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Abstract—Natural language is the most common way to 

specify requirements during elicitation of requirements as 

stakeholders can better specify the services they want from a 

particular system. However, it is arguable that requirements 

gathered in natural language is free from error especially 

ambiguity. Ambiguity in requirements can cause requirement 

engineers or system analysts to perceive the requirements 

according to their understanding instead of stakeholders 

understanding. This study attempts to detect ambiguity mainly 

vagueness as early as possible using Mamdani fuzzy inference 

when analyzing requirements. Dataset used in this study 

comprises raw requirements that are still in natural language 

form. In order to create fuzzy rules, the analysis of the 

requirements in natural language involves the process of 

capturing the text patterns of the requirements. The results 

show that it is possible to use Mamdani fuzzy inference that can 

detect ambiguity in requirements analysis phase. 

 

Index Terms—Mamdani Fuzzy Inference; Natural Language; 

Requirements Analysis; Requirements Engineering. 

 

I. INTRODUCTION 

 

Requirements engineering is a vital activity that can influence 

the whole phases in software development project [1]. 

Requirements provide the foundation to refine and elaborate 

the whole software development life cycle. The development 

of any software must be based on a high-quality requirement 

engineering process [2]. Thus, ambiguous requirements can 

contribute to low-quality requirements that can lead to the 

failure of a project.  

Requirement according to the international standard of 

IEEE std., 29148-2011 [3], refers to a form of a report that 

represents a necessity and its related constraints and 

conditions. Requirements engineering, on the other hand, 

involves all lifecycle activities devoted to the identification 

of user requirements, analysis of the requirements to also 

derive additional requirements, documentation of the 

requirements as a specification, and validation of the 

documented requirements against user needs, as well as 

processes that support these activities [4].  

Natural language (NL) is normally used to represent users’ 

requirements that are to be met by the system or services [5]. 

The pervasive medium for this communication that is natural 

language is widely accepted to be tricky for high-accuracy 

communication because of its characteristic that leads to 

ambiguity and familiarity [6]. In addition, ambiguity in 

requirements can cause various issues that influence the 

system to be built, in light of the fact that ambiguity becomes 

a bug if not found and settled at early stages [7]. Ambiguous 

requirements may bring about misinterpretations among 

stakeholders, and prompt a few issues [8]. Thus, it is 

important that requirements engineers or system analysts 

handle the issues such as ambiguity at the early stage in 

requirement engineering process itself. 

This research aims to solve the issue of ambiguity at the 

early stage by adopting the artificial intelligence (AI) 

technique that can help to detect the issue. Meziane and 

Vadera [9] state that some researchers adopt AI techniques to 

improve the software development activities and there is huge 

potential in utilizing AI for supporting and upgrading 

software engineering. Some existing works apply the 

techniques in AI for certain phases in requirements 

engineering and they have proven the significance in 

enhancing the software development activities. 

AI as defined in the IEEE ISO, 8402:1995 [10] are 

summarized as below:  

i. Investigation of a planned computer system by 

showing the attributes related with the insight in 

human conduct: understanding language, learning, 

thinking from fragmented or dubious data, and taking 

care of issues. 

ii. The order for creating a computer system that is able 

to do breezing through the Turing test, in which the 

conduct of the computer system is no difference from 

human conduct. 

iii. Investigation of critical thinking that is achieved by 

utilizing computational models 

Fuzzy inference system is a part of AI where the involved 

process maps the given input variables to an output space via 

fuzzy logic based deducing mechanism. The system 

comprises If-Then rules, membership functions and fuzzy 

logical operations [11]. The If-Then rules in fuzzy logic 

approximate to people linguistic variable; this inference 

process is projecting crisp quantities onto human language 

and promptly yielding a precise value [11]. 

The three types of fuzzy inference system include (i) 

Mamdani fuzzy inference, (ii) Sugeno fuzzy inference and 

(iii) Tsukamoto fuzzy inference. Given the nature of this 

study is to detect ambiguity in natural language requirements, 

it focuses on Mamdani fuzzy inference where the whole 

process is weighting on the If-Then set and then the output of 

each rule will be reshaped by a matching number and the 

defuzzification will help to aggregate this output to the 

original fuzzy set. 

The objectives of this study are:  

i. To study and identify the characteristics of ambiguity 

(vagueness) to fit the fuzzy rules 

ii. To enhance requirements analysis by implementing 

Mamdani fuzzy inference technique 

iii. To evaluate the proposed technique in requirements 

analysis using an established requirements dataset 
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The following Section II outlines the related work for this 

study, Section III is the proposed work, Section IV is the 

experiment, and Section V is the result and discussion. The 

final section concludes the paper and its future work. 

 

II. RELATED WORK 

 

Arora et al. [12] suggest that NL is a standout amongst 

commonplace practices in eliciting requirements from the 

stakeholders, as it is less demanding to derive it. It is the fact 

that English is etymologically ambiguous and semantically 

conflicting [13]. Due to its nature, requirements engineers 

have accepted the fact that NL is inherently ambiguous. 

In English literature, writers may intentionally utilize 

ambiguity in the sentences to give readers a chance to expand 

their creativity. In any case, if there is any ambiguity in 

requirements, it could bring about undesirable mistakes. 

Thus, it is necessary for requirements engineers to have basic 

ability to comprehend requirements and recognizing the 

ambiguity in requirements [14]. 

Ambiguity in texts is normally interpreted as sentences that 

have more than a single meaning. However, Massey et al. 

[14] define that there are six ambiguity types in line with the 

definitions that are used in requirements engineering, law and 

linguistic. The six ambiguity types are shown as below. This 

study focuses on vagueness. 

i. Lexical ambiguity: A word or expression with 

numerous legitimate meaning. 

ii. Syntactic ambiguity: Arrangement of word with 

different legitimate syntactic understandings 

regardless of context. 

iii. Semantic ambiguity: Consist of more than one 

interpretations in the sentence. 

iv. Vagueness: Statement that concede marginal case or 

relative interpretation. 

v. Incompleteness: Provides too little detail in conveying 

the meaning in a grammatically correct sentence. 

vi. Referential ambiguity: Confuses reader with it 

references on the provided context in a grammatically 

correct sentence. 

In order to identify or eliminate ambiguity in requirements, 

there are works that attempt to solve these issues. Researchers 

use Natural Language Processing (NLP) to identify and solve 

ambiguity in requirements [6, 12]. Some works aim to tackle 

the issue of ambiguity in requirements. For example, software 

requirements specification is introduced to capture the 

complete description of the system. However, this does not 

necessarily ensure that the requirements are not ambiguous. 

Table 1 shows some of the works that attempt to solve 

ambiguity in requirements engineering. 

There is noteworthy potential in utilizing AI to enhance the 

phases in the software development life cycle. Similar with 

other disciplines, software development quality enhances the 

experience, developers’ knowledge, past activities and 

aptitude [8]. AI is a technique where a machine can learn from 

its experience and improve accordingly. Thus, it promotes 

automation in related problems. By applying Fuzzy 

modelling for product qualities in requirements, Davril et al. 

[15] discover that the technique can support the design of a 

product configurator by focusing on product qualities and 

enabling users to manipulate and perceive product regarding 

qualities. 
 
 

 

Table 1 
Solving Ambiguity in Requirements Engineering 

 

Proposed work Strength Weakness 

Framework by 
Arora et al. [12] 

Provides a robust and 
accurate basis for 

checking 

conformance to 
templates 

The framework is limited 
by the ontology editor 

features in which if the 

requirements captured are 
not according to the 

existing features, it might 

give a not really accurate 
result 

Automated 

ambiguity 
detection tool 

by Gleich et al. 

[13] 

Able to detect 
ambiguity and its 

sources 

The tool is created only to 
focus on lexical and 

syntactic ambiguity 

Ambiguity 

taxonomy by 

Massey et al. 

[14] 

Taxonomy helps to 
identify ambiguity in 

legal texts 

Participants in the case 

study did not really agree 

to the number and type of 

ambiguities in legal texts 

Automated 

approach to 
generate 

semantic of 
business 

vocabulary and 

rules by Umber 
and Bajwa [16] 

Provides a higher 

accuracy as 
compared to other 

natural language 
based tools 

This approach only focuses 
on semantic ambiguity 

Agent Oriented 

Framework by 
Bhardwaj and 

Goyal (2014) 

[17] 

Framework is stable 

in a long-standing 

identification of the 
need. 

No quantitative approach 

was made. 

Hybrid 
Approach by 

Kumar et al. 

(2013) [18] 

Approach is 

beneficial in handling 

requirements 

gathering in agile 

development. 

This approach only 

effective for agile 

development. 

Classification 
Methodology 

by Parra et al. 

(2015) [2] 

Classifier is able to 

evaluate the quality 
of requirements. 

Classifier needs more 

training to improve 
efficiency.  

UML 

Integration by 

Siddique et al. 
(2014) [19] 

Use cases are best 

applied to big 

projects or new 
developed system. 

It is not confirmed how 
effective criteria in use 

cases at detecting faults. 

 

Beritelli et al. [20] propose a simple approach to a small 

vocabulary word recognition by using fuzzy pattern 

matching. The finding of the approach stated that the use of 

fuzzy logic in the matching phase makes it easier to separate 

the class represented by the various words, thus simplifying 

the task of the final decision block. In addition, Baresi et al. 

[21] use fuzzy goal to specify requirements and adaptation 

capabilities in self-adaptive systems. It helps to transform a 

goal into live entities, the distinction between crisp and fuzzy 

goals, with which one can associate different satisfaction 

levels and the definition of adaptation strategies as if they 

were goals. All these elements help embed self-adaptability 

in software systems from the very beginning (requirements 

elicitation), and produce reasoning on possible consequences. 

Although Table 1 shows the work in NL, the context of this 

NL is a requirement that has been written in a professional 

manner. It means that the requirements have been 

documented for software requirements specification (SRS). 

However, this research focuses on raw requirements that have 

been elicited using natural language that have not been 

documented into SRS in other words the requirements are not 

written in a proper requirement specification styles. Thus, this 

research anticipates discovering ambiguity in requirements as 

early as possible even before the requirements are 

professionally documented will lead to a better quality of 
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requirements. The If-Then rule in fuzzy logic can help when 

the input of the experiments is linguistic as the rules in fuzzy 

logic approximate to people linguistic variable. 

 

III. THE PROPOSED WORK 

 

A fuzzy inference system consists of three major steps, as 

shown in Figure 1. The first step is the fuzzification step. This 

first step involves the change of the numerical values into a 

different set of membership degrees in fuzzy. The second step 

is where the inference engine will analyze the fuzzy input 

using fuzzy rule base. The third step performs the 

defuzzification if necessary. It produces a crisp value from 

the rule aggregation result. 

 

 
 

Figure 1: Fuzzy Inference System 
 

A fuzzy rule is written as If situation Then conclusion. The 

situation, called rule premise or antecedent, is defined as a 

combination of relations such as x is A for each component of 

the input vector. The conclusion part is called consequence or 

conclusion. 

 

Operators: 

IS: the relation x is A quantified by the membership degree 

of x to the fuzzy set A 

AND: conjunction operator, denoted ^ , the most common 

operators are minimum and product 

OR: disjunction operator, the most common are maximum 

and sum 

 

For this research, conjunctive rules which mainly use AND 

operator are applied to get the probability of requirements that 

contain certain combination words that might cause the 

requirements to be ambiguous requirements. Conjunctive 

rules represent positive knowledge; input (A) and output (C) 

represent pairs of combined possible values. Figure 2 shows 

an example of a general rule that is applied to the fuzzy logic. 

 

If a sentence contains word1 and word2 then the 

sentence is vague 
 

Figure 2: General rule 

 

Certain combination of words that could contribute to 

vague requirements are specifically analyzed using 

conjunctive rules. The output from rule will give the 

probability on the vagueness of the requirements when 

certain combinations of words are detected in the sentence.  

 

IV. THE EXPERIMENT 

 

There are three stages of analysis in order to detect the 

ambiguity of requirements. The stages are: (i) manual 

analysis, (ii) natural language processing and (iii) fuzzy logic 

analysis. Figure 3 shows the flow of the analysis. 

 

 
 

Figure 3: Flowchart of Analysis 

 

Data selected for this research is an open source data, which 

is a case study project of University College London (UCL) 

[22]. The data gathered in the project is RALIC project 

(Replacement Access, Library and ID Card). It is a software 

project to enhance the existing access control system at UCL.  

RALIC aims to substitute the outdated access control 

systems, combining various existing access control 

mechanisms, and at the minimal, combine the photo ID card, 

access card, and library card. RALIC is a combination of 

development and customization of an off-the-shelf system 

[22]. The scope of the project is shown in Table 2.  
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Table 2 
RALIC Project Scope 

 

Scope 

Item 
Description 

1 Replace swipe card readers with smart card readers 

2 Source and install access card printers 
3 Decide on card design and categories 

4 Define user groups and default access rights 

5 

Provide a more accurate card holder database, save 
resources on manual data input, and facilitate automated 

provision and suspension of access and library borrowing 

rights 

6 Issue new cards to staff, students, visitors and contractors 

7 Replace the Library access control system 
8 Use new cards at the Bloomsbury Fitness Centre 

 

Due to the variety of stakeholders, requirements gathered 

for RALIC rather have conflicting requirements. For 

example, members of the UCL Development and Corporate 

Communications Office preferred the ID card to have UCL 

branding, but the security guards prefer otherwise for security 

reasons in case the cards are lost. Table 3 shows some of the 

requirements elicited for the project. 
 

Table 3 

Excerpt of RALIC Elicited Requirements 

 

No.  Requirements 

1 
User friendly system which does not require a complex training 

programme  

2 
The card can be extended for future requirements, such as a 
digital certificate 

3 To make the software interface easy to maintain 

4 
System is able to continue operation of up-to-date hardware and 
server operating systems 

5 To improve the quality of the access systems database 

 

A. Manual Analysis 

The first stage of this research is to manually analyze the 

requirements and the first step is to separate the requirements 

into functional and non-functional requirements. In this 

analysis, 60 requirements are eliminated because they are 

non-functional requirements and only 328 functional 

requirements will be included in further analysis for the scope 

of this study. 

The second step is to identify requirements that are either 

ambiguous or incomplete. There are 74 requirements that are 

considered ambiguous, 21 requirements are incomplete and 

233 requirements are free from ambiguity and 

incompleteness. This manual analysis does not totally depend 

on the knowledge of the analyzer as some templates also 

guide on how to specify good requirements [23].  

 

B. Natural Language Processing 

This analysis aims to observe the pattern of the texts 

(requirements) to create the rules in the fuzzy logic. It 

involves the analysis of 233 texts using Stanford CoreNLP. 

The outputs from this analysis help to see the details of every 

single word from each requirement. From the output, each 

word is tagged with part-of-speech (POS) tag to understand 

the requirements further. The algorithm performs the analysis 

that allows every word from the text to be further broken 

down to their lemma, POS and the parsing of every word.  

 

C. Fuzzy Logic Analysis 

Let the universe of discourse X be the subset of real 

numbers R, X = {x1, x2, x3,…,xn}. A fuzzy set Ã = {(x,µA(x))|x 

ϵ X} in X is a set of ordered pairs, where µA(x) is called a 

membership function and µA(x) : X → [0, 1]. The membership 

function for fuzzy sets can take any values from the closed 

interval [0, 1]. The greater µA(x) is, the greater the truth of the 

statement that element x belongs to set Ã is. 

After observing the pattern of every text, the pattern is then 

used to create rules for the fuzzy set. Figure 4 shows the rules 

that are created from the observed text patterns. NN refers to 

noun, JJ is adjective, VB is verb, VBZ (verb, 3rd person 

singular present) and RB is adverb. 

 

 
 

Figure 4: Fuzzy rules 

 

V. RESULT AND DISCUSSION 

 

From the experiment that had been conducted from text 

language analysis, the pattern of every text was identified and 

the pattern of words that cause a sentence to be vague and 

words that cause a sentence to be complete was recognized. 

Considering the first requirement from Table 3 as an 

example: “User friendly system which does not require a 

complex training programme” this requirement contains both 

words that is tagged with NN (User), JJ (friendly) and JJ 

(complex) making the requirements to be rather subjective 

instead of objective. Figure 5 shows the pattern of the vague 

requirement based on the chosen example. 

 

(ROOT (FRAG (NP (NP (NN User) (JJ friendly) (NN 

system)) (SBAR (WHNP (WDT which)) (S (VP (VBZ 

does) (RB not) (VP (VB require) (NP (DT a) (JJ complex) 

(NN training) (NN programme))))))) (. .))) 

 

Figure 5: Text pattern 

 

By referring to the instances of probability values in Table 

4, when the tagged words appear in the sentence, the chances 

for the sentence to be ambiguous is 50% and when the 

sentence contains more adjective (JJ) the probability shows 

that chances for it to be ambiguous is higher. 
 

Table 4 

Probability of Vague Requirements 
 

 Word1 Word2 Probability 

Membership 

Function Value 

0.5 0.5 0.383 

1 1 0.5 

0.133 1 0.641 

0.225 0.15 0.396 

0.381 0.441 0.344 

0.821 0.177 0.375 

0.271 0.714 0.334 
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The example of text pattern output as shown in Figure 7 

and probability values as in Table 4 are analyzed in 

accordance to Algorithm 1. 

Figure 6: Algorithm 1 
 

From the obtained results, the probability of a requirement 

to be vague is most likely due to the existence of vague words 

such as user friendly, simple, reduce, and quick. When these 

vague words are found in requirements, it can cause the 

requirements to be vague since the words cannot be 

measured. However, if the vague word is accompanied by 

another condition that is measureable such as ninety percent 

simpler, the requirements will be complete requirements. 

A combination of NN (noun) and JJ (adjective) are more 

likely to produce a noun phrase (NP) in which the word tends 

to be descriptive such as very few, extremely large, small 

amount. By conducting further analysis using fuzzy, the 

impact of the vague words can be seen clearly. From Table 4, 

the results show that the higher the presence of word2 in the 

requirements, the likelihood of the requirements to appear 

vague is higher. In addition, word2 are the words that are 

tagged as JJ (adjective), NN (noun), RB (adverb) and VBZ 

(verb, 3rd person singular present). Words that are normally 

tagged with these words cannot be measured such as efficient, 

quick, easy, and reliable. 

The results also show that the combination of noun (NN) 

word and adjective (JJ) word is most likely to produce noun 

phrase (NP). Noun phrase is normally vague verb that seems 

qualitative rather than quantitative. Examples of noun phrase 

include very few, extremely large and user friendly. Thus, by 

repeating this experiment to more ambiguous requirements, 

more text patterns and probability values can be derived to 

identify vagueness that could also guide requirements 

engineers or system analysts on what text patterns to be 

avoided to gain high quality requirements.  

 

VI. CONCLUSION AND FUTURE WORK 

 

Linguistically, vague is defined as something that are not 

clearly or explicitly stated or expressed. Although it is 

common to use vague words in daily conversation, in the case 

of requirements, it is best to be avoided. From the conducted 

experiment, we can conclude that a requirement comprising 

a vague word is most likely will turn out to be a vague 

requirement. However, if these vague words are followed by 

words that can measure the vagueness, the probability for 

such requirements to be vague is low. 

In detecting ambiguous requirements especially in term of 

vagueness, it is very important to look at the word that is 

either noun, adjective or adverb. This word or word phrase is 

rather subjective than objective in which without a 

determiner, the probability for the requirements to be 

ambiguous is higher when such words present in a sentence. 

Thus, fuzzy inference technique could further analyze the 

combination of words that might produce ambiguous 

requirements. Through the probability, it helps to detect 

combination of words that most likely causes vagueness to 

the requirements. 

Future work includes further analysis to capture more text 

patterns for other types of ambiguity. In-depth validation and 

verification of the results are necessary to ensure the accuracy 

of the obtained results using the Mamdani fuzzy inference. 
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