residual stresses after a distribution pattern for such stress
has been assumed. Then the idealized moment curvature diagram as shown

in Figure 10 should be corrected as indicated by dotted lines which

represent the influence of residual stresses.
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without residual stress

176 ————— with residual stress

Equation (3.4)

P/P
y

Figure 15. Interaction curves with and
without residual stresses’
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IV. CONCLUSIONS

Three methods were presented in this thesis for determining the
maximum strength of beam~columns subjected to a thrust and equal end
moments with opposite direction. Failure due to lateral torsional or
local buckling was not considered.

In this presentation, the influence of an axial load on M-¢
relationship in the plastic range, considering the combination of thrust,
moment and curvature were discussed in Chapter III. In addition, approxi-
mate interaction equations were adopted from other references in order to
compare the results with the analytical study presented herein.

This investigation indicates that (1) the ultimate moment of beam-
columns can be predicted by the direct numerical method or numerical
integration method, (2) satisfactory results can be obtained by assuming
a single sine curve for the deflected shape, and (3) the AISC formula

provides a satisfactory result for end bending moments.
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APPENDIX

The Appendix contains two computer programs used for preparation
of Tables T to X in the text.

The first computer program (page 53) was used to compute first
yield values for L/r = 40, 80 and 120 combined with different P/Py ratios
ranging from 0.2 to 0.8 for each specific L/r ratio.

The second computer program (pages 54 to 61) was used to calculate
ultimate and end moments based on various L/r ratios (40, 80 and 120).

The P/Py ratios used in this investigation ranged from 0.4 to 0.8.



READ 1C0sAsSsRsFYsF oD

100 FORMAT (6Fl2e42)
PRINT 1C0sAsSsRsFYsESD
PY=FY*A
DO 200 J=404+120440
B=.J
X=B*%*R
DO 200 I=1s4,1
C=1
CC=C/5.
P=CC*Py

FA=2 s ¥D/A~FY

EM=(FY=-FA)/2e¥%5
RAD=(FY~-FA)/(E%D)
DE=(X*%2%RAD) /(341416%%2)

COM=EM~P#DE

I FTAVL ¥0d4 VIVA ¥ILAJWOD

200 PRINT 3004sJsCCyFA,EMyRADDE,EOM
200 FORMAT (I15,F10e19F10e25F10e2,F15.8sF10e45F10+2) o
STOP
END
9412 2740 347 36400 30000400 800 _
C*#*1286B8CEXC26 N C TSAO 02/10/66 FORMO 00FORMO 02/10766~]
9,12 27440 3047 36,00 30000400 8.00
40 .2 -21.60 789412 «00024000 e 4685 758436
40 ol ~7420 591,84 .00018000 <3514 545470
40 o6 7420 394456 «00012000 «2342 348442
40 .8 21460 197,28 «00006C00 $1171 166652
80 o2 -21.60 789412 «00024000 148739 666407
80 ol =720 591.84 «00018000 1.4054 407427 . -
80 6 7.20 394,456 «00012000 «9370 209499
80 .8 21460 197428 «00006000 «4685 74423
120 o2 -21.60 789412 200024000 LTI 512426
120 oh ~7.20  591.84 00018060, 341622 176355,
120 w6 Y7620 3944565 w90012000 Eﬁlea% =20e 73 &
220 T8 210 b0 WG Ta2BY A OF 57958




PEAD 100 ,D,ByTFyT gy Y Xy A
100 FORMAT (7F10.3)
E=30000.0

=40
PY=FYxA
DO 10 J=1l,4

B0
22=1/5.
P=77%PY
DO 10 1=1,15
y=1
YY=045%Y

=YY /8.
C1=FYRTURD+TERFY s ( B=TH) =P
F2=FY:* ( B T E sk Z_T‘,!:L:D;;::;:Z:;:( le—1') Wk P =TV TR 2) / (2D (1e=W ))

TE3=F2/FY-TFHR(B=TH) D

Fr=(FLl+F2)/F3

E1=paTrRs (6o NH( L=t )% D=TF) =3 8 DETF+4 R TF542)

CES T (03 Le=H=TH/D) ) kk25 (Da (1o +24 %) =4 kTF))
Efi=(FY=FA)S(EL+E2) /{124%D%(1a=t))
RAD= (FY=FA) /(ExDi(1le=t))

DE= (U 2%AAD) /{34 1416%%2)
ENi=Eri =P %DE
10 PRINT 20041922 yYY yFA,EilyRAD, DE, EON

II ATdVL ¥0d4 VIvVd JALNJWOD

TSE0 FORMAT (153F541375el9F1l0e2yF1042,F1548,F104%3F1042)
STGP
EMD

-23.61 231.31 «00026496 5172 7197435
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40 . 2 .
40 .2

.
O N OO o Wm
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-33.01 927,79 .00057506 18225 864408

- it

S A
40 .2
40 .2
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40 .2

40 W2

s_L\UJU)(\JNr—',..

K23
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4 2.5 ~-12.01 669,10 .00029099 .5680 594,50
4 3.0 -13.06 679.78 .N0032705 L6384 595,94
4 3.5 -14,19 689471 L0003 7175 T L7257 T B04, 41
i 40 -15,42 698,54 00042853 L8365 528,99
b 445 -16.,81 TO0Te 14 .N0050292 L9817 5724721
UL 5.0 =18.40  Tl4e56 1 .00060443 1.1798 559.61
W4 5.5 -20432 721.07 00075089 1.4657 52R .58
b 640 -22480 726464 .00098008 1.9131 475 ¢ 40
b 6.5 —-26449 731432 LO0138862  2.7106 375.34
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W6 140 6622 416,47 «N001%4180 2768 361.94
I 5.65 424 R6 00015564 «3038 365.01
6 2.0 5.05 437481 O L00017197 T U3357 T 3464569
Wb 245 b o b0) 440,32 .00019149 .3738 366 .68
.6 3.0 54772 L47,35 L00021522 W 4201 364459
.6 3.5 2,97 T Tds3,88 T L,00024464 G115 350,81
W6 4.0 2.16 459 Y 00028201 .5505 351,45
W6 445 1.25 665,35 O L.N0033095 « 6460 332,09
65,0 W20 T 470 24 T Q0039777 L1764 317,28
46 55 -T.06 474,52 00046941 4 A 204,51
6 6,0 t 270 473419 . . .00064%97 22590 _R30,18

AL pue ‘III ‘II STTAVI ¥Od VIV ¥AINJWOD
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—F0TTTUCETBYE T T =5 12 AR, 2T T T T Ien09T382 T. 7538 I79.33
40 .6 7.0 -9.78 483.91 .00152616 2.9790 -102,93
40 6 7.5 -25 .30 457476 «00428691 843680 ~=1160.67

TEO .8 .5 21.95 195,86 00006257 L1219 163,85
40 .8 1.0 21469 200.08 .00006813 .1330 165.16
40 .8 1.5 21.12 204411 .00007478 1460 165.78
0 .8 2.0 .13 207.94 7 TTTIO0NG08262 1613 165,535
40 .8 2.5 Zu.mZ 211,54 00009200 L1796 164,37

_ 40 .8 3.0 20449 214,92 .00010340 .2018 161.91
0.8 3.5 20413 212,06 00011753 L2004 157,580
40 .8 4.0 19 .74 220,95 .00013549 2645 151,48
_ 40 .8 4.5 19.30 223451 00015901 3104 142,05
TRGTTUE 5.0 16 .60 295,92 LOO0T9TTD 3730 127.9%
40 .8 5.5 18.19 227.97 . 00023740 Jh534 106.26
40 .8 640 7.61 229.74 .00030985 L6048 70.87

TZOT .8 6.5 16,24  231.21 77T,00043903 L8570 6,12
40 .8 7.0 14.00 232449 .00073321 1.4312  =143.43

40 .8 1.5 .11 234.33 .00205956 4.0202  -821.61

| READ 100,D, ,n.,r 2 EY 9 Ky A “* T -
100 FORMAT (7F10.3)

_W_F =30000,0 i
=80 B
Py =F YA
DO 10 J=le4
7=J
27=1/5.
 p=17%PY o
DO 10 I=1,15 -
v=1
YY=0.5%Y
H=YY /6. o
Fl=FYsT % )+r+ (=T ) =P
i, F2EF Y (B g TR 2 1) 2 ~TUTFa%2) /(2 %D% (1o =W
SEETER S FZ/FY TF (B=TH) B o SALThdish St
FA=(FLF2) /F3
ELep#TFk(64%D% (Lo =W)%(D=TF) =3 6 DxT Frs, s FR¥EIY
. 2 . o
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E2=Tix((Dx

Eti= (FY=FA) (t1+«z)/(1z. ~~~~~~ #(La=t))
RAD= (FY=FA) /(ExDx(1, )) )
T DE= (X2 Hﬁn)/(B 1416“*2)
EQH=ER=PEDE
10 PRINT 200,119 2ZyYY 37 Ay Eliy2AD, DESEL _
200 FﬁﬁﬁET'(Is FSel9f5019F10e2srl0e29F15¢0,F10,49F1042)
STOP
80 o2 .5 —23.51 £31.31 <0002 6496 2.0688 695 4 46
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80 4 1.0 -0.25 632486 00021548 16825 411.90
80 W4 le5 . —10.17 £45 460 .00023651 1. RL6T 403408
T80 b 2.0 -11.0% 65T 6O LN0025132 2. NL04L  3P0.73
80 b 245 ~17.01 659410 + 00029099 2.2720 370,71
80 b 340 ~13.054 679,78 400032705 245536 344,42
T80 o4& 345 =144 169 689,71 T LON0BFLITS T 2.9026 ELL S Ch
B0 & 4.0 ~15 w42 698484 «0G042853 343460 259,42
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