

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 157

Detecting Ambiguity in Requirements Analysis

Using Mamdani Fuzzy Inference

Jacline Sudah Sinpang, Shahida Sulaiman and Norsham Idris
Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

flynnyjac@gmail.com

Abstract—Natural language is the most common way to

specify requirements during elicitation of requirements as

stakeholders can better specify the services they want from a

particular system. However, it is arguable that requirements

gathered in natural language is free from error especially

ambiguity. Ambiguity in requirements can cause requirement

engineers or system analysts to perceive the requirements

according to their understanding instead of stakeholders

understanding. This study attempts to detect ambiguity mainly

vagueness as early as possible using Mamdani fuzzy inference

when analyzing requirements. Dataset used in this study

comprises raw requirements that are still in natural language

form. In order to create fuzzy rules, the analysis of the

requirements in natural language involves the process of

capturing the text patterns of the requirements. The results

show that it is possible to use Mamdani fuzzy inference that can

detect ambiguity in requirements analysis phase.

Index Terms—Mamdani Fuzzy Inference; Natural Language;

Requirements Analysis; Requirements Engineering.

I. INTRODUCTION

Requirements engineering is a vital activity that can influence

the whole phases in software development project [1].

Requirements provide the foundation to refine and elaborate

the whole software development life cycle. The development

of any software must be based on a high-quality requirement

engineering process [2]. Thus, ambiguous requirements can

contribute to low-quality requirements that can lead to the

failure of a project.

Requirement according to the international standard of

IEEE std., 29148-2011 [3], refers to a form of a report that

represents a necessity and its related constraints and

conditions. Requirements engineering, on the other hand,

involves all lifecycle activities devoted to the identification

of user requirements, analysis of the requirements to also

derive additional requirements, documentation of the

requirements as a specification, and validation of the

documented requirements against user needs, as well as

processes that support these activities [4].

Natural language (NL) is normally used to represent users’

requirements that are to be met by the system or services [5].

The pervasive medium for this communication that is natural

language is widely accepted to be tricky for high-accuracy

communication because of its characteristic that leads to

ambiguity and familiarity [6]. In addition, ambiguity in

requirements can cause various issues that influence the

system to be built, in light of the fact that ambiguity becomes

a bug if not found and settled at early stages [7]. Ambiguous

requirements may bring about misinterpretations among

stakeholders, and prompt a few issues [8]. Thus, it is

important that requirements engineers or system analysts

handle the issues such as ambiguity at the early stage in

requirement engineering process itself.

This research aims to solve the issue of ambiguity at the

early stage by adopting the artificial intelligence (AI)

technique that can help to detect the issue. Meziane and

Vadera [9] state that some researchers adopt AI techniques to

improve the software development activities and there is huge

potential in utilizing AI for supporting and upgrading

software engineering. Some existing works apply the

techniques in AI for certain phases in requirements

engineering and they have proven the significance in

enhancing the software development activities.

AI as defined in the IEEE ISO, 8402:1995 [10] are

summarized as below:

i. Investigation of a planned computer system by

showing the attributes related with the insight in

human conduct: understanding language, learning,

thinking from fragmented or dubious data, and taking

care of issues.

ii. The order for creating a computer system that is able

to do breezing through the Turing test, in which the

conduct of the computer system is no difference from

human conduct.

iii. Investigation of critical thinking that is achieved by

utilizing computational models

Fuzzy inference system is a part of AI where the involved

process maps the given input variables to an output space via

fuzzy logic based deducing mechanism. The system

comprises If-Then rules, membership functions and fuzzy

logical operations [11]. The If-Then rules in fuzzy logic

approximate to people linguistic variable; this inference

process is projecting crisp quantities onto human language

and promptly yielding a precise value [11].

The three types of fuzzy inference system include (i)

Mamdani fuzzy inference, (ii) Sugeno fuzzy inference and

(iii) Tsukamoto fuzzy inference. Given the nature of this

study is to detect ambiguity in natural language requirements,

it focuses on Mamdani fuzzy inference where the whole

process is weighting on the If-Then set and then the output of

each rule will be reshaped by a matching number and the

defuzzification will help to aggregate this output to the

original fuzzy set.

The objectives of this study are:

i. To study and identify the characteristics of ambiguity

(vagueness) to fit the fuzzy rules

ii. To enhance requirements analysis by implementing

Mamdani fuzzy inference technique

iii. To evaluate the proposed technique in requirements

analysis using an established requirements dataset

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/229272565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

158 e-ISSN: 2289-8131 Vol. 9 No. 3-4

The following Section II outlines the related work for this

study, Section III is the proposed work, Section IV is the

experiment, and Section V is the result and discussion. The

final section concludes the paper and its future work.

II. RELATED WORK

Arora et al. [12] suggest that NL is a standout amongst

commonplace practices in eliciting requirements from the

stakeholders, as it is less demanding to derive it. It is the fact

that English is etymologically ambiguous and semantically

conflicting [13]. Due to its nature, requirements engineers

have accepted the fact that NL is inherently ambiguous.

In English literature, writers may intentionally utilize

ambiguity in the sentences to give readers a chance to expand

their creativity. In any case, if there is any ambiguity in

requirements, it could bring about undesirable mistakes.

Thus, it is necessary for requirements engineers to have basic

ability to comprehend requirements and recognizing the

ambiguity in requirements [14].

Ambiguity in texts is normally interpreted as sentences that

have more than a single meaning. However, Massey et al.

[14] define that there are six ambiguity types in line with the

definitions that are used in requirements engineering, law and

linguistic. The six ambiguity types are shown as below. This

study focuses on vagueness.

i. Lexical ambiguity: A word or expression with

numerous legitimate meaning.

ii. Syntactic ambiguity: Arrangement of word with

different legitimate syntactic understandings

regardless of context.

iii. Semantic ambiguity: Consist of more than one

interpretations in the sentence.

iv. Vagueness: Statement that concede marginal case or

relative interpretation.

v. Incompleteness: Provides too little detail in conveying

the meaning in a grammatically correct sentence.

vi. Referential ambiguity: Confuses reader with it

references on the provided context in a grammatically

correct sentence.

In order to identify or eliminate ambiguity in requirements,

there are works that attempt to solve these issues. Researchers

use Natural Language Processing (NLP) to identify and solve

ambiguity in requirements [6, 12]. Some works aim to tackle

the issue of ambiguity in requirements. For example, software

requirements specification is introduced to capture the

complete description of the system. However, this does not

necessarily ensure that the requirements are not ambiguous.

Table 1 shows some of the works that attempt to solve

ambiguity in requirements engineering.

There is noteworthy potential in utilizing AI to enhance the

phases in the software development life cycle. Similar with

other disciplines, software development quality enhances the

experience, developers’ knowledge, past activities and

aptitude [8]. AI is a technique where a machine can learn from

its experience and improve accordingly. Thus, it promotes

automation in related problems. By applying Fuzzy

modelling for product qualities in requirements, Davril et al.

[15] discover that the technique can support the design of a

product configurator by focusing on product qualities and

enabling users to manipulate and perceive product regarding

qualities.

Table 1
Solving Ambiguity in Requirements Engineering

Proposed work Strength Weakness

Framework by
Arora et al. [12]

Provides a robust and
accurate basis for

checking

conformance to
templates

The framework is limited
by the ontology editor

features in which if the

requirements captured are
not according to the

existing features, it might

give a not really accurate
result

Automated

ambiguity
detection tool

by Gleich et al.

[13]

Able to detect
ambiguity and its

sources

The tool is created only to
focus on lexical and

syntactic ambiguity

Ambiguity

taxonomy by

Massey et al.

[14]

Taxonomy helps to
identify ambiguity in

legal texts

Participants in the case

study did not really agree

to the number and type of

ambiguities in legal texts

Automated

approach to
generate

semantic of
business

vocabulary and

rules by Umber
and Bajwa [16]

Provides a higher

accuracy as
compared to other

natural language
based tools

This approach only focuses
on semantic ambiguity

Agent Oriented

Framework by
Bhardwaj and

Goyal (2014)

[17]

Framework is stable

in a long-standing

identification of the
need.

No quantitative approach

was made.

Hybrid
Approach by

Kumar et al.

(2013) [18]

Approach is

beneficial in handling

requirements

gathering in agile

development.

This approach only

effective for agile

development.

Classification
Methodology

by Parra et al.

(2015) [2]

Classifier is able to

evaluate the quality
of requirements.

Classifier needs more

training to improve
efficiency.

UML

Integration by

Siddique et al.
(2014) [19]

Use cases are best

applied to big

projects or new
developed system.

It is not confirmed how
effective criteria in use

cases at detecting faults.

Beritelli et al. [20] propose a simple approach to a small

vocabulary word recognition by using fuzzy pattern

matching. The finding of the approach stated that the use of

fuzzy logic in the matching phase makes it easier to separate

the class represented by the various words, thus simplifying

the task of the final decision block. In addition, Baresi et al.

[21] use fuzzy goal to specify requirements and adaptation

capabilities in self-adaptive systems. It helps to transform a

goal into live entities, the distinction between crisp and fuzzy

goals, with which one can associate different satisfaction

levels and the definition of adaptation strategies as if they

were goals. All these elements help embed self-adaptability

in software systems from the very beginning (requirements

elicitation), and produce reasoning on possible consequences.

Although Table 1 shows the work in NL, the context of this

NL is a requirement that has been written in a professional

manner. It means that the requirements have been

documented for software requirements specification (SRS).

However, this research focuses on raw requirements that have

been elicited using natural language that have not been

documented into SRS in other words the requirements are not

written in a proper requirement specification styles. Thus, this

research anticipates discovering ambiguity in requirements as

early as possible even before the requirements are

professionally documented will lead to a better quality of

Detecting Ambiguity in Requirements Analysis Using Mamdani Fuzzy Inference

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 159

requirements. The If-Then rule in fuzzy logic can help when

the input of the experiments is linguistic as the rules in fuzzy

logic approximate to people linguistic variable.

III. THE PROPOSED WORK

A fuzzy inference system consists of three major steps, as

shown in Figure 1. The first step is the fuzzification step. This

first step involves the change of the numerical values into a

different set of membership degrees in fuzzy. The second step

is where the inference engine will analyze the fuzzy input

using fuzzy rule base. The third step performs the

defuzzification if necessary. It produces a crisp value from

the rule aggregation result.

Figure 1: Fuzzy Inference System

A fuzzy rule is written as If situation Then conclusion. The

situation, called rule premise or antecedent, is defined as a

combination of relations such as x is A for each component of

the input vector. The conclusion part is called consequence or

conclusion.

Operators:

IS: the relation x is A quantified by the membership degree

of x to the fuzzy set A

AND: conjunction operator, denoted ^ , the most common

operators are minimum and product

OR: disjunction operator, the most common are maximum

and sum

For this research, conjunctive rules which mainly use AND

operator are applied to get the probability of requirements that

contain certain combination words that might cause the

requirements to be ambiguous requirements. Conjunctive

rules represent positive knowledge; input (A) and output (C)

represent pairs of combined possible values. Figure 2 shows

an example of a general rule that is applied to the fuzzy logic.

If a sentence contains word1 and word2 then the

sentence is vague

Figure 2: General rule

Certain combination of words that could contribute to

vague requirements are specifically analyzed using

conjunctive rules. The output from rule will give the

probability on the vagueness of the requirements when

certain combinations of words are detected in the sentence.

IV. THE EXPERIMENT

There are three stages of analysis in order to detect the

ambiguity of requirements. The stages are: (i) manual

analysis, (ii) natural language processing and (iii) fuzzy logic

analysis. Figure 3 shows the flow of the analysis.

Figure 3: Flowchart of Analysis

Data selected for this research is an open source data, which

is a case study project of University College London (UCL)

[22]. The data gathered in the project is RALIC project

(Replacement Access, Library and ID Card). It is a software

project to enhance the existing access control system at UCL.

RALIC aims to substitute the outdated access control

systems, combining various existing access control

mechanisms, and at the minimal, combine the photo ID card,

access card, and library card. RALIC is a combination of

development and customization of an off-the-shelf system

[22]. The scope of the project is shown in Table 2.

Journal of Telecommunication, Electronic and Computer Engineering

160 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Table 2
RALIC Project Scope

Scope

Item
Description

1 Replace swipe card readers with smart card readers

2 Source and install access card printers
3 Decide on card design and categories

4 Define user groups and default access rights

5

Provide a more accurate card holder database, save
resources on manual data input, and facilitate automated

provision and suspension of access and library borrowing

rights

6 Issue new cards to staff, students, visitors and contractors

7 Replace the Library access control system
8 Use new cards at the Bloomsbury Fitness Centre

Due to the variety of stakeholders, requirements gathered

for RALIC rather have conflicting requirements. For

example, members of the UCL Development and Corporate

Communications Office preferred the ID card to have UCL

branding, but the security guards prefer otherwise for security

reasons in case the cards are lost. Table 3 shows some of the

requirements elicited for the project.

Table 3

Excerpt of RALIC Elicited Requirements

No. Requirements

1
User friendly system which does not require a complex training

programme

2
The card can be extended for future requirements, such as a
digital certificate

3 To make the software interface easy to maintain

4
System is able to continue operation of up-to-date hardware and
server operating systems

5 To improve the quality of the access systems database

A. Manual Analysis

The first stage of this research is to manually analyze the

requirements and the first step is to separate the requirements

into functional and non-functional requirements. In this

analysis, 60 requirements are eliminated because they are

non-functional requirements and only 328 functional

requirements will be included in further analysis for the scope

of this study.

The second step is to identify requirements that are either

ambiguous or incomplete. There are 74 requirements that are

considered ambiguous, 21 requirements are incomplete and

233 requirements are free from ambiguity and

incompleteness. This manual analysis does not totally depend

on the knowledge of the analyzer as some templates also

guide on how to specify good requirements [23].

B. Natural Language Processing

This analysis aims to observe the pattern of the texts

(requirements) to create the rules in the fuzzy logic. It

involves the analysis of 233 texts using Stanford CoreNLP.

The outputs from this analysis help to see the details of every

single word from each requirement. From the output, each

word is tagged with part-of-speech (POS) tag to understand

the requirements further. The algorithm performs the analysis

that allows every word from the text to be further broken

down to their lemma, POS and the parsing of every word.

C. Fuzzy Logic Analysis

Let the universe of discourse X be the subset of real

numbers R, X = {x1, x2, x3,…,xn}. A fuzzy set Ã = {(x,µA(x))|x

ϵ X} in X is a set of ordered pairs, where µA(x) is called a

membership function and µA(x) : X → [0, 1]. The membership

function for fuzzy sets can take any values from the closed

interval [0, 1]. The greater µA(x) is, the greater the truth of the

statement that element x belongs to set Ã is.

After observing the pattern of every text, the pattern is then

used to create rules for the fuzzy set. Figure 4 shows the rules

that are created from the observed text patterns. NN refers to

noun, JJ is adjective, VB is verb, VBZ (verb, 3rd person

singular present) and RB is adverb.

Figure 4: Fuzzy rules

V. RESULT AND DISCUSSION

From the experiment that had been conducted from text

language analysis, the pattern of every text was identified and

the pattern of words that cause a sentence to be vague and

words that cause a sentence to be complete was recognized.

Considering the first requirement from Table 3 as an

example: “User friendly system which does not require a

complex training programme” this requirement contains both

words that is tagged with NN (User), JJ (friendly) and JJ

(complex) making the requirements to be rather subjective

instead of objective. Figure 5 shows the pattern of the vague

requirement based on the chosen example.

(ROOT (FRAG (NP (NP (NN User) (JJ friendly) (NN

system)) (SBAR (WHNP (WDT which)) (S (VP (VBZ

does) (RB not) (VP (VB require) (NP (DT a) (JJ complex)

(NN training) (NN programme))))))) (. .)))

Figure 5: Text pattern

By referring to the instances of probability values in Table

4, when the tagged words appear in the sentence, the chances

for the sentence to be ambiguous is 50% and when the

sentence contains more adjective (JJ) the probability shows

that chances for it to be ambiguous is higher.

Table 4

Probability of Vague Requirements

 Word1 Word2 Probability

Membership

Function Value

0.5 0.5 0.383

1 1 0.5

0.133 1 0.641

0.225 0.15 0.396

0.381 0.441 0.344

0.821 0.177 0.375

0.271 0.714 0.334

Detecting Ambiguity in Requirements Analysis Using Mamdani Fuzzy Inference

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 161

The example of text pattern output as shown in Figure 7

and probability values as in Table 4 are analyzed in

accordance to Algorithm 1.

Figure 6: Algorithm 1

From the obtained results, the probability of a requirement

to be vague is most likely due to the existence of vague words

such as user friendly, simple, reduce, and quick. When these

vague words are found in requirements, it can cause the

requirements to be vague since the words cannot be

measured. However, if the vague word is accompanied by

another condition that is measureable such as ninety percent

simpler, the requirements will be complete requirements.

A combination of NN (noun) and JJ (adjective) are more

likely to produce a noun phrase (NP) in which the word tends

to be descriptive such as very few, extremely large, small

amount. By conducting further analysis using fuzzy, the

impact of the vague words can be seen clearly. From Table 4,

the results show that the higher the presence of word2 in the

requirements, the likelihood of the requirements to appear

vague is higher. In addition, word2 are the words that are

tagged as JJ (adjective), NN (noun), RB (adverb) and VBZ

(verb, 3rd person singular present). Words that are normally

tagged with these words cannot be measured such as efficient,

quick, easy, and reliable.

The results also show that the combination of noun (NN)

word and adjective (JJ) word is most likely to produce noun

phrase (NP). Noun phrase is normally vague verb that seems

qualitative rather than quantitative. Examples of noun phrase

include very few, extremely large and user friendly. Thus, by

repeating this experiment to more ambiguous requirements,

more text patterns and probability values can be derived to

identify vagueness that could also guide requirements

engineers or system analysts on what text patterns to be

avoided to gain high quality requirements.

VI. CONCLUSION AND FUTURE WORK

Linguistically, vague is defined as something that are not

clearly or explicitly stated or expressed. Although it is

common to use vague words in daily conversation, in the case

of requirements, it is best to be avoided. From the conducted

experiment, we can conclude that a requirement comprising

a vague word is most likely will turn out to be a vague

requirement. However, if these vague words are followed by

words that can measure the vagueness, the probability for

such requirements to be vague is low.

In detecting ambiguous requirements especially in term of

vagueness, it is very important to look at the word that is

either noun, adjective or adverb. This word or word phrase is

rather subjective than objective in which without a

determiner, the probability for the requirements to be

ambiguous is higher when such words present in a sentence.

Thus, fuzzy inference technique could further analyze the

combination of words that might produce ambiguous

requirements. Through the probability, it helps to detect

combination of words that most likely causes vagueness to

the requirements.

Future work includes further analysis to capture more text

patterns for other types of ambiguity. In-depth validation and

verification of the results are necessary to ensure the accuracy

of the obtained results using the Mamdani fuzzy inference.

ACKNOWLEDGMENT

The authors express gratitude to the Research University

Grant (RUG) of Universiti Teknologi Malaysia, Cost Centre

14H09 that supports this work.

REFERENCES

[1] D. Pandey, U. Suman and A. K. Ramani, “An effective requirement

engineering process model for software development and requirements

management,” 2010 International Conference on Advances in Recent

Technologies in Communication and Computing, Kottayam, 2010, pp.
287-291.

[2] E. Parra, C. Dimou, J. Llorens, V. Moreno and A. Fraga, “A

methodology for the classification of quality of requirements using
machine learning techniques,” Information and Software Technology,

vol. 67, Nov. 2015, pp. 180-195.

[3] ISO/IEC/IEEE International standard, “Systems and software
engineering - Life cycle processes - Requirements engineering”, in

ISO/IECIEEE 29148:2011(E), pp. 1-94, Dec. 1 2011.

[4] J. Kazmier, B. Berenbach, D. J. Paulish and A. Rudorfer, Software and
Systems Requirements Engineering: In Practise. New York, NY:

McGraw-Hill Education, 2009, pp. 39-72.

[5] E. Kamsties, “Understanding ambiguity in requirements engineering,
Engineering and Managing Software Requirements,” in Engineering

and Managing Software Requirements, A. Aurum, and C. Wohlin, Eds.

Berlin, Heidelberg: Springer, 2005, pp. 245-266.
[6] S. F. Tjong, Avoiding Ambiguity in Requirements Specifications.

Doctoral dissertation, University of Waterloo, 2008.

[7] A. Nigam, N. Arya, B. Nigam, and D. Jain, “Tool for automatic
discovery of ambiguity in requirements,” IJCSI International Journal

of Computer Science Issues, vol. 9, no. 5, pp. 350-356, Sep. 2012
[8] A. Ferrari, G. Lipari, S. Gnesi and G. O. Spagnolo, “Pragmatic

ambiguity detection in natural language requirements,” in 2014 IEEE

1st International Workshop on Artificial Intelligence for Requirements
Engineering (AIRE), Karlskrona, 2014, pp. 1-8.

[9] F. Meziane and S. Vadera, “Artificial intelligence in software

engineering current developments and future prospects,” in Artificial
Intelligence Applications for Improved Software Engineering

Development: New Prospects, Hershey, New York, USA: IGI Global,

2010, pp. 273-294.
[10] IEEE/ISO International standard, “Quality management and quality

assurance”, in IEEE ISO 8402:1995, 1995.

[11] C. H. Wang, A study of membership functions on Mamdani-type fuzzy
inference system for industrial decision-making. Thesis and

dissertation, University of Lehigh, 2015.

[12] C. Arora, M. Sabetzadeh, L. Briand and F. Zimmer, “Automated
checking of conformance to requirements templates using natural

language processing,” in IEEE Transactions on Software Engineering,

vol. 41, no. 10, Oct. 1 2015, pp. 944-968,.

[13] B. Gleich, O. Creighton and L. Kof, “Ambiguity detection: towards a

tool explaining ambiguity sources,” International Working Conference

on Requirements Engineering: Foundation for Software Quality, 2010,
pp. 218-232.

[14] A. K. Massey, R. L. Rutledge, A. I. Antón and P. P. Swire, “Identifying

and classifying ambiguity for regulatory requirements,” 2014 IEEE
22nd International Requirements Engineering Conference (RE),

Karlskrona, 2014, pp. 83-92.

Algorithm 1: NLP and Fuzzy Logic Analysis

Input: Stakeholders requirements {R1,…, Rn}

Output: Text pattern and probability

Begin

1. Input requirements;

2. Enter command to tokenize every input;

3. Print text pattern output;

4. Check text pattern for every requirement;

5. Create rules on fuzzy based on text pattern

identified;

6. Analyze probability with fuzzy;

7. Get probability output;

End

Journal of Telecommunication, Electronic and Computer Engineering

162 e-ISSN: 2289-8131 Vol. 9 No. 3-4

[15] J. M. Davril, M. Cordy, P. Heymans and M Acher, “Using fuzzy
modeling for consistent definitions of product qualities in

requirements,” 2015 IEEE Second International Workshop on

Artificial Intelligence for Requirements Engineering (AIRE), Ottawa,
2015, pp. 1-8.

[16] A. Umber and I. S. Bajwa, “Minimizing ambiguity in natural language

software requirements specification,” 2011 Sixth International
Conference on Digital Information Management, Melbourn, 2011, pp.

102-107.

[17] S. Bhardwaj and A. K. Goyal, “A comparative analysis of agent
oriented requirements engineering frameworks,” International Journal

of Computer Applications, vol.87, no.8, Feb. 2014.

[18] M. Kumar, M. Shukla and S. Agarwal, “A hybrid approach of
requirements engineering in agile software development,” 2013

International Conference on Machine Intelligence on Research

Advancement, Katra, 2013, pp. 515-519.

[19] A. B Siddique, S. Qadri, S. Hussain, S. Ahmad, I. Maqbool, and A. K.
N. Khan, “Integration of requirements engineering with UML in

software engineering practices,” Sci. Int. (Lahore), vol. 26, no. 5. pp.

2157-2162, 2014.
[20] F. Beritelli, G. Cilia and A. Cucè, “Small vocabulary word recognition

based on fuzzy pattern matching,” in Proc. of the European Symposium

on Intelligent Techniques, Crete (Greece), 1999.
[21] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-

driven adaptation,” 18th IEEE International Requirements Engineering

Conference, Sydney, 2010, pp. 125-134.
[22] S. L. Lim, Social Networks and Collaborative Filtering for Large-

Scale Requirements Elicitation. Doctoral dissertation, University of

New South Wales, 2010.

[23] D. Firesmith, “Specifying good requirements,” Journal of Object

Technology, vol. 2, no. 4, pp. 77-87, 2003.

