
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Fall 2008 

Critical infrastructure protection and the Domain Name Service Critical infrastructure protection and the Domain Name Service 

(DNS) system (DNS) system 

Mark Edward Snyder 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Computer Sciences Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Snyder, Mark Edward, "Critical infrastructure protection and the Domain Name Service (DNS) system" 
(2008). Masters Theses. 4638. 
https://scholarsmine.mst.edu/masters_theses/4638 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4638&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4638&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4638?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4638&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


CRITICAL INFRASTRUCTURE PROTECTION AND THE DOMAIN NAME

SERVICE (DNS) SYSTEM

by

MARK E. SNYDER

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2008

Approved by

Dr. Bruce McMillin, Co-advisor
Dr. Mayur Thakur, Co-advisor

Dr. Ann Miller



Copyright 2008

Mark E. Snyder

All Rights Reserved



iii

PUBLICATION THESIS OPTION

This thesis consists of the following two articles that have been submitted for

publication as follows:

Pages 1–25 have been accepted for publication as: Mark E. Snyder, Ravi Sun-

daram, Mayur Thakur, “A Game-Theoretic Framework for Bandwidth Attacks and

Statistical Defenses,” lcn, pp. 556-566, 32nd IEEE Conference on Local Computer

Networks (LCN 2007), 2007.

Pages 26–52 are intended for submission to the IEEE ICC 2009 COMMUNI-

CATION AND INFORMATION SYSTEMS SECURITY (CISS) SYMPOSIUM.



iv

ABSTRACT

Components of the critical infrastructure of any system are natural targets for

attack. Any inherent weakness of such components can potentially expose the entire

system to vulnerability. The Domain Name System (DNS) is one component of the

proper functioning of the Internet. Although DNS is a relatively simple, isolated

component, it serves as a straightforward example for the study of distributed sys-

tems in general, and as such, we have explored properties of DNS to examine how

enterprise-scale, critical infrastructure components are vulnerable to attack, what

protections are afforded to defenders of such components, the inherent weaknesses of

such systems, and what natural defenses are available to safeguard them and ensure

the availability of these systems. Each of the works in this thesis analyzes some aspect

of our efforts in this regard.

In “Preprocessing DNS Log Data for Effective Data Mining,” we focus on the

task of obtaining DNS log data and the task of data preparation and cleaning to

place the data in a form which can be data mined. In this effort, the problem of data

insufficiency required a non-standard approach to data cleaning. We infer missing

values by exploiting business knowledge of DNS behavior, preserving features lost

using methods such as linear interpolation.

In “A Game-Theoretic Approach to Bandwidth Attacks and Statistical De-

fenses,” we have discovered a novel way of framing a bandwidth attack as a com-

petitive, two-player game. There exist more definitive methods than ours for sifting

through DNS traffic that can isolate and take measures to deal with illegitimate re-

quests, but these methods consume more resources in doing so than most DNS servers

choose to spare. As a result, the typical response to a spike in illegitimate DNS re-

quests is simply to add more server capacity. Our method shows that it is possible

to identify groups of traffic that are suspicious. It is hoped that by using a technique

such as ours as a front-line filter to throttle the requests sent on for more definitive

analysis, we might make the utilization of the more definitive techniques more attrac-

tive, thereby protecting the DNS servers from becoming overloaded with requests,

thereby protecting the proper functioning of this service.
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PAPER

I. A GAME-THEORETIC FRAMEWORK FOR BANDWIDTH

ATTACKS AND STATISTICAL DEFENSES

We introduce a game-theoretic framework for reasoning about bandwidth at-

tacks, a common form of distributed denial of service (DDoS) attacks. In particular,

our traffic injection game models the attacker as a rational but limited-resource entity

who uses limited knowledge of traffic patterns to launch IP spoofing based bandwidth

attacks on a server. We model the defender as a coarse-grained, relative volume based

statistical filter.

We analyze the effectiveness of the defender against the attacker by analyzing

the payoffs of various strategies in the traffic injection game. Furthermore, we analyze

how these payoffs change in the presence of random noise.

Our results show that there is potential for using statistical methods for creating

defense mechanisms that can detect a DDoS attack and that even when an attacker

has a priori knowledge of the expected traffic volume for the dimension and divisions

employed in the attack, the attack traffic can still be exposed to the defender.
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1. INTRODUCTION

IP spoofing—changing the source address of IP packets—has been used in DDoS

attacks on popular websites (Yahoo!) and root DNS servers. Examples of DDoS at-

tacks that use IP spoofing are Smurf and SYN attacks. IP spoofing-based attacks are

dangerous because they can bypass filters that drop packets based on IP addresses.

Even though techniques such as backscatter can detect IP spoofing-based attacks,

one needs more sophisticated filtering mechanisms to detect more intelligent attacks.

However, these filtering mechanisms cannot be too fine-grained because they have

to be installed on routers. Also, simple volume-based detection mechanisms are un-

likely to be effective because of the busyness of the Internet traffic. We thus study

the effectiveness of relative volume and coarse-grained measures against IP spoofing

attacks.

During a Distributed Denial of Service (DDoS) attack, the attacker increases

the amount of illegitimate traffic originating from machines under his control. This

results in a positive increase by some ratio relative to the traffic that was present in

the system to begin with. We will refer to this ratio as α, where 0 ≤ α ≤ 1.

We view the attacker as choosing a distribution by which traffic is added to the

system by the machines under his control. The attacker can view this from a number

of directions, which we will call dimensions. For example, an attacker might choose to

have all controlled machines use only spoofed IP addresses that are even-numbered.

In this case, divisibility by 2 becomes a dimension, and there are 2 divisions within this

dimension, even and odd. Traffic can be increased using a geographical distribution.

The attacker may decide to increase traffic only to target machines in New York, or

to add twice as much traffic coming from New York machines as from Los Angeles

machines. Thus the geographical location of machines becomes a dimension and there

could be numerous divisions within this dimension. The attacker is able to choose a

distribution across the divisions of any dimension he envisions. In any set the number

of groupings is only limited by the power set, which, while very large is still finite. In
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each case, the attacker identifies a dimension and then chooses a distribution across

the divisions within that dimension.

The defender views the traffic in much the same way. As traffic is received, the

defender counts it and monitors how the traffic is distributed amongst the divisions

of some dimension. If the defender can detect a change from the base distribution,

then it knows that an attack may be underway. The challenge for the defender,

however, is that even though it can detect that an attack may be happening, there is

still the matter of sorting the legitimate requests from the illegitimate. The solution

that we will propose is to merely tag each division within the observed dimension

with a measurement of suspiciousness. The more suspicious a group of traffic is, the

more scrutiny it will be subjected to and thus the longer it will take to process, but

it will not be dropped. Whereas traffic that is not suspicious is not delayed at all.

Therefore, the defender in our game must only identify the groups of traffic that are

more suspicious than other groups of traffic.

This is a very different approach than, say, that employed by synkill[8] where the

goal is to spend as few resources as possible on suspicious traffic, but our approach

is meant as a first line filter to incoming traffic, and the goal is to advise subse-

quent processes about which traffic merits additional scrutiny using more definitive

techniques.

Since neither the attacker nor defender has perfect information about all di-

mensions and divisions within those dimensions, we define a “hidden” distribution of

traffic to represent these hidden dimensions. We take care to note that our model is

equivalent to one that allows the attacker to control, defender to monitor, multiple

dimensions as these multiple dimensions can be projected onto a new dimension so

that it can be represented as a single dimension again. When an attacker adds traffic

according to its chosen distribution, the hidden distribution is applied to the traffic

across all other dimensions to produce the counts that the defender views from the

perspective of his chosen dimension. Thus, even if the attacker is aware of or tries

to approximate the base distribution with the attack distribution, the hidden distri-

bution disseminates the traffic in such a way that the defender can still observe an

anomaly with a careful choice of dimension to observe.

The Traffic Injection Game is a two person, zero sum, competitive game with
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imperfect knowledge. We represent the game in normal form as a sensitivity matrix

in the form of a bimatrix of summed difference of new traffic to base traffic once the

attack traffic is added [9].

Our game consists of two d-dimensional matrices—base distribution (represent-

ing the relative volume of traffic distribution) and a hidden distribution (representing

the relative entity distribution). The attacker and defender (the two players in the

game) each choose (independently) a dimension. We assume that the attacker and

the defender both have knowledge of the base distribution along the dimension of

their choice. The attacker chooses to inject traffic in the network (based on its knowl-

edge of the distribution along a dimension), while the defender uses statistical means

to measure the change in distribution from the normal distribution. The change in

distribution per unit of attack traffic injected is the payoff to the defender.

We show that knowledge of traffic distribution helps both the attacker and

the defender. When an attacker chooses a strategy (the amount of attack traffic

that it generates per division of the attack dimension) that closely matches the base

distribution for the attack dimension, then the payoff is best for the attacker. As

the strategy deviates more and more from the base distribution, the attack traffic

becomes more exposed to the defender.

We also show that even when the attacker knows the base distribution for the

attack dimension and utilizes it to its best advantage, the attack is still detectable,

given favorable signal-to-noise ratio and a careful choice of dimension by the defender

in which to monitor traffic.
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2. RELATED WORK

A variety of methods of dealing with the problem of denial of service (DoS)

attacks have been explored. The idea of comparing incoming to outgoing flows of

network traffic was explored in [7]. Using game theory to identify another kind of

DoS attack, that attempted by nodes in wireless sensor networks, was investigated

in [1]. Cominetti, et al., examined the cost of anarchy in network games[2], following

work by Roughgarden and Tardos[6]. Many of the defense mechanisms that have been

proposed to combat these attacks are described, and advantages and disadvantages

of each proposed scheme are outlined in [3]. In [4] techniques to thwart IP address

spoofing in DNS DDoS attacks are detailed in the form of a firewall process, but

this work also highlights the disadvantage to such definitive techniques, in that they

have the potential to create a bottleneck themselves. The danger of indiscriminately

dropping suspected traffic is described in [5]. They compare DDoS attacks to flash

crowds which look similar to a DDoS attack but constitute legitimate traffic. Schuba,

et al., contributed a detailed analysis of the SYN flooding attack and a discussion

of existing and proposed countermeasures[8]. Calculating Nash equibria in bimatrix

games in normal form was detailed by von Stengel[9].
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3. TRAFFIC INJECTION GAME

We now define a game which would allow us to analyze IP-spoofing based band-

width attacks. Our game is a 2-player game. We call the two players attacker and

defender. We will refer to the server under consideration as the server. The attacker’s

motive is to attack the server using an IP-spoofing based bandwidth attack, while the

defender’s motive is to detect these attacks using coarse-grained statistical filtering.

3.1. BASE AND HIDDEN DISTRIBUTIONS

The coarse granularity of filtering is modeled using a set of dimensions. Each

dimension is a partition of the IP address space, and a corresponding partition of the

total typical IP traffic reaching the server. We call the former the hidden distribution

and the latter the base distribution. (The reason for these names will become clear

shortly.) For example, if our dimension is the “autonomous system” (AS) dimension,

then the ith component of the hidden distribution is the fraction of IP addresses in

the ith AS, and the ith component of the base distribution is the fraction of traffic

reaching the server that originates in the ith AS.

First, we need to model typical (or base) traffic, which we do by defining an

n-dimensional matrix of traffic values T . Let di denote the number of divisions (or

buckets) along the ith dimension. Each value in this matrix represents a fraction of

the overall traffic. Thus, the sum of all entries in T is 1.

We also define matrix H as what we call the hidden distribution. Each cell in

H represents a fraction of traffic generating entities (IP addresses). The attacker

specifies how traffic is spread across the divisions of the attack dimension, but for

all other dimensions, the hidden dimension is used to distribute attack traffic. The

matrices T and H represent the board setup for a single game.

Example 1. Say there are two dimensions 1 and 2 (each with 2 divisions). The

base and hidden distributions can each be represented as 2× 2 matrices. Let the base
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distribution be

T =

 0.1 0.3

0.4 0.2

 .
Note, for example, that the amount of traffic reaching the server from IP addresses

that fall in division 1 of the first dimension (rows) and division 2 of the second

dimension (columns) is 0.3 (= T [1, 2]) fraction of the total traffic reaching the server.

Let the hidden distribution be

H =

 0.3 0.2

0.2 0.3

 .
Note, for example, that the number of IP addresses that fall in division 1 of the first

dimension and division 2 of the second dimension is 0.2 (= H[1, 2]).

3.2. ATTACKER’S AND DEFENDER’S KNOWLEDGE

We will assume limited knowledge for both the attacker and the defender. The

defender can know the typical (non-attack) distribution for each IP address. However,

for two reasons the defender cannot apply statistical filtering at this fine-grained level.

First, the amount of noise at this fine-grained level is significant. Second, even if

the noise was negligible, there is a significant price to be paid for implementing a

statistical filter at this level. For example, in the simplest scheme, 232 numbers (one

per IP address) must be stored and looked up for each packet. For these reasons,

we will assume that the defender uses only aggregate information. In particular, the

defender uses the base distribution along one, say the jth dimension.

We will assume that the attacker has knowledge of one dimension, say the ith

dimension. What this means is that the attacker knows how much traffic is typically

generated by nodes in each division of dimension i, and the attacker knows the set of

IP addresses in each division of dimension i. In particular, it can use this knowledge

to inject traffic with spoofed IP addresses such that the distribution of traffic (or
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relative traffic) along dimension i does not change from its base distribution.

3.3. INJECTING TRAFFIC

Continuing with Example 1 above, say the attacker has a priori knowledge about

the typical historical distribution for dimension 1. Suppose he decides to inject a

total α amount of traffic (relative to the base traffic) with distribution [β, 1−β] along

dimension 1 (that is, the first division of dimension 1 gets α∗β additional traffic, etc).

How much traffic is injected in the cell [1, 1], for example? More formally, let i be the

dimension that the attacker knows. Let δj be the amount of attack traffic that the

attacker decides to add to division j of dimension i. Then we assume that the attacker

uniformly spreads δj across all IP addresses that fall in division j of dimension i. This

is a reasonable assumption because the attacker has no knowledge about the other

dimensions. Thus, in our example above, cell [1, 1] will get α ∗ β ∗ 0.3
0.3+0.2

amount

of additional traffic. After new values for each cell are calculated and the matrix is

normalized, we calculate the sensitivity matrix.

3.4. PAYOFF: SENSITIVITY MATRIX

We analyze the game by analyzing the payoff matrix of the game. Let the

dimension that the attacker knows be i and let the dimension that the defender uses

be j. The attacker’s goal is to inject one unit of traffic such that the change in the

distribution along dimension j is minimized. The defender wants to detect such a

change. The payoff to the defender is the change in the distribution along the jth

dimension if a unit amount of attack traffic is introduced using the ith dimension. We

call this quantity sensitivity to the ith dimension along the jth dimension and denote

it as S[T,H, i, j]. When T and H are clear from the context, we refer to S[T,H, i, j]

as S[i, j]. S is called the sensitivity matrix. Periodically we will also refer to simply

the sensitivity of an experiment, in which case we mean the maximum sensitivity

value of a sensitivity matrix. This value represents the best payoff for the defender.

Since the game is a zero-sum game, the payoff to the attacker is the negation of the

payoff to the defender.

It is easy to see that in general the sensitivity function is asymmetric with

respect to dimensions. That is, for a given attack A, and dimensions i and j, S[i, j]
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is not necessarily equal to S[j, i].

3.5. EFFECT OF INJECTING ATTACK TRAFFIC

Given the base and hidden matrices, we now show how to analytically compute

the effect of injecting attack traffic. As a special case we get how to compute the

sensitivity matrix.

Let T be the base distribution and let H be the hidden distribution on n di-

mensions such that dimension i has di divisions. Let α be the amount of traffic to be

injected relative to the total amount of traffic represented by the base distribution.

Let q be the attacker’s dimension and let r be the defender’s dimension. Let A be a

dq-dimensional vector representing the attack traffic distribution. (The rth entry in

A denotes the fraction of attack traffic that is added to the rth division of dimension

q.)

Let H[1 : i1, 2: i2, . . . , n : in] denote the cell of H whose label along dimension j is

ij, for each j ∈ {1, 2, . . . , n}. Let H[k : `] denote an n− 1 dimensional matrix H ′ with

dimensions {1, 2, . . . , k−1, k+1, . . . n} such that the H ′[1 : i1, 2: i2, . . . , k−1: ik−1, k+

1: ik+1 : in] is H[1 : i1, 2: i2, . . . , k− 1: ik−1, k : `, k+ 1: ik+1, . . . , n : in]. Thus, informally

speaking, H[k : `] denotes a n− 1 dimensional slice of H containing all cells for which

the dimension k label is `. Note that 0 ≤ ij < di, for each dimension i in H.

We also define operator H|j (the projection of H along dimension j) as a vector

of size di such that the i-th component is the sum of entries in the matrix H[i : j].

Next, we define the operator agg(H) which is the set of all n sum vectors of H, where

vector i of agg(H) is H|j and has di values.

We calculate the fraction of attack traffic that will be added to a cell C labeled

[1 : i1, 2: i2, . . . , n : in]:

∆[1 : i1, 2: i2, . . . , n : in] = A[iq]
H[1 : i1, 2: i2, . . . , n : in]

agg(H[q : iq])

Note that the A[iq] term denotes the fraction of attack traffic added to the iqth

division of dimension q and the fractional term is the number of IP addresses that lie

in cell C as a fraction of the number of IP addresses that lie in the iqth division of

dimension q. Note that agg(∆) = 1.
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Finally, we can calculate the new base matrix T ′ that results when the attack

traffic is added to the original base matrix T :

T ′ =
T + α∆

1 + α
(1)

The new distribution along dimension r is T ′|r. The effect of attack A volume α

in the qth dimension as observed in the rth dimension is

E(A,α, q, r) =
∑

1≤i≤dq

|T|r[i]− T ′|r[i]|.

The sensitivity of attack A in the qth dimension as observed in the r dimension is

defined as

S(A, q, r) = E(A, 1, q, r).

Note that the sensitivity is the effect of a unit attack traffic.

We show below how the effect of of an attack A with an arbitrary amount of

traffic is related to the sensitivity of the same attack.

Lemma 2. For each α ≥ 0, E(A,α, q, r) = 2α
1+α

S(A, q, r).

Proof omitted due to space considerations.

3.6. MODELING NOISE

The base distribution represents a historical pattern developed from a snapshot

of traffic, and the traffic injection game is played based on something assumed to

resemble this historical pattern, thus we need to model the effect that noise has on

the game and calculate the new traffic matrix T ′ that results when the noise and

attack traffic are added to the original base matrix T .

Let N be the noise distribution on n dimensions such that dimension i has

di divisions. Thus the noise distribution is the same shape as the base and hidden

distributions. We will consider the noise as a normal distribution that is independent

of the base distribution, and we define ν as the noise level relative to the base traffic

volume.
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Using this definition of noise, we can now calculate the new traffic matrix T ′ as:

T ′ =
T + νN + α∆

1 + ν + α
(2)

If we set ν = 0 then Equation 2 is equivalent to Equation 1.

3.7. METRICS

The sum of the positive differences between the new volume and the base vol-

ume when the volumes are projected onto each dimension constitute a sensitivity

measurement for a given defense dimension. A table of sensitivity measurements by

attack dimension and defender dimension constitutes the n × n sensitivity matrix.

From the sensitivity matrix, we calculate the six metrics described below.

We identified a number of aggregations we want to capture about this game. For

a set of sensitivity matrices, we want to know what the max payoff (plus mean, stdev),

min payoff (plus mean, stdev), maxmin payoff (plus mean, stdev), and minmax payoff

(plus mean, stdev) are across all the cells of the sensitivity matrices. This should allow

us to identify the expected payoff under various scenarios.

We have taken six key measurements from the sensitivity matrices generated by

the game.

• BIMA: Best independent move for the attacker. This is the max-minimum

value for any row in the sensitivity matrix.

• BIMD: Best independent move for the defender. This is the min-maximum

value for any column in the sensitivity matrix.

• AOS: Average overall sensitivity. Simple average of all values in the sensitivity

matrix.

• AOP: Average overall payoff. This is the average of the value at the intersection

of the sensitivity matrix of the BIMA row and the BIMD column.

• DDA: Delta defection to best move for the attacker. Starting at the intersection

of the BIMA row and BIMD column in the sensitivity matrix, find the lowest

value in that column that the attacker could choose if he changed moves.
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• DDD: Delta defection to best move for the defender. Starting at the intersection

of the BIMA row and BIMD column in the sensitivity matrix, find the highest

value in that row that the defender could choose if he changed moves.

3.8. ATTACK TYPES

We have analyzed four kinds of attacker:

• Random: The ratio of attack traffic for each division of the attack dimension is

a randomly chosen normalized distribution.

• Base: Attack traffic is spread so that it matches the distribution for divisions

in the base traffic distribution for the attack dimension.

• Uniform: Attack traffic is spread evenly amongst the divisions in the attack

dimension. For example, if there are 10 divisions, each gets 10% of the attack

traffic.

• Loaded: This kind of attacker directs all of the attack traffic at division 0 of the

attack dimension.

For each of the four attacker strategies, our analysis consisted of generating

many base and hidden distributions, and for each of these an attack distribution and

noise distribution are generated many times. For each of these, a sensitivity matrix

was generated so that we could analyze all possible moves for attacker and defender.

The results were aggregated and the average and standard deviation reported by the

program.

3.9. EQUILIBRIUM AND DISTRIBUTION DIFFERENCE ANALYSIS

One important aspect of the the traffic injection game to discuss is the equi-

librium of the game. Assuming full information and no noise given that there are

n dimensions or actions for each party then it is easy to go exhaustively over all n2

possibilities to check for pure Nash Equilibrium (NE) in polynomial time. Mixed NE

can be computed exactly using linear programming. However our goal here is not

to solve for NE since that assumes full information and in reality the attacker and



13

defender may be unaware of H, T , etc. We are after an understanding in the im-

perfect information model, so we study how the sensitivity varies with the difference

between the distributions in our model. There are two basic types of distributional

differences:

Interdimensional distributional differences occur between distributions along

two dimensions of the base distribution or they occur between distributions along

two dimensions of the hidden distribution. Intuitively speaking, if there is a large

interdimensional difference between the attacker’s and defender’s dimensions, then

the sensitivity is high.

Base-Hidden distributional differences occur between two distributions—a pro-

jection along a dimension of the base distribution and a projection along a dimension

of the hidden distribution.

Because of the complex relationship between the base and the hidden distribu-

tions, a complete analysis of these differences and the equilibrium of the game are

outside the scope of this paper (and is left as future work). However, we present

an analysis of a special case of base-hidden difference. In particular, we study the

change in sensitivity in the following case. We are given a base distribution T̂ . The

attacker’s dimension is 1 and the defender’s dimension is 2. (Note that this is not a

restriction because we can rename dimensions.) We want to find hidden distributions

H such that the sensitivity is maximized and the following hold for each dimension

j 6= 2:

H|j = T̂|j.

That is, the base and hidden distributions match in all dimensions except the de-

fender’s dimension.

This problem can be expressed as the following optimization problem:

maxS[T̂ , H, 1, 2]

s.t.

H|j = T̂|j, ∀j = 1, 3, 4, . . . , n.

Formally, a distribution with k divisions is a k-dimensional vector [x1, x2, . . . , xk]

such that each 0 ≤ xi ≤ 1 and
∑k

i=1 xi = 1. The difference between two distributions
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X = [x1, x2, . . . , xk] and Y = [y1, y2, . . . , yk] (each with k divisions) is

k∑
i=1

|xi − yi|.

We show in the results section that the optimal solution to this problem increases

linearly with the difference between T|2 and H|2. Intuitively, it is safest for the attacker

not to attack, if his goal is not to get detected. As the amount of attack traffic

increases (as shown for the special case above), the higher the chance of the attacker

being detected by the defender.
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4. TIGGER: SOFTWARE

Traffic Injection Game Graphical Engine for Results (TIGGER) is a software

tool developed for performing reproducible simulation and analysis required by this

research. The parameters that are recognized by the program consist of the following:

• Dimensions: set of comma-delimited numbers indicating how many divisions

make up each dimension. Example: “2,2”, “10,10,10”, “5,2,8∗”. Suffixing a

number with an asterisk directs the values in that dimension to be generated

using a power law distribution. Otherwise, the values are a randomly chosen,

normalized distribution.

• Attacker type: Base, Random, Uniform, or Loaded.

• Noise Level: decimal number specifying the noise ratio relative to the base

traffic. The base traffic level is always considered to be 1.0.

• Attack Traffic: decimal number specifying the ratio of attack traffic volume

relative to the amount of base traffic.

• Random Seed: integer seed value (for reproducibility).

The program also supports iteration by repeating experiments for various values

for noise level and attack traffic volume.
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5. RESULTS

Based on the results of the two previous examples, we can design a statistical

filter that analyzes traffic patterns, identifies the division within the observed dimen-

sion that represents the most suspicious group of traffic, and recommend that group

of traffic for more rigorous, albeit time-consuming, verification techniques. It is not

necessary to limit the functioning of such a filter to just the most suspicious group

of traffic. The filter could also be designed to send any group of traffic whose traffic

increases above a certain threshold to be scrutinized more carefully.

The base traffic pattern in a real-life scenario would need to account for per

hour patterns, since the dynamics of many dimensions from which a defender could

observe will change based on the time of day as found in our research.

If the statistical filter were combined with a feedback loop that processes emerg-

ing traffic patterns back into the expected base traffic values, the benefit of the filter

might even be able to be improved.

The rest of this section describe the results that our implementation of the traffic

injection game produced, using various attacker types, noise levels and attack traffic

volumes. This allows us to analyze the effect of such parameters on the 6 metrics of

which we have been discussing.

5.1. VARIATION WITH ATTACK TRAFFIC AND NOISE

The best independent move for the attacker (BIMA) is a maximin value that

identifies the best that the attacker could do if the defender chose the worst dimension

to watch based on the attacker’s move. If the attacker knows the dimension that the

defender will observe, then the attacker is always going to choose the dimension that

generates the minimum sensitivity value for the defense dimension. This means that

the defender’s suspicion was minimally heightened.

Figure 5.1 shows the effect of varying the attack traffic ratio given a fixed level

of noise (0.3), while Figure 5.2 shows how the BIMA is affected by fixing the attack
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Figure 5.1. Plot of best independent move for the attacker versus attack volume on
a 10x10x10 matrix with 0.3 noise level.

Figure 5.2. Plot of best independent move for the attacker versus noise level on a
10x10x10 matrix with 0.3 attack volume.

traffic at 0.3 and varying the noise level. As we see, the best strategy for the attacker

is observed when the attack traffic is distributed randomly or when the attacker is

aware of and employs a distribution that matches the base distribution for the attack

dimension. The random strategy does as well because of the stochastic nature of

the generated distributions. The worst performance comes when the attacker blindly,
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Figure 5.3. Plot of best independent move for the attacker versus attack volume on
a 10x10x10 matrix with 0.3 noise level.

Figure 5.4. Plot of best independent move for the attacker versus noise level on a
10x10x10 matrix with 0.3 attack volume.

evenly distributes traffic or blindly applies all its resources at a single distribution,

illustrating that a powerful, wise attacker performs better.

Figure 5.1 also illustrates the fact that as the attack traffic increases, the uniform

and loaded strategies fare worse as the attack traffic becomes more and more exposed

relative to the base traffic and noise, while the attacker’s best move gets no worse
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Figure 5.5. Plot of average overall sensitivity versus attack volume on a 10x10x10
matrix with 0.3 noise level.

by increasing his attack volume. Figure 5.2 shows that as the noise level increases

relative to the base and attack traffic, the poorer strategies are hidden a little better.

This would support the idea that as observed traffic deviates more and more from

established patterns, even bad attack strategies become harder to detect.

The best independent move for the defender is analyzed similarly, however in

this case the values are calculated based on the best that the defender can do given

that the attacker can choose the dimension that presents the worst max value for

the defender, or a minimax value. As can be seen in Figure 5.3 and Figure 5.4, the

strategies that worked well from the attacker’s point of view also present the biggest

problems for the defender, and vice-versa.

The average overall sensitivity (AOS) values, as seen in Figure 5.5 and Fig-

ure 5.6, is a metric of the best potential payoff that the defender could achieve in any

dimension for a particular experiment. The base and uniform attacker types perform

with this metric almost identically, with the figures isolating only these two. As the

noise level and the attack volume increase, so does the average overall sensitivity mea-

surement. This also shows that as an attacker, using knowledge about the expected

distribution of traffic in the dimension being attacked is a powerful tool for hiding

attack traffic.

The average overall payoff (AOP) value, as seen in Figure 5.7 and Figure 5.8
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Figure 5.6. Plot of average overall sensitivity versus noise level on a 10x10x10 matrix
with 0.3 attack volume.

Figure 5.7. Plot of average overall payoff versus attack volume on a 10x10x10 matrix
with 0.3 noise level.

shows what the average of the expected payoff would be, given that the attacker

chooses the best independent move for the attacker, and the defender chooses the

best independent move for the defender. The value in the sensitivity matrix at this

junction is the overall payoff, and the AOP is the average value as measured in each

experiment. As can be seen in the figures, the pattern followed is similar to the
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Figure 5.8. Plot of average overall payoff versus noise level on a 10x10x10 matrix
with 0.3 attack volume.

sensitivity for this game. As the noise level and the attack volume increase, so does

the average overall payoff measurement. An attacker wishing to optimize this metric

would be best served by a strategy taking advantage of knowledge about the expected

distribution of traffic in the dimension being attacked.

Another conclusion illustrated by these results is that a defender that has knowl-

edge of certain dimensions within the system that the attacker does not is able to

better expose that an attack is occurring and from where that attack is coming. This

fact is shown by examining the loaded attacker type. In this type of attack, the at-

tacker is applying attack traffic to a single division within its attack dimension, and

regardless which dimension the defender is watching, the attacker exposes its traffic

the most of any of the attack strategies we examined.

5.2. DISTRIBUTION DIFFERENCE

ANALYSIS-INTERDIMENSIONAL

As discussed above in Section 3.9, interesting things happen when we vary the

distance between distributions. There are several components we may consider when

analyzing the data in this way. First, we can vary the distance between the aggregate

distributions for the divisions of two dimensions of the base distribution, fixing the

attack distribution. We can also fix the base and attack distributions, and vary the
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Figure 5.9. Plot of sensitivity values as the distance between the attacker and defender
dimensions vary.

distance between the base and hidden distributions.

First, we consider a game consisting of symmetric randomly chosen distribu-

tions, fix the attacker type as a Base attacker, and then analyze the sensitivity ma-

trices that result. As shown in Figure 5.9, the sensitivity grows as the distributions

used by the attacker and defender approach zero. This means that the defender has

chosen a dimension whose distribution perfectly isolates the attack traffic. As the

two distributions diverge, the attack traffic becomes more hidden from the defender.

5.3. DISTRIBUTION DIFFERENCE ANALYSIS-BASE TO HIDDEN

When the base and hidden distributions coincide, we say the distance between

the two distributions is zero. In this case, and when the attacker is allowed awareness

of and he emulates the base distribution for the attack dimension, then the sensitivity

matrix contains all zeroes. In other words, the attack is perfectly hidden from the

defender. On the other hand, when the distance between the base and hidden distri-

butions is the greatest, the sensitivity is maximal. These observations are illustrated

in Figure 5.10 at the bottom left and top right edges of the shaded areas.

One interesting aspect of our research is the fact that even when the attacker

mimics the base distribution in the attack dimension, there are still many hidden dis-

tributions that result in an aggregate distribution in the defender’s chosen dimension

that match the base distribution in that dimension.

We next further examine what happens when we fix the base distribution and
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Figure 5.10. Plot of max sensitivity values varying the distance between the attacker
and defender dimension aggregate values.

Figure 5.11. Plot of sensitivity values for a fixed base distribution varying the hidden
distribution.

show the effect of changing the hidden distribution. As shown in Figure 5.11, varying

the hidden distribution so that the distance between it and the fixed base distribution

grows causes the sensitivity to increase.
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6. CONCLUSION

As we have shown, our research indicates that there is potential for using statis-

tical methods such as ours for creating defense mechanisms that can detect a DDoS

attack, given that favorable signal-to-noise ratio exists. Our work also shows that

an attacker is more exposed as the frequency of attack traffic increases, but that an

attacker that has a priori knowledge of the expected traffic volume for the dimension

and divisions employed in the attack has the best ability to hide attack traffic when

such statistical methods are used by the defender. Future work seeks to show sim-

ilar results when real world distributions such as those modeled in a power law are

integrated into the sensitivity matrix and employed by the attacker and defender.
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II. PREPROCESSING DNS LOG DATA FOR EFFECTIVE DATA

MINING

Domain Name Service (DNS) servers provide a critical function in directing

Internet traffic. Defending these services from bandwidth attacks is assisted by the

ability to effectively mine DNS log data for information that can be used to identify

strategies employed by attackers and to develop tools to thwart such strategies. One

problem that arises when approaching the data mining task occurs during the data

preprocessing phase, when the data captured does not continuously cover the observed

time span. These gaps in the data can cloud results and must be filled by estimating

the traffic as viewed from any indexed view of the data. We demonstrate a useful

method for estimating the values for missing portions of DNS log data and illustrate

several queries performed on the data before and after the data cleaning process. This

method would be suitable for use with a variety of datasets containing time series

values where certain portions are missing.
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1. INTRODUCTION

The Domain Name System (DNS) is an example of a system that is highly sus-

ceptible to DoS type attacks. Numerous examples have been documented, including

[5]. When analyzing such systems, one technique involves the capture of log data

and the use of data mining techniques to discover trends and other knowledge that

might lead to the development of tools and techniques for preventing such attacks

[4]. During the data mining process, care must be taken to verify the quality of the

source data. In the case of DNS log data, one deficiency that arises is the presence of

gaps, or “holes”, in the data where for one reason or another the DNS server failed

to log the activity during a period of time. Due to the difficulty of capturing and

obtaining a set of log data, it is often not possible to simply go get another set of

data, and so the data must be cleaned before it is used.

There are a number of questions asked about DNS log data in such analysis, or

of time series data in general. For example, we would like to characterize a typical

traffic frequency pattern for a set of DNS servers. If there are holes in the source

data, however, the results of such an exercise would not be useful because they would

not represent reality. Basing analysis on such faulty aggregation from incomplete

source data would skew those results and could lead to incorrect conclusions. In

fact, in our analysis efforts we noticed the missing data only after trying to draw

conclusions and noticing odd, counter-intuitive trends in the data. This warranted

further investigation, which lead to detecting the data insufficiency situation. The

dataset is so large, and the holes in the data so disjointed, that when viewing the

aggregated results it was not easy to notice.

Upon discovering such a problem, several options are available. The first option

would be to simply abandon the data and seek another source. However, the process

of capturing the data is time-consuming and resource-intensive for the DNS servers,

the data set is large and difficult to store, copy and organize for processing, and the

sensitivity of the data requires access to be regulated. As a result we needed to find
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a way to adjust the data.

A second option was to manufacture new DNS request records and add them

to the data source, marking them as fake requests to distinguish them from the real

ones. From there we would compute our aggregate values from both the real and fake

records. But this would add to the amount of data storage space required for the

dataset and would ergo increase the time needed to process the data to compute the

aggregates.

The method we illustrate in this paper involves aggregating the data first, and

then adjusting those values, providing a balance between storage, speed in getting

answers to queries, and better accuracy because of the filled holes.
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2. DNS LOG DATASET

The dataset we had to work with was obtained from a large company central

to the management of the DNS network. The dataset has data collected at 26 root

servers over a 10 day period in January 2004. For each server, we have log data that

includes all DNS requests made from client DNS servers. The log files consisted of

over 400 gigabytes of raw DNS log data.

The log files contain many different kinds of records[1][2], including simple

header records that indicate what version of software is running on the DNS server.

Almost half of the record types do not involve a response that contains an IP address.

As part of the data cleaning and integration stage [3], a utility was developed to scan

the log files and segregate them into groups of records using regular expressions. The

first group were the header records, and these were just thrown away. The next group

includes any records that return an IP address, which is the primary group of focus

for this analysis. The third group was any record that looked to be well-formed,

but simply did not return an IP address. There are many record types that fit this

category. These were saved for potential examination and analysis later. The last

group were classified as error records. These include records that were apparently

malformed to the DNS server, and the record indicates the problem diagnosis. These

records were also set aside for later potential examination.

As the records were segregated, output files generated were in the format of

bulk-insert files for SQL Server based on a database model that captures all of the

relevant data from each request necessary for later analysis. Problems with the initial

data model became apparent after importing the data into the database. The sheer

size of the data presented a number of challenges to the available disk space, memory,

and CPU power. After a few attempts, a workable plan was developed that included

a data model to use during the import phase, with modifications to be done to the

data model once all the data had been imported. This resulted in a more efficient

import process.
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The database model consisted of a single clustered index on the client’s IP

address in anticipation of this being the most heavily queried-against column. Ad-

ditional indices were not added prior to the bulk insert phase, as this would slow

the import process. The quickest way to add an additional, non-clustered index was

estimated to be to add the index after the data had all been imported. Future work

may benefit from indexed views available in SQL Server 2000 (Enterprise Edition) or

SQL Server 2005. These indexed views allow storage of aggregate values within the

index and thus avoid a complete table scan when scanning the index will suffice.

The table containing the log entries was modeled with the columns in Table 2.1.

LogEntryID bigint A unique 64-bit identity column.
EntryTime datetime The date and time that the request occurred
IPSource int The client’s IP address, converted to a four-

byte integer value
IPServer int The DNS server’s IP address, converted to a

four-byte integer value
TTL int The time-to-live value, indicating how many

seconds in the future the answer should be
considered valid

Type char(4) The first four bytes of the request type as it
came in on the request

URL char(128) The domain name requested by the client

Table 2.1. Columns in LogEntries table capturing pertinent facts from DNS log files.

Originally, domain names were modeled to be stored in a separate table, how-

ever, looking up the domain name to determine the foreign key value to insert into

the record was taking a long time. Instead, the URL column is used to store the

domain name requested, and at a later time, we may normalize the data and replace

the URL with a foreign key to a table of domain names. This will likely result in an

overall savings in space, but this is actually overshadowed by the amount of space it

would take to actually make the changes later (see discussion above about changing

the clustered index after the data has been imported).
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3. DATA SUFFICIENCY

The initial analysis of the server traffic yielded some interesting results, not

in the actual patterns that were discovered, but in the concerns that were raised

regarding the quality and sufficiency of the available data. As can be seen in Figure 3.1

there are “holes” in the dataset, which are hours of the data collection period for which

we have no data or partial data. The figure shows the minutes of data available for

each hour. These holes in the data present a challenge to the data mining exercise

because incomplete data could create the appearance of false patterns or mask useful

patterns.

Figure 3.1. Data sufficiency diagram for one server showing the holes in the dataset.
The orange regions at the top level (plateau) of the graph shows contiguous days and
hours within a day where data is complete. Data points below the top level indicate
hours of days with partial data. The blue areas near the bottom level (floor) of the
graph indicate hours of days with no data whatsoever.

There are two reasons why we might perceive a hole in the server data, either

(a) the server became unavailable due to power failure, communication failure, or
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for some other reason, or (b) the server just appeared to be unavailable because we

simply do not have the logged data during the time period.

Any hole is important because it speaks to the issue of data sufficiency. If the

reason is (a) then we have all of the data that was available, but the data isn’t useful

for our purposes because it does not represent a “normal” traffic pattern. If the reason

is (b) then we obviously have a data sufficiency concern, although we might be able

to massage the data to get a suitable dataset anyway.

The next question is whether or not it is possible to identify which reason is

most likely in each case, and then to develop a process to fill the holes so the resulting

dataset is suitable.

One method of explaining a hole would be to examine the server traffic, specif-

ically the hour of data following a hole. Within the algorithm used by clients to load

balance across DNS servers, sometimes referred to as “explore and exploit”, when a

DNS server becomes unavailable, clients and client name servers bound to that DNS

server will start utilizing other DNS servers instead. The unavailable DNS server will

receive a heavy penalty for not responding, but will still be polled periodically. For

this reason, the log data should show that when the DNS server becomes available

once more, many clients will have begun relying on other DNS servers, but assuming

the DNS server comes back online with the same responsiveness it had before, eventu-

ally it should begin to receive traffic volumes consistent with the pattern established

prior to it becoming unavailable. Thus, if a hole was due to a server becoming un-

available, then the time period following the hole should show a notable reduction in

traffic from what a reasonable projection would have predicted. If this is the case,

then we should discard the data from this server as not a candidate for analysis.

Another method would be to examine client traffic, specifically the traffic during

the time of the hole. If the hole were caused by reason (a) then the aggregate client

traffic across all servers to which it is bound should remain consistent as the client

simply looks to other DNS servers to fulfill its needs. However, if the hole were due

to reason (b) then there should be a drop in traffic to the server with the hole while

the traffic to other servers to which the client is bound should remain statistically

consistent with their previous pattern.

Next, once data from servers with holes of type (a) have been eliminated from
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consideration, the next issue is how to fill the holes so that the dataset represents a

projection of traffic that follows the pattern set for other days, for other hours of the

same day, and for other servers during the time period of the hole.
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4. FILLING HOLES IN SERVER DATA

The algorithm used for filling the holes in the server data requires several steps.

The first step is to count all traffic that each server received for each day and hour

of the analysis period. For our data, this amounted to 10 days of data.

The next step was to identify which hours provide complete data, which hours

are missing, and for hours with partial data, how many minutes of data are present.

The method of data capture made this relatively easy. The log files for each server

provide a continuous record of all requests while the log file was being created. So

each log file was examined and the date-time stamp for the first and last entry was

recorded. Once these start and end date-time values were sorted and examined, a

value from zero to 60 was assigned to each server-day-hour that represents the number

of minutes of data available.

Figure 4.1. First step of analysis showing a partial set of data for one server. In red,
the sum of minutes of data for each day are listed.

At this point, we have a record (Figure 4.1) of the original data (count of

requests) and a measurement of the reliability of each data point, measured in minutes

of data available per server-day-hour. The next step was to sort the days by the overall

reliability of the day relative to the rest of the days. In this way, we process days

from most reliable to least reliable. Our interpolation method in a future step will

use the pattern established by more reliable days to compute an adjusted value.
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Figure 4.2. Second step of analysis showing days resorted in order by reliability. In
blue are the original day numbers. In red are the hours for each day with partial
data.

The next step was to calculate a scaling factor from zero to one for each server-

day-hour, and then compute an adjusted traffic value. The scaling factor was calcu-

lated as the number of minutes of data available divided by 60. For complete days,

this results in a scaling factor of 1.0. For missing hours, the scaling factor is 0.0. One

optimization that was applied to the algorithm that is designed to improve accuracy

for “light” clients was to consider any server-day-hour with less than 30 minutes of

data available as unreliable and so the scaling factor for these data points was set to

0.0 as well. Once the scaling factor was determined, the adjusted traffic value was

simply computed as the scaling factor times the original traffic value.

Figure 4.3. Third step of analysis showing scaling factors and adjusted volumes for
partial days in blue. Hours with no log data at all are shown in red.

Processing each day in order from most reliable to least reliable as described

above, the next step is to fill in the holes. Remember that we consider a hole as any

server-day-hour for which there was less than 30 minutes of data available. For the

first (most reliable) day, we calculate the adjusted traffic value by simply interpolating



36

between known values. If the first (or last) hour of a day was missing, the first (or

last) available adjusted value present was used.

Once the first day has been repaired by computing an adjusted traffic volume

value, we moved on to successive less reliable days. For holes in each day, we calculated

new volumes as the sum of all non-missing hours this day times the sum of values for

this hour for days already processed divided by the sum of all non-missing hours for

days already processed.

V olNMHT =Sum of volumes of non-missing

hours this day (1)

V olAdjDAP =Sum of adjusted volumes for days

already processed for this server (2)

V olAdjNMHT =Sum of adjusted volumes in non-missing

hours for days already processed (3)

V olAdj =
V olNMHT ∗ V olAdjDAP

V olAdjNMHT

(4)

Figure 4.4. Fourth step of analysis showing interpolated values for missing hours in
blue.

Alternate methods of repairing the first day could be explored, such as interpo-

lating from multiple data points, or using an alternate method for missing first/last

hours of the day, or by processing the first day again after all other days have been

processed using the same method for the other days based on adjusted values on
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those other days. The improvement in quality was estimated to be minimal, and so

for simplicity was omitted.

At this point, the data represents a complete picture of the nature of the traffic

for the server with the holes filled in. As a pleasant surprise, the graph of the adjusted

traffic volume values has fewer and less severe ripples.

This completes the analysis performed on the server traffic, but this data is

important for adjusting the client traffic and so had to be completed first. Since

clients are predominantly tied to a particular server (or set of servers), a hole in

the server data would generally correspond directly with holes in the client data.

Another way to say this is to say that if a client is communicating with a server and

we are missing data for the server, then it is reasonable to assume that some of the

missing traffic came from that client and so its traffic value will need to be adjusted

in proportion to the adjustment made to the server traffic.

Figure 4.5. Server traffic diagram showing reported traffic (unadjusted) for one server.
Note how uneven the data appears.

Figure 4.5 shows a graph of the original traffic from the available log files for one

server. Figure 4.6 shows a graph of the same server, after the data has been adjusted

to allow for the holes. As you can see, the holes appear to be filled with traffic
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consistent with what one might expect to have received during these periods. As can

be seen, since the formula adjusts for the traffic pattern for a day in general, adjusted

based on the observed volume for a specific day, even on days with lower traffic, the

pattern of traffic is preserved. This is illustrated in Figure 4.6 by the valley running

down the center that represents lower traffic days between the relatively higher traffic

days.

Figure 4.6. Server traffic diagram showing reported traffic for one server adjusted to
repair the holes. Note how now the data looks even and smooth.
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5. DEMONSTRATING USEFULNESS OF CLEANED DATASET

Once the processing of the original log data had been completed, the result

was a set of robust indices that could be used to perform analysis from a variety of

perspectives.

5.1. CLIENT POLYGAMY ANALYSIS

An interesting feature of client behavior is found in the number of servers that a

client utilizes. When a client relies on one (or a few) DNS servers, we say it is relatively

monogamous. The more DNS servers utilized by a client, the more polygamous it is.

Figure 5.1. Diagram showing the polygamy (number of servers used) by clients, the
number of clients and amount of traffic represented by those clients.

Figure 5.1 shows the polygamousness of clients as represented in the collected

data. The blue bars show the number of clients, and the maroon area displays the
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volume of traffic represented by those clients, for each of the server counts shown

below. For example, there are over a million clients that are monogamous (only

utilize one DNS server during the entire 10-day period), however, all of these clients

combined represent a tiny fraction (0.61%) of the total volume of requests. Whereas,

clearly, the vast majority of traffic (over a billion requests) was observed by nearly

12% of the clients that utilize exactly eight DNS servers.

Client polygamy as it relates to the traffic generated by individual clients and

groups of clients must take into consideration the filling of server holes as discussed

previously (we will examine how the client data was adjusted shortly). To illustrate

how significant the affect the client adjustment process had on the dataset, we isolated

the client in the dataset with the most traffic. This client was bound to 14 different

DNS servers (for which we have data). Keep in mind, it could have been bound to

other servers for which we do not have data. Figure 5.2 shows the distribution of this

client’s traffic across the 14 servers.

Figure 5.2. Traffic distribution of one client across all its servers for the 10-day period.

After the data was adjusted based on the algorithm that will be presented in
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section 5.2, the data becomes much smoother and presents a much more consistent

behavior pattern, as can be seen in figure 5.3.

Figure 5.3. Adjusted traffic distribution of one client across all its servers for the
10-day period.

5.2. CLIENT TRAFFIC ANALYSIS

With the server traffic volume data in hand, we began to analyze the client

traffic. The method used to adjust the client data parallels the adjustments made to

the server traffic and uses those results. The primary difference between adjusting

the server traffic and adjusting the client traffic is that there are many more clients

(over 2.5 million) to process than there are servers (26), and since each client must be

processed for each server to which it is bound (this is where client polygamy becomes

an issue), this increases the list to over 8.5 million (remember from figure 5.1 that

the bulk of clients talk to as many as 8 different servers for which we have data).

The traffic for different clients can exhibit very different patterns. For the client

traffic analysis, it is helpful to aggregate numerous clients together in order to start to
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see similar patterns form. The trick is to try to be clever so that clients with a similar

pattern are grouped together. Intuition tells us to start by grouping high-volume

clients together, and low-volume clients together. Later, we can verify our intuition

by analyzing the variance of certain clients from the aggregate pattern developed.

The approach we took for grouping clients involves examining the traffic volumes

calculated for each client and assigning a percentile rank. From there, several options

are possible for aggregating the clients. First, we could sort the clients based on the

total volume each client generates and then divide them into 10 even groups where

each group contains the same number of clients. The problem with this approach is

that the highest-volume clients will be disproportionally represented over the lowert

volume clients. The grouping we used involves dividing the groups into deciles (groups

of 10 percentiles) based on cumulative traffic volume (see table 5.1). Each decile group

represents roughly 10% of the total volume of requests. Even though the number of

clients in each group varies, each group is equally represented based on volume of

traffic.

Clients Min Max Aggregate
Decile Per Decile Volume Volume Volume

1 2477307 0 1379 202886210
2 80322 1380 4708 202806972
3 28813 4709 10618 202825584
4 13958 10619 20051 202841854
5 7756 20052 34542 202830513
6 4639 34543 55950 202843126
7 2930 55951 87116 202820052
8 1860 87117 138966 202893117
9 1177 138967 215926 202803433
10 440 215927 6901682 202833014

Table 5.1. Client decile groups each representing (roughly) equivalent cumulative
traffic volume.

Once the client decile groups have been established, we aggregate the traffic for

each client decile group by server. At this point, each server must be checked for a
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hole. If a hole exists, then the volume for that hour must be prorated to account

for the missing traffic (from the discussion previously on data sufficiency, we are

only working with data from servers with holes due to missing log data). The entire

algorithm is outlined below.

Step 1: Aggregate volume for the clients in the client decile group by server

and for each server, look up minutes of data and scaling factor values.

Step 2: Process servers individually. First, sort days based on server minutes

of data available.

Step 3: Examine each decile-server-day-hour value and compute adjusted vol-

ume. As before, the first day is handled differently than the others. Where a scaling

factor is greater than zero, we multiply the scaling factor by the volume to get the

adjusted volume. If hours are missing at the beginning and the end of the first day,

we simply copy values from the first available or last available hour, respectively. If

hours are missing in the middle of the data for the first day, we simply interpolate

the missing values from the prior and next available hours.

For subsequent days, we revisit the algorithm and results from server traffic

analysis. There are two cases to consider when examining a given client-server-hour

volume value:

1. The server-day-hour scaling factor is non-zero. This means that the traffic value

we have for this decile-server-day-hour must be multiplied by the scaling factor

to get an adjusted decile-server-day-hour value. The volume could be zero if

the clients in this decile group generated no traffic to that server during that

hour, in which case the adjusted value will still be zero.

2. The server-day-hour scaling factor is zero. This indicates that either we have

no data from the server for this hour or the number of minutes of data for

that server-hour is less than our established threshold of 50%, in which case we

considered this an unreliable hour and treated it as if it was a missing hour.

This means that we interpolated the value for the server traffic using formula (4)

and so we must likewise interpolate the value for the decile-server-day-hour. For

a particular decile-server-day-hour value, the formula to compute the adjusted

value is to add up the decile-server-day-hour values for this day where the server
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scaling factor is not zero, multiply that times the sum of the adjusted server

volumes for this hour, then divide the result by the sum of the adjusted server

volumes for hours with non-zero scaling factors this day. As with the server

adjustment process, this gives an updated set of decile-server-day-hour traffic

volume values that takes the volume of traffic of the day as well as the relative

traffic volume of this hour of the day from other days into consideration. In

order to ensure reliability, we once again processed each day in order from most

reliable to least reliable based on total minutes of log data available for each

day.

For each of the server-day-hour values processed above we add up the adjusted

volume of traffic, and this gives the aggregate adjusted volume of traffic for the client

decile group. From the adjusted client traffic values, we can begin to examine the

traffic pattern for a “normal” heavy client. As with the server analysis, there is a

dramatic improvement in regularity between the adjusted and unadjusted datasets.

Figure 5.4 shows the aggregate traffic for one client decile group (consisting of the

clients that generate the top 10% of the total volume of traffic) across all of the servers

to which it is bound (for which we have data).

As before, we next examine figure 5.5 which shows the traffic for the same group

of clients once it has been adjusted to account for the holes in the server data using

the technique described above.

Next, we examine what this analysis shows for other client decile groups, such

as the decile group representing the clients with the lightest traffic volumes.

Figure 5.6 shows the aggregate traffic for one client decile group (consisting of

the clients that generate the top 10% of the total volume of traffic) across all of the

servers to which it is bound (for which we have data).

As before, we next examine figure 5.7 which shows the traffic for the same group

of clients once it has been adjusted to account for the holes in the server data using

the technique described above.

5.3. DOMAIN TRAFFIC ANALYSIS

Next, we analyze the traffic for each domain name requested. The method used

to aggregate and adjust the domain name data is nearly identical to the adjustments
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Figure 5.4. Traffic for heaviest client decile group for the 10-day period.

made to the client traffic and again uses the results of the server analysis. The

only difference between adjusting the domain name traffic and adjusting the client

traffic is using the domain name column instead of the client IP address column in

the database. As with the client processing, there are many domain names (over 3

million) to process.

For the domain name traffic analysis, it is once again helpful to aggregate nu-

merous domain names together in order to examin the patterns between like domain

names. As with the client processing, we group high-volume domain names together

and low-volume domain names together. The grouping we used involves dividing

the domain names into deciles (groups of 10 percentiles) based on cumulative traffic

volume (see table 5.2). Each decile group represents roughly 10% of the total vol-

ume of requests. As with the client decile groups, the number of domain names in

each group varies, but each group is equally represented based on volume of traf-

fic. A slight difference with the domain names, however, is that there is more of

a discrepancy between the volume requested of high frequency domain names and

low frequency domain names. In the table, the top three deciles are dominated each
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Figure 5.5. Adjusted traffic for heaviest client decile group for the 10-day period.

by only one domain name, and the fourth decile aggregates only two domain names.

This leaves a disproportionate number of domain names in the tenth decile. However,

for our purposes, this doesn’t constitute a significant problem and we could always

reproportion the domain names into alternate groups manually.

Once the domain name decile groups have been established, we aggregate the

traffic for each domain name decile group by server. At this point, each server must

be checked for a hole. If a hole exists, then the volume for that hour must be prorated

to account for the missing traffic (from the discussion previously on data sufficiency,

we are only working with data from servers with holes due to missing log data). The

entire algorithm is omitted, due to the fact that it is exactly the same as the algorithm

used in client processing.

At the end of processing each of the server-day-hour values above we can begin

to examine the traffic pattern for a “normal” heavy domain name. As with the

client and server analyses, there is a dramatic improvement in regularity between

the adjusted and unadjusted datasets. Figure 5.8 shows the aggregate traffic for one

domain name decile group (consisting of the domain name in the first decile that
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Figure 5.6. Traffic for lightest client decile group for the 10-day period.

generates the top 10% of the total volume of traffic) across all of the servers from

which the domain name was requested (for which we have data).

As before, we next examine figure 5.9 which shows the traffic for the same

domain name once it has been adjusted to account for the holes in the server data

using the technique described above.

Next, we examine what this analysis shows for other domain name decile groups,

such as the decile group representing the domain names with the lightest traffic vol-

umes.

Figure 5.10 shows the aggregate traffic for one domain name decile group (con-

sisting of the domain names that generate the top 10% of the total volume of traffic)

across all of the servers from which the domain name was requested (for which we

have data).

As before, we next examine figure 5.11 which shows the traffic for the same

group of clients once it has been adjusted to account for the holes in the server data

using the technique described above.
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Figure 5.7. Adjusted traffic for lightest client decile group for the 10-day period.

Domains Min Max Aggregate
Decile Per Decile Volume Volume Volume

1 1 265940087 265940087 265940087
2 1 142193910 142193910 142193910
3 1 121219666 121219666 121219666
4 2 94370237 116432237 210802474
5 4 42150988 91905649 252276144
6 7 27443752 37836078 217956083
7 9 18378494 27057672 203110531
8 20 6499397 15942293 208851647
9 50 2095633 6496745 201621665
10 3044001 1 2062561 204411668

Table 5.2. Domain name decile groups each representing (roughly) equivalent cumu-
lative traffic volume.
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Figure 5.8. Traffic for heaviest domain name decile group for the 10-day period.

Figure 5.9. Adjusted traffic for heaviest domain name decile group for the 10-day
period.
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Figure 5.10. Traffic for lightest domain name decile group for the 10-day period.

Figure 5.11. Adjusted traffic for lightest domain name decile group for the 10-day
period.



51

6. CONCLUSION

We started with a set of raw DNS logs covering a period of time and capturing

volumetric data regarding frequency of requests of a set of DNS servers. However, this

data was not useful in its raw form because of gaps in coverage. After preprocessing

the data and cleaning it using the demonstrated techniques, we now have a robust

set of data that can be analyzed in a flexible manner because the data is stored in a

relational database. The data has been cleaned of unwanted request types and bad

data in the DNS logs that were skewing the statistics. The data has been repaired

to account for holes in the source data. Finally, new data has been produced that

will assist in future analysis centered around detecting anomalous DNS server traffic.

DNS servers provide a critical function in directing Internet traffic. By detailing a

reproducible method for analyzing server log data to identify habitual patterns for

the traffic processed by DNS servers, we have laid the groundwork for tackling the

problem of detecting attacks on Domain Name Service (DNS) servers, which centers

around properly identifying illegitimate traffic.
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